Apple yield prediction mapping using machine learning techniques through the Google Earth Engine cloud in Kashmir Valley, India

Our study established a machine learning (ML) model that could predict the apple yield based on various satellite multisensor data, such as climatological, SAR backscatter, terrain distribution, and soil factors, grouped as 26 subcriteria. A total of 986 apple orchards database were collected from 2...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied remote sensing Vol. 17; no. 1; p. 014505
Main Authors Singha, Chiranjit, Gulzar, Shahid, Swain, Kishore Chandra, Pradhan, Devendra
Format Journal Article
LanguageEnglish
Published Society of Photo-Optical Instrumentation Engineers 01.01.2023
Subjects
Online AccessGet full text
ISSN1931-3195
1931-3195
DOI10.1117/1.JRS.17.014505

Cover

Abstract Our study established a machine learning (ML) model that could predict the apple yield based on various satellite multisensor data, such as climatological, SAR backscatter, terrain distribution, and soil factors, grouped as 26 subcriteria. A total of 986 apple orchards database were collected from 2018 to 2021 in Kashmir Valley, India covering an area of 277953.7 ha farmland. The novelty of our research is the integration of Google Earth Engine cloud and ML models, namely random forest, support vector machine, extreme gradient boosting, K-nearest neighbors, and Cubist along with the geographic information system/remote sensing technology to create an accurate and comprehensive apple yield prediction model in the precision agriculture realm for highlands. The multicollinearity testing indicated that the tolerance and VIF values of all the conditioning factors were <0.1 and <6.85, respectively, indicating no multicollinearity problems among the apple yield suitability factors. Among the tested ML models, the Cubist model performed best, with R2 of 0.83, root-mean-squared error of 0.56  t  /  ha, and mean absolute error of 0.2  t  /  ha. The results showed a low mean fruit yield during 2018 of 12.36  ton  /  ha, whereas maximum fruit yield was reflected in 2021 of 14.05  ton  /  ha. The heat map revealed the highest normalized differential vegetation index along with vertical-vertical/ vertical-horizontal polarization backscatter, detected during the pre-event of severe snowfall compared to on- and postevent of snowfall for the respective years. Untimely snowing and infestation due to fungi and bacterial diseases regularly reduce fruit yield in the study area. Our study successfully used of high-resolution optical-SAR data combined with ML models as a promising tool for monitoring the yield variability over the highland areas.
AbstractList Our study established a machine learning (ML) model that could predict the apple yield based on various satellite multisensor data, such as climatological, SAR backscatter, terrain distribution, and soil factors, grouped as 26 subcriteria. A total of 986 apple orchards database were collected from 2018 to 2021 in Kashmir Valley, India covering an area of 277953.7 ha farmland. The novelty of our research is the integration of Google Earth Engine cloud and ML models, namely random forest, support vector machine, extreme gradient boosting, K-nearest neighbors, and Cubist along with the geographic information system/remote sensing technology to create an accurate and comprehensive apple yield prediction model in the precision agriculture realm for highlands. The multicollinearity testing indicated that the tolerance and VIF values of all the conditioning factors were <0.1 and <6.85, respectively, indicating no multicollinearity problems among the apple yield suitability factors. Among the tested ML models, the Cubist model performed best, with R2 of 0.83, root-mean-squared error of 0.56  t  /  ha, and mean absolute error of 0.2  t  /  ha. The results showed a low mean fruit yield during 2018 of 12.36  ton  /  ha, whereas maximum fruit yield was reflected in 2021 of 14.05  ton  /  ha. The heat map revealed the highest normalized differential vegetation index along with vertical-vertical/ vertical-horizontal polarization backscatter, detected during the pre-event of severe snowfall compared to on- and postevent of snowfall for the respective years. Untimely snowing and infestation due to fungi and bacterial diseases regularly reduce fruit yield in the study area. Our study successfully used of high-resolution optical-SAR data combined with ML models as a promising tool for monitoring the yield variability over the highland areas.
