Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries

The development of high energy-density Ni-rich (Ni ≥ 90%) layered cathodes has remained difficult because of the rapid capacity fading that occurs during cycling. This study demonstrates that limiting the primary particle size of the cathode resolves the capacity fading problem as nano-sized primary...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 14; no. 12; pp. 6616 - 6626
Main Authors Park, Geon-Tae, Yoon, Dae Ro, Kim, Un-Hyuck, Namkoong, Been, Lee, Junghwa, Wang, Melody M, Lee, Andrew C, Gu, X. Wendy, Chueh, William C, Yoon, Chong S, Sun, Yang-Kook
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 09.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of high energy-density Ni-rich (Ni ≥ 90%) layered cathodes has remained difficult because of the rapid capacity fading that occurs during cycling. This study demonstrates that limiting the primary particle size of the cathode resolves the capacity fading problem as nano-sized primary particles effectively relieve the high internal strain associated with the phase transition near charge end and fracture-toughen the cathode. A linear relationship is observed between battery cycling stability and cathode primary particle size. The introduction of Mo inhibits the growth/consolidation of primary particles and limits their size to a submicrometer scale thus improving the cycle life of Li[Ni 0.95 Co 0.04 Mo 0.01 ]O 2 to a commercially viable level. The Li[Ni 0.95 Co 0.04 Mo 0.01 ]O 2 cathode, whose microstructure is engineered to mitigate the mechanical instability of Ni-rich layered cathodes, represents a next-generation high energy-density cathode with fast charging capability for electric vehicles with a material cost advantage over current commercial cathodes as Co, a relatively expensive and increasingly scarce resource, is replaced with Ni without compromising battery capacity and battery life. The ultrafine-grained Ni-enriched Li[Ni 0.95 Co 0.04 Mo 0.01 ]O 2 (NCMo95) cathode achieved by inhibiting particle coarsening imparts the necessary mechanical toughness and significantly extends the battery life.
AbstractList The development of high energy-density Ni-rich (Ni ≥ 90%) layered cathodes has remained difficult because of the rapid capacity fading that occurs during cycling. This study demonstrates that limiting the primary particle size of the cathode resolves the capacity fading problem as nano-sized primary particles effectively relieve the high internal strain associated with the phase transition near charge end and fracture-toughen the cathode. A linear relationship is observed between battery cycling stability and cathode primary particle size. The introduction of Mo inhibits the growth/consolidation of primary particles and limits their size to a submicrometer scale thus improving the cycle life of Li[Ni 0.95 Co 0.04 Mo 0.01 ]O 2 to a commercially viable level. The Li[Ni 0.95 Co 0.04 Mo 0.01 ]O 2 cathode, whose microstructure is engineered to mitigate the mechanical instability of Ni-rich layered cathodes, represents a next-generation high energy-density cathode with fast charging capability for electric vehicles with a material cost advantage over current commercial cathodes as Co, a relatively expensive and increasingly scarce resource, is replaced with Ni without compromising battery capacity and battery life. The ultrafine-grained Ni-enriched Li[Ni 0.95 Co 0.04 Mo 0.01 ]O 2 (NCMo95) cathode achieved by inhibiting particle coarsening imparts the necessary mechanical toughness and significantly extends the battery life.
The development of high energy-density Ni-rich (Ni ≥ 90%) layered cathodes has remained difficult because of the rapid capacity fading that occurs during cycling. This study demonstrates that limiting the primary particle size of the cathode resolves the capacity fading problem as nano-sized primary particles effectively relieve the high internal strain associated with the phase transition near charge end and fracture-toughen the cathode. A linear relationship is observed between battery cycling stability and cathode primary particle size. The introduction of Mo inhibits the growth/consolidation of primary particles and limits their size to a submicrometer scale thus improving the cycle life of Li[Ni0.95Co0.04Mo0.01]O2 to a commercially viable level. The Li[Ni0.95Co0.04Mo0.01]O2 cathode, whose microstructure is engineered to mitigate the mechanical instability of Ni-rich layered cathodes, represents a next-generation high energy-density cathode with fast charging capability for electric vehicles with a material cost advantage over current commercial cathodes as Co, a relatively expensive and increasingly scarce resource, is replaced with Ni without compromising battery capacity and battery life.
