Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis

We derive a class of Navier–Stokes–Cahn–Hilliard systems that models two-phase flows with mass transfer coupled to the process of chemotaxis. These thermodynamically consistent models can be seen as the natural Navier–Stokes analogues of earlier Cahn–Hilliard–Darcy models proposed for modelling tumo...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of applied mathematics Vol. 29; no. 4; pp. 595 - 644
Main Authors LAM, KEI FONG, WU, HAO
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.08.2018
Subjects
Online AccessGet full text
ISSN0956-7925
1469-4425
DOI10.1017/S0956792517000298

Cover

Abstract We derive a class of Navier–Stokes–Cahn–Hilliard systems that models two-phase flows with mass transfer coupled to the process of chemotaxis. These thermodynamically consistent models can be seen as the natural Navier–Stokes analogues of earlier Cahn–Hilliard–Darcy models proposed for modelling tumour growth, and are derived based on a volume-averaged velocity, which yields simpler expressions compared to models derived based on a mass-averaged velocity. Then, we perform mathematical analysis on a simplified model variant with zero excess of total mass and equal densities. We establish the existence of global weak solutions in two and three dimensions for prescribed mass transfer terms. Under additional assumptions, we prove the global strong well-posedness in two dimensions with variable fluid viscosity and mobilities, which also includes a continuous dependence on initial data and mass transfer terms for the chemical potential and the order parameter in strong norms.
AbstractList We derive a class of Navier–Stokes–Cahn–Hilliard systems that models two-phase flows with mass transfer coupled to the process of chemotaxis. These thermodynamically consistent models can be seen as the natural Navier–Stokes analogues of earlier Cahn–Hilliard–Darcy models proposed for modelling tumour growth, and are derived based on a volume-averaged velocity, which yields simpler expressions compared to models derived based on a mass-averaged velocity. Then, we perform mathematical analysis on a simplified model variant with zero excess of total mass and equal densities. We establish the existence of global weak solutions in two and three dimensions for prescribed mass transfer terms. Under additional assumptions, we prove the global strong well-posedness in two dimensions with variable fluid viscosity and mobilities, which also includes a continuous dependence on initial data and mass transfer terms for the chemical potential and the order parameter in strong norms.
Author LAM, KEI FONG
WU, HAO
Author_xml – sequence: 1
  givenname: KEI FONG
  surname: LAM
  fullname: LAM, KEI FONG
  email: kflam@math.cuhk.edu.hk
  organization: 1Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong email: kflam@math.cuhk.edu.hk
– sequence: 2
  givenname: HAO
  surname: WU
  fullname: WU, HAO
  email: haowufd@fudan.edu.cn
  organization: 2School of Mathematical Sciences and Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, 220 Han Dan Road, Shanghai 20043, China email: haowufd@fudan.edu.cn, haowufd@yahoo.com
BookMark eNp9kMtKAzEUhoNUsFYfwF3A9WiSuWSylKJWKLpoXQ-ZJNNJnUlqkqrd-Q6-oU9iSguComfzHzj_d27HYGCsUQCcYXSBEaaXM8TygjKSY4oQIqw8AEOcFSzJMpIPwHBbTrb1I3Ds_RIhnCLKhmAxb5XrrdwY3mvBu24DhTVe-6BMgPf8RSv3-f4xC_ZJ-ZiMeWuiTHTXae4kjKjqPHzVoYU99x4Gx41vlIPcSCha1dvA37Q_AYcN77w63esIPN5cz8eTZPpweze-miYixTQkddbIGIogJOqc0UwKJVIpRBFVpELRmkpe5qUsKBUEI4l5zWrc1IRGf5qOwPmu78rZ57XyoVratTNxZEVQQcoixQxHF965hLPeO9VUK6d77jYVRtX2n9Wvf0aG_mCEDjxoa-LJuvuXTPck72un5UJ9L_U39QX8mpC-
