Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis
We derive a class of Navier–Stokes–Cahn–Hilliard systems that models two-phase flows with mass transfer coupled to the process of chemotaxis. These thermodynamically consistent models can be seen as the natural Navier–Stokes analogues of earlier Cahn–Hilliard–Darcy models proposed for modelling tumo...
Saved in:
Published in | European journal of applied mathematics Vol. 29; no. 4; pp. 595 - 644 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0956-7925 1469-4425 |
DOI | 10.1017/S0956792517000298 |
Cover
Abstract | We derive a class of Navier–Stokes–Cahn–Hilliard systems that models two-phase flows with mass transfer coupled to the process of chemotaxis. These thermodynamically consistent models can be seen as the natural Navier–Stokes analogues of earlier Cahn–Hilliard–Darcy models proposed for modelling tumour growth, and are derived based on a volume-averaged velocity, which yields simpler expressions compared to models derived based on a mass-averaged velocity. Then, we perform mathematical analysis on a simplified model variant with zero excess of total mass and equal densities. We establish the existence of global weak solutions in two and three dimensions for prescribed mass transfer terms. Under additional assumptions, we prove the global strong well-posedness in two dimensions with variable fluid viscosity and mobilities, which also includes a continuous dependence on initial data and mass transfer terms for the chemical potential and the order parameter in strong norms. |
---|---|
AbstractList | We derive a class of Navier–Stokes–Cahn–Hilliard systems that models two-phase flows with mass transfer coupled to the process of chemotaxis. These thermodynamically consistent models can be seen as the natural Navier–Stokes analogues of earlier Cahn–Hilliard–Darcy models proposed for modelling tumour growth, and are derived based on a volume-averaged velocity, which yields simpler expressions compared to models derived based on a mass-averaged velocity. Then, we perform mathematical analysis on a simplified model variant with zero excess of total mass and equal densities. We establish the existence of global weak solutions in two and three dimensions for prescribed mass transfer terms. Under additional assumptions, we prove the global strong well-posedness in two dimensions with variable fluid viscosity and mobilities, which also includes a continuous dependence on initial data and mass transfer terms for the chemical potential and the order parameter in strong norms. |
Author | LAM, KEI FONG WU, HAO |
Author_xml | – sequence: 1 givenname: KEI FONG surname: LAM fullname: LAM, KEI FONG email: kflam@math.cuhk.edu.hk organization: 1Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong email: kflam@math.cuhk.edu.hk – sequence: 2 givenname: HAO surname: WU fullname: WU, HAO email: haowufd@fudan.edu.cn organization: 2School of Mathematical Sciences and Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, 220 Han Dan Road, Shanghai 20043, China email: haowufd@fudan.edu.cn, haowufd@yahoo.com |
BookMark | eNp9kMtKAzEUhoNUsFYfwF3A9WiSuWSylKJWKLpoXQ-ZJNNJnUlqkqrd-Q6-oU9iSguComfzHzj_d27HYGCsUQCcYXSBEaaXM8TygjKSY4oQIqw8AEOcFSzJMpIPwHBbTrb1I3Ds_RIhnCLKhmAxb5XrrdwY3mvBu24DhTVe-6BMgPf8RSv3-f4xC_ZJ-ZiMeWuiTHTXae4kjKjqPHzVoYU99x4Gx41vlIPcSCha1dvA37Q_AYcN77w63esIPN5cz8eTZPpweze-miYixTQkddbIGIogJOqc0UwKJVIpRBFVpELRmkpe5qUsKBUEI4l5zWrc1IRGf5qOwPmu78rZ57XyoVratTNxZEVQQcoixQxHF965hLPeO9VUK6d77jYVRtX2n9Wvf0aG_mCEDjxoa-LJuvuXTPck72un5UJ9L_U39QX8mpC- |
CitedBy_id | crossref_primary_10_1007_s00245_023_09976_2 crossref_primary_10_1007_s00033_020_01407_4 crossref_primary_10_1142_S0218202519500325 crossref_primary_10_1016_j_na_2021_112411 crossref_primary_10_1002_fld_4971 crossref_primary_10_1007_s11538_023_01151_6 crossref_primary_10_1007_s00245_018_9491_z crossref_primary_10_1137_18M1223459 crossref_primary_10_1051_m2an_2024063 crossref_primary_10_1007_s00205_019_01383_8 crossref_primary_10_3934_era_2022143 crossref_primary_10_1002_mma_8014 crossref_primary_10_1016_j_jde_2021_06_022 crossref_primary_10_1007_s00332_021_09771_9 crossref_primary_10_1007_s00208_023_02701_y crossref_primary_10_1515_anona_2020_0100 crossref_primary_10_1142_S0218202519500519 crossref_primary_10_1142_S0219530523500331 |
Cites_doi | 10.1007/s00205-008-0160-2 10.3934/dcds.2010.28.1437 10.3934/dcds.2017183 10.1007/s00285-008-0215-x 10.1142/S0218202516500263 10.1016/j.jtbi.2010.02.036 10.1146/annurev.fluid.30.1.139 10.1017/S0956792516000292 10.1103/PhysRevLett.72.2298 10.1007/s11401-010-0603-6 10.1016/0022-5193(71)90050-6 10.3934/dcdsb.2015.20.2751 10.1017/CBO9780511781452 10.1073/pnas.1011086107 10.1016/j.anihpc.2009.11.013 10.1142/S0218202502001878 10.3934/dcds.2015.35.2423 10.1007/978-3-662-05056-9 10.1142/S0218202510004507 10.1142/S0218202511500138 10.1080/03605302.2011.591865 10.1016/j.anihpc.2015.05.002 10.1016/0167-2789(95)00173-5 10.1073/pnas.97.17.9467 10.1115/1.4024404 10.1016/j.anihpc.2013.01.002 10.3934/Math.2016.3.318 10.4310/CMS.2009.v7.n4.a7 10.1007/s11587-006-0008-8 10.1073/pnas.0406724102 10.3934/dcds.2013.33.2271 10.1080/03605302.1989.12088448 10.1002/cnm.1467 10.1142/S0218202515500268 10.1016/S0362-546X(97)00635-4 10.3233/ASY-2012-1092 10.1017/S0956792513000144 10.1017/CBO9781139174206 10.3233/ASY-141276 10.1098/rspa.1998.0273 10.1016/j.anihpc.2011.04.005 10.1007/s00332-016-9292-y 10.1007/s00205-013-0678-9 10.1080/03605302.2010.497199 10.1016/0362-546X(80)90068-1 10.1007/s00021-012-0118-x 10.1017/S0956792514000436 10.1007/s00220-009-0806-4 10.1090/qam/987902 10.1016/j.anihpc.2012.06.003 10.1137/130936920 10.1080/03605302.2013.852224 10.1016/j.jtbi.2008.03.027 10.1017/CBO9780511762956 10.1016/j.jde.2013.04.032 10.1016/j.jde.2015.04.009 |
ContentType | Journal Article |
Copyright | Copyright © Cambridge University Press 2017 |
Copyright_xml | – notice: Copyright © Cambridge University Press 2017 |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/S0956792517000298 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database (via ProQuest SciTech Premium Collection) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models K.F. Lam and H. Wu |
EISSN | 1469-4425 |
EndPage | 644 |
ExternalDocumentID | 10_1017_S0956792517000298 |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N .DC .FH 09C 09E 0E1 0R~ 29G 3V. 4.4 5GY 5VS 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABEFU ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABXAU ABZCX ABZUI ACBMC ACCHT ACETC ACGFO ACGFS ACGOD ACIMK ACIWK ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD F5P GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IPYYG IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KC5 KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG ROL RR0 S0W S6- S6U SAAAG T9M UT1 VH1 VOH WFFJZ WQ3 WXU WXY WYP XFK ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 AAKNA AATMM AAYXX ABHFL ABVKB ABVZP ABXHF ACAJB ACDLN ACEJA ACOZI ACRPL ADNMO AEMFK AFZFC AGQPQ AKMAY AMVHM ANOYL CITATION GROUPED_DOAJ PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c317t-b4fdddde200cb5974dcec3dcc6cecc3ce7b7da858d677c210d1ab9b1fb27b5933 |
IEDL.DBID | 8FG |
ISSN | 0956-7925 |
IngestDate | Fri Jul 25 19:26:11 EDT 2025 Tue Jul 01 01:07:13 EDT 2025 Thu Apr 24 23:04:13 EDT 2025 Wed Mar 13 05:51:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Navier–Stokes equations well-posedness mass transfer Cahn–Hilliard equation volume-averaged velocity mass-averaged velocity chemotaxis |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c317t-b4fdddde200cb5974dcec3dcc6cecc3ce7b7da858d677c210d1ab9b1fb27b5933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2062863191 |
PQPubID | 37129 |
PageCount | 50 |
ParticipantIDs | proquest_journals_2062863191 crossref_primary_10_1017_S0956792517000298 crossref_citationtrail_10_1017_S0956792517000298 cambridge_journals_10_1017_S0956792517000298 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180800 2018-08-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 20180800 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | European journal of applied mathematics |
PublicationTitleAlternate | Eur. J. Appl. Math |
PublicationYear | 2018 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | S0956792517000298_ref1 S0956792517000298_ref43 S0956792517000298_ref2 S0956792517000298_ref44 S0956792517000298_ref3 S0956792517000298_ref45 S0956792517000298_ref4 S0956792517000298_ref46 S0956792517000298_ref40 S0956792517000298_ref41 S0956792517000298_ref9 S0956792517000298_ref5 S0956792517000298_ref6 S0956792517000298_ref8 Zhang (S0956792517000298_ref64) 2015; 20 Oden (S0956792517000298_ref50) 2010; 58 S0956792517000298_ref36 S0956792517000298_ref37 Engler (S0956792517000298_ref21) 1989; 14 Wang (S0956792517000298_ref57) 2012; 78 S0956792517000298_ref38 Alber (S0956792517000298_ref7) 2003 S0956792517000298_ref32 S0956792517000298_ref33 S0956792517000298_ref34 S0956792517000298_ref35 S0956792517000298_ref30 S0956792517000298_ref31 S0956792517000298_ref29 S0956792517000298_ref25 S0956792517000298_ref26 S0956792517000298_ref27 S0956792517000298_ref28 S0956792517000298_ref65 Jiang (S0956792517000298_ref39) 2015; 92 S0956792517000298_ref22 S0956792517000298_ref23 S0956792517000298_ref24 S0956792517000298_ref61 S0956792517000298_ref62 S0956792517000298_ref63 S0956792517000298_ref20 S0956792517000298_ref60 Boyer (S0956792517000298_ref11) 1999; 20 Zhao (S0956792517000298_ref66) 2009; 7 Li (S0956792517000298_ref42) 2014; 81 S0956792517000298_ref14 S0956792517000298_ref58 S0956792517000298_ref15 S0956792517000298_ref59 S0956792517000298_ref16 S0956792517000298_ref17 S0956792517000298_ref10 S0956792517000298_ref55 S0956792517000298_ref56 S0956792517000298_ref12 S0956792517000298_ref13 Di Francesco (S0956792517000298_ref19) 2010; 28 S0956792517000298_ref51 S0956792517000298_ref52 S0956792517000298_ref53 Dedè (S0956792517000298_ref18) S0956792517000298_ref47 S0956792517000298_ref48 S0956792517000298_ref49 Sohr (S0956792517000298_ref54) 2010 |
References_xml | – ident: S0956792517000298_ref2 doi: 10.1007/s00205-008-0160-2 – volume: 28 start-page: 1437 year: 2010 ident: S0956792517000298_ref19 article-title: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2010.28.1437 – ident: S0956792517000298_ref30 doi: 10.3934/dcds.2017183 – ident: S0956792517000298_ref59 – ident: S0956792517000298_ref16 doi: 10.1007/s00285-008-0215-x – ident: S0956792517000298_ref32 doi: 10.1142/S0218202516500263 – ident: S0956792517000298_ref23 doi: 10.1016/j.jtbi.2010.02.036 – ident: S0956792517000298_ref9 doi: 10.1146/annurev.fluid.30.1.139 – ident: S0956792517000298_ref31 doi: 10.1017/S0956792516000292 – ident: S0956792517000298_ref18 article-title: A Hele–Shaw–Cahn–Hilliard model for incompressible two-phase flows with different densities publication-title: J. Math. Fluid Mech. – ident: S0956792517000298_ref22 doi: 10.1103/PhysRevLett.72.2298 – ident: S0956792517000298_ref27 doi: 10.1007/s11401-010-0603-6 – volume: 58 start-page: 723 year: 2010 ident: S0956792517000298_ref50 article-title: General diffuse-interface theories and an approach to predictive tumor growth modeling publication-title: Math. Models Methods Appl. Sci. – ident: S0956792517000298_ref41 doi: 10.1016/0022-5193(71)90050-6 – volume: 20 start-page: 2751 year: 2015 ident: S0956792517000298_ref64 article-title: Convergence rates of solutions for a two-dimensional chemotaxis–Navier–Stokes system publication-title: Discrete Contin. Dyn. Syst. Ser. B doi: 10.3934/dcdsb.2015.20.2751 – ident: S0956792517000298_ref17 doi: 10.1017/CBO9780511781452 – ident: S0956792517000298_ref52 doi: 10.1073/pnas.1011086107 – ident: S0956792517000298_ref26 doi: 10.1016/j.anihpc.2009.11.013 – ident: S0956792517000298_ref8 doi: 10.1142/S0218202502001878 – ident: S0956792517000298_ref15 doi: 10.3934/dcds.2015.35.2423 – ident: S0956792517000298_ref43 doi: 10.1007/978-3-662-05056-9 – ident: S0956792517000298_ref46 doi: 10.1142/S0218202510004507 – ident: S0956792517000298_ref5 doi: 10.1142/S0218202511500138 – ident: S0956792517000298_ref60 doi: 10.1080/03605302.2011.591865 – ident: S0956792517000298_ref62 doi: 10.1016/j.anihpc.2015.05.002 – ident: S0956792517000298_ref35 doi: 10.1016/0167-2789(95)00173-5 – ident: S0956792517000298_ref10 doi: 10.1073/pnas.97.17.9467 – volume: 81 year: 2014 ident: S0956792517000298_ref42 article-title: A class of conservative phase field models for multiphase fluid flows publication-title: J. Appl. Mech. doi: 10.1115/1.4024404 – start-page: 1 volume-title: Mathematical Systems Theory in Biology, Communications, Computation, and Finance year: 2003 ident: S0956792517000298_ref7 – ident: S0956792517000298_ref29 – ident: S0956792517000298_ref4 doi: 10.1016/j.anihpc.2013.01.002 – ident: S0956792517000298_ref28 doi: 10.3934/Math.2016.3.318 – volume: 7 start-page: 939 year: 2009 ident: S0956792517000298_ref66 article-title: Convergence to equilibrium for a phase-field model for the mixture of two incompressible fluids publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2009.v7.n4.a7 – ident: S0956792517000298_ref51 doi: 10.1007/s11587-006-0008-8 – ident: S0956792517000298_ref56 doi: 10.1073/pnas.0406724102 – ident: S0956792517000298_ref13 doi: 10.3934/dcds.2013.33.2271 – volume: 14 start-page: 541 year: 1989 ident: S0956792517000298_ref21 article-title: An alternative proof of the Brezis-Wainger inequality publication-title: Comm. Partial Differ. Equ. doi: 10.1080/03605302.1989.12088448 – ident: S0956792517000298_ref37 doi: 10.1002/cnm.1467 – ident: S0956792517000298_ref38 doi: 10.1142/S0218202515500268 – ident: S0956792517000298_ref45 doi: 10.1016/S0362-546X(97)00635-4 – volume: 78 start-page: 217 year: 2012 ident: S0956792517000298_ref57 article-title: Long-time behavior for the Hele–Shaw–Cahn–Hilliard system publication-title: Asymptot. Anal. doi: 10.3233/ASY-2012-1092 – ident: S0956792517000298_ref47 doi: 10.1017/S0956792513000144 – ident: S0956792517000298_ref49 doi: 10.1017/CBO9781139174206 – volume: 92 start-page: 249 year: 2015 ident: S0956792517000298_ref39 article-title: Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domains publication-title: Asymptot. Anal. doi: 10.3233/ASY-141276 – volume: 20 start-page: 175 year: 1999 ident: S0956792517000298_ref11 article-title: Mathematical study of multi-phase flow under shear through order parameter formulation publication-title: Asymptot. Anal. – ident: S0956792517000298_ref48 doi: 10.1098/rspa.1998.0273 – ident: S0956792517000298_ref44 doi: 10.1016/j.anihpc.2011.04.005 – ident: S0956792517000298_ref53 – ident: S0956792517000298_ref24 doi: 10.1007/s00332-016-9292-y – ident: S0956792517000298_ref61 doi: 10.1007/s00205-013-0678-9 – ident: S0956792517000298_ref6 – ident: S0956792517000298_ref20 doi: 10.1080/03605302.2010.497199 – ident: S0956792517000298_ref12 doi: 10.1016/0362-546X(80)90068-1 – ident: S0956792517000298_ref3 doi: 10.1007/s00021-012-0118-x – ident: S0956792517000298_ref25 doi: 10.1017/S0956792514000436 – ident: S0956792517000298_ref1 doi: 10.1007/s00220-009-0806-4 – volume-title: The Navier–Stokes Equations: An Elementary Functional Analytic Approach year: 2010 ident: S0956792517000298_ref54 – ident: S0956792517000298_ref34 doi: 10.1090/qam/987902 – ident: S0956792517000298_ref33 – ident: S0956792517000298_ref58 doi: 10.1016/j.anihpc.2012.06.003 – ident: S0956792517000298_ref65 doi: 10.1137/130936920 – ident: S0956792517000298_ref14 doi: 10.1080/03605302.2013.852224 – ident: S0956792517000298_ref63 doi: 10.1016/j.jtbi.2008.03.027 – ident: S0956792517000298_ref36 doi: 10.1017/CBO9780511762956 – ident: S0956792517000298_ref55 doi: 10.1016/j.jde.2013.04.032 – ident: S0956792517000298_ref40 doi: 10.1016/j.jde.2015.04.009 |
SSID | ssj0013079 |
Score | 2.302041 |
Snippet | We derive a class of Navier–Stokes–Cahn–Hilliard systems that models two-phase flows with mass transfer coupled to the process of chemotaxis. These... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 595 |
SubjectTerms | Applied mathematics Chemical potential Computational fluid dynamics Data transfer (computers) Dependence Fluid flow Mass transfer Mathematical models Navier-Stokes equations Norms Order parameters Organic chemistry Two phase flow Well posed problems |
Title | Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis |
URI | https://www.cambridge.org/core/product/identifier/S0956792517000298/type/journal_article https://www.proquest.com/docview/2062863191 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1lj14EgNJmmSTk2hpLUKLqIXewj5VbJOaRNCb_8F_6C9xNo9GEZrLhs0uhJnZncfOfoPQqS5JCL4xN8C2FYajfGYEwg8MYjNJFBGgdPQF59HYG06cm6k7LQNuaZlWWe2J-UYtYq5j5OCk60uUIDDWxeLV0FWj9OlqWUJjHTUt0DRazv3BdX2KYNZYeySw3epUM4eMhk7dp_HpNAz5b2yFvzrq7xad653BNtoqDUZ8WXB4B63JaBdtjpZoq-keegReJ_NYFMXl6Wz2gbnOewUGRhkeU636vj-_7rP4Rabw0qNPETTDPNSSCJxXw0mxDsniORjTOMutWZlgGgkMXAV20vfndB9NBv2H3tAoCygYHMyCzGCOEvBIWAmcac9BcMm7gnMPWt7lkjAiqO_6wiOEg_MnLMoCZilmExjf7R6gRhRH8hBhxh1XKdMW4K44Fvc1xo1pKUt6KiCKei10viRfWC6DNCxSyEj4j9otZFYUDnkJRq5rYsxWTTlbTlkUSByrBrcrttV_U4vQ0erPx2gD7CK_yPNro0aWvMkTsD0y1skFrIOaV_3x7d0PdLTZ0Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSsRAEC1kPKgHccXdPuhFDExiJp0cRFwZlxnEBbzF9KbimNFJRL35D_6HH-WXWJVlRhHmZi4dOh0I1S9dS1e_AlihkoToG0sLbVtlucYXVqD8wOKO0NxwhUqHDjg3ml790j26ql0NwGd5FobSKss1MVuoVVtSjByddDpEiYCxtx6fLKoaRburZQmNHBbH-u0FXbZk83AP53fVcQ72L3brVlFVwJKoK1NLuEbhpREeUpA5raSWG0pKD1u5ITUXXEV-zVce5xI9ImVHIhC2EQ7H8RQAxSV_0KUTrRUY3Nlvnp719i2qPXY_Hji1ch81I6nGTuojRjwiPv_J5vBbK_5WCpmmOxiD0cJEZds5psZhQMcTMNLo8rsmk3CD6Oo8tFVezj5qtd6YpExbhEycsmZEyvbr_eM8bd_rBG92o9sYm3oW3OkoltXfSRgFgdkDmu8szexn3WFRrBjiCAEUvd4lU3D5L8KdhkrcjvUMMCHdmjFVR6GD5NrSJ1adqm1s7ZmAm8ibhfWu-MLix0vCPGmNh3-kPQvVUsKhLOjPqQpHq98ra91XHnPuj36DF8pp631ND7Rz_R8vw1D9onESnhw2j-dhGK0yP88yXIBK2nnWi2j5pGKpgBuD6_9G-DfjghoL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamically+consistent+Navier%E2%80%93Stokes%E2%80%93Cahn%E2%80%93Hilliard+models+with+mass+transfer+and+chemotaxis&rft.jtitle=European+journal+of+applied+mathematics&rft.au=KEI+FONG+LAM&rft.au=Wu%2C+Hao&rft.date=2018-08-01&rft.pub=Cambridge+University+Press&rft.issn=0956-7925&rft.eissn=1469-4425&rft.volume=29&rft.issue=4&rft.spage=595&rft.epage=644&rft_id=info:doi/10.1017%2FS0956792517000298 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7925&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7925&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7925&client=summon |