The development of high energy-density Ni-rich (Ni ≥ 90%) layered cathodes has remained difficult because of the rapid capacity fading that occurs during cycling. This study demonstrates that limiting the primary particle size of the cathode resolves the capacity fading problem as nano-sized primary particles effectively relieve the high internal strain associated with the phase transition near charge end and fracture-toughen the cathode. A linear relationship is observed between battery cycling stability and cathode primary particle size. The introduction of Mo inhibits the growth/consolidation of primary particles and limits their size to a submicrometer scale thus improving the cycle life of Li[Ni 0.95 Co 0.04 Mo 0.01 ]O 2 to a commercially viable level. The Li[Ni 0.95 Co 0.04 Mo 0.01 ]O 2 cathode, whose microstructure is engineered to mitigate the mechanical instability of Ni-rich layered cathodes, represents a next-generation high energy-density cathode with fast charging capability for electric vehicles with a material cost advantage over current commercial cathodes as Co, a relatively expensive and increasingly scarce resource, is replaced with Ni without compromising battery capacity and battery life.
Author Yoon, Chong S
Lee, Junghwa
Wang, Melody M
Namkoong, Been
Lee, Andrew C
Chueh, William C
Yoon, Dae Ro
Sun, Yang-Kook
Park, Geon-Tae
Kim, Un-Hyuck
Gu, X. Wendy
AuthorAffiliation Hanyang University
Stanford University
Department of Mechanical Engineering
Department of Materials Science and Engineering
Department of Energy Engineering
AuthorAffiliation_xml – name: Hanyang University
– name: Department of Energy Engineering
– name: Department of Mechanical Engineering
– name: Stanford University
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Geon-Tae
  surname: Park
  fullname: Park, Geon-Tae
– sequence: 2
  givenname: Dae Ro
  surname: Yoon
  fullname: Yoon, Dae Ro
– sequence: 3
  givenname: Un-Hyuck
  surname: Kim
  fullname: Kim, Un-Hyuck
– sequence: 4
  givenname: Been
  surname: Namkoong
  fullname: Namkoong, Been
– sequence: 5
  givenname: Junghwa
  surname: Lee
  fullname: Lee, Junghwa
– sequence: 6
  givenname: Melody M
  surname: Wang
  fullname: Wang, Melody M
– sequence: 7
  givenname: Andrew C
  surname: Lee
  fullname: Lee, Andrew C
– sequence: 8
  givenname: X. Wendy
  surname: Gu
  fullname: Gu, X. Wendy
– sequence: 9
  givenname: William C
  surname: Chueh
  fullname: Chueh, William C
– sequence: 10
  givenname: Chong S
  surname: Yoon
  fullname: Yoon, Chong S
– sequence: 11
  givenname: Yang-Kook
  surname: Sun
  fullname: Sun, Yang-Kook
BookMark eNpFkE1LAzEQhoMo2FYv3oUFb0J0sskmm6PUWoWil3pe0mTSptTdmmyF_nuj9eP0zrw8zMAzJMdt1yIhFwxuGHB96xgilLWul0dkwFQlaKVAHv_OUpenZJjSGkCWoPSATF83fTQ-tEiX0eRwxXOgMdhVsTF7jHm3pl91DgvfxcK4D9PaXM4CDV1bLEzfYwyYzsiJN5uE5z85IvOHyXz8SGcv06fx3YxazlRPF9xVQgkvhfW19SidB8MlE1L4BQiuBGgtS-G98TV4pi0ynUsEV6m64iNydTi7jd37DlPfrLtdbPPHppRQs0ozgExdHygbu5Qi-mYbw5uJ-4ZB8-WpuWeTybenaYYvD3BM9o_798g_ASnXZU0
CitedBy_id crossref_primary_10_1016_j_ensm_2024_103496
crossref_primary_10_1002_smll_202306160
crossref_primary_10_1021_acsenergylett_3c02759
crossref_primary_10_1016_j_jpowsour_2024_234584
crossref_primary_10_1016_j_cej_2023_145869
crossref_primary_10_1016_j_cej_2024_150099
crossref_primary_10_1021_acsaem_4c00632
crossref_primary_10_1149_1945_7111_ac8ee3
crossref_primary_10_1002_aenm_202400130
crossref_primary_10_1021_acsenergylett_4c00307
crossref_primary_10_1016_j_jechem_2022_11_002
crossref_primary_10_1021_acs_nanolett_3c01648
crossref_primary_10_1021_acsenergylett_4c01397
crossref_primary_10_1002_anie_202314480
crossref_primary_10_1039_D4TA00284A
crossref_primary_10_1002_aenm_202204360
crossref_primary_10_1021_acsami_3c16475
crossref_primary_10_1002_smll_202400518
crossref_primary_10_1557_s43578_022_00528_y
crossref_primary_10_1016_j_mattod_2023_07_024
crossref_primary_10_1021_acsenergylett_2c02032
crossref_primary_10_1002_adma_202204845
crossref_primary_10_1016_j_jpowsour_2024_234132
crossref_primary_10_1021_acsaem_3c01428
crossref_primary_10_1016_j_ensm_2023_102771
crossref_primary_10_1002_ange_202314457
crossref_primary_10_1038_s41467_023_44583_3
crossref_primary_10_1039_D2EE03969A
crossref_primary_10_1016_j_ensm_2023_102969
crossref_primary_10_1016_j_jpowsour_2024_234801
crossref_primary_10_1016_j_joule_2022_04_001
crossref_primary_10_1021_acsnano_3c10986
crossref_primary_10_1021_acs_iecr_3c04271
crossref_primary_10_1039_D3TA00320E
crossref_primary_10_1038_s41467_024_45373_1
crossref_primary_10_1021_acsenergylett_3c00083
crossref_primary_10_1002_adfm_202315437
crossref_primary_10_1002_cplu_202200155
crossref_primary_10_1016_j_jcis_2024_06_027
crossref_primary_10_1021_acsami_2c08143
crossref_primary_10_1007_s11581_023_04941_z
crossref_primary_10_1007_s10008_022_05212_z
crossref_primary_10_1002_aenm_202204291
crossref_primary_10_1021_acsami_4c00514
crossref_primary_10_1021_acsami_4c00679
crossref_primary_10_1021_acs_energyfuels_3c01588
crossref_primary_10_1021_acsenergylett_2c01996
crossref_primary_10_1002_aenm_202202719
crossref_primary_10_1149_1945_7111_ac99a1
crossref_primary_10_1149_1945_7111_aca2e2
crossref_primary_10_1002_anie_202314457
crossref_primary_10_1016_j_cej_2024_150795
crossref_primary_10_1002_smll_202401132
crossref_primary_10_1016_j_carbon_2024_119309
crossref_primary_10_1002_aenm_202200615
crossref_primary_10_1016_j_cclet_2022_107772
crossref_primary_10_1016_j_enchem_2023_100103
crossref_primary_10_1002_adma_202402739
crossref_primary_10_1002_smtd_202300280
crossref_primary_10_1039_D3CS00741C
crossref_primary_10_3390_nano12111888
crossref_primary_10_1021_acsenergylett_3c01322
crossref_primary_10_1002_adfm_202304614
crossref_primary_10_1016_j_partic_2022_12_003
crossref_primary_10_1038_s41560_022_01106_6
crossref_primary_10_1039_D3TA00264K
crossref_primary_10_1039_D3TA01822A
crossref_primary_10_1016_j_est_2024_110807
crossref_primary_10_1016_j_mattod_2023_11_006
crossref_primary_10_1021_acs_chemmater_3c01992
crossref_primary_10_1149_1945_7111_acdd21
crossref_primary_10_1016_j_cej_2024_150644
crossref_primary_10_1021_acsenergylett_2c02412
crossref_primary_10_1039_D2NR05701H
crossref_primary_10_1002_adfm_202308494
crossref_primary_10_1021_acs_energyfuels_3c02949
crossref_primary_10_1039_D2TA00538G
crossref_primary_10_1016_j_jcis_2024_05_017
crossref_primary_10_1002_aenm_202201510
crossref_primary_10_1016_j_cej_2023_147419
crossref_primary_10_1039_D2NJ00867J
crossref_primary_10_1007_s10483_024_3119_6
crossref_primary_10_1039_D3EE02334F
crossref_primary_10_1016_j_jallcom_2024_173458
crossref_primary_10_1021_acsnano_3c04773
crossref_primary_10_1038_s43246_023_00418_8
crossref_primary_10_1002_ange_202314480
crossref_primary_10_1021_acsenergylett_3c01272
crossref_primary_10_1016_j_cej_2024_153821
crossref_primary_10_1126_sciadv_ado4472
crossref_primary_10_1021_acsami_3c18865
crossref_primary_10_1002_aenm_202301530
crossref_primary_10_1021_acsenergylett_2c01009
crossref_primary_10_1038_s41563_024_01899_9
crossref_primary_10_1016_j_ijmecsci_2024_109034
Cites_doi 10.1016/j.jpowsour.2019.227242
10.1002/aenm.201903179
10.1021/acsami.7b13597
10.1016/j.matlet.2017.01.025
10.1021/acsenergylett.9b02302
10.1016/j.jpowsour.2017.01.066
10.1021/acsaem.9b01116
10.1186/s12859-017-1934-z
10.1016/j.ijrmhm.2014.04.011
10.1021/acsami.7b08006
10.1016/j.ijrmhm.2011.11.006
10.1016/j.ensm.2020.08.013
10.1002/adfm.201808825
10.1002/aenm.201902698
10.1021/acs.chemmater.8b00619
10.1016/j.mattod.2018.12.004
10.1021/acs.chemmater.7b05269
10.1002/aenm.201903360
10.1021/cm047779m
10.1039/C6RA17681J
10.1021/acsami.9b09754
10.1021/acsenergylett.9b00733
10.1016/S0924-0136(96)02748-3
10.1021/acsami.6b05629
10.1016/j.ijrmhm.2007.04.006
10.1039/C9CP05128G
10.1557/JMR.1999.0376
10.1007/s00410-009-0474-6
10.1021/acs.jpclett.5b01813
10.1007/BF00258160
10.1111/j.1151-2916.1957.tb12580.x
10.1016/j.nanoen.2019.05.021
10.1098/rsta.2014.0129
10.1038/ncomms14101
10.1016/j.jpowsour.2013.03.174
10.1177/0954407013485567
10.1016/0502-8205(52)90009-9
10.1038/s41560-020-00693-6
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d1ee02898g
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 6626
ExternalDocumentID 10_1039_D1EE02898G
d1ee02898g
GroupedDBID 0-7
0R
29G
4.4
5GY
70
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
M4U
N9A
O-G
O9-
P2P
RCNCU
RIG
RPMJG
RRC
RSCEA
SKA
SLH
TOV
UCJ
-JG
0R~
70~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AGEGJ
AHGCF
AKBGW
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c317t-b3d5474f64cf8cfe6df0a361464fb04374099624ffaf80f19ce19740e0d57853
ISSN 1754-5692
IngestDate Fri Sep 13 01:54:10 EDT 2024
Fri Aug 23 02:10:36 EDT 2024
Mon Apr 11 04:40:47 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-b3d5474f64cf8cfe6df0a361464fb04374099624ffaf80f19ce19740e0d57853
Notes 10.1039/d1ee02898g
Electronic supplementary information (ESI) available. See DOI
ORCID 0000-0002-8997-6629
0000-0002-1644-9473
0000-0003-2005-0251
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2021/ee/d1ee02898g
PQID 2608159100
PQPubID 2047494
PageCount 11
ParticipantIDs crossref_primary_10_1039_D1EE02898G
rsc_primary_d1ee02898g
proquest_journals_2608159100
PublicationCentury 2000
PublicationDate 2021-12-09
PublicationDateYYYYMMDD 2021-12-09
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-09
  day: 09
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Park (D1EE02898G/cit19) 2019; 4
Ryu (D1EE02898G/cit23) 2019; 9
Kim (D1EE02898G/cit24) 2020; 33
Rueden (D1EE02898G/cit40) 2017; 18
Burke (D1EE02898G/cit27) 1952; 3
Jung (D1EE02898G/cit21) 2020; 10
Ovid’ko (D1EE02898G/cit18) 2015; 373
Chen (D1EE02898G/cit12) 2017; 9
Kim (D1EE02898G/cit7) 2019; 11
Han (D1EE02898G/cit11) 2017; 9
Poetschke (D1EE02898G/cit17) 2012; 31
Dai (D1EE02898G/cit29) 1999; 14
Brodhag (D1EE02898G/cit30) 2010; 160
Du (D1EE02898G/cit9) 2016; 8
Burke (D1EE02898G/cit28) 1957; 40
Wang (D1EE02898G/cit25) 2008; 26
Budde-Meiwes (D1EE02898G/cit2) 2013; 227
Aishova (D1EE02898G/cit32) 2020; 10
Kim (D1EE02898G/cit15) 1997; 63
Kim (D1EE02898G/cit35) 2019; 23
D1EE02898G/cit3
McCloskey (D1EE02898G/cit1) 2015; 6
Cheng (D1EE02898G/cit14) 2019; 62
Meng (D1EE02898G/cit33) 2005; 17
Karthik (D1EE02898G/cit16) 2017; 190
Yoon (D1EE02898G/cit34) 2018; 30
Nam (D1EE02898G/cit6) 2019; 4
Dong (D1EE02898G/cit26) 2014; 45
Yan (D1EE02898G/cit8) 2017; 8
Zhao (D1EE02898G/cit10) 2017; 343
Yang (D1EE02898G/cit38) 2016; 6
Naceur (D1EE02898G/cit4)
Schwab (D1EE02898G/cit39) 2019; 21
Kim (D1EE02898G/cit36) 2020; 5
Nishimura (D1EE02898G/cit22) 1995; 14
He (D1EE02898G/cit37) 2013; 240
Ryu (D1EE02898G/cit5) 2018; 30
Yang (D1EE02898G/cit13) 2019; 29
Sun (D1EE02898G/cit20) 2019; 2
Park (D1EE02898G/cit31) 2019; 442
References_xml – doi: Naceur
– volume: 442
  start-page: 227242
  year: 2019
  ident: D1EE02898G/cit31
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227242
  contributor:
    fullname: Park
– volume: 10
  start-page: 1903179
  year: 2020
  ident: D1EE02898G/cit32
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903179
  contributor:
    fullname: Aishova
– volume: 9
  start-page: 41291
  year: 2017
  ident: D1EE02898G/cit11
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13597
  contributor:
    fullname: Han
– volume: 190
  start-page: 273
  year: 2017
  ident: D1EE02898G/cit16
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.01.025
  contributor:
    fullname: Karthik
– volume: 4
  start-page: 2995
  year: 2019
  ident: D1EE02898G/cit6
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02302
  contributor:
    fullname: Nam
– volume: 343
  start-page: 345
  year: 2017
  ident: D1EE02898G/cit10
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.066
  contributor:
    fullname: Zhao
– volume: 2
  start-page: 6002
  year: 2019
  ident: D1EE02898G/cit20
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01116
  contributor:
    fullname: Sun
– volume: 18
  start-page: 529
  year: 2017
  ident: D1EE02898G/cit40
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-017-1934-z
  contributor:
    fullname: Rueden
– volume: 45
  start-page: 223
  year: 2014
  ident: D1EE02898G/cit26
  publication-title: Int. J. Refract. Met. Hard Mater.
  doi: 10.1016/j.ijrmhm.2014.04.011
  contributor:
    fullname: Dong
– volume: 9
  start-page: 29732
  year: 2017
  ident: D1EE02898G/cit12
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08006
  contributor:
    fullname: Chen
– volume: 31
  start-page: 218
  year: 2012
  ident: D1EE02898G/cit17
  publication-title: Int. J. Refract. Met. Hard Mater.
  doi: 10.1016/j.ijrmhm.2011.11.006
  contributor:
    fullname: Poetschke
– volume: 33
  start-page: 399
  year: 2020
  ident: D1EE02898G/cit24
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.08.013
  contributor:
    fullname: Kim
– volume: 29
  start-page: 1808825
  year: 2019
  ident: D1EE02898G/cit13
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808825
  contributor:
    fullname: Yang
– volume: 9
  start-page: 1902698
  year: 2019
  ident: D1EE02898G/cit23
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902698
  contributor:
    fullname: Ryu
– volume: 30
  start-page: 1808
  year: 2018
  ident: D1EE02898G/cit34
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00619
  contributor:
    fullname: Yoon
– volume: 23
  start-page: 26
  year: 2019
  ident: D1EE02898G/cit35
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.12.004
  contributor:
    fullname: Kim
– volume: 30
  start-page: 1155
  year: 2018
  ident: D1EE02898G/cit5
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b05269
  contributor:
    fullname: Ryu
– volume: 10
  start-page: 1903360
  year: 2020
  ident: D1EE02898G/cit21
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903360
  contributor:
    fullname: Jung
– volume: 17
  start-page: 2386
  year: 2005
  ident: D1EE02898G/cit33
  publication-title: Chem. Mater.
  doi: 10.1021/cm047779m
  contributor:
    fullname: Meng
– volume: 6
  start-page: 94000
  year: 2016
  ident: D1EE02898G/cit38
  publication-title: RSC Adv.
  doi: 10.1039/C6RA17681J
  contributor:
    fullname: Yang
– volume: 11
  start-page: 30936
  year: 2019
  ident: D1EE02898G/cit7
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09754
  contributor:
    fullname: Kim
– volume: 4
  start-page: 1394
  year: 2019
  ident: D1EE02898G/cit19
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00733
  contributor:
    fullname: Park
– volume: 63
  start-page: 317
  year: 1997
  ident: D1EE02898G/cit15
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(96)02748-3
  contributor:
    fullname: Kim
– volume: 8
  start-page: 17713
  year: 2016
  ident: D1EE02898G/cit9
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05629
  contributor:
    fullname: Du
– volume: 26
  start-page: 232
  year: 2008
  ident: D1EE02898G/cit25
  publication-title: Int. J. Refract. Met. Hard Mater.
  doi: 10.1016/j.ijrmhm.2007.04.006
  contributor:
    fullname: Wang
– ident: D1EE02898G/cit3
– volume: 21
  start-page: 26066
  year: 2019
  ident: D1EE02898G/cit39
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP05128G
  contributor:
    fullname: Schwab
– volume: 14
  start-page: 2814
  year: 1999
  ident: D1EE02898G/cit29
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1999.0376
  contributor:
    fullname: Dai
– volume: 160
  start-page: 219
  year: 2010
  ident: D1EE02898G/cit30
  publication-title: Contrib. Mineral. Petrol.
  doi: 10.1007/s00410-009-0474-6
  contributor:
    fullname: Brodhag
– volume: 6
  start-page: 3592
  year: 2015
  ident: D1EE02898G/cit1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01813
  contributor:
    fullname: McCloskey
– volume: 14
  start-page: 1046
  year: 1995
  ident: D1EE02898G/cit22
  publication-title: J. Mater. Sci. Lett.
  doi: 10.1007/BF00258160
  contributor:
    fullname: Nishimura
– ident: D1EE02898G/cit4
  contributor:
    fullname: Naceur
– volume: 40
  start-page: 80
  year: 1957
  ident: D1EE02898G/cit28
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1957.tb12580.x
  contributor:
    fullname: Burke
– volume: 62
  start-page: 30
  year: 2019
  ident: D1EE02898G/cit14
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.021
  contributor:
    fullname: Cheng
– volume: 373
  start-page: 20140129
  year: 2015
  ident: D1EE02898G/cit18
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2014.0129
  contributor:
    fullname: Ovid’ko
– volume: 8
  start-page: 14101
  year: 2017
  ident: D1EE02898G/cit8
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14101
  contributor:
    fullname: Yan
– volume: 240
  start-page: 109
  year: 2013
  ident: D1EE02898G/cit37
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.174
  contributor:
    fullname: He
– volume: 227
  start-page: 761
  year: 2013
  ident: D1EE02898G/cit2
  publication-title: Proc. Inst. Mech. Eng. D: J. Automob. Eng.
  doi: 10.1177/0954407013485567
  contributor:
    fullname: Budde-Meiwes
– volume: 3
  start-page: 220
  year: 1952
  ident: D1EE02898G/cit27
  publication-title: Prog. Met. Phys.
  doi: 10.1016/0502-8205(52)90009-9
  contributor:
    fullname: Burke
– volume: 5
  start-page: 860
  year: 2020
  ident: D1EE02898G/cit36
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00693-6
  contributor:
    fullname: Kim
SSID ssj0062079
Score 2.6620355
Snippet The development of high energy-density Ni-rich (Ni ≥ 90%) layered cathodes has remained difficult because of the rapid capacity fading that occurs during...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 6616
SubjectTerms Batteries
Cathodes
Cycles
Density
Electric vehicles
Energy consumption
Fading
Lithium-ion batteries
Particle size
Phase transitions
Rechargeable batteries
Ultrafines
Title Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries
URI https://www.proquest.com/docview/2608159100/abstract/
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVoe4FDRYGKQkGR4LZycRJnkhz7sd0VHyuEdkVvUZzYpaIk1ZIeyq_v2LHjVAUJuESRo0SR52U8E897Q8hbhIAIwwooAAfKayGowFWQZhnX3akAlNHu_LSA-Yq_P0vOPPfEsEs6cVD9-i2v5H-simNoV82S_QfLDg_FATxH--IRLYzHv7Lx6rJblwrjRHquOz1g7Li4oOjYvk0uyxvdhHOiVVnbuhf2Hrb7P15QbXRhpDVdEaH7O99zATUgRhw4x5z0MPhsa6xnsm3ospTee_Tb-CelnHxp_Q6_gd2qofOb62ogBy3KH99bWxN8JC0pzf6CiEJTzpGPvGaacJpA39TuQI7GUgZ3XC0fQyoaOU4ME2C0CAP0PPp7Dp7FWh-1DqXUW6TZuV_GhuJCf3GDbEVpnmBOvnX44Wj21S3REDEjwji8t9OtjfN3_u67kYpPPzbWrjeMiUGWj8m2TR6Cwx4JO-SBbJ6QRyNJyadkdg8TgcVEYDERWEwEiInAYSLoMREMmHhGlqfT5fGc2mYZtMIQsKMirhOecgW8UlmlJNSKlTEGX8CV0AJWmMjnEHGlSpUxFeaVDDGXZJLVWu8o3iWbTdvI5yRQcSXKpK4rMCxolaURiDoW-OlGvJRsj7xx81Jc9ZIohSlliPPiJJxOzezN9si-m7LCfjI_C0yeM4yfQ4YP2cVpHO73s_7iTxdekocee_tks1tfy1cYEHbitTXvLWUJX7c
link.rule.ids 315,786,790,27957,27958
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafine-grained+Ni-rich+layered+cathode+for+advanced+Li-ion+batteries&rft.jtitle=Energy+%26+environmental+science&rft.au=Park%2C+Geon-Tae&rft.au=Yoon%2C+Dae+Ro&rft.au=Kim%2C+Un-Hyuck&rft.au=Namkoong%2C+Been&rft.date=2021-12-09&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=14&rft.issue=12&rft.spage=6616&rft.epage=6626&rft_id=info:doi/10.1039%2Fd1ee02898g&rft.externalDocID=d1ee02898g
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon