On the Square Subgroup of a Mixed SI-Group

The relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive groups of mixed rings. Namely, the notion of the square subgroup of an abelian group, which is a generalization of the concept of nil-group, is considered...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Edinburgh Mathematical Society Vol. 61; no. 1; pp. 295 - 304
Main Authors Andruszkiewicz, R. R., Woronowicz, M.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive groups of mixed rings. Namely, the notion of the square subgroup of an abelian group, which is a generalization of the concept of nil-group, is considered mainly for mixed non-splitting abelian groups which are the additive groups only of rings whose all subrings are ideals. A non-trivial construction of such a group of finite torsion-free rank no less than two, for which the quotient group modulo the square subgroup is not a nil-group, is given. In particular, a new class of abelian group for which an old problem posed by Stratton and Webb has a negative solution, is indicated. A new, far from obvious, application of rings in which the relation of being an ideal is transitive, is obtained.
AbstractList The relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive groups of mixed rings. Namely, the notion of the square subgroup of an abelian group, which is a generalization of the concept of nil-group, is considered mainly for mixed non-splitting abelian groups which are the additive groups only of rings whose all subrings are ideals. A non-trivial construction of such a group of finite torsion-free rank no less than two, for which the quotient group modulo the square subgroup is not a nil-group, is given. In particular, a new class of abelian group for which an old problem posed by Stratton and Webb has a negative solution, is indicated. A new, far from obvious, application of rings in which the relation of being an ideal is transitive, is obtained.
Abstract The relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive groups of mixed rings. Namely, the notion of the square subgroup of an abelian group, which is a generalization of the concept of nil-group, is considered mainly for mixed non-splitting abelian groups which are the additive groups only of rings whose all subrings are ideals. A non-trivial construction of such a group of finite torsion-free rank no less than two, for which the quotient group modulo the square subgroup is not a nil-group, is given. In particular, a new class of abelian group for which an old problem posed by Stratton and Webb has a negative solution, is indicated. A new, far from obvious, application of rings in which the relation of being an ideal is transitive, is obtained.
Author Woronowicz, M.
Andruszkiewicz, R. R.
Author_xml – sequence: 1
  givenname: R. R.
  surname: Andruszkiewicz
  fullname: Andruszkiewicz, R. R.
  email: randrusz@math.uwb.edu.pl
  organization: Institute of Mathematics, University of Białystok, 15-245 Białystok, K. Ciołkowskiego 1M, Poland (randrusz@math.uwb.edu.pl; mworonowicz@math.uwb.edu.pl)
– sequence: 2
  givenname: M.
  surname: Woronowicz
  fullname: Woronowicz, M.
  email: randrusz@math.uwb.edu.pl
  organization: Institute of Mathematics, University of Białystok, 15-245 Białystok, K. Ciołkowskiego 1M, Poland (randrusz@math.uwb.edu.pl; mworonowicz@math.uwb.edu.pl)
BookMark eNp1UE1Lw0AQXaSCafQHeAt4E6IzmWy2e5SitVDpIXpeNsmmpthsumlA_303tOBBPM0w74t5UzZpbWsYu0V4QEDxmAMggUSOAvya8QsWYJqlMc1ITlgwwvGIX7Fp3289RwiOAbtft9Hh00T5ftDOj6HYODt0ka0jHb0136aK8mW8GG_X7LLWX725Oc-Qfbw8v89f49V6sZw_reKSUBziQmhdI4ApgcssKXgqpRQ-bZbwrKiICMlgDQUlUhBBlpBATyMhKg5pRiG7O_l2zu4H0x_U1g6u9ZEqAUyBKPXPhAxPrNLZvnemVp1rdtr9KAQ1VqL-VOI1dNboXeGaamN-rf9XHQHUXF9P
CitedBy_id crossref_primary_10_1080_00927872_2022_2026370
crossref_primary_10_1007_s10013_018_00331_5
crossref_primary_10_1080_00927872_2023_2286338
Cites_doi 10.1080/00927872.2015.1044107
10.1007/978-94-017-0339-0
10.1017/S0004972714000641
10.4153/CJM-1968-083-1
10.1007/s00009-010-0041-4
10.1017/S1446788713000268
10.1007/BF01111051
10.1081/AGB-120018987
10.1017/S0004972700034110
10.1007/BF02027824
10.5486/PMD.1956.4.3-4.50
10.5486/PMD.1980.27.1-2.16
10.4064/cm117-1-2
ContentType Journal Article
Copyright Copyright © Edinburgh Mathematical Society 2018
Copyright_xml – notice: Copyright © Edinburgh Mathematical Society 2018
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0013091517000165
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Computer Science Database
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Mixed SI-groups
R. R. Andruszkiewicz and M. Woronowicz
EISSN 1464-3839
EndPage 304
ExternalDocumentID 10_1017_S0013091517000165
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
123
29O
3V.
4.4
5VS
6OB
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABEFU
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFS
ACGOD
ACIMK
ACIPV
ACIWK
ACMRT
ACNCT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOJD
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
FRP
GNUQQ
HCIFZ
HG-
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OHT
OK1
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNI
ROL
RR0
RZO
S6-
S6U
SAAAG
T9M
TR2
TWZ
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
XOL
YNT
ZCG
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
~V1
AAYXX
ABVZP
CITATION
CTKSN
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c317t-b7aaf100ec05962b5499977758256bd33313e1f0b3297330623712b5377d50463
IEDL.DBID BENPR
ISSN 0013-0915
IngestDate Thu Oct 10 19:32:07 EDT 2024
Thu Sep 26 18:36:53 EDT 2024
Wed Mar 13 05:51:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 17D99
SI-groups
Primary 20K99
the square subgroup of an abelian group
non-splitting abelian groups
Secondary 16D25
additive groups of rings
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-b7aaf100ec05962b5499977758256bd33313e1f0b3297330623712b5377d50463
PQID 2014033401
PQPubID 41713
PageCount 10
ParticipantIDs proquest_journals_2014033401
crossref_primary_10_1017_S0013091517000165
cambridge_journals_10_1017_S0013091517000165
PublicationCentury 2000
PublicationDate 20180200
2018-02-00
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 20180200
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Proceedings of the Edinburgh Mathematical Society
PublicationTitleAlternate Proceedings of the Edinburgh Mathematical Society
PublicationYear 2018
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Stratton (S0013091517000165_ref20) 1980; 27
Fuchs (S0013091517000165_ref14) 1970; 1
S0013091517000165_ref3
S0013091517000165_ref2
S0013091517000165_ref5
S0013091517000165_ref17
S0013091517000165_ref4
S0013091517000165_ref7
S0013091517000165_ref16
S0013091517000165_ref6
Najafizadeh (S0013091517000165_ref18) 2015; 27
S0013091517000165_ref9
Feigelstock (S0013091517000165_ref11) 1983; 1
Feigelstock (S0013091517000165_ref12) 1988; 2
Fuchs (S0013091517000165_ref13) 1956; 4
S0013091517000165_ref19
S0013091517000165_ref10
Aghdam (S0013091517000165_ref1) 1987; 51
Balcerzyk (S0013091517000165_ref8) 1989
Fuchs (S0013091517000165_ref15) 1973; 2
References_xml – ident: S0013091517000165_ref7
  doi: 10.1080/00927872.2015.1044107
– volume: 2
  volume-title: Infinite Abelian groups
  year: 1973
  ident: S0013091517000165_ref15
  contributor:
    fullname: Fuchs
– ident: S0013091517000165_ref9
  doi: 10.1007/978-94-017-0339-0
– volume: 51
  start-page: 343
  year: 1987
  ident: S0013091517000165_ref1
  article-title: Square subgroup of an Abelian group
  publication-title: Acta. Sci. Math.
  contributor:
    fullname: Aghdam
– volume: 2
  volume-title: Additive groups of rings
  year: 1988
  ident: S0013091517000165_ref12
  contributor:
    fullname: Feigelstock
– ident: S0013091517000165_ref6
  doi: 10.1017/S0004972714000641
– ident: S0013091517000165_ref17
  doi: 10.4153/CJM-1968-083-1
– volume: 1
  volume-title: Additive groups of rings
  year: 1983
  ident: S0013091517000165_ref11
  contributor:
    fullname: Feigelstock
– ident: S0013091517000165_ref3
  doi: 10.1007/s00009-010-0041-4
– ident: S0013091517000165_ref5
  doi: 10.1017/S1446788713000268
– ident: S0013091517000165_ref16
  doi: 10.1007/BF01111051
– ident: S0013091517000165_ref4
  doi: 10.1081/AGB-120018987
– volume: 27
  start-page: 1
  year: 2015
  ident: S0013091517000165_ref18
  article-title: On the square submodule of a mixed module
  publication-title: Gen. Math. Notes
  contributor:
    fullname: Najafizadeh
– ident: S0013091517000165_ref10
  doi: 10.1017/S0004972700034110
– ident: S0013091517000165_ref19
  doi: 10.1007/BF02027824
– volume: 1
  volume-title: Infinite Abelian groups
  year: 1970
  ident: S0013091517000165_ref14
  contributor:
    fullname: Fuchs
– volume: 4
  start-page: 488
  year: 1956
  ident: S0013091517000165_ref13
  publication-title: Publ. Math. Debrecen
  doi: 10.5486/PMD.1956.4.3-4.50
  contributor:
    fullname: Fuchs
– volume-title: Commutative Noetherian and Krull rings
  year: 1989
  ident: S0013091517000165_ref8
  contributor:
    fullname: Balcerzyk
– volume: 27
  start-page: 127
  year: 1980
  ident: S0013091517000165_ref20
  article-title: Abelian groups, nil modulo a subgroup, need not have nil quotient group
  publication-title: Publ. Math. Debrecen.
  doi: 10.5486/PMD.1980.27.1-2.16
  contributor:
    fullname: Stratton
– ident: S0013091517000165_ref2
  doi: 10.4064/cm117-1-2
SSID ssj0007751
Score 2.1745634
Snippet The relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive groups of...
Abstract The relation between the structure of a ring and the structure of its additive group is studied in the context of some recent results in additive...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Publisher
StartPage 295
SubjectTerms Rings (mathematics)
Subgroups
Title On the Square Subgroup of a Mixed SI-Group
URI https://www.cambridge.org/core/product/identifier/S0013091517000165/type/journal_article
https://www.proquest.com/docview/2014033401
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbYdoED4ikGY8qB00SkpGmX9oQAbQykDcSYtFvVNK3EpXtL_HycNu2YkHaq0kQ92JXtz3Y-A9w5kqNp9BVNgyimbpAqGgUIXJXvOa7msYkrTLfFqDuYuG9Tb2oTbivbVlnaxNxQ61lscuQI0g2znEA48DBfUDM1ylRX7QiNGjQc3Hbq0HjqjT4-K1sspcerGQYB98q6Zk4abYp2-M4w1JlLPX_ZFXa91K6Rzj1P_wSObchIHgsdn8JBkp3B0bDiW12dQ-c9I7gk4wVqHB8bld_WILOURGT4_ZNoMn6leZ7pAib93tfzgNopCDRG376mSkZRyhlL4nxSjjKADoM2jPMxWlFaCMFFwlOmhBlDhQjAEZLjMSGl9gwf2CXUs1mWXAFJu11XaeZETCEKUjpAbKEQojJXx37CZBPuKwmE9l9ehUUfmAz_CawJnVJI4bzgxth3uFWKcfvprVKv92_fwCEu_KJdugX19XKT3GI0sFZtqPn9l7ZV_C9TnapY
link.rule.ids 315,783,787,12779,21402,27938,27939,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFH5RPKgH48-IovbgidhkXTe6nYwxIijgAUi4LevaJVwGCCT--b52P5CYcFq2Nju817z3fe3r9wAeXcEwNAaSpmGcUC9MJY1DJK4y8F1PscTgClNtMWh1xt7HxJ8UG27LoqyyjIk2UKtZYvbIkaQbZTmOdOB5vqCma5Q5XS1aaOzDgccx0Zib4u33KhIL4bOqg0HI_PJU00pGmyM7_Gb06cyVnr_aCts5ajtE27zTPoWTAjCSl9zDZ7Cns3M47ldqq8sLaH5lBF_JcIH-xsda2rsaZJaSmPSnP1qRYZfaXaZLGLffRq8dWvRAoAlm9hWVIo5T5jg6sX1ypKFzCNkQ5SNWkYpzzrhmqSO5aUKF-N_lguE0LoTyjRrYFdSyWaavgaStlieV48aORA4kVYjMQiJBdTyVBNoRdXiqLBAVK3kZ5VVgIvpnsDo0SyNF81wZY9fkRmnGza83Lr3ZPfwAh51Rvxf1uoPPWzjCgSAvnG5AbfW91neIC1by3jr_F3YIqv0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Square+Subgroup+of+a+Mixed+SI-Group&rft.jtitle=Proceedings+of+the+Edinburgh+Mathematical+Society&rft.au=Andruszkiewicz%2C+R.+R.&rft.au=Woronowicz%2C+M.&rft.date=2018-02-01&rft.pub=Cambridge+University+Press&rft.issn=0013-0915&rft.eissn=1464-3839&rft.volume=61&rft.issue=1&rft.spage=295&rft.epage=304&rft_id=info:doi/10.1017%2FS0013091517000165&rft.externalDocID=10_1017_S0013091517000165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-0915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-0915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-0915&client=summon