CitedBy_id crossref_primary_10_1007_s00245_023_09976_2
crossref_primary_10_1007_s00033_020_01407_4
crossref_primary_10_1142_S0218202519500325
crossref_primary_10_1016_j_na_2021_112411
crossref_primary_10_1002_fld_4971
crossref_primary_10_1007_s11538_023_01151_6
crossref_primary_10_1007_s00245_018_9491_z
crossref_primary_10_1137_18M1223459
crossref_primary_10_1051_m2an_2024063
crossref_primary_10_1007_s00205_019_01383_8
crossref_primary_10_3934_era_2022143
crossref_primary_10_1002_mma_8014
crossref_primary_10_1016_j_jde_2021_06_022
crossref_primary_10_1007_s00332_021_09771_9
crossref_primary_10_1007_s00208_023_02701_y
crossref_primary_10_1515_anona_2020_0100
crossref_primary_10_1142_S0218202519500519
crossref_primary_10_1142_S0219530523500331
Cites_doi 10.1007/s00205-008-0160-2
10.3934/dcds.2010.28.1437
10.3934/dcds.2017183
10.1007/s00285-008-0215-x
10.1142/S0218202516500263
10.1016/j.jtbi.2010.02.036
10.1146/annurev.fluid.30.1.139
10.1017/S0956792516000292
10.1103/PhysRevLett.72.2298
10.1007/s11401-010-0603-6
10.1016/0022-5193(71)90050-6
10.3934/dcdsb.2015.20.2751
10.1017/CBO9780511781452
10.1073/pnas.1011086107
10.1016/j.anihpc.2009.11.013
10.1142/S0218202502001878
10.3934/dcds.2015.35.2423
10.1007/978-3-662-05056-9
10.1142/S0218202510004507
10.1142/S0218202511500138
10.1080/03605302.2011.591865
10.1016/j.anihpc.2015.05.002
10.1016/0167-2789(95)00173-5
10.1073/pnas.97.17.9467
10.1115/1.4024404
10.1016/j.anihpc.2013.01.002
10.3934/Math.2016.3.318
10.4310/CMS.2009.v7.n4.a7
10.1007/s11587-006-0008-8
10.1073/pnas.0406724102
10.3934/dcds.2013.33.2271
10.1080/03605302.1989.12088448
10.1002/cnm.1467
10.1142/S0218202515500268
10.1016/S0362-546X(97)00635-4
10.3233/ASY-2012-1092
10.1017/S0956792513000144
10.1017/CBO9781139174206
10.3233/ASY-141276
10.1098/rspa.1998.0273
10.1016/j.anihpc.2011.04.005
10.1007/s00332-016-9292-y
10.1007/s00205-013-0678-9
10.1080/03605302.2010.497199
10.1016/0362-546X(80)90068-1
10.1007/s00021-012-0118-x
10.1017/S0956792514000436
10.1007/s00220-009-0806-4
10.1090/qam/987902
10.1016/j.anihpc.2012.06.003
10.1137/130936920
10.1080/03605302.2013.852224
10.1016/j.jtbi.2008.03.027
10.1017/CBO9780511762956
10.1016/j.jde.2013.04.032
10.1016/j.jde.2015.04.009
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2017
Copyright_xml – notice: Copyright © Cambridge University Press 2017
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/S0956792517000298
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database (via ProQuest SciTech Premium Collection)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models
K.F. Lam and H. Wu
EISSN 1469-4425
EndPage 644
ExternalDocumentID 10_1017_S0956792517000298
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
.DC
.FH
09C
09E
0E1
0R~
29G
3V.
4.4
5GY
5VS
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABEFU
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IPYYG
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S0W
S6-
S6U
SAAAG
T9M
UT1
VH1
VOH
WFFJZ
WQ3
WXU
WXY
WYP
XFK
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AATMM
AAYXX
ABHFL
ABVKB
ABVZP
ABXHF
ACAJB
ACDLN
ACEJA
ACOZI
ACRPL
ADNMO
AEMFK
AFZFC
AGQPQ
AKMAY
AMVHM
ANOYL
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c317t-b4fdddde200cb5974dcec3dcc6cecc3ce7b7da858d677c210d1ab9b1fb27b5933
IEDL.DBID 8FG
ISSN 0956-7925
IngestDate Fri Jul 25 19:26:11 EDT 2025
Tue Jul 01 01:07:13 EDT 2025
Thu Apr 24 23:04:13 EDT 2025
Wed Mar 13 05:51:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Navier–Stokes equations
well-posedness
mass transfer
Cahn–Hilliard equation
volume-averaged velocity
mass-averaged velocity
chemotaxis
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-b4fdddde200cb5974dcec3dcc6cecc3ce7b7da858d677c210d1ab9b1fb27b5933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2062863191
PQPubID 37129
PageCount 50
ParticipantIDs proquest_journals_2062863191
crossref_primary_10_1017_S0956792517000298
crossref_citationtrail_10_1017_S0956792517000298
cambridge_journals_10_1017_S0956792517000298
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180800
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 20180800
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle European journal of applied mathematics
PublicationTitleAlternate Eur. J. Appl. Math
PublicationYear 2018
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0956792517000298_ref1
S0956792517000298_ref43
S0956792517000298_ref2
S0956792517000298_ref44
S0956792517000298_ref3
S0956792517000298_ref45
S0956792517000298_ref4
S0956792517000298_ref46
S0956792517000298_ref40
S0956792517000298_ref41
S0956792517000298_ref9
S0956792517000298_ref5
S0956792517000298_ref6
S0956792517000298_ref8
Zhang (S0956792517000298_ref64) 2015; 20
Oden (S0956792517000298_ref50) 2010; 58
S0956792517000298_ref36
S0956792517000298_ref37
Engler (S0956792517000298_ref21) 1989; 14
Wang (S0956792517000298_ref57) 2012; 78
S0956792517000298_ref38
Alber (S0956792517000298_ref7) 2003
S0956792517000298_ref32
S0956792517000298_ref33
S0956792517000298_ref34
S0956792517000298_ref35
S0956792517000298_ref30
S0956792517000298_ref31
S0956792517000298_ref29
S0956792517000298_ref25
S0956792517000298_ref26
S0956792517000298_ref27
S0956792517000298_ref28
S0956792517000298_ref65
Jiang (S0956792517000298_ref39) 2015; 92
S0956792517000298_ref22
S0956792517000298_ref23
S0956792517000298_ref24
S0956792517000298_ref61
S0956792517000298_ref62
S0956792517000298_ref63
S0956792517000298_ref20
S0956792517000298_ref60
Boyer (S0956792517000298_ref11) 1999; 20
Zhao (S0956792517000298_ref66) 2009; 7
Li (S0956792517000298_ref42) 2014; 81
S0956792517000298_ref14
S0956792517000298_ref58
S0956792517000298_ref15
S0956792517000298_ref59
S0956792517000298_ref16
S0956792517000298_ref17
S0956792517000298_ref10
S0956792517000298_ref55
S0956792517000298_ref56
S0956792517000298_ref12
S0956792517000298_ref13
Di Francesco (S0956792517000298_ref19) 2010; 28
S0956792517000298_ref51
S0956792517000298_ref52
S0956792517000298_ref53
Dedè (S0956792517000298_ref18)
S0956792517000298_ref47
S0956792517000298_ref48
S0956792517000298_ref49
Sohr (S0956792517000298_ref54) 2010
References_xml – ident: S0956792517000298_ref2
  doi: 10.1007/s00205-008-0160-2
– volume: 28
  start-page: 1437
  year: 2010
  ident: S0956792517000298_ref19
  article-title: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2010.28.1437
– ident: S0956792517000298_ref30
  doi: 10.3934/dcds.2017183
– ident: S0956792517000298_ref59
– ident: S0956792517000298_ref16
  doi: 10.1007/s00285-008-0215-x
– ident: S0956792517000298_ref32
  doi: 10.1142/S0218202516500263
– ident: S0956792517000298_ref23
  doi: 10.1016/j.jtbi.2010.02.036
– ident: S0956792517000298_ref9
  doi: 10.1146/annurev.fluid.30.1.139
– ident: S0956792517000298_ref31
  doi: 10.1017/S0956792516000292
– ident: S0956792517000298_ref18
  article-title: A Hele–Shaw–Cahn–Hilliard model for incompressible two-phase flows with different densities
  publication-title: J. Math. Fluid Mech.
– ident: S0956792517000298_ref22
  doi: 10.1103/PhysRevLett.72.2298
– ident: S0956792517000298_ref27
  doi: 10.1007/s11401-010-0603-6
– volume: 58
  start-page: 723
  year: 2010
  ident: S0956792517000298_ref50
  article-title: General diffuse-interface theories and an approach to predictive tumor growth modeling
  publication-title: Math. Models Methods Appl. Sci.
