Structure-preserving approximation of distributed-parameter second-order systems using Krylov subspaces

In this article, the approximation of linear second-order distributed-parameter systems (DPS) is considered using a Galerkin approach. The resulting finite-dimensional approximation model also has a second-order structure and preserves the stability as well as the passivity. Furthermore, by extendin...

Full description

Saved in:
Bibliographic Details
Published inMathematical and computer modelling of dynamical systems Vol. 20; no. 4; pp. 395 - 413
Main Authors Deutscher, J., Harkort, Ch
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 04.07.2014
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, the approximation of linear second-order distributed-parameter systems (DPS) is considered using a Galerkin approach. The resulting finite-dimensional approximation model also has a second-order structure and preserves the stability as well as the passivity. Furthermore, by extending the Krylov subspace methods for finite-dimensional systems of second order to DPS, the basis vectors of the Galerkin projection are determined such that the transfer behaviour of the DPS can be approximated by using moment matching. The structure-preserving approximation of an Euler-Bernoulli beam with Kelvin-Voigt damping demonstrates the results of the article.
AbstractList In this article, the approximation of linear second-order distributed-parameter systems (DPS) is considered using a Galerkin approach. The resulting finite-dimensional approximation model also has a second-order structure and preserves the stability as well as the passivity. Furthermore, by extending the Krylov subspace methods for finite-dimensional systems of second order to DPS, the basis vectors of the Galerkin projection are determined such that the transfer behaviour of the DPS can be approximated by using moment matching. The structure-preserving approximation of an Euler-Bernoulli beam with Kelvin-Voigt damping demonstrates the results of the article.
In this article, the approximation of linear second-order distributed-parameter systems (DPS) is considered using a Galerkin approach. The resulting finite-dimensional approximation model also has a second-order structure and preserves the stability as well as the passivity. Furthermore, by extending the Krylov subspace methods for finite-dimensional systems of second order to DPS, the basis vectors of the Galerkin projection are determined such that the transfer behaviour of the DPS can be approximated by using moment matching. The structure-preserving approximation of an Euler-Bernoulli beam with Kelvin-Voigt damping demonstrates the results of the article. [PUBLICATION ABSTRACT]
Author Harkort, Ch
Deutscher, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Deutscher
  fullname: Deutscher, J.
  email: joachim.deutscher@fau.de
  organization: Lehrstuhl für Regelungstechnik, Universität Erlangen-Nürnberg
– sequence: 2
  givenname: Ch
  surname: Harkort
  fullname: Harkort, Ch
  organization: Lehrstuhl für Regelungstechnik, Universität Erlangen-Nürnberg
BookMark eNp9kEFv1jAMhiu0SWyDf8ChEhcu_XCaJm1OCE2MISZxYJyjNHWnTm1S7HTw_XtSfezCgZNt6fEr-7kszkIMWBRvBBwEdPBeyK6VRjWHGoQ8dFKqunlRXIi2aSoFSpzlPiPVzrwsLpkfAWqhhLooHr4n2nzaCKuVkJGepvBQunWl-HtaXJpiKONYDhMnmvot4VCtjtyCCalk9DEMVaRhH46ccOFy4z3hKx3n-FTy1vPqPPKr4nx0M-Prv_Wq-HHz6f76trr79vnL9ce7ykvRpsojONANSFM7g17psdGm1aCMQT32otc-P2xGX7cAzvm2641y_aBcZxpdg7wq3p1y8wM_N-Rkl4k9zrMLGDe2QkkwnTRGZPTtP-hj3Cjk6zIFnTYAeg9sTpSnyEw42pWyGDpaAXa3b5_t292-PdnPax9Oa1MYIy3uV6R5sMllKzSSC35iK_-b8Aen-474
Cites_doi 10.1137/0326041
10.1080/13873950701844170
10.1023/A:1024052419431
10.1109/CDC.2005.1582501
10.1109/TAC.2010.2090063
10.1007/978-1-4612-4224-6
10.1016/j.laa.2004.12.013
10.1007/978-1-4471-0419-3
10.1007/978-3-642-85949-6
10.1007/978-3-642-66282-9
10.1016/j.sysconle.2008.10.016
10.1137/040605552
10.1137/1.9780898718713
10.1109/9.544000
10.1017/S0962492902000120
10.2514/3.55187
ContentType Journal Article
Copyright 2013 Taylor & Francis 2013
2013 Taylor & Francis
Copyright_xml – notice: 2013 Taylor & Francis 2013
– notice: 2013 Taylor & Francis
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/13873954.2013.833524
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1744-5051
EndPage 413
ExternalDocumentID 3251004561
10_1080_13873954_2013_833524
833524
Genre Original Articles
Feature
GroupedDBID .4S
.7F
.DC
.QJ
0R~
0YH
29M
30N
4.4
5GY
5VS
AAAKF
AAAVI
AAENE
ABBKH
ABCCY
ABDBF
ABFIM
ABHAV
ABJVF
ABPEM
ABPTK
ABQHQ
ABTAI
ABUCO
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AFKVX
AFOLD
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
ALMA_UNASSIGNED_HOLDINGS
AQRUH
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EJD
EMI
EMK
EPL
EST
ESX
E~A
E~B
F5P
FUNRP
FVPDL
GROUPED_DOAJ
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQEST
PQQKQ
RIG
S-T
SNACF
TFL
TFT
TFW
TTHFI
TUS
TWF
UT5
UU3
V1K
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c317t-ce0a0640392a9ec56f469760599e6fb1b6c0809fc2700aac78b95abd5a8946203
ISSN 1387-3954
IngestDate Fri Oct 25 03:16:16 EDT 2024
Thu Oct 10 20:10:37 EDT 2024
Fri Aug 23 02:42:20 EDT 2024
Tue Jul 04 18:16:16 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-ce0a0640392a9ec56f469760599e6fb1b6c0809fc2700aac78b95abd5a8946203
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1508690060
PQPubID 186321
PageCount 19
ParticipantIDs proquest_miscellaneous_1530983991
proquest_journals_1508690060
crossref_primary_10_1080_13873954_2013_833524
informaworld_taylorfrancis_310_1080_13873954_2013_833524
PublicationCentury 2000
PublicationDate 2014-07-04
PublicationDateYYYYMMDD 2014-07-04
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-04
  day: 04
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Mathematical and computer modelling of dynamical systems
PublicationYear 2014
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0021
CIT0020
CIT0001
CIT0012
CIT0011
Grimme E.J. (CIT0007) 1997
Chahlaoui Y. (CIT0002) 2002
Kato T. (CIT0022) 1995
Benner P. (CIT0004) 2012
Salimbahrami B. (CIT0015) 2005
CIT0003
CIT0014
CIT0005
CIT0016
CIT0018
CIT0006
CIT0017
Reis T. (CIT0013)
CIT0008
CIT0019
References_xml – volume-title: Structure-preserving order reduction of large scale second-order models
  year: 2005
  ident: CIT0015
  contributor:
    fullname: Salimbahrami B.
– ident: CIT0019
  doi: 10.1137/0326041
– volume-title: Proc. Int. Symp. on Mathematical Theory of Networks and Systems
  year: 2002
  ident: CIT0002
  contributor:
    fullname: Chahlaoui Y.
– ident: CIT0003
  doi: 10.1080/13873950701844170
– volume-title: Finite-rank ADI iteration for operator Lyapunov equations
  ident: CIT0013
  contributor:
    fullname: Reis T.
– ident: CIT0020
  doi: 10.1023/A:1024052419431
– ident: CIT0011
  doi: 10.1109/CDC.2005.1582501
– ident: CIT0014
  doi: 10.1109/TAC.2010.2090063
– ident: CIT0017
  doi: 10.1007/978-1-4612-4224-6
– ident: CIT0008
  doi: 10.1016/j.laa.2004.12.013
– ident: CIT0018
  doi: 10.1007/978-1-4471-0419-3
– volume-title: An Improved Numerical Method for Balanced Truncation for Symmetric Second-Order Systems
  year: 2012
  ident: CIT0004
  contributor:
    fullname: Benner P.
– ident: CIT0016
  doi: 10.1007/978-3-642-85949-6
– volume-title: Perturbation Theory for Linear Operators
  year: 1995
  ident: CIT0022
  doi: 10.1007/978-3-642-66282-9
  contributor:
    fullname: Kato T.
– ident: CIT0012
  doi: 10.1016/j.sysconle.2008.10.016
– volume-title: Krylov projection methods for model reduction
  year: 1997
  ident: CIT0007
  contributor:
    fullname: Grimme E.J.
– ident: CIT0010
  doi: 10.1137/040605552
– ident: CIT0005
  doi: 10.1137/1.9780898718713
– ident: CIT0001
  doi: 10.1109/9.544000
– ident: CIT0006
  doi: 10.1017/S0962492902000120
– ident: CIT0021
  doi: 10.2514/3.55187
SSID ssj0021515
Score 1.9951115
Snippet In this article, the approximation of linear second-order distributed-parameter systems (DPS) is considered using a Galerkin approach. The resulting...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 395
SubjectTerms Approximation
Dynamical systems
Dynamics
Euler-Bernoulli beams
Galerkin approach
Galerkin methods
Krylov subspace methods
linear distributed-parameter systems
Mathematical analysis
Mathematical models
moment matching
Preserves
second-order systems
structure preservation
Title Structure-preserving approximation of distributed-parameter second-order systems using Krylov subspaces
URI https://www.tandfonline.com/doi/abs/10.1080/13873954.2013.833524
https://www.proquest.com/docview/1508690060
https://search.proquest.com/docview/1530983991
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbK9sILMH6IwpiMxFvlktROljxug2naNF7opL1FTnwGBGunJkVofz13sZO6aoXYXqI2aevK9_n8XXL3HWMfZIbbemw1ej9IhYrBCm20xYVXwsRUiGhLxcmXX9KzK3V-nVwPBndhdUlTjqu7rXUlD7EqnkO7UpXsPSzb_yiewNdoXzyihfH4Xzb-2oq_LhcgKJ2VVj1VHJJK-J8fNz0XNKSNS22twAhS-r6hDJhRTZGwEa30ptdzrkfL9s7BxQKj-N-jGn3KLWVshQT2spd59SIDlW8L4Xrq_PJJ1MY1uqdilEASnQgzLJu6A8r5eOUAFz99T_uT7-GdiFi1WaurO5HTjaYggV8lCV-ZO73oMbhzh0oJJGBx6IwnUQA6FXhW6Xpx-k1auQLWDf_vEiZpNBqMMvfkuC0rU6v9rs9CdBcesd0JOin0jrtHx5-OT_twnaheG677v94VXmbRx20DrBGbNdnbjW2-5S7TZ-yJDzr4kUPQHhvA7Dl76gMQ7t17_YJ92wYovgYoPrd8K6B4CCjurc5bQHEHKN4D6iW7Ov08PTkTvhOHqJBfNqKCSNMjXyTTOocqSa1KkceStg-ktozLlATrc1tRGoPW1WFW5okuTaKzXKWTSL5iO7P5DF4zDiBjGSeAtNEoIMFHdBaJNpBCgu-jIRPdNBa3TnCliL2ObTftBU174aZ9yLJwroumRaF1ACzkv7-639ml8Ku6Lqg_QpqTTNGQve8vo8-lB2l6BvMlfUZGOUYWefzm4aO_ZY9Xi2if7aCB4R0S3KY88Ej8C4vfqAU
link.rule.ids 315,783,787,27936,27937,60214,61003
linkProvider EBSCOhost
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9swEMdPG3vYXoAxJsqvGYlXl7hJTPKIEFX51RdaaW-Wk5wrtJEi0iLgr-fOSSoYYg_bY5WmSW3f-c7-3scA-2FC07pylrwfahkpdNIW1pHhZdgrchrRjouTL4d6MI7OfsatmrBqZJWcQ7saFOF9NRs3L0a3krgDFSa8v8RLIirs-rKh6CN80sz_4iqOYLjIuXi-9jkX2xLd0lbPvfMrr2anV-zSN77aT0D9FcjaV691J7-681nWzZ_-oDr-139bheUmPBVH9Xj6Ch-wXIOVJlQVjSOovsHkynNn53coWUnLDqecCA8of7iuqyHF1ImCsbx8ohYWkiHjNyy-ERUn4YX01E9Ro6QrwQL8iTi_e_w9vRcVubNbFoutw7h_MjoeyObMBplTJDKTOQaWNwcp7LIp5rF2lH8faqbAoHaZyjSjzVOX84a3tflhkqWxzYrYJmmke0H4HZbKaYkbIBBDFaoYKcAoImQ0IA2r2BaoMabPQQdk21fmtkZzGNUQT9tWNNyKpm7FDiQvO9TM_JKIq88vMeHfb91uO980Nl4ZJunrlIE2HdhbXCbr5C0XW-J0zt8Jg5Ri0FRt_vvTf8DnwejywlycDs-34AtdibxgONqGJeps3KGwaJbt-oH_DKSNAnE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkVAvLY-ibilgJK5e4jpxk2NVWBUWVkhQqTfLicerCppdNbtV21_PjJNUXVA5lGPkOA_P2zPzGeCdzsmsq-BI-6GRqcIgnXeBBK_EPV8RRwduTv46MUfH6eeT7ORWFz-XVXIMHVqgiKirWbjnPvQVce-Vzjm9xDsiSg9j11D6EB6RI5Awp-tkchNysbmOIReLEk3pm-fueMqKcVqBLv1LVUf7M9oE1395W3byc7hclMPq-g9Qx__5tSew0Tmn4qDlpqfwAOtnsNk5qqJTA81zmH6PqLPLc5RcR8vqpp6KCE9-edr2QopZEJ5Befk8LfSSIcbPuPRGNByCexkxP0ULJN0ILr-fivH51a_ZhWhImc25VGwLjkcffxweye7EBlmRH7KQFSaOU4PkdLkCq8wEir73DWPAoAmlKg0Dmxeh4nS3c9V-XhaZK33m8iI1e4l-AWv1rMZtEIhaaZUhuRc-RQYGJKbKnEeDGV0nA5A9qey8BeawqsM77VfR8iradhUHkN-mp13EDZHQnl5i9b-n7va0t52EN5Zx9E3BcDYDeHszTLLJCRdX42zJ9-ikIA-0UDv3f_sbePztw8h--TQZv4R1GkhjtXC6C2tEa3xFPtGifB3Z_jePoAEe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-preserving+approximation+of+distributed-parameter+second-order+systems+using+Krylov+subspaces&rft.jtitle=Mathematical+and+computer+modelling+of+dynamical+systems&rft.au=Deutscher%2C+J.&rft.au=Harkort%2C+Ch&rft.date=2014-07-04&rft.pub=Taylor+%26+Francis&rft.issn=1387-3954&rft.eissn=1744-5051&rft.volume=20&rft.issue=4&rft.spage=395&rft.epage=413&rft_id=info:doi/10.1080%2F13873954.2013.833524&rft.externalDocID=833524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-3954&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-3954&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-3954&client=summon