Rethinking nitrate reduction: redirecting electrochemical efforts from ammonia to nitrogen for realistic environmental impacts
The excessive use of nitrate in agriculture and industry poses a significant threat to human health and ecosystems. To effectively manage the nitrogen cycle (N-cycle) in nature and to deal with nitrate pollution in wastewater, various electrochemical approaches have been developed to convert nitrate...
Saved in:
Published in | Energy & environmental science Vol. 17; no. 8; pp. 2682 - 2685 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
23.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The excessive use of nitrate in agriculture and industry poses a significant threat to human health and ecosystems. To effectively manage the nitrogen cycle (N-cycle) in nature and to deal with nitrate pollution in wastewater, various electrochemical approaches have been developed to convert nitrate into N-products. Recent research works have focused their efforts on electrochemical nitrate reduction (eNO
3
R) to ammonia (NH
3
) as "an alternative approach to the Haber-Bosch process" while reducing the environmental impacts. However, when considering challenges due to the low concentration of nitrate in wastes and difficulties in extracting as-synthesized NH
3
and comparing this scale with the scale of current NH
3
and nitrate production, such an eNO
3
R to NH
3
approach at the largest possible scale, even without examining its economic viability and overall environmental implications, will have an insignificant impact. Therefore, we recommend that rational implementation approaches for nitrate treatment should involve converting nitrate ions at low concentrations into nitrogen (N
2
) gas or recycling them at high concentrations to produce other nitrate chemicals or fertilizers.
Electrochemical NO
3
−
reduction to NH
3
is insignificant for practical applications. Instead, NO
3
−
contaminants should be converted into N
2
, recycled into NO
3
−
chemicals, or coupled with CO
2
reduction to produce value-added fertilizers if applicable. |
---|---|
AbstractList | The excessive use of nitrate in agriculture and industry poses a significant threat to human health and ecosystems. To effectively manage the nitrogen cycle (N-cycle) in nature and to deal with nitrate pollution in wastewater, various electrochemical approaches have been developed to convert nitrate into N-products. Recent research works have focused their efforts on electrochemical nitrate reduction (eNO3R) to ammonia (NH3) as “an alternative approach to the Haber–Bosch process” while reducing the environmental impacts. However, when considering challenges due to the low concentration of nitrate in wastes and difficulties in extracting as-synthesized NH3 and comparing this scale with the scale of current NH3 and nitrate production, such an eNO3R to NH3 approach at the largest possible scale, even without examining its economic viability and overall environmental implications, will have an insignificant impact. Therefore, we recommend that rational implementation approaches for nitrate treatment should involve converting nitrate ions at low concentrations into nitrogen (N2) gas or recycling them at high concentrations to produce other nitrate chemicals or fertilizers. The excessive use of nitrate in agriculture and industry poses a significant threat to human health and ecosystems. To effectively