– ident: S0956792517000298_ref41
  doi: 10.1016/0022-5193(71)90050-6
– volume: 20
  start-page: 2751
  year: 2015
  ident: S0956792517000298_ref64
  article-title: Convergence rates of solutions for a two-dimensional chemotaxis–Navier–Stokes system
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  doi: 10.3934/dcdsb.2015.20.2751
– ident: S0956792517000298_ref17
  doi: 10.1017/CBO9780511781452
– ident: S0956792517000298_ref52
  doi: 10.1073/pnas.1011086107
– ident: S0956792517000298_ref26
  doi: 10.1016/j.anihpc.2009.11.013
– ident: S0956792517000298_ref8
  doi: 10.1142/S0218202502001878
– ident: S0956792517000298_ref15
  doi: 10.3934/dcds.2015.35.2423
– ident: S0956792517000298_ref43
  doi: 10.1007/978-3-662-05056-9
– ident: S0956792517000298_ref46
  doi: 10.1142/S0218202510004507
– ident: S0956792517000298_ref5
  doi: 10.1142/S0218202511500138
– ident: S0956792517000298_ref60
  doi: 10.1080/03605302.2011.591865
– ident: S0956792517000298_ref62
  doi: 10.1016/j.anihpc.2015.05.002
– ident: S0956792517000298_ref35
  doi: 10.1016/0167-2789(95)00173-5
– ident: S0956792517000298_ref10
  doi: 10.1073/pnas.97.17.9467
– volume: 81
  year: 2014
  ident: S0956792517000298_ref42
  article-title: A class of conservative phase field models for multiphase fluid flows
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4024404
– start-page: 1
  volume-title: Mathematical Systems Theory in Biology, Communications, Computation, and Finance
  year: 2003
  ident: S0956792517000298_ref7
– ident: S0956792517000298_ref29
– ident: S0956792517000298_ref4
  doi: 10.1016/j.anihpc.2013.01.002
– ident: S0956792517000298_ref28
  doi: 10.3934/Math.2016.3.318
– volume: 7
  start-page: 939
  year: 2009
  ident: S0956792517000298_ref66
  article-title: Convergence to equilibrium for a phase-field model for the mixture of two incompressible fluids
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2009.v7.n4.a7
– ident: S0956792517000298_ref51
  doi: 10.1007/s11587-006-0008-8
– ident: S0956792517000298_ref56
  doi: 10.1073/pnas.0406724102
– ident: S0956792517000298_ref13
  doi: 10.3934/dcds.2013.33.2271
– volume: 14
  start-page: 541
  year: 1989
  ident: S0956792517000298_ref21
  article-title: An alternative proof of the Brezis-Wainger inequality
  publication-title: Comm. Partial Differ. Equ.
  doi: 10.1080/03605302.1989.12088448
– ident: S0956792517000298_ref37
  doi: 10.1002/cnm.1467
– ident: S0956792517000298_ref38
  doi: 10.1142/S0218202515500268
– ident: S0956792517000298_ref45
  doi: 10.1016/S0362-546X(97)00635-4
– volume: 78
  start-page: 217
  year: 2012
  ident: S0956792517000298_ref57
  article-title: Long-time behavior for the Hele–Shaw–Cahn–Hilliard system
  publication-title: Asymptot. Anal.
  doi: 10.3233/ASY-2012-1092
– ident: S0956792517000298_ref47
  doi: 10.1017/S0956792513000144
– ident: S0956792517000298_ref49
  doi: 10.1017/CBO9781139174206
– volume: 92
  start-page: 249
  year: 2015
  ident: S0956792517000298_ref39
  article-title: Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domains
  publication-title: Asymptot. Anal.
  doi: 10.3233/ASY-141276
– volume: 20
  start-page: 175
  year: 1999
  ident: S0956792517000298_ref11
  article-title: Mathematical study of multi-phase flow under shear through order parameter formulation
  publication-title: Asymptot. Anal.
– ident: S0956792517000298_ref48
  doi: 10.1098/rspa.1998.0273
– ident: S0956792517000298_ref44
  doi: 10.1016/j.anihpc.2011.04.005
– ident: S0956792517000298_ref53
– ident: S0956792517000298_ref24
  doi: 10.1007/s00332-016-9292-y
– ident: S0956792517000298_ref61
  doi: 10.1007/s00205-013-0678-9
– ident: S0956792517000298_ref6
– ident: S0956792517000298_ref20
  doi: 10.1080/03605302.2010.497199
– ident: S0956792517000298_ref12
  doi: 10.1016/0362-546X(80)90068-1
– ident: S0956792517000298_ref3
  doi: 10.1007/s00021-012-0118-x
– ident: S0956792517000298_ref25
  doi: 10.1017/S0956792514000436
– ident: S0956792517000298_ref1
  doi: 10.1007/s00220-009-0806-4
– volume-title: The Navier–Stokes Equations: An Elementary Functional Analytic Approach
  year: 2010
  ident: S0956792517000298_ref54
– ident: S0956792517000298_ref34
  doi: 10.1090/qam/987902
– ident: S0956792517000298_ref33
– ident: S0956792517000298_ref58
  doi: 10.1016/j.anihpc.2012.06.003
– ident: S0956792517000298_ref65
  doi: 10.1137/130936920
– ident: S0956792517000298_ref14
  doi: 10.1080/03605302.2013.852224
– ident: S0956792517000298_ref63
  doi: 10.1016/j.jtbi.2008.03.027
– ident: S0956792517000298_ref36
  doi: 10.1017/CBO9780511762956
– ident: S0956792517000298_ref55
  doi: 10.1016/j.jde.2013.04.032
– ident: S0956792517000298_ref40
  doi: 10.1016/j.jde.2015.04.009
SSID ssj0013079
Score 2.302041
Snippet We derive a class of Navier–Stokes–Cahn–Hilliard systems that models two-phase flows with mass transfer coupled to the process of chemotaxis. These...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 595
SubjectTerms Applied mathematics
Chemical potential
Computational fluid dynamics
Data transfer (computers)
Dependence
Fluid flow
Mass transfer
Mathematical models
Navier-Stokes equations
Norms
Order parameters
Organic chemistry
Two phase flow
Well posed problems
Title Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis
URI https://www.cambridge.org/core/product/identifier/S0956792517000298/type/journal_article
https://www.proquest.com/docview/2062863191
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1lj14EgNJmmSTk2hpLUKLqIXewj5VbJOaRNCb_8F_6C9xNo9GEZrLhs0uhJnZncfOfoPQqS5JCL4xN8C2FYajfGYEwg8MYjNJFBGgdPQF59HYG06cm6k7LQNuaZlWWe2J-UYtYq5j5OCk60uUIDDWxeLV0FWj9OlqWUJjHTUt0DRazv3BdX2KYNZYeySw3epUM4eMhk7dp_HpNAz5b2yFvzrq7xad653BNtoqDUZ8WXB4B63JaBdtjpZoq-keegReJ_NYFMXl6Wz2gbnOewUGRhkeU636vj-_7rP4Rabw0qNPETTDPNSSCJxXw0mxDsniORjTOMutWZlgGgkMXAV20vfndB9NBv2H3tAoCygYHMyCzGCOEvBIWAmcac9BcMm7gnMPWt7lkjAiqO_6wiOEg_MnLMoCZilmExjf7R6gRhRH8hBhxh1XKdMW4K44Fvc1xo1pKUt6KiCKei10viRfWC6DNCxSyEj4j9otZFYUDnkJRq5rYsxWTTlbTlkUSByrBrcrttV_U4vQ0erPx2gD7CK_yPNro0aWvMkTsD0y1skFrIOaV_3x7d0PdLTZ0Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSsRAEC1kPKgHccXdPuhFDExiJp0cRFwZlxnEBbzF9KbimNFJRL35D_6HH-WXWJVlRhHmZi4dOh0I1S9dS1e_AlihkoToG0sLbVtlucYXVqD8wOKO0NxwhUqHDjg3ml790j26ql0NwGd5FobSKss1MVuoVVtSjByddDpEiYCxtx6fLKoaRburZQmNHBbH-u0FXbZk83AP53fVcQ72L3brVlFVwJKoK1NLuEbhpREeUpA5raSWG0pKD1u5ITUXXEV-zVce5xI9ImVHIhC2EQ7H8RQAxSV_0KUTrRUY3Nlvnp719i2qPXY_Hji1ch81I6nGTuojRjwiPv_J5vBbK_5WCpmmOxiD0cJEZds5psZhQMcTMNLo8rsmk3CD6Oo8tFVezj5qtd6YpExbhEycsmZEyvbr_eM8bd_rBG92o9sYm3oW3OkoltXfSRgFgdkDmu8szexn3WFRrBjiCAEUvd4lU3D5L8KdhkrcjvUMMCHdmjFVR6GD5NrSJ1adqm1s7ZmAm8ibhfWu-MLix0vCPGmNh3-kPQvVUsKhLOjPqQpHq98ra91XHnPuj36DF8pp631ND7Rz_R8vw1D9onESnhw2j-dhGK0yP88yXIBK2nnWi2j5pGKpgBuD6_9G-DfjghoL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamically+consistent+Navier%E2%80%93Stokes%E2%80%93Cahn%E2%80%93Hilliard+models+with+mass+transfer+and+chemotaxis&rft.jtitle=European+journal+of+applied+mathematics&rft.au=KEI+FONG+LAM&rft.au=Wu%2C+Hao&rft.date=2018-08-01&rft.pub=Cambridge+University+Press&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=29&rft.issue=4&rft.spage=595&rft.epage=644&rft_id=info:doi/10.1017%2FS0956792517000298
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon