Apple yield prediction mapping using machine learning techniques through the Google Earth Engine cloud in Kashmir Valley, India
Our study established a machine learning (ML) model that could predict the apple yield based on various satellite multisensor data, such as climatological, SAR backscatter, terrain distribution, and soil factors, grouped as 26 subcriteria. A total of 986 apple orchards database were collected from 2...
Saved in:
Published in | Journal of applied remote sensing Vol. 17; no. 1; p. 014505 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Society of Photo-Optical Instrumentation Engineers
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1931-3195 1931-3195 |
DOI | 10.1117/1.JRS.17.014505 |
Cover
Abstract | Our study established a machine learning (ML) model that could predict the apple yield based on various satellite multisensor data, such as climatological, SAR backscatter, terrain distribution, and soil factors, grouped as 26 subcriteria. A total of 986 apple orchards database were collected from 2018 to 2021 in Kashmir Valley, India covering an area of 277953.7 ha farmland. The novelty of our research is the integration of Google Earth Engine cloud and ML models, namely random forest, support vector machine, extreme gradient boosting, K-nearest neighbors, and Cubist along with the geographic information system/remote sensing technology to create an accurate and comprehensive apple yield prediction model in the precision agriculture realm for highlands. The multicollinearity testing indicated that the tolerance and VIF values of all the conditioning factors were <0.1 and <6.85, respectively, indicating no multicollinearity problems among the apple yield suitability factors. Among the tested ML models, the Cubist model performed best, with R2 of 0.83, root-mean-squared error of 0.56 t / ha, and mean absolute error of 0.2 t / ha. The results showed a low mean fruit yield during 2018 of 12.36 ton / ha, whereas maximum fruit yield was reflected in 2021 of 14.05 ton / ha. The heat map revealed the highest normalized differential vegetation index along with vertical-vertical/ vertical-horizontal polarization backscatter, detected during the pre-event of severe snowfall compared to on- and postevent of snowfall for the respective years. Untimely snowing and infestation due to fungi and bacterial diseases regularly reduce fruit yield in the study area. Our study successfully used of high-resolution optical-SAR data combined with ML models as a promising tool for monitoring the yield variability over the highland areas. |
---|---|
AbstractList | Our study established a machine learning (ML) model that could predict the apple yield based on various satellite multisensor data, such as climatological, SAR backscatter, terrain distribution, and soil factors, grouped as 26 subcriteria. A total of 986 apple orchards database were collected from 2018 to 2021 in Kashmir Valley, India covering an area of 277953.7 ha farmland. The novelty of our research is the integration of Google Earth Engine cloud and ML models, namely random forest, support vector machine, extreme gradient boosting, K-nearest neighbors, and Cubist along with the geographic information system/remote sensing technology to create an accurate and comprehensive apple yield prediction model in the precision agriculture realm for highlands. The multicollinearity testing indicated that the tolerance and VIF values of all the conditioning factors were <0.1 and <6.85, respectively, indicating no multicollinearity problems among the apple yield suitability factors. Among the tested ML models, the Cubist model performed best, with R2 of 0.83, root-mean-squared error of 0.56 t / ha, and mean absolute error of 0.2 t / ha. The results showed a low mean fruit yield during 2018 of 12.36 ton / ha, whereas maximum fruit yield was reflected in 2021 of 14.05 ton / ha. The heat map revealed the highest normalized differential vegetation index along with vertical-vertical/ vertical-horizontal polarization backscatter, detected during the pre-event of severe snowfall compared to on- and postevent of snowfall for the respective years. Untimely snowing and infestation due to fungi and bacterial diseases regularly reduce fruit yield in the study area. Our study successfully used of high-resolution optical-SAR data combined with ML models as a promising tool for monitoring the yield variability over the highland areas. |
Author | Singha, Chiranjit Pradhan, Devendra Gulzar, Shahid Swain, Kishore Chandra |
Author_xml | – sequence: 1 givenname: Chiranjit orcidid: 0000-0003-1204-1750 surname: Singha fullname: Singha, Chiranjit email: singha.chiranjit@gmail.com organization: Visva-Bharati (A Central University), Institute of Agriculture, Department of Agricultural Engineering, Sriniketan, West Bengal, India – sequence: 2 givenname: Shahid surname: Gulzar fullname: Gulzar, Shahid email: sgulzar.iigst@gmail.com organization: International Institute of Geospatial Science and Technology, Kolkata, West Bengal, India – sequence: 3 givenname: Kishore Chandra orcidid: 0000-0003-1883-2019 surname: Swain fullname: Swain, Kishore Chandra email: kishore.swain@visva-bharati.ac.in organization: Visva-Bharati (A Central University), Institute of Agriculture, Department of Agricultural Engineering, Sriniketan, West Bengal, India – sequence: 4 givenname: Devendra surname: Pradhan fullname: Pradhan, Devendra email: pradhandev1960@gmail.com organization: Indian Meterological Department, New Delhi, India |
BookMark | eNp9kM1OwzAQhC1UJNrCmasfoEntJM7PsapKKVRCgopr5DrrxFViBzs59MSrk6gcEBJcdkar_UbamaGJNhoQuqfEp5QmS-o_vb75NPEJjRhhV2hKs5B6Ic3Y5Ie_QTPnToSwME2TKfpctW0N-KygLnBroVCiU0bjhret0iXu3TgbLiqlAdfArR4XHYhKq48eHO4qa_qyGhTw1phySNtw21V4o8uREbXpC6w0fuauapTF77yu4bzAO10ofouuJa8d3H3rHB0eNof1o7d_2e7Wq70nQpp0niABCYKUCBYdgRU8IrEIRQRBKGKQRyZTEReJpDJjjEvgRBYkjiFLwgQEHMM5Wl5ihTXOWZB5a1XD7TmnJB_ry2k-1JcP5lLfQLBfhFAdH7vpLFf1P9ziwrlWQX4yvdXDX3-efwHVXIbm |
CitedBy_id | crossref_primary_10_1016_j_foreco_2024_121729 crossref_primary_10_1038_s41598_024_72624_4 crossref_primary_10_1007_s11356_024_34286_7 crossref_primary_10_1007_s41748_024_00481_2 crossref_primary_10_1016_j_ejrs_2023_10_005 crossref_primary_10_1016_j_jenvman_2024_122721 crossref_primary_10_1007_s42979_023_02463_z crossref_primary_10_1016_j_jafr_2024_101424 crossref_primary_10_1016_j_atech_2024_100556 crossref_primary_10_1038_s41598_025_87134_0 crossref_primary_10_3390_rs16244805 |
Cites_doi | 10.3126/ntdr.v1i1.7367 10.3389/fpls.2020.01086 10.1016/j.gecco.2018.e00478 10.1016/j.scienta.2017.12.057 10.1007/s11119-018-09628-4 10.3390/data5010002 10.3390/ijgi9120720 10.1007/s10708-016-9755-6 10.3920/978-90-8686-814-8_69 10.1016/j.biosystemseng.2021.06.018 10.1371/journal.pone.0235041 10.1145/2939672.2939785 10.1080/08839514.2022.2031823 10.1038/sdata.2017.12 10.3390/rs11050542 10.1007/s10708-019-10112-3 10.3390/rs13163073 10.1007/s13143-018-0071-6 10.1016/j.renene.2016.03.032 10.1016/j.compeleceng.2019.106466 10.3390/rs13040773 10.1016/j.rse.2019.04.016 10.3390/su12219206 10.1016/j.heliyon.2020.e05835 10.1038/srep02418 10.3390/agriculture10060213 10.1007/s10661-021-09588-9 10.1016/j.biosystemseng.2018.01.003 10.1088/1748-9326/ab5268 10.1038/s41598-020-60191-3 10.1038/ncomms6989 10.5897/AJMR2014.6611 10.1016/j.proenv.2015.05.026 10.1002/joc.4961 10.1007/s11119-019-09642-0 10.1051/e3sconf/202124803080 10.1038/s41598-022-10844-2 10.3390/rs14092256 10.1016/j.jafr.2021.100104 10.3390/su11102977 10.1590/1678-4499.2016459 10.3390/rs13204091 10.1186/s13007-020-00620-6 10.3390/agriculture11080724 |
ContentType | Journal Article |
Copyright | 2023 Society of Photo-Optical Instrumentation Engineers (SPIE) |
Copyright_xml | – notice: 2023 Society of Photo-Optical Instrumentation Engineers (SPIE) |
DBID | AAYXX CITATION |
DOI | 10.1117/1.JRS.17.014505 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1931-3195 |
EndPage | 014505 |
ExternalDocumentID | 10_1117_1_JRS_17_014505 |
GroupedDBID | 0R~ 29J 5GY ACGFO ACGFS AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS FQ0 HZ~ O9- RNS SPBNH UT2 AAYXX ABJNI ADMLS AKROS CITATION M4X |
ID | FETCH-LOGICAL-c317t-c0202280c54be5da406c3c4e23c6efb5f8c6d7f1f955afea0fd066e9737eceb3 |
ISSN | 1931-3195 |
IngestDate | Tue Jul 01 04:10:02 EDT 2025 Thu Apr 24 22:53:06 EDT 2025 Sun Apr 02 05:15:28 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cubist SAR backscatter apple yield Google Earth Engine GIS/RS technique |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c317t-c0202280c54be5da406c3c4e23c6efb5f8c6d7f1f955afea0fd066e9737eceb3 |
ORCID | 0000-0003-1883-2019 0000-0003-1204-1750 |
PageCount | 1 |
ParticipantIDs | spie_journals_10_1117_1_JRS_17_014505 crossref_primary_10_1117_1_JRS_17_014505 crossref_citationtrail_10_1117_1_JRS_17_014505 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of applied remote sensing |
PublicationTitleAlternate | J. Appl. Remote Sens |
PublicationYear | 2023 |
Publisher | Society of Photo-Optical Instrumentation Engineers |
Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers |
References | r3 r4 Singha (r16) 2021 r5 r6 r7 r8 r9 (r35) 2022 (r31) 2022 r50 r52 r10 r54 r53 r12 r11 Chen (r49) 2016 r55 r14 r13 r57 Malone (r51) 2017 r15 r59 r18 r17 r19 Emami (r22) 2019 r61 r60 r21 r20 r23 (r36) 2022 Sharma (r56) 2007 r24 r27 r26 r29 r28 r32 Mir (r2) 2022 r39 Rasool (r58) 2021 Chaudhary (r25) 2021 (r34) 2022 Fischer (r37) 2022 r41 Singha (r45) 2022 r40 r43 r42 r44 r47 r46 r48 (r38) 2022 Li (r30) 2022 r1 McNally (r33) 2018 |
References_xml | – ident: r8 doi: 10.3126/ntdr.v1i1.7367 – ident: r24 doi: 10.3389/fpls.2020.01086 – ident: r41 doi: 10.1016/j.gecco.2018.e00478 – ident: r59 doi: 10.1016/j.scienta.2017.12.057 – ident: r14 doi: 10.1007/s11119-018-09628-4 – ident: r50 doi: 10.3390/data5010002 – year: 2022 ident: r38 – start-page: 1 year: 2021 ident: r25 article-title: Transfer learning application for berries yield forecasting using deep learning – ident: r42 doi: 10.3390/ijgi9120720 – year: 2021 ident: r16 article-title: Rice and potato yield prediction using artificial intelligence techniques – ident: r3 doi: 10.1007/s10708-016-9755-6 – start-page: 65 year: 2022 ident: r45 article-title: Spatial analyses of cyclone Amphan induced flood inundation mapping using Sentinel-1A SAR images through GEE cloud – ident: r57 doi: 10.3920/978-90-8686-814-8_69 – ident: r48 doi: 10.1016/j.biosystemseng.2021.06.018 – ident: r39 doi: 10.1371/journal.pone.0235041 – start-page: 35 year: 2017 ident: r51 – year: 2016 ident: r49 article-title: XGBoost: A Scalable Tree Boosting System doi: 10.1145/2939672.2939785 – ident: r23 doi: 10.1080/08839514.2022.2031823 – ident: r32 doi: 10.1038/sdata.2017.12 – ident: r55 doi: 10.3390/rs11050542 – ident: r1 doi: 10.1007/s10708-019-10112-3 – ident: r12 doi: 10.3390/rs13163073 – ident: r29 doi: 10.1007/s13143-018-0071-6 – ident: r43 – ident: r7 doi: 10.1016/j.renene.2016.03.032 – ident: r19 doi: 10.1016/j.compeleceng.2019.106466 – ident: r27 doi: 10.3390/rs13040773 – year: 2022 ident: r36 – ident: r28 doi: 10.1016/j.rse.2019.04.016 – ident: r53 doi: 10.3390/su12219206 – ident: r5 doi: 10.1016/j.heliyon.2020.e05835 – ident: r40 doi: 10.1038/srep02418 – ident: r60 doi: 10.3390/agriculture10060213 – year: 2022 ident: r35 – ident: r4 doi: 10.1007/s10661-021-09588-9 – ident: r20 doi: 10.1016/j.biosystemseng.2018.01.003 – ident: r17 doi: 10.1088/1748-9326/ab5268 – start-page: 107447 year: 2021 ident: r58 article-title: Land use land cover change in Kashmir Himalaya: linking remote sensing with an indicator based DPSIR approach – year: 2022 ident: r34 – ident: r46 doi: 10.1038/s41598-020-60191-3 – ident: r15 doi: 10.1038/ncomms6989 – year: 2018 ident: r33 – year: 2007 ident: r56 article-title: Apple orchard characterization using remote sensing and GIS in Shimla district of Himachal Pradesh – ident: r61 doi: 10.5897/AJMR2014.6611 – ident: r44 doi: 10.1016/j.proenv.2015.05.026 – ident: r6 doi: 10.1002/joc.4961 – ident: r26 doi: 10.1007/s11119-019-09642-0 – ident: r11 doi: 10.1051/e3sconf/202124803080 – ident: r21 doi: 10.1038/s41598-022-10844-2 – year: 2022 ident: r31 – start-page: 73 year: 2019 ident: r22 article-title: Estimation of barley yield under irrigation with wastewater using RBF and GFF models of artificial neural network – ident: r13 doi: 10.3390/rs14092256 – ident: r54 doi: 10.1016/j.jafr.2021.100104 – year: 2022 ident: r2 article-title: Directorate of Horticulture – ident: r9 doi: 10.3390/su11102977 – ident: r52 doi: 10.1590/1678-4499.2016459 – ident: r47 doi: 10.3390/rs13204091 – ident: r18 doi: 10.1186/s13007-020-00620-6 – ident: r10 doi: 10.3390/agriculture11080724 – year: 2022 ident: r30 article-title: Earthdata: Giovanni- the bridge between data and science – year: 2022 ident: r37 article-title: Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008) |
SSID | ssj0053887 |
Score | 2.3706207 |
Snippet | Our study established a machine learning (ML) model that could predict the apple yield based on various satellite multisensor data, such as climatological, SAR... |
SourceID | crossref spie |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 014505 |
Title | Apple yield prediction mapping using machine learning techniques through the Google Earth Engine cloud in Kashmir Valley, India |
URI | http://www.dx.doi.org/10.1117/1.JRS.17.014505 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAXxFOUl_YAEpKxid_JsSolVUsRIgH1Zq13x7VREkd2LEQv_CD-JLMPOyFKpMLFsTb2yMp82e_z7OwMIa-igR-wyGM2sg3YQRxxO00D1_bDAZJt5sZMyID-xafo9Gtwdhle9nq_N7KWmlXq8Oud-0r-x6s4hn6Vu2T_wbOdURzAc_QvHtHDeLyRj6WEBOunTEKTm_1Foft-z9lS7YJqVBxgrtIloe0PcWV1ZVvrrkuPVJ_jsrxCaydMLuToMoUWn5WNLM5knbM6nxeV9U22XtHR1oUo2B5py4y0rQCBAFYtk-QNQ8pgDp7rZabjvECq_F50qTfjZnatM74nOcvbZHu85QfTtQ7OizovK1CbIkTVUcrniomcmQkUp-_2KxPO8PyNcIaegUc-IsXVnTcd2DHWTtvxNjx3sIGqJ-CcfZk4buzIFdRBuCa-drF_iw-7LEX9fhQnboIGEjzRBm6RAy-OZU7AwdH7i4-TlviROlQ_xu5pTSUpNPFu6xn-EkH9elnAhqiZ3iN3jcvokYbWfdKDxQNyewymjvlD8ktBjCqI0TXEqIEYVRCjBmK0hRhdQ4waiOEnUA0xqiBGNcSoghgtFtRAjGqIvaUKYI_I9MPJ9PjUNj07bI5KdGVzfP2QFZZ4GKQQCoZ6kfs8AM_nEWRpmA15JOLMzUZhyDJgg0yg6IVR7MfAIfUfk_6iXMATQlE4S8YBD4ZBINwoDV0O0kqaZiIUw0PitL9hwk09e9lWZZbs8dshedPdsNSlXPZf-lo6JTH_9XrfdU9vbvIZubOG-3PSX1UNvEA9u0pfGhz9AQkRogc |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Apple+yield+prediction+mapping+using+machine+learning+techniques+through+the+Google+Earth+Engine+cloud+in+Kashmir+Valley%2C+India&rft.jtitle=Journal+of+applied+remote+sensing&rft.au=Singha%2C+Chiranjit&rft.au=Gulzar%2C+Shahid&rft.au=Swain%2C+Kishore+Chandra&rft.au=Pradhan%2C+Devendra&rft.date=2023-01-01&rft.issn=1931-3195&rft.eissn=1931-3195&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1117%2F1.JRS.17.014505&rft.externalDBID=n%2Fa&rft.externalDocID=10_1117_1_JRS_17_014505 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3195&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3195&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3195&client=summon |