On the Square Subgroup of a Mixed SI-Group
The relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive groups of mixed rings. Namely, the notion of the square subgroup of an abelian group, which is a generalization of the concept of nil-group, is considered...
Saved in:
Published in | Proceedings of the Edinburgh Mathematical Society Vol. 61; no. 1; pp. 295 - 304 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive groups of mixed rings. Namely, the notion of the square subgroup of an abelian group, which is a generalization of the concept of nil-group, is considered mainly for mixed non-splitting abelian groups which are the additive groups only of rings whose all subrings are ideals. A non-trivial construction of such a group of finite torsion-free rank no less than two, for which the quotient group modulo the square subgroup is not a nil-group, is given. In particular, a new class of abelian group for which an old problem posed by Stratton and Webb has a negative solution, is indicated. A new, far from obvious, application of rings in which the relation of being an ideal is transitive, is obtained. |
---|---|
AbstractList | The relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive groups of mixed rings. Namely, the notion of the square subgroup of an abelian group, which is a generalization of the concept of nil-group, is considered mainly for mixed non-splitting abelian groups which are the additive groups only of rings whose all subrings are ideals. A non-trivial construction of such a group of finite torsion-free rank no less than two, for which the quotient group modulo the square subgroup is not a nil-group, is given. In particular, a new class of abelian group for which an old problem posed by Stratton and Webb has a negative solution, is indicated. A new, far from obvious, application of rings in which the relation of being an ideal is transitive, is obtained. Abstract The relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive groups of mixed rings. Namely, the notion of the square subgroup of an abelian group, which is a generalization of the concept of nil-group, is considered mainly for mixed non-splitting abelian groups which are the additive groups only of rings whose all subrings are ideals. A non-trivial construction of such a group of finite torsion-free rank no less than two, for which the quotient group modulo the square subgroup is not a nil-group, is given. In particular, a new class of abelian group for which an old problem posed by Stratton and Webb has a negative solution, is indicated. A new, far from obvious, application of rings in which the relation of being an ideal is transitive, is obtained. |
Author | Woronowicz, M. Andruszkiewicz, R. R. |
Author_xml | – sequence: 1 givenname: R. R. surname: Andruszkiewicz fullname: Andruszkiewicz, R. R. email: randrusz@math.uwb.edu.pl organization: Institute of Mathematics, University of Białystok, 15-245 Białystok, K. Ciołkowskiego 1M, Poland (randrusz@math.uwb.edu.pl; mworonowicz@math.uwb.edu.pl) – sequence: 2 givenname: M. surname: Woronowicz fullname: Woronowicz, M. email: randrusz@math.uwb.edu.pl organization: Institute of Mathematics, University of Białystok, 15-245 Białystok, K. Ciołkowskiego 1M, Poland (randrusz@math.uwb.edu.pl; mworonowicz@math.uwb.edu.pl) |
BookMark | eNp1UE1Lw0AQXaSCafQHeAt4E6IzmWy2e5SitVDpIXpeNsmmpthsumlA_303tOBBPM0w74t5UzZpbWsYu0V4QEDxmAMggUSOAvya8QsWYJqlMc1ITlgwwvGIX7Fp3289RwiOAbtft9Hh00T5ftDOj6HYODt0ka0jHb0136aK8mW8GG_X7LLWX725Oc-Qfbw8v89f49V6sZw_reKSUBziQmhdI4ApgcssKXgqpRQ-bZbwrKiICMlgDQUlUhBBlpBATyMhKg5pRiG7O_l2zu4H0x_U1g6u9ZEqAUyBKPXPhAxPrNLZvnemVp1rdtr9KAQ1VqL-VOI1dNboXeGaamN-rf9XHQHUXF9P |
CitedBy_id | crossref_primary_10_1080_00927872_2022_2026370 crossref_primary_10_1007_s10013_018_00331_5 crossref_primary_10_1080_00927872_2023_2286338 |
Cites_doi | 10.1080/00927872.2015.1044107 10.1007/978-94-017-0339-0 10.1017/S0004972714000641 10.4153/CJM-1968-083-1 10.1007/s00009-010-0041-4 10.1017/S1446788713000268 10.1007/BF01111051 10.1081/AGB-120018987 10.1017/S0004972700034110 10.1007/BF02027824 10.5486/PMD.1956.4.3-4.50 10.5486/PMD.1980.27.1-2.16 10.4064/cm117-1-2 |
ContentType | Journal Article |
Copyright | Copyright © Edinburgh Mathematical Society 2018 |
Copyright_xml | – notice: Copyright © Edinburgh Mathematical Society 2018 |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PQEST PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1017/S0013091517000165 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database (ProQuest) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Mixed SI-groups R. R. Andruszkiewicz and M. Woronowicz |
EISSN | 1464-3839 |
EndPage | 304 |
ExternalDocumentID | 10_1017_S0013091517000165 |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N -~X .FH 09C 09E 0E1 0R~ 123 29O 3V. 4.4 5VS 6OB 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABEFU ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTAH ABTCQ ABUWG ABVFV ABXAU ABZCX ABZUI ACBMC ACCHT ACETC ACGFS ACGOD ACIMK ACIPV ACIWK ACMRT ACNCT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOJD ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFNX AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD FRP GNUQQ HCIFZ HG- HST HZ~ H~9 I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KC5 KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OHT OK1 OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG RNI ROL RR0 RZO S6- S6U SAAAG T9M TR2 TWZ UT1 WFFJZ WH7 WQ3 WXU WXY WYP XOL YNT ZCG ZDLDU ZJOSE ZMEZD ZY4 ZYDXJ ~V1 AAYXX ABVZP CITATION CTKSN 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c317t-b7aaf100ec05962b5499977758256bd33313e1f0b3297330623712b5377d50463 |
IEDL.DBID | BENPR |
ISSN | 0013-0915 |
IngestDate | Thu Oct 10 19:32:07 EDT 2024 Thu Sep 26 18:36:53 EDT 2024 Wed Mar 13 05:51:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 17D99 SI-groups Primary 20K99 the square subgroup of an abelian group non-splitting abelian groups Secondary 16D25 additive groups of rings |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c317t-b7aaf100ec05962b5499977758256bd33313e1f0b3297330623712b5377d50463 |
PQID | 2014033401 |
PQPubID | 41713 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2014033401 crossref_primary_10_1017_S0013091517000165 cambridge_journals_10_1017_S0013091517000165 |
PublicationCentury | 2000 |
PublicationDate | 20180200 2018-02-00 20180201 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 20180200 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Proceedings of the Edinburgh Mathematical Society |
PublicationTitleAlternate | Proceedings of the Edinburgh Mathematical Society |
PublicationYear | 2018 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Stratton (S0013091517000165_ref20) 1980; 27 Fuchs (S0013091517000165_ref14) 1970; 1 S0013091517000165_ref3 S0013091517000165_ref2 S0013091517000165_ref5 S0013091517000165_ref17 S0013091517000165_ref4 S0013091517000165_ref7 S0013091517000165_ref16 S0013091517000165_ref6 Najafizadeh (S0013091517000165_ref18) 2015; 27 S0013091517000165_ref9 Feigelstock (S0013091517000165_ref11) 1983; 1 Feigelstock (S0013091517000165_ref12) 1988; 2 Fuchs (S0013091517000165_ref13) 1956; 4 S0013091517000165_ref19 S0013091517000165_ref10 Aghdam (S0013091517000165_ref1) 1987; 51 Balcerzyk (S0013091517000165_ref8) 1989 Fuchs (S0013091517000165_ref15) 1973; 2 |
References_xml | – ident: S0013091517000165_ref7 doi: 10.1080/00927872.2015.1044107 – volume: 2 volume-title: Infinite Abelian groups year: 1973 ident: S0013091517000165_ref15 contributor: fullname: Fuchs – ident: S0013091517000165_ref9 doi: 10.1007/978-94-017-0339-0 – volume: 51 start-page: 343 year: 1987 ident: S0013091517000165_ref1 article-title: Square subgroup of an Abelian group publication-title: Acta. Sci. Math. contributor: fullname: Aghdam – volume: 2 volume-title: Additive groups of rings year: 1988 ident: S0013091517000165_ref12 contributor: fullname: Feigelstock – ident: S0013091517000165_ref6 doi: 10.1017/S0004972714000641 – ident: S0013091517000165_ref17 doi: 10.4153/CJM-1968-083-1 – volume: 1 volume-title: Additive groups of rings year: 1983 ident: S0013091517000165_ref11 contributor: fullname: Feigelstock – ident: S0013091517000165_ref3 doi: 10.1007/s00009-010-0041-4 – ident: S0013091517000165_ref5 doi: 10.1017/S1446788713000268 – ident: S0013091517000165_ref16 doi: 10.1007/BF01111051 – ident: S0013091517000165_ref4 doi: 10.1081/AGB-120018987 – volume: 27 start-page: 1 year: 2015 ident: S0013091517000165_ref18 article-title: On the square submodule of a mixed module publication-title: Gen. Math. Notes contributor: fullname: Najafizadeh – ident: S0013091517000165_ref10 doi: 10.1017/S0004972700034110 – ident: S0013091517000165_ref19 doi: 10.1007/BF02027824 – volume: 1 volume-title: Infinite Abelian groups year: 1970 ident: S0013091517000165_ref14 contributor: fullname: Fuchs – volume: 4 start-page: 488 year: 1956 ident: S0013091517000165_ref13 publication-title: Publ. Math. Debrecen doi: 10.5486/PMD.1956.4.3-4.50 contributor: fullname: Fuchs – volume-title: Commutative Noetherian and Krull rings year: 1989 ident: S0013091517000165_ref8 contributor: fullname: Balcerzyk – volume: 27 start-page: 127 year: 1980 ident: S0013091517000165_ref20 article-title: Abelian groups, nil modulo a subgroup, need not have nil quotient group publication-title: Publ. Math. Debrecen. doi: 10.5486/PMD.1980.27.1-2.16 contributor: fullname: Stratton – ident: S0013091517000165_ref2 doi: 10.4064/cm117-1-2 |
SSID | ssj0007751 |
Score | 2.1745634 |
Snippet | The relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive groups of... Abstract The relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Publisher |
StartPage | 295 |
SubjectTerms | Rings (mathematics) Subgroups |
Title | On the Square Subgroup of a Mixed SI-Group |
URI | https://www.cambridge.org/core/product/identifier/S0013091517000165/type/journal_article https://www.proquest.com/docview/2014033401 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbYdoED4ikGY8qB00SkpGmX9oQAbQykDcSYtFvVNK3EpXtL_HycNu2YkHaq0kQ92JXtz3Y-A9w5kqNp9BVNgyimbpAqGgUIXJXvOa7msYkrTLfFqDuYuG9Tb2oTbivbVlnaxNxQ61lscuQI0g2znEA48DBfUDM1ylRX7QiNGjQc3Hbq0HjqjT4-K1sspcerGQYB98q6Zk4abYp2-M4w1JlLPX_ZFXa91K6Rzj1P_wSObchIHgsdn8JBkp3B0bDiW12dQ-c9I7gk4wVqHB8bld_WILOURGT4_ZNoMn6leZ7pAib93tfzgNopCDRG376mSkZRyhlL4nxSjjKADoM2jPMxWlFaCMFFwlOmhBlDhQjAEZLjMSGl9gwf2CXUs1mWXAFJu11XaeZETCEKUjpAbKEQojJXx37CZBPuKwmE9l9ehUUfmAz_CawJnVJI4bzgxth3uFWKcfvprVKv92_fwCEu_KJdugX19XKT3GI0sFZtqPn9l7ZV_C9TnapY |
link.rule.ids | 315,783,787,12779,21402,27938,27939,33387,33758,43614,43819 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFH5RPKgH48-IovbgidhkXTe6nYwxIijgAUi4LevaJVwGCCT--b52P5CYcFq2Nju817z3fe3r9wAeXcEwNAaSpmGcUC9MJY1DJK4y8F1PscTgClNtMWh1xt7HxJ8UG27LoqyyjIk2UKtZYvbIkaQbZTmOdOB5vqCma5Q5XS1aaOzDgccx0Zib4u33KhIL4bOqg0HI_PJU00pGmyM7_Gb06cyVnr_aCts5ajtE27zTPoWTAjCSl9zDZ7Cns3M47ldqq8sLaH5lBF_JcIH-xsda2rsaZJaSmPSnP1qRYZfaXaZLGLffRq8dWvRAoAlm9hWVIo5T5jg6sX1ypKFzCNkQ5SNWkYpzzrhmqSO5aUKF-N_lguE0LoTyjRrYFdSyWaavgaStlieV48aORA4kVYjMQiJBdTyVBNoRdXiqLBAVK3kZ5VVgIvpnsDo0SyNF81wZY9fkRmnGza83Lr3ZPfwAh51Rvxf1uoPPWzjCgSAvnG5AbfW91neIC1by3jr_F3YIqv0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Square+Subgroup+of+a+Mixed+SI-Group&rft.jtitle=Proceedings+of+the+Edinburgh+Mathematical+Society&rft.au=Andruszkiewicz%2C+R.+R.&rft.au=Woronowicz%2C+M.&rft.date=2018-02-01&rft.pub=Cambridge+University+Press&rft.issn=0013-0915&rft.eissn=1464-3839&rft.volume=61&rft.issue=1&rft.spage=295&rft.epage=304&rft_id=info:doi/10.1017%2FS0013091517000165&rft.externalDocID=10_1017_S0013091517000165 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-0915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-0915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-0915&client=summon |