Author Singha, Chiranjit
Pradhan, Devendra
Gulzar, Shahid
Swain, Kishore Chandra
Author_xml – sequence: 1
  givenname: Chiranjit
  orcidid: 0000-0003-1204-1750
  surname: Singha
  fullname: Singha, Chiranjit
  email: singha.chiranjit@gmail.com
  organization: Visva-Bharati (A Central University), Institute of Agriculture, Department of Agricultural Engineering, Sriniketan, West Bengal, India
– sequence: 2
  givenname: Shahid
  surname: Gulzar
  fullname: Gulzar, Shahid
  email: sgulzar.iigst@gmail.com
  organization: International Institute of Geospatial Science and Technology, Kolkata, West Bengal, India
– sequence: 3
  givenname: Kishore Chandra
  orcidid: 0000-0003-1883-2019
  surname: Swain
  fullname: Swain, Kishore Chandra
  email: kishore.swain@visva-bharati.ac.in
  organization: Visva-Bharati (A Central University), Institute of Agriculture, Department of Agricultural Engineering, Sriniketan, West Bengal, India
– sequence: 4
  givenname: Devendra
  surname: Pradhan
  fullname: Pradhan, Devendra
  email: pradhandev1960@gmail.com
  organization: Indian Meterological Department, New Delhi, India
BookMark eNp9kM1OwzAQhC1UJNrCmasfoEntJM7PsapKKVRCgopr5DrrxFViBzs59MSrk6gcEBJcdkar_UbamaGJNhoQuqfEp5QmS-o_vb75NPEJjRhhV2hKs5B6Ic3Y5Ie_QTPnToSwME2TKfpctW0N-KygLnBroVCiU0bjhret0iXu3TgbLiqlAdfArR4XHYhKq48eHO4qa_qyGhTw1phySNtw21V4o8uREbXpC6w0fuauapTF77yu4bzAO10ofouuJa8d3H3rHB0eNof1o7d_2e7Wq70nQpp0niABCYKUCBYdgRU8IrEIRQRBKGKQRyZTEReJpDJjjEvgRBYkjiFLwgQEHMM5Wl5ihTXOWZB5a1XD7TmnJB_ry2k-1JcP5lLfQLBfhFAdH7vpLFf1P9ziwrlWQX4yvdXDX3-efwHVXIbm
CitedBy_id crossref_primary_10_1016_j_foreco_2024_121729
crossref_primary_10_1038_s41598_024_72624_4
crossref_primary_10_1007_s11356_024_34286_7
crossref_primary_10_1007_s41748_024_00481_2
crossref_primary_10_1016_j_ejrs_2023_10_005
crossref_primary_10_1016_j_jenvman_2024_122721
crossref_primary_10_1007_s42979_023_02463_z
crossref_primary_10_1016_j_jafr_2024_101424
crossref_primary_10_1016_j_atech_2024_100556
crossref_primary_10_1038_s41598_025_87134_0
crossref_primary_10_3390_rs16244805
Cites_doi 10.3126/ntdr.v1i1.7367
10.3389/fpls.2020.01086
10.1016/j.gecco.2018.e00478
10.1016/j.scienta.2017.12.057
10.1007/s11119-018-09628-4
10.3390/data5010002
10.3390/ijgi9120720
10.1007/s10708-016-9755-6
10.3920/978-90-8686-814-8_69
10.1016/j.biosystemseng.2021.06.018
10.1371/journal.pone.0235041
10.1145/2939672.2939785
10.1080/08839514.2022.2031823
10.1038/sdata.2017.12
10.3390/rs11050542
10.1007/s10708-019-10112-3
10.3390/rs13163073
10.1007/s13143-018-0071-6
10.1016/j.renene.2016.03.032
10.1016/j.compeleceng.2019.106466
10.3390/rs13040773
10.1016/j.rse.2019.04.016
10.3390/su12219206
10.1016/j.heliyon.2020.e05835
10.1038/srep02418
10.3390/agriculture10060213
10.1007/s10661-021-09588-9
10.1016/j.biosystemseng.2018.01.003
10.1088/1748-9326/ab5268
10.1038/s41598-020-60191-3
10.1038/ncomms6989
10.5897/AJMR2014.6611
10.1016/j.proenv.2015.05.026
10.1002/joc.4961
10.1007/s11119-019-09642-0
10.1051/e3sconf/202124803080
10.1038/s41598-022-10844-2
10.3390/rs14092256
10.1016/j.jafr.2021.100104
10.3390/su11102977
10.1590/1678-4499.2016459
10.3390/rs13204091
10.1186/s13007-020-00620-6
10.3390/agriculture11080724
ContentType Journal Article
Copyright 2023 Society of Photo-Optical Instrumentation Engineers (SPIE)
Copyright_xml – notice: 2023 Society of Photo-Optical Instrumentation Engineers (SPIE)
DBID AAYXX
CITATION
DOI 10.1117/1.JRS.17.014505
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1931-3195
EndPage 014505
ExternalDocumentID 10_1117_1_JRS_17_014505
GroupedDBID 0R~
29J
5GY
ACGFO
ACGFS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
FQ0
HZ~
O9-
RNS
SPBNH
UT2
AAYXX
ABJNI
ADMLS
AKROS
CITATION
M4X
ID FETCH-LOGICAL-c317t-c0202280c54be5da406c3c4e23c6efb5f8c6d7f1f955afea0fd066e9737eceb3
ISSN 1931-3195
IngestDate Tue Jul 01 04:10:02 EDT 2025
Thu Apr 24 22:53:06 EDT 2025
Sun Apr 02 05:15:28 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cubist
SAR backscatter
apple yield
Google Earth Engine
GIS/RS technique
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-c0202280c54be5da406c3c4e23c6efb5f8c6d7f1f955afea0fd066e9737eceb3
ORCID 0000-0003-1883-2019
0000-0003-1204-1750
PageCount 1
ParticipantIDs spie_journals_10_1117_1_JRS_17_014505
crossref_primary_10_1117_1_JRS_17_014505
crossref_citationtrail_10_1117_1_JRS_17_014505
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of applied remote sensing
PublicationTitleAlternate J. Appl. Remote Sens
PublicationYear 2023
Publisher Society of Photo-Optical Instrumentation Engineers
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
References r3
r4
Singha (r16) 2021
r5
r6
r7
r8
r9
(r35) 2022
(r31) 2022
r50
r52
r10
r54
r53
r12
r11
Chen (r49) 2016
r55
r14
r13
r57
Malone (r51) 2017
r15
r59
r18
r17
r19
Emami (r22) 2019
r61
r60
r21
r20
r23
(r36) 2022
Sharma (r56) 2007
r24
r27
r26
r29
r28
r32
Mir (r2) 2022
r39
Rasool (r58) 2021
Chaudhary (r25) 2021
(r34) 2022
Fischer (r37) 2022
r41
Singha (r45) 2022
r40
r43
r42
r44
r47
r46
r48
(r38) 2022
Li (r30) 2022
r1
McNally (r33) 2018
References_xml – ident: r8
  doi: 10.3126/ntdr.v1i1.7367
– ident: r24
  doi: 10.3389/fpls.2020.01086
– ident: r41
  doi: 10.1016/j.gecco.2018.e00478
– ident: r59
  doi: 10.1016/j.scienta.2017.12.057
– ident: r14
  doi: 10.1007/s11119-018-09628-4
– ident: r50
  doi: 10.3390/data5010002
– year: 2022
  ident: r38
– start-page: 1
  year: 2021
  ident: r25
  article-title: Transfer learning application for berries yield forecasting using deep learning
– ident: r42
  doi: 10.3390/ijgi9120720
– year: 2021
  ident: r16
  article-title: Rice and potato yield prediction using artificial intelligence techniques
– ident: r3
  doi: 10.1007/s10708-016-9755-6
– start-page: 65
  year: 2022
  ident: r45
  article-title: Spatial analyses of cyclone Amphan induced flood inundation mapping using Sentinel-1A SAR images through GEE cloud
– ident: r57
  doi: 10.3920/978-90-8686-814-8_69
– ident: r48
  doi: 10.1016/j.biosystemseng.2021.06.018
– ident: r39
  doi: 10.1371/journal.pone.0235041
– start-page: 35
  year: 2017
  ident: r51
– year: 2016
  ident: r49
  article-title: XGBoost: A Scalable Tree Boosting System
  doi: 10.1145/2939672.2939785
– ident: r23
  doi: 10.1080/08839514.2022.2031823
– ident: r32
  doi: 10.1038/sdata.2017.12
– ident: r55
  doi: 10.3390/rs11050542
– ident: r1
  doi: 10.1007/s10708-019-10112-3
– ident: r12
  doi: 10.3390/rs13163073
– ident: r29
  doi: 10.1007/s13143-018-0071-6
– ident: r43
– ident: r7
  doi: 10.1016/j.renene.2016.03.032
– ident: r19
  doi: 10.1016/j.compeleceng.2019.106466
– ident: r27
  doi: 10.3390/rs13040773
– year: 2022
  ident: r36
– ident: r28
  doi: 10.1016/j.rse.2019.04.016
– ident: r53
  doi: 10.3390/su12219206
– ident: r5
  doi: 10.1016/j.heliyon.2020.e05835
– ident: r40
  doi: 10.1038/srep02418
– ident: r60
  doi: 10.3390/agriculture10060213
– year: 2022
  ident: r35
– ident: r4
  doi: 10.1007/s10661-021-09588-9
– ident: r20
  doi: 10.1016/j.biosystemseng.2018.01.003
– ident: r17
  doi: 10.1088/1748-9326/ab5268
– start-page: 107447
  year: 2021
  ident: r58
  article-title: Land use land cover change in Kashmir Himalaya: linking remote sensing with an indicator based DPSIR approach
– year: 2022
  ident: r34
– ident: r46
  doi: 10.1038/s41598-020-60191-3
– ident: r15
  doi: 10.1038/ncomms6989
– year: 2018
  ident: r33
– year: 2007
  ident: r56
  article-title: Apple orchard characterization using remote sensing and GIS in Shimla district of Himachal Pradesh
– ident: r61
  doi: 10.5897/AJMR2014.6611
– ident: r44
  doi: 10.1016/j.proenv.2015.05.026
– ident: r6
  doi: 10.1002/joc.4961
– ident: r26
  doi: 10.1007/s11119-019-09642-0
– ident: r11
  doi: 10.1051/e3sconf/202124803080
– ident: r21
  doi: 10.1038/s41598-022-10844-2
– year: 2022
  ident: r31
– start-page: 73
  year: 2019
  ident: r22
  article-title: Estimation of barley yield under irrigation with wastewater using RBF and GFF models of artificial neural network
– ident: r13
  doi: 10.3390/rs14092256
– ident: r54
  doi: 10.1016/j.jafr.2021.100104
– year: 2022
  ident: r2
  article-title: Directorate of Horticulture
– ident: r9
  doi: 10.3390/su11102977
– ident: r52
  doi: 10.1590/1678-4499.2016459
– ident: r47
  doi: 10.3390/rs13204091
– ident: r18
  doi: 10.1186/s13007-020-00620-6
– ident: r10
  doi: 10.3390/agriculture11080724
– year: 2022
  ident: r30
  article-title: Earthdata: Giovanni- the bridge between data and science
– year: 2022
  ident: r37
  article-title: Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008)
SSID ssj0053887
Score 2.3706207
Snippet Our study established a machine learning (ML) model that could predict the apple yield based on various satellite multisensor data, such as climatological, SAR...
SourceID crossref
spie
SourceType Enrichment Source
Index Database
Publisher
StartPage 014505
Title Apple yield prediction mapping using machine learning techniques through the Google Earth Engine cloud in Kashmir Valley, India
URI http://www.dx.doi.org/10.1117/1.JRS.17.014505
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAXxFOUl_YAEpKxid_JsSolVUsRIgH1Zq13x7VREkd2LEQv_CD-JLMPOyFKpMLFsTb2yMp82e_z7OwMIa-igR-wyGM2sg3YQRxxO00D1_bDAZJt5sZMyID-xafo9Gtwdhle9nq_N7KWmlXq8Oud-0r-x6s4hn6Vu2T_wbOdURzAc_QvHtHDeLyRj6WEBOunTEKTm_1Foft-z9lS7YJqVBxgrtIloe0PcWV1ZVvrrkuPVJ_jsrxCaydMLuToMoUWn5WNLM5knbM6nxeV9U22XtHR1oUo2B5py4y0rQCBAFYtk-QNQ8pgDp7rZabjvECq_F50qTfjZnatM74nOcvbZHu85QfTtQ7OizovK1CbIkTVUcrniomcmQkUp-_2KxPO8PyNcIaegUc-IsXVnTcd2DHWTtvxNjx3sIGqJ-CcfZk4buzIFdRBuCa-drF_iw-7LEX9fhQnboIGEjzRBm6RAy-OZU7AwdH7i4-TlviROlQ_xu5pTSUpNPFu6xn-EkH9elnAhqiZ3iN3jcvokYbWfdKDxQNyewymjvlD8ktBjCqI0TXEqIEYVRCjBmK0hRhdQ4waiOEnUA0xqiBGNcSoghgtFtRAjGqIvaUKYI_I9MPJ9PjUNj07bI5KdGVzfP2QFZZ4GKQQCoZ6kfs8AM_nEWRpmA15JOLMzUZhyDJgg0yg6IVR7MfAIfUfk_6iXMATQlE4S8YBD4ZBINwoDV0O0kqaZiIUw0PitL9hwk09e9lWZZbs8dshedPdsNSlXPZf-lo6JTH_9XrfdU9vbvIZubOG-3PSX1UNvEA9u0pfGhz9AQkRogc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Apple+yield+prediction+mapping+using+machine+learning+techniques+through+the+Google+Earth+Engine+cloud+in+Kashmir+Valley%2C+India&rft.jtitle=Journal+of+applied+remote+sensing&rft.au=Singha%2C+Chiranjit&rft.au=Gulzar%2C+Shahid&rft.au=Swain%2C+Kishore+Chandra&rft.au=Pradhan%2C+Devendra&rft.date=2023-01-01&rft.issn=1931-3195&rft.eissn=1931-3195&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1117%2F1.JRS.17.014505&rft.externalDBID=n%2Fa&rft.externalDocID=10_1117_1_JRS_17_014505
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3195&client=summon