A TORSION-FREE ABELIAN GROUP EXISTS WHOSE QUOTIENT GROUP MODULO THE SQUARE SUBGROUP IS NOT A NIL-GROUP

The first example of a torsion-free abelian group $(A,+,0)$ such that the quotient group of $A$ modulo the square subgroup is not a nil-group is indicated (for both associative and general rings). In particular, the answer to the question posed by Stratton and Webb [‘Abelian groups, nil modulo a sub...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Australian Mathematical Society Vol. 94; no. 3; pp. 449 - 456
Main Authors ANDRUSZKIEWICZ, R. R., WORONOWICZ, M.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The first example of a torsion-free abelian group $(A,+,0)$ such that the quotient group of $A$ modulo the square subgroup is not a nil-group is indicated (for both associative and general rings). In particular, the answer to the question posed by Stratton and Webb [‘Abelian groups, nil modulo a subgroup, need not have nil quotient group’, Publ. Math. Debrecen 27 (1980), 127–130] is given for torsion-free groups. A new method of constructing indecomposable nil-groups of any rank from $2$ to $2^{\aleph _{0}}$ is presented. Ring multiplications on $p$ -pure subgroups of the additive group of the ring of $p$ -adic integers are investigated using only elementary methods.
AbstractList The first example of a torsion-free abelian group $(A,+,0)$ such that the quotient group of $A$ modulo the square subgroup is not a nil-group is indicated (for both associative and general rings). In particular, the answer to the question posed by Stratton and Webb [‘Abelian groups, nil modulo a subgroup, need not have nil quotient group’, Publ. Math. Debrecen 27 (1980), 127–130] is given for torsion-free groups. A new method of constructing indecomposable nil-groups of any rank from $2$ to $2^{\aleph _{0}}$ is presented. Ring multiplications on $p$ -pure subgroups of the additive group of the ring of $p$ -adic integers are investigated using only elementary methods.
The first example of a torsion-free abelian group $(A,+,0)$ such that the quotient group of $A$ modulo the square subgroup is not a nil-group is indicated (for both associative and general rings). In particular, the answer to the question posed by Stratton and Webb [‘Abelian groups, nil modulo a subgroup, need not have nil quotient group’, Publ. Math. Debrecen 27 (1980), 127–130] is given for torsion-free groups. A new method of constructing indecomposable nil-groups of any rank from $2$ to $2^{\aleph _{0}}$ is presented. Ring multiplications on $p$ -pure subgroups of the additive group of the ring of $p$ -adic integers are investigated using only elementary methods.
Author WORONOWICZ, M.
ANDRUSZKIEWICZ, R. R.
Author_xml – sequence: 1
  givenname: R. R.
  surname: ANDRUSZKIEWICZ
  fullname: ANDRUSZKIEWICZ, R. R.
  email: randrusz@math.uwb.edu.pl
  organization: Institute of Mathematics, University of Białystok, 15-267 Białystok, K. Ciołkowskiego 1M, Poland email randrusz@math.uwb.edu.pl
– sequence: 2
  givenname: M.
  surname: WORONOWICZ
  fullname: WORONOWICZ, M.
  email: mworonowicz@math.uwb.edu.pl
  organization: Institute of Mathematics, University of Białystok, 15-267 Białystok, K. Ciołkowskiego 1M, Poland email mworonowicz@math.uwb.edu.pl
BookMark eNp1UMtOwkAUnRhMBPQD3E3iujqPTqddFhygSe1IH9FdM21nCEQotrDwb_wWv8xWSFwYV_fe87rJGYHBrt5pAG4xuscI84cEIWR7nHDs9BtlF2CIOWMWdigdgGEPWj1_BUZtu-kuxog7BCsfpjJOAhlZs1gI6E9EGPgRnMcye4biNUjSBL4sZCLgMpNpIKL0zD3JxyyUMF0ImCwzP-5GNjlRQQIjmUL_6zMKQusHuwaXRr21-uY8xyCbiXS6sEI5D6Z-aJUU84NVIKUd4pXIFLZLS-NW2pQKVdjw0mNGV4rzwsFUEV5pVBFCtM08m5TGKRQtGB2Du1Puvqnfj7o95Jv62Oy6lznhruN5DHHcqfBJVTZ12zba5PtmvVXNR45R3veZ_-mz89CzR22LZl2t9G_0_65vR41xew
CitedBy_id crossref_primary_10_1080_00927872_2022_2026370
crossref_primary_10_1007_s10013_018_00331_5
crossref_primary_10_1142_S0219498823502158
crossref_primary_10_1080_00927872_2023_2286338
crossref_primary_10_2989_16073606_2017_1391354
Cites_doi 10.1216/RMJ-2012-42-2-425
10.1007/s00009-010-0041-4
10.1017/S0004972714000641
10.1007/s10958-014-1750-1
10.1007/s10958-014-1749-7
10.1080/00927872.2015.1044107
10.4064/cm117-1-2
10.5486/PMD.1980.27.1-2.16
ContentType Journal Article
Copyright 2016 Australian Mathematical Publishing Association Inc.
Copyright_xml – notice: 2016 Australian Mathematical Publishing Association Inc.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0004972716000435
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Science Journals
Engineering Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
Engineering Collection
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
DocumentTitleAlternate R. R. Andruszkiewicz and M. Woronowicz
On the square subgroup of a torsion-free abelian group
EISSN 1755-1633
EndPage 456
ExternalDocumentID 10_1017_S0004972716000435
GroupedDBID --Z
-1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
23N
2WC
4.4
5GY
5VS
6J9
6TJ
6~7
74X
74Y
7~V
88I
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABROB
ABTAH
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFO
ACGFS
ACIMK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEGXH
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIAGR
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
ESX
GNUQQ
HCIFZ
HG-
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KAFGG
KC5
KCGVB
KFECR
KWQ
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OHT
OK1
P2P
PTHSS
PYCCK
RAMDC
RCA
ROL
RR0
S10
S6-
S6U
SAAAG
T9M
TN5
TWZ
UPT
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
ZCG
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
~V1
AAYXX
ABVZP
CITATION
CTKSN
3V.
7XB
8FE
8FG
8FK
L6V
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c317t-b0ae629c0fb483cf8defca0d1f7c95feda77b613a27de0d222e45942cf6ba3b53
IEDL.DBID BENPR
ISSN 0004-9727
IngestDate Thu Oct 10 16:10:19 EDT 2024
Thu Sep 26 19:13:18 EDT 2024
Wed Mar 13 05:47:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords abelian groups
nil-groups
primary 20K99
square subgroups
secondary 13A99
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-b0ae629c0fb483cf8defca0d1f7c95feda77b613a27de0d222e45942cf6ba3b53
PQID 2786995071
PQPubID 5514771
PageCount 8
ParticipantIDs proquest_journals_2786995071
crossref_primary_10_1017_S0004972716000435
cambridge_journals_10_1017_S0004972716000435
PublicationCentury 2000
PublicationDate 20161200
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 20161200
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Bulletin of the Australian Mathematical Society
PublicationTitleAlternate Bull. Aust. Math. Soc
PublicationYear 2016
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Feigelstock (S0004972716000435_r8) 1983
Stratton (S0004972716000435_r16) 1980; 27
Fuchs (S0004972716000435_r11) 1970
Najafizadeh (S0004972716000435_r15) 2015; 27
Fuchs (S0004972716000435_r10) 1966
Kompantseva (S0004972716000435_r14) 2013; 18
Aghdam (S0004972716000435_r1) 1987; 51
Kompantseva (S0004972716000435_r13) 2012; 17
Feigelstock (S0004972716000435_r9) 2007; 33
S0004972716000435_r18
S0004972716000435_r3
S0004972716000435_r17
S0004972716000435_r2
S0004972716000435_r6
S0004972716000435_r5
Borevich (S0004972716000435_r7) 1966
Fuchs (S0004972716000435_r12) 1973
S0004972716000435_r4
References_xml – volume: 17
  start-page: 63
  year: 2012
  ident: S0004972716000435_r13
  article-title: Absolute nil-ideals of Abelian groups
  publication-title: Fundam. Prikl. Mat.
  contributor:
    fullname: Kompantseva
– ident: S0004972716000435_r4
  doi: 10.1216/RMJ-2012-42-2-425
– ident: S0004972716000435_r3
  doi: 10.1007/s00009-010-0041-4
– volume: 51
  start-page: 343
  year: 1987
  ident: S0004972716000435_r1
  article-title: Square subgroup of an Abelian group
  publication-title: Acta. Sci. Math.
  contributor:
    fullname: Aghdam
– ident: S0004972716000435_r5
  doi: 10.1017/S0004972714000641
– volume: 33
  start-page: 641
  year: 2007
  ident: S0004972716000435_r9
  article-title: Additive groups self-injective rings
  publication-title: Soochow J. Math.
  contributor:
    fullname: Feigelstock
– volume-title: Infinite Abelian Groups, Vol. 2
  year: 1973
  ident: S0004972716000435_r12
  contributor:
    fullname: Fuchs
– volume-title: Abelian Groups
  year: 1966
  ident: S0004972716000435_r10
  contributor:
    fullname: Fuchs
– ident: S0004972716000435_r18
  doi: 10.1007/s10958-014-1750-1
– volume-title: Infinite Abelian Groups, Vol. 1
  year: 1970
  ident: S0004972716000435_r11
  contributor:
    fullname: Fuchs
– volume-title: Number Theory
  year: 1966
  ident: S0004972716000435_r7
  contributor:
    fullname: Borevich
– ident: S0004972716000435_r17
  doi: 10.1007/s10958-014-1749-7
– volume: 18
  start-page: 53
  year: 2013
  ident: S0004972716000435_r14
  article-title: Abelian dqt-groups and rings on them
  publication-title: Fundam. Prikl. Mat.
  contributor:
    fullname: Kompantseva
– ident: S0004972716000435_r6
  doi: 10.1080/00927872.2015.1044107
– volume-title: Additive groups of rings, Vol. 1
  year: 1983
  ident: S0004972716000435_r8
  contributor:
    fullname: Feigelstock
– ident: S0004972716000435_r2
  doi: 10.4064/cm117-1-2
– volume: 27
  start-page: 127
  year: 1980
  ident: S0004972716000435_r16
  article-title: Abelian groups, nil modulo a subgroup, need not have nil quotient group
  publication-title: Publ. Math. Debrecen
  doi: 10.5486/PMD.1980.27.1-2.16
  contributor:
    fullname: Stratton
– volume: 27
  start-page: 1
  year: 2015
  ident: S0004972716000435_r15
  article-title: On the square submodule of a mixed module
  publication-title: Gen. Math. Notes
  contributor:
    fullname: Najafizadeh
SSID ssj0045528
Score 2.1434324
Snippet The first example of a torsion-free abelian group $(A,+,0)$ such that the quotient group of $A$ modulo the square subgroup is not a nil-group is indicated (for...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Publisher
StartPage 449
SubjectTerms Group theory
Subgroups
Title A TORSION-FREE ABELIAN GROUP EXISTS WHOSE QUOTIENT GROUP MODULO THE SQUARE SUBGROUP IS NOT A NIL-GROUP
URI https://www.cambridge.org/core/product/identifier/S0004972716000435/type/journal_article
https://www.proquest.com/docview/2786995071
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZoWWBAPEV5yQMTIiJ1_Ign1IJLi9oEmkR0qxzHHttCy__HebVUSEyR7qIMZ_u773yXOwBupbI-RtvzrfKsO04xc7hHqeNJiSnWnHnFX--jgPYT_Dohk-rCbVmVVdaYWAB1Nlf5HfkDYj7lPGcvj4tPJ58alWdXqxEaDbCLbKSAmmC3K4K3cY3FmBBUYrGLHW5ddZ3XLJpG5-zYytq0yIeR390Vtr3UNkgXnqd3CA4qygg75RofgR09Owb7o3W_1eUJMB0Yh-MCF3tjIWCnK2yMHsCiqB6KySCKI_jRDyMB35MwHoggrnSj8DkZhjDuCxjl7NY-km6pGkQwCGPYgcFg6BSiU5D0RPzUd6oJCo6yvGDlpK7UFHHlmhT7njJ-po2SbtY2THFidCYZS61Dl4hl2s0sV9CYcIyUoan0UuKdgeZsPtPnALopp5gaRpSbYRsF-QRJozi1YqRdZFrgfm29aXUOltOyhoxN_xi7Be5qA08XZV-N_16-qpdg8-nNhrj4X30J9izLoWUNyhVorr6-9bVlEqv0BjT83stNtWl-ACSpuxs
link.rule.ids 315,783,787,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZ4DMCAeIry9MCEiAiJH_GECqQk0CaiSUS3yHHssS20_H8cJ2mpkJgi3VkZzvZ3n33nOwCuudA-Rur9LaqoOyoQtZhLiOVyjgiSjLrm1fsgIkGGXkd41Fy4zZq0yhYTDVCXE1Hdkd851COMVezlYfppVV2jquhq00JjHWwiVzua6qV476VFYoSxUyOxjSymHXUb1TQloyturGX3xETD8O_aCqs-ahWijd_p7YHdhjDCbj3D-2BNjg_AzmBRbXV2CFQXpvHQoGJv6Puw--jrE3oETUo99EdhkibwI4gTH75ncRr6UdroBvFz1o9hGvgwqbit_mSPtSpMYBSnsAujsG8Z0RHIen76FFhN_wRLaFYwtwqbS-IwYasCea5QXimV4HZ5r6hgWMmSU1pod84dWkq71ExBIsyQIxQpuFtg9xhsjCdjeQKgXTCCiKJY2CXSZyAPO1wJRrTYkbajOuB2Yb282QWzvM4go_kfY3fATWvgfFpX1fhv8Hk7BctfL5fD6f_qK7AVpIN-3g-jtzOwrfkOqbNRzsHG_OtbXmhOMS8uzcL5AWJ8u8A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4QwEG50TYwejM_4tgdPRrIs9EFPZnXBRXdBF4h7I6W0x3V11_9vKeAjJp5IZgiH6Ty-Ml-nAFxyoWuM1PEtqq47KhC1mEuI5XKOCJKMuubU-zgiwww9TPG04T8tGlplmxNNoi5fRfWPvOtQjzBWoZeuamgRT4PgZv5mVTdIVZ3W5jqNVbCmqyKtgtQL7tusjDB26qxsI4vpot12OM346Aona1mPmM4Y_jln4Xe9-p2uTQ0KtsFWAx5hv17tHbAiZ7tgc_w1eXWxB1QfpvHEZMhg4vuwf-vr3XoEDb0e-tMwSRP4MowTHz5ncRr6UdroxvEgG8UwHfowqXCufmS3tSpMYBSnsA-jcGQZ0T7IAj-9G1rNXQqW0AhhaRU2l8RhwlYF8lyhvFIqwe2yp6hgWMmSU1ro0s4dWkq71KhBIsyQIxQpuFtg9wB0Zq8zeQigXTCCiKJY2CXS-yEPO1wJRrTYkbajjsD1l_XyJiIWec0mo_kfYx-Bq9bA-byesPHfy6ftEnx_-ts1jv9XX4B17TP5KIweT8CGhj6kJqacgs7y_UOeaXixLM6N33wCufC_9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+TORSION-FREE+ABELIAN+GROUP+EXISTS+WHOSE+QUOTIENT+GROUP+MODULO+THE+SQUARE+SUBGROUP+IS+NOT+A%C2%A0NIL-GROUP&rft.jtitle=Bulletin+of+the+Australian+Mathematical+Society&rft.au=ANDRUSZKIEWICZ%2C+R.+R.&rft.au=WORONOWICZ%2C+M.&rft.date=2016-12-01&rft.pub=Cambridge+University+Press&rft.issn=0004-9727&rft.eissn=1755-1633&rft.volume=94&rft.issue=3&rft.spage=449&rft.epage=456&rft_id=info:doi/10.1017%2FS0004972716000435&rft.externalDocID=10_1017_S0004972716000435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-9727&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-9727&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-9727&client=summon