manage the nitrogen cycle (N-cycle) in nature and to deal with nitrate pollution in wastewater, various electrochemical approaches have been developed to convert nitrate into N-products. Recent research works have focused their efforts on electrochemical nitrate reduction (eNO 3 R) to ammonia (NH 3 ) as "an alternative approach to the Haber-Bosch process" while reducing the environmental impacts. However, when considering challenges due to the low concentration of nitrate in wastes and difficulties in extracting as-synthesized NH 3 and comparing this scale with the scale of current NH 3 and nitrate production, such an eNO 3 R to NH 3 approach at the largest possible scale, even without examining its economic viability and overall environmental implications, will have an insignificant impact. Therefore, we recommend that rational implementation approaches for nitrate treatment should involve converting nitrate ions at low concentrations into nitrogen (N 2 ) gas or recycling them at high concentrations to produce other nitrate chemicals or fertilizers. Electrochemical NO 3 − reduction to NH 3 is insignificant for practical applications. Instead, NO 3 − contaminants should be converted into N 2 , recycled into NO 3 − chemicals, or coupled with CO 2 reduction to produce value-added fertilizers if applicable. The excessive use of nitrate in agriculture and industry poses a significant threat to human health and ecosystems. To effectively manage the nitrogen cycle (N-cycle) in nature and to deal with nitrate pollution in wastewater, various electrochemical approaches have been developed to convert nitrate into N-products. Recent research works have focused their efforts on electrochemical nitrate reduction (eNO 3 R) to ammonia (NH 3 ) as “an alternative approach to the Haber–Bosch process” while reducing the environmental impacts. However, when considering challenges due to the low concentration of nitrate in wastes and difficulties in extracting as-synthesized NH 3 and comparing this scale with the scale of current NH 3 and nitrate production, such an eNO 3 R to NH 3 approach at the largest possible scale, even without examining its economic viability and overall environmental implications, will have an insignificant impact. Therefore, we recommend that rational implementation approaches for nitrate treatment should involve converting nitrate ions at low concentrations into nitrogen (N 2 ) gas or recycling them at high concentrations to produce other nitrate chemicals or fertilizers. |
Author | Huang, Hao Huang, Kuo-Wei Peramaiah, Karthik |
AuthorAffiliation | KAUST Catalysis Center and Division of Physical Science and Engineering Agency for Science, Technology and Research, Institute of Sustainability for Chemicals, Energy and Environment King Abdullah University of Science and Technology |
AuthorAffiliation_xml | – sequence: 0 name: KAUST Catalysis Center and Division of Physical Science and Engineering – sequence: 0 name: Agency for Science, Technology and Research, Institute of Sustainability for Chemicals, Energy and Environment – sequence: 0 name: King Abdullah University of Science and Technology |
Author_xml | – sequence: 1 givenname: Hao surname: Huang fullname: Huang, Hao – sequence: 2 givenname: Karthik surname: Peramaiah fullname: Peramaiah, Karthik – sequence: 3 givenname: Kuo-Wei surname: Huang fullname: Huang, Kuo-Wei |
BookMark | eNptkUtLAzEUhYMo2FY37oWAO6Gax0ymcVdqfUBBEF0PmcydNnUmqUkquPG3m7Y-QFzdc7nnnMCXPtq3zgJCJ5RcUMLlZZ0BEMIYU3uoR4s8G-YFEfvfWkh2iPohLAkRjBSyhz4eIS6MfTF2jq2JXkXAHuq1jsbZq400HtKSztAm4Z1eQGe0ajE0jfMx4Ma7Dquuc9YoHN22xs3B4nROBao1IRqNwb4Z72wHNqaw6VZKx3CEDhrVBjj-mgP0fDN9mtwNZw-395PxbKg5LeJQ5QXPKSFVw6taU8nqkciyJs9rWQkmRlxxXlMKstGiorXKOc8KELKSjErICj5AZ7velXevawixXLq1t-nJkpOMC8ETpuQiO5f2LgQPTalNVBsSCYxpS0rKDeXyOptOt5THKXL-J7LyplP-_X_z6c7sg_7x_X4Z_wRPr4tz |
CitedBy_id | crossref_primary_10_1002_adfm_202420282 crossref_primary_10_1002_ange_202411909 crossref_primary_10_1039_D4SC05936K crossref_primary_10_1016_j_electacta_2024_145429 crossref_primary_10_1021_jacs_4c14483 crossref_primary_10_1002_adfm_202413070 crossref_primary_10_1016_j_rser_2024_114537 crossref_primary_10_1021_acs_est_4c09975 crossref_primary_10_1021_acsestwater_4c00897 crossref_primary_10_1002_anie_202410517 crossref_primary_10_1002_adfm_202418492 crossref_primary_10_1002_smll_202411317 crossref_primary_10_1039_D4EY00245H crossref_primary_10_1002_ange_202410517 crossref_primary_10_1002_anie_202411909 crossref_primary_10_1016_j_jre_2025_02_009 crossref_primary_10_1038_s41557_024_01606_w crossref_primary_10_1016_j_jcis_2024_06_213 crossref_primary_10_1002_adma_202405578 crossref_primary_10_1016_j_apcatb_2024_124991 crossref_primary_10_1016_j_cej_2024_158819 crossref_primary_10_1016_j_jcis_2025_137318 crossref_primary_10_1039_D4TA02110J |
Cites_doi | 10.1021/acsenergylett.1c02189 10.1002/cssc.202300505 10.1002/anie.202217071 10.1038/s41467-023-37273-7 10.1016/j.biortech.2016.01.055 10.1038/s41893-021-00741-3 10.1016/j.apcatb.2018.05.041 10.1021/acscatal.3c01315 10.1002/anie.201915992 10.2134/jeq2004.1822 10.3133/mcs2023 10.1021/acs.iecr.8b01483 10.1021/acs.nanolett.9b01925 10.1038/s41929-023-01020-4 10.1039/C9EE02873K 10.1039/D1EE01731D 10.1002/adma.202304695 10.1016/j.scitotenv.2021.152233 10.1002/anie.202218717 10.1016/j.joule.2020.12.025 10.1126/science.aar6611 10.1021/acscatal.2c04841 10.1016/j.cej.2021.128958 10.1002/adma.201805173 10.1002/er.6232 10.1016/j.watres.2017.04.069 10.1016/j.cej.2023.144488 10.1039/c2ee23062c 10.1038/s41893-023-01252-z 10.1016/j.checat.2023.100786 10.1002/anie.202310383 10.1002/aenm.202203201 10.1016/j.jhazmat.2009.06.005 10.1016/j.desal.2020.114726 10.1002/aenm.202202247 10.1021/acsaem.3c00709 10.1039/D2EE02647C 10.1016/j.cej.2019.122065 10.1016/j.cej.2023.146176 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d4ee00222a |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 2685 |
ExternalDocumentID | 10_1039_D4EE00222A d4ee00222a |
GroupedDBID | -JG 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I M4U N9A O-G O9- P2P RAOCF RCNCU RPMJG RRC RSCEA RVUXY SKA SLH TOV UCJ AAYXX AFRZK AKMSF CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c317t-a5735100bf3bdc192d8644f55d9b62683a33d11e9fc6b1da53347e69b9219e473 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 12:04:10 EDT 2025 Thu Apr 24 23:01:53 EDT 2025 Tue Jul 01 01:45:58 EDT 2025 Tue Dec 17 20:58:10 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c317t-a5735100bf3bdc192d8644f55d9b62683a33d11e9fc6b1da53347e69b9219e473 |
Notes | https://doi.org/10.1039/d4ee00222a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1900-2658 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2024/ee/d4ee00222a |
PQID | 3043663706 |
PQPubID | 2047494 |
PageCount | 4 |
ParticipantIDs | crossref_primary_10_1039_D4EE00222A rsc_primary_d4ee00222a crossref_citationtrail_10_1039_D4EE00222A proquest_journals_3043663706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-23 |
PublicationDateYYYYMMDD | 2024-04-23 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | 1072 Hu (D4EE00222A/cit14/1) 2021; 14 Shukla (D4EE00222A/cit17/1) 2018 Chen (D4EE00222A/cit1/1) 2018; 360 Su (D4EE00222A/cit20/1) 2017; 120 Duca (D4EE00222A/cit31/1) 2012; 5 Su (D4EE00222A/cit42/1) 2019; 19 Wang (D4EE00222A/cit48/1) 2024 Mi (D4EE00222A/cit23/1) 2022; 12 Lv (D4EE00222A/cit47/1) 2021; 4 Grande (D4EE00222A/cit12/1) 2018; 57 Lv (D4EE00222A/cit26/1) 2023; 16 Jiang (D4EE00222A/cit37/1) 2023; 62 Nørskov (D4EE00222A/cit7/1) 2016 Groves (D4EE00222A/cit13/1) 2020 Garcia-Segura (D4EE00222A/cit35/1) 2018; 236 Zhang (D4EE00222A/cit38/1) 2023; 62 Erdemir (D4EE00222A/cit9/1) 2020; 45 Zhao (D4EE00222A/cit41/1) 2021; 415 Schnitkey (D4EE00222A/cit6/1) 2018 Li (D4EE00222A/cit28/1) 2023 Luo (D4EE00222A/cit46/1) 2023; 6 Liu (D4EE00222A/cit32/1) 2023; 475 Chauhan (D4EE00222A/cit21/1) 2020; 386 Katsounaros (D4EE00222A/cit22/1) 2009; 171 Mohammadi (D4EE00222A/cit45/1) 2021; 498 (D4EE00222A/cit4/1) 2021 Chen (D4EE00222A/cit15/1) 2022; 13 Luo (D4EE00222A/cit40/1) 2023 (D4EE00222A/cit11/1) 2023 Guillard (D4EE00222A/cit30/1) 2004; 33 (D4EE00222A/cit34/1) 2022; 5 (D4EE00222A/cit5/1) 2023 (D4EE00222A/cit10/1) 2021 Abascal (D4EE00222A/cit19/1) 2022; 810 Wu (D4EE00222A/cit36/1) 2023; 3 Xu (D4EE00222A/cit25/1) 2023; 14 Chatterjee (D4EE00222A/cit3/1) 2021; 6 Kim (D4EE00222A/cit44/1) 2016; 205 Li (D4EE00222A/cit24/1) 2023; 6 Lim (D4EE00222A/cit39/1) 2022; 13 Jiao (D4EE00222A/cit8/1) 2019; 31 Smith (D4EE00222A/cit2/1) 2020; 13 Zhang (D4EE00222A/cit43/1) 2023; 62 van Langevelde (D4EE00222A/cit16/1) 2021; 5 (D4EE00222A/cit18/1) 2022 Zhou (D4EE00222A/cit27/1) 2023; 13 Li (D4EE00222A/cit29/1) 2023; 471 Wang (D4EE00222A/cit33/1) 2020; 59 |
References_xml | – issn: 2022 issue: 5 year: 1072 end-page: 1071 publication-title: Nat. Catal. – issn: 2022 publication-title: Guidelines for drinking-water quality: incorporating the first and second addenda – issn: 2016 publication-title: Sustainable Ammonia Synthesis doi: Nørskov Chen – issn: 2018 end-page: p 1 publication-title: Handbook of Environmental Materials Management doi: Shukla Saxena – issn: 2021 – issn: 2020 publication-title: "Nitric Acid," in Kirk-Othmer Encyclopedia of Chemical Technology doi: Groves – issn: 2023 end-page: 210 – issn: 2023 publication-title: Nitric Acid Market Analysis – issn: 2018 doi: Schnitkey – issn: 2021 publication-title: Ammonia Technology Roadmap – volume: 6 start-page: 4390 year: 2021 ident: D4EE00222A/cit3/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c02189 – volume-title: Guidelines for drinking-water quality: incorporating the first and second addenda year: 2022 ident: D4EE00222A/cit18/1 – year: 2021 ident: D4EE00222A/cit4/1 – start-page: e202300505 year: 2023 ident: D4EE00222A/cit28/1 publication-title: ChemSusChem doi: 10.1002/cssc.202300505 – volume: 5 start-page: 1071 volume-title: Nat. Catal. year: 2022 ident: D4EE00222A/cit34/1 – volume: 62 start-page: e202217071 year: 2023 ident: D4EE00222A/cit38/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202217071 – volume: 14 start-page: 1619 year: 2023 ident: D4EE00222A/cit25/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37273-7 – volume: 205 start-page: 269 year: 2016 ident: D4EE00222A/cit44/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.01.055 – year: 2018 ident: D4EE00222A/cit6/1 – volume: 4 start-page: 868 year: 2021 ident: D4EE00222A/cit47/1 publication-title: Nat. Sustainability doi: 10.1038/s41893-021-00741-3 – volume: 236 start-page: 546 year: 2018 ident: D4EE00222A/cit35/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.05.041 – volume: 13 start-page: 7529 year: 2023 ident: D4EE00222A/cit27/1 publication-title: ACS Catal. doi: 10.1021/acscatal.3c01315 – volume-title: “Nitric Acid,” in Kirk-Othmer Encyclopedia of Chemical Technology year: 2020 ident: D4EE00222A/cit13/1 – volume: 59 start-page: 5350 year: 2020 ident: D4EE00222A/cit33/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201915992 – volume: 33 start-page: 1822 year: 2004 ident: D4EE00222A/cit30/1 publication-title: J. Environ. Qual. doi: 10.2134/jeq2004.1822 – start-page: 210 year: 2023 ident: D4EE00222A/cit5/1 doi: 10.3133/mcs2023 – volume: 57 start-page: 10180 year: 2018 ident: D4EE00222A/cit12/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b01483 – volume-title: Handbook of Environmental Materials Management year: 2018 ident: D4EE00222A/cit17/1 – volume: 19 start-page: 5423 year: 2019 ident: D4EE00222A/cit42/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01925 – volume: 6 start-page: 939 year: 2023 ident: D4EE00222A/cit46/1 publication-title: Nat. Catal. doi: 10.1038/s41929-023-01020-4 – volume: 13 start-page: 331 year: 2020 ident: D4EE00222A/cit2/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02873K – volume: 14 start-page: 4989 year: 2021 ident: D4EE00222A/cit14/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01731D – start-page: e2304695 year: 2023 ident: D4EE00222A/cit40/1 publication-title: Adv. Mater. doi: 10.1002/adma.202304695 – volume: 810 start-page: 152233 year: 2022 ident: D4EE00222A/cit19/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.152233 – volume: 62 start-page: e202218717 year: 2023 ident: D4EE00222A/cit37/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202218717 – volume-title: Nitric Acid Market Analysis year: 2023 ident: D4EE00222A/cit11/1 – volume: 5 start-page: 290 year: 2021 ident: D4EE00222A/cit16/1 publication-title: Joule doi: 10.1016/j.joule.2020.12.025 – volume: 360 start-page: eaar6611 year: 2018 ident: D4EE00222A/cit1/1 publication-title: Science doi: 10.1126/science.aar6611 – volume: 13 start-page: 87 year: 2022 ident: D4EE00222A/cit39/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c04841 – volume: 415 start-page: 128958 year: 2021 ident: D4EE00222A/cit41/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128958 – volume-title: Sustainable Ammonia Synthesis year: 2016 ident: D4EE00222A/cit7/1 – volume: 31 start-page: e1805173 year: 2019 ident: D4EE00222A/cit8/1 publication-title: Adv. Mater. doi: 10.1002/adma.201805173 – volume: 45 start-page: 4827 year: 2020 ident: D4EE00222A/cit9/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.6232 – volume: 120 start-page: 1 year: 2017 ident: D4EE00222A/cit20/1 publication-title: Water Res. doi: 10.1016/j.watres.2017.04.069 – volume: 471 start-page: 144488 year: 2023 ident: D4EE00222A/cit29/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144488 – volume: 5 start-page: 9726 year: 2012 ident: D4EE00222A/cit31/1 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23062c – year: 2024 ident: D4EE00222A/cit48/1 publication-title: Nat. Sustainability doi: 10.1038/s41893-023-01252-z – volume: 3 start-page: 100786 year: 2023 ident: D4EE00222A/cit36/1 publication-title: Chem. Catal. doi: 10.1016/j.checat.2023.100786 – volume: 62 start-page: e202310383 year: 2023 ident: D4EE00222A/cit43/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202310383 – volume: 13 start-page: 2203201 year: 2022 ident: D4EE00222A/cit15/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203201 – volume: 171 start-page: 323 year: 2009 ident: D4EE00222A/cit22/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.06.005 – volume: 498 start-page: 114726 year: 2021 ident: D4EE00222A/cit45/1 publication-title: Desalination doi: 10.1016/j.desal.2020.114726 – volume-title: Ammonia Technology Roadmap year: 2021 ident: D4EE00222A/cit10/1 – volume: 12 start-page: 2202247 year: 2022 ident: D4EE00222A/cit23/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202247 – volume: 6 start-page: 5067 year: 2023 ident: D4EE00222A/cit24/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.3c00709 – volume: 16 start-page: 201 year: 2023 ident: D4EE00222A/cit26/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE02647C – volume: 386 start-page: 122065 year: 2020 ident: D4EE00222A/cit21/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122065 – volume: 475 start-page: 146176 year: 2023 ident: D4EE00222A/cit32/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.146176 |
SSID | ssj0062079 |
Score | 2.593314 |
Snippet | The excessive use of nitrate in agriculture and industry poses a significant threat to human health and ecosystems. To effectively manage the nitrogen cycle... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2682 |
SubjectTerms | Ammonia Electrochemistry Environmental impact Haber Bosch process Impact analysis Low concentrations Nitrate reduction Nitrates Nitrogen Nitrogen cycle Reduction Strategic management Wastewater pollution |
Title | Rethinking nitrate reduction: redirecting electrochemical efforts from ammonia to nitrogen for realistic environmental impacts |
URI | https://www.proquest.com/docview/3043663706 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLe67QIHxGuibCBLcEGTRxLHTsytQEfFxpBQq_UWOYmjTdqaqUsvHPhL-GP57NiJgyoEXKLGtZ3H9_P3cL4HQq9jMLe0JkskiBMSp1FIctB0SZikIIw5rQqpN_S_nPPZIv68ZMvR6KfntbRp8uPi-9a4kv-hKrQBXXWU7D9QtpsUGuA30BeOQGE4_hWNv6nmsq19cAQrUyd9OFrrVKzOYQNOWo4GHWy9m8IlCFBVZT4WmPgSqe_5SmpFVE9UwxWN_yFolNcmk7MfEKfTdJjYyrvBtn4bRKiRNOxrZWyPH7tDPZN1z5fX8kZeyUsbngZP1QUQnW5qcqHa2tp6qL9NERnvljaS2Po36c0Q54lqPE1sPTuP-SYsJoy3tfGOldeWBHzAsRMPmanPfnkaeaIcTtlWMRFQnWW1jJUywcCeMHQOAOdfs5PF2Vk2ny7nO2gvAiMEuOje5PT9pwsn6XkUmFyO3X279LdUvO3nHio8vRWzs3YlZowqM3-IHlgbBE9aQD1CI7V6jO57mSmfoB89tLCFFu6g9Q57wMK_AQtbYGENLGyBhZsaO2Bh-Bt3wMIDsGALrKdocTKdf5gRW6qDFKCANkSyhAJ3D_KK5mUBVkOZgqJdMVaKHEzmlEpKyzBUoip4HpZSB4AniotcgMRUcUL30e6qXqlnCMcVFZIrxqpUxkIxGBtwSSUoplElymiM3rj3mRU2j70up3KdGX8KKrKP8XRq3v1kjF51fW_b7C1bex06smR2dd9lVNdm4BSQN0b7QKpufE_Z538ed4Du9QvhEO026416ARpsk7-0QPoFtJ6i8Q |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rethinking+nitrate+reduction%3A+redirecting+electrochemical+efforts+from+ammonia+to+nitrogen+for+realistic+environmental+impacts&rft.jtitle=Energy+%26+environmental+science&rft.au=Huang%2C+Hao&rft.au=Peramaiah%2C+Karthik&rft.au=Kuo-Wei%2C+Huang&rft.date=2024-04-23&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=17&rft.issue=8&rft.spage=2682&rft.epage=2685&rft_id=info:doi/10.1039%2Fd4ee00222a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |