Rethinking nitrate reduction: redirecting electrochemical efforts from ammonia to nitrogen for realistic environmental impacts

The excessive use of nitrate in agriculture and industry poses a significant threat to human health and ecosystems. To effectively manage the nitrogen cycle (N-cycle) in nature and to deal with nitrate pollution in wastewater, various electrochemical approaches have been developed to convert nitrate...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 17; no. 8; pp. 2682 - 2685
Main Authors Huang, Hao, Peramaiah, Karthik, Huang, Kuo-Wei
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 23.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The excessive use of nitrate in agriculture and industry poses a significant threat to human health and ecosystems. To effectively manage the nitrogen cycle (N-cycle) in nature and to deal with nitrate pollution in wastewater, various electrochemical approaches have been developed to convert nitrate into N-products. Recent research works have focused their efforts on electrochemical nitrate reduction (eNO 3 R) to ammonia (NH 3 ) as "an alternative approach to the Haber-Bosch process" while reducing the environmental impacts. However, when considering challenges due to the low concentration of nitrate in wastes and difficulties in extracting as-synthesized NH 3 and comparing this scale with the scale of current NH 3 and nitrate production, such an eNO 3 R to NH 3 approach at the largest possible scale, even without examining its economic viability and overall environmental implications, will have an insignificant impact. Therefore, we recommend that rational implementation approaches for nitrate treatment should involve converting nitrate ions at low concentrations into nitrogen (N 2 ) gas or recycling them at high concentrations to produce other nitrate chemicals or fertilizers. Electrochemical NO 3 − reduction to NH 3 is insignificant for practical applications. Instead, NO 3 − contaminants should be converted into N 2 , recycled into NO 3 − chemicals, or coupled with CO 2 reduction to produce value-added fertilizers if applicable.
AbstractList The excessive use of nitrate in agriculture and industry poses a significant threat to human health and ecosystems. To effectively manage the nitrogen cycle (N-cycle) in nature and to deal with nitrate pollution in wastewater, various electrochemical approaches have been developed to convert nitrate into N-products. Recent research works have focused their efforts on electrochemical nitrate reduction (eNO3R) to ammonia (NH3) as “an alternative approach to the Haber–Bosch process” while reducing the environmental impacts. However, when considering challenges due to the low concentration of nitrate in wastes and difficulties in extracting as-synthesized NH3 and comparing this scale with the scale of current NH3 and nitrate production, such an eNO3R to NH3 approach at the largest possible scale, even without examining its economic viability and overall environmental implications, will have an insignificant impact. Therefore, we recommend that rational implementation approaches for nitrate treatment should involve converting nitrate ions at low concentrations into nitrogen (N2) gas or recycling them at high concentrations to produce other nitrate chemicals or fertilizers.
The excessive use of nitrate in agriculture and industry poses a significant threat to human health and ecosystems. To effectively manage the nitrogen cycle (N-cycle) in nature and to deal with nitrate pollution in wastewater, various electrochemical approaches have been developed to convert nitrate into N-products. Recent research works have focused their efforts on electrochemical nitrate reduction (eNO 3 R) to ammonia (NH 3 ) as "an alternative approach to the Haber-Bosch process" while reducing the environmental impacts. However, when considering challenges due to the low concentration of nitrate in wastes and difficulties in extracting as-synthesized NH 3 and comparing this scale with the scale of current NH 3 and nitrate production, such an eNO 3 R to NH 3 approach at the largest possible scale, even without examining its economic viability and overall environmental implications, will have an insignificant impact. Therefore, we recommend that rational implementation approaches for nitrate treatment should involve converting nitrate ions at low concentrations into nitrogen (N 2 ) gas or recycling them at high concentrations to produce other nitrate chemicals or fertilizers. Electrochemical NO 3 − reduction to NH 3 is insignificant for practical applications. Instead, NO 3 − contaminants should be converted into N 2 , recycled into NO 3 − chemicals, or coupled with CO 2 reduction to produce value-added fertilizers if applicable.
The excessive use of nitrate in agriculture and industry poses a significant threat to human health and ecosystems. To effectively manage the nitrogen cycle (N-cycle) in nature and to deal with nitrate pollution in wastewater, various electrochemical approaches have been developed to convert nitrate into N-products. Recent research works have focused their efforts on electrochemical nitrate reduction (eNO 3 R) to ammonia (NH 3 ) as “an alternative approach to the Haber–Bosch process” while reducing the environmental impacts. However, when considering challenges due to the low concentration of nitrate in wastes and difficulties in extracting as-synthesized NH 3 and comparing this scale with the scale of current NH 3 and nitrate production, such an eNO 3 R to NH 3 approach at the largest possible scale, even without examining its economic viability and overall environmental implications, will have an insignificant impact. Therefore, we recommend that rational implementation approaches for nitrate treatment should involve converting nitrate ions at low concentrations into nitrogen (N 2 ) gas or recycling them at high concentrations to produce other nitrate chemicals or fertilizers.
Author Huang, Hao
Huang, Kuo-Wei
Peramaiah, Karthik
AuthorAffiliation KAUST Catalysis Center and Division of Physical Science and Engineering
Agency for Science, Technology and Research, Institute of Sustainability for Chemicals, Energy and Environment
King Abdullah University of Science and Technology
AuthorAffiliation_xml – sequence: 0
  name: KAUST Catalysis Center and Division of Physical Science and Engineering
– sequence: 0
  name: Agency for Science, Technology and Research, Institute of Sustainability for Chemicals, Energy and Environment
– sequence: 0
  name: King Abdullah University of Science and Technology
Author_xml – sequence: 1
  givenname: Hao
  surname: Huang
  fullname: Huang, Hao
– sequence: 2
  givenname: Karthik
  surname: Peramaiah
  fullname: Peramaiah, Karthik
– sequence: 3
  givenname: Kuo-Wei
  surname: Huang
  fullname: Huang, Kuo-Wei
BookMark eNptkUtLAzEUhYMo2FY37oWAO6Gax0ymcVdqfUBBEF0PmcydNnUmqUkquPG3m7Y-QFzdc7nnnMCXPtq3zgJCJ5RcUMLlZZ0BEMIYU3uoR4s8G-YFEfvfWkh2iPohLAkRjBSyhz4eIS6MfTF2jq2JXkXAHuq1jsbZq400HtKSztAm4Z1eQGe0ajE0jfMx4Ma7Dquuc9YoHN22xs3B4nROBao1IRqNwb4Z72wHNqaw6VZKx3CEDhrVBjj-mgP0fDN9mtwNZw-395PxbKg5LeJQ5QXPKSFVw6taU8nqkciyJs9rWQkmRlxxXlMKstGiorXKOc8KELKSjErICj5AZ7velXevawixXLq1t-nJkpOMC8ETpuQiO5f2LgQPTalNVBsSCYxpS0rKDeXyOptOt5THKXL-J7LyplP-_X_z6c7sg_7x_X4Z_wRPr4tz
CitedBy_id crossref_primary_10_1002_adfm_202420282
crossref_primary_10_1002_ange_202411909
crossref_primary_10_1039_D4SC05936K
crossref_primary_10_1016_j_electacta_2024_145429
crossref_primary_10_1021_jacs_4c14483
crossref_primary_10_1002_adfm_202413070
crossref_primary_10_1016_j_rser_2024_114537
crossref_primary_10_1021_acs_est_4c09975
crossref_primary_10_1021_acsestwater_4c00897
crossref_primary_10_1002_anie_202410517
crossref_primary_10_1002_adfm_202418492
crossref_primary_10_1002_smll_202411317
crossref_primary_10_1039_D4EY00245H
crossref_primary_10_1002_ange_202410517
crossref_primary_10_1002_anie_202411909
crossref_primary_10_1016_j_jre_2025_02_009
crossref_primary_10_1038_s41557_024_01606_w
crossref_primary_10_1016_j_jcis_2024_06_213
crossref_primary_10_1002_adma_202405578
crossref_primary_10_1016_j_apcatb_2024_124991
crossref_primary_10_1016_j_cej_2024_158819
crossref_primary_10_1016_j_jcis_2025_137318
crossref_primary_10_1039_D4TA02110J
Cites_doi 10.1021/acsenergylett.1c02189
10.1002/cssc.202300505
10.1002/anie.202217071
10.1038/s41467-023-37273-7
10.1016/j.biortech.2016.01.055
10.1038/s41893-021-00741-3
10.1016/j.apcatb.2018.05.041
10.1021/acscatal.3c01315
10.1002/anie.201915992
10.2134/jeq2004.1822
10.3133/mcs2023
10.1021/acs.iecr.8b01483
10.1021/acs.nanolett.9b01925
10.1038/s41929-023-01020-4
10.1039/C9EE02873K
10.1039/D1EE01731D
10.1002/adma.202304695
10.1016/j.scitotenv.2021.152233
10.1002/anie.202218717
10.1016/j.joule.2020.12.025
10.1126/science.aar6611
10.1021/acscatal.2c04841
10.1016/j.cej.2021.128958
10.1002/adma.201805173
10.1002/er.6232
10.1016/j.watres.2017.04.069
10.1016/j.cej.2023.144488
10.1039/c2ee23062c
10.1038/s41893-023-01252-z
10.1016/j.checat.2023.100786
10.1002/anie.202310383
10.1002/aenm.202203201
10.1016/j.jhazmat.2009.06.005
10.1016/j.desal.2020.114726
10.1002/aenm.202202247
10.1021/acsaem.3c00709
10.1039/D2EE02647C
10.1016/j.cej.2019.122065
10.1016/j.cej.2023.146176
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d4ee00222a
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 2685
ExternalDocumentID 10_1039_D4EE00222A
d4ee00222a
GroupedDBID -JG
0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O-G
O9-
P2P
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
UCJ
AAYXX
AFRZK
AKMSF
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c317t-a5735100bf3bdc192d8644f55d9b62683a33d11e9fc6b1da53347e69b9219e473
ISSN 1754-5692
IngestDate Mon Jun 30 12:04:10 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Tue Jul 01 01:45:58 EDT 2025
Tue Dec 17 20:58:10 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-a5735100bf3bdc192d8644f55d9b62683a33d11e9fc6b1da53347e69b9219e473
Notes https://doi.org/10.1039/d4ee00222a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1900-2658
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2024/ee/d4ee00222a
PQID 3043663706
PQPubID 2047494
PageCount 4
ParticipantIDs crossref_primary_10_1039_D4EE00222A
rsc_primary_d4ee00222a
crossref_citationtrail_10_1039_D4EE00222A
proquest_journals_3043663706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-23
PublicationDateYYYYMMDD 2024-04-23
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-23
  day: 23
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References 1072
Hu (D4EE00222A/cit14/1) 2021; 14
Shukla (D4EE00222A/cit17/1) 2018
Chen (D4EE00222A/cit1/1) 2018; 360
Su (D4EE00222A/cit20/1) 2017; 120
Duca (D4EE00222A/cit31/1) 2012; 5
Su (D4EE00222A/cit42/1) 2019; 19
Wang (D4EE00222A/cit48/1) 2024
Mi (D4EE00222A/cit23/1) 2022; 12
Lv (D4EE00222A/cit47/1) 2021; 4
Grande (D4EE00222A/cit12/1) 2018; 57
Lv (D4EE00222A/cit26/1) 2023; 16
Jiang (D4EE00222A/cit37/1) 2023; 62
Nørskov (D4EE00222A/cit7/1) 2016
Groves (D4EE00222A/cit13/1) 2020
Garcia-Segura (D4EE00222A/cit35/1) 2018; 236
Zhang (D4EE00222A/cit38/1) 2023; 62
Erdemir (D4EE00222A/cit9/1) 2020; 45
Zhao (D4EE00222A/cit41/1) 2021; 415
Schnitkey (D4EE00222A/cit6/1) 2018
Li (D4EE00222A/cit28/1) 2023
Luo (D4EE00222A/cit46/1) 2023; 6
Liu (D4EE00222A/cit32/1) 2023; 475
Chauhan (D4EE00222A/cit21/1) 2020; 386
Katsounaros (D4EE00222A/cit22/1) 2009; 171
Mohammadi (D4EE00222A/cit45/1) 2021; 498
(D4EE00222A/cit4/1) 2021
Chen (D4EE00222A/cit15/1) 2022; 13
Luo (D4EE00222A/cit40/1) 2023
(D4EE00222A/cit11/1) 2023
Guillard (D4EE00222A/cit30/1) 2004; 33
(D4EE00222A/cit34/1) 2022; 5
(D4EE00222A/cit5/1) 2023
(D4EE00222A/cit10/1) 2021
Abascal (D4EE00222A/cit19/1) 2022; 810
Wu (D4EE00222A/cit36/1) 2023; 3
Xu (D4EE00222A/cit25/1) 2023; 14
Chatterjee (D4EE00222A/cit3/1) 2021; 6
Kim (D4EE00222A/cit44/1) 2016; 205
Li (D4EE00222A/cit24/1) 2023; 6
Lim (D4EE00222A/cit39/1) 2022; 13
Jiao (D4EE00222A/cit8/1) 2019; 31
Smith (D4EE00222A/cit2/1) 2020; 13
Zhang (D4EE00222A/cit43/1) 2023; 62
van Langevelde (D4EE00222A/cit16/1) 2021; 5
(D4EE00222A/cit18/1) 2022
Zhou (D4EE00222A/cit27/1) 2023; 13
Li (D4EE00222A/cit29/1) 2023; 471
Wang (D4EE00222A/cit33/1) 2020; 59
References_xml – issn: 2022
  issue: 5
  year: 1072
  end-page: 1071
  publication-title: Nat. Catal.
– issn: 2022
  publication-title: Guidelines for drinking-water quality: incorporating the first and second addenda
– issn: 2016
  publication-title: Sustainable Ammonia Synthesis
  doi: Nørskov Chen
– issn: 2018
  end-page: p 1
  publication-title: Handbook of Environmental Materials Management
  doi: Shukla Saxena
– issn: 2021
– issn: 2020
  publication-title: "Nitric Acid," in Kirk-Othmer Encyclopedia of Chemical Technology
  doi: Groves
– issn: 2023
  end-page: 210
– issn: 2023
  publication-title: Nitric Acid Market Analysis
– issn: 2018
  doi: Schnitkey
– issn: 2021
  publication-title: Ammonia Technology Roadmap
– volume: 6
  start-page: 4390
  year: 2021
  ident: D4EE00222A/cit3/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c02189
– volume-title: Guidelines for drinking-water quality: incorporating the first and second addenda
  year: 2022
  ident: D4EE00222A/cit18/1
– year: 2021
  ident: D4EE00222A/cit4/1
– start-page: e202300505
  year: 2023
  ident: D4EE00222A/cit28/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202300505
– volume: 5
  start-page: 1071
  volume-title: Nat. Catal.
  year: 2022
  ident: D4EE00222A/cit34/1
– volume: 62
  start-page: e202217071
  year: 2023
  ident: D4EE00222A/cit38/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202217071
– volume: 14
  start-page: 1619
  year: 2023
  ident: D4EE00222A/cit25/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37273-7
– volume: 205
  start-page: 269
  year: 2016
  ident: D4EE00222A/cit44/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.01.055
– year: 2018
  ident: D4EE00222A/cit6/1
– volume: 4
  start-page: 868
  year: 2021
  ident: D4EE00222A/cit47/1
  publication-title: Nat. Sustainability
  doi: 10.1038/s41893-021-00741-3
– volume: 236
  start-page: 546
  year: 2018
  ident: D4EE00222A/cit35/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.05.041
– volume: 13
  start-page: 7529
  year: 2023
  ident: D4EE00222A/cit27/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c01315
– volume-title: “Nitric Acid,” in Kirk-Othmer Encyclopedia of Chemical Technology
  year: 2020
  ident: D4EE00222A/cit13/1
– volume: 59
  start-page: 5350
  year: 2020
  ident: D4EE00222A/cit33/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201915992
– volume: 33
  start-page: 1822
  year: 2004
  ident: D4EE00222A/cit30/1
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2004.1822
– start-page: 210
  year: 2023
  ident: D4EE00222A/cit5/1
  doi: 10.3133/mcs2023
– volume: 57
  start-page: 10180
  year: 2018
  ident: D4EE00222A/cit12/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b01483
– volume-title: Handbook of Environmental Materials Management
  year: 2018
  ident: D4EE00222A/cit17/1
– volume: 19
  start-page: 5423
  year: 2019
  ident: D4EE00222A/cit42/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01925
– volume: 6
  start-page: 939
  year: 2023
  ident: D4EE00222A/cit46/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-01020-4
– volume: 13
  start-page: 331
  year: 2020
  ident: D4EE00222A/cit2/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02873K
– volume: 14
  start-page: 4989
  year: 2021
  ident: D4EE00222A/cit14/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01731D
– start-page: e2304695
  year: 2023
  ident: D4EE00222A/cit40/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202304695
– volume: 810
  start-page: 152233
  year: 2022
  ident: D4EE00222A/cit19/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.152233
– volume: 62
  start-page: e202218717
  year: 2023
  ident: D4EE00222A/cit37/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202218717
– volume-title: Nitric Acid Market Analysis
  year: 2023
  ident: D4EE00222A/cit11/1
– volume: 5
  start-page: 290
  year: 2021
  ident: D4EE00222A/cit16/1
  publication-title: Joule
  doi: 10.1016/j.joule.2020.12.025
– volume: 360
  start-page: eaar6611
  year: 2018
  ident: D4EE00222A/cit1/1
  publication-title: Science
  doi: 10.1126/science.aar6611
– volume: 13
  start-page: 87
  year: 2022
  ident: D4EE00222A/cit39/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c04841
– volume: 415
  start-page: 128958
  year: 2021
  ident: D4EE00222A/cit41/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128958
– volume-title: Sustainable Ammonia Synthesis
  year: 2016
  ident: D4EE00222A/cit7/1
– volume: 31
  start-page: e1805173
  year: 2019
  ident: D4EE00222A/cit8/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805173
– volume: 45
  start-page: 4827
  year: 2020
  ident: D4EE00222A/cit9/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6232
– volume: 120
  start-page: 1
  year: 2017
  ident: D4EE00222A/cit20/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.04.069
– volume: 471
  start-page: 144488
  year: 2023
  ident: D4EE00222A/cit29/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144488
– volume: 5
  start-page: 9726
  year: 2012
  ident: D4EE00222A/cit31/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23062c
– year: 2024
  ident: D4EE00222A/cit48/1
  publication-title: Nat. Sustainability
  doi: 10.1038/s41893-023-01252-z
– volume: 3
  start-page: 100786
  year: 2023
  ident: D4EE00222A/cit36/1
  publication-title: Chem. Catal.
  doi: 10.1016/j.checat.2023.100786
– volume: 62
  start-page: e202310383
  year: 2023
  ident: D4EE00222A/cit43/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202310383
– volume: 13
  start-page: 2203201
  year: 2022
  ident: D4EE00222A/cit15/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203201
– volume: 171
  start-page: 323
  year: 2009
  ident: D4EE00222A/cit22/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.06.005
– volume: 498
  start-page: 114726
  year: 2021
  ident: D4EE00222A/cit45/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114726
– volume-title: Ammonia Technology Roadmap
  year: 2021
  ident: D4EE00222A/cit10/1
– volume: 12
  start-page: 2202247
  year: 2022
  ident: D4EE00222A/cit23/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202202247
– volume: 6
  start-page: 5067
  year: 2023
  ident: D4EE00222A/cit24/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.3c00709
– volume: 16
  start-page: 201
  year: 2023
  ident: D4EE00222A/cit26/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE02647C
– volume: 386
  start-page: 122065
  year: 2020
  ident: D4EE00222A/cit21/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122065
– volume: 475
  start-page: 146176
  year: 2023
  ident: D4EE00222A/cit32/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.146176
SSID ssj0062079
Score 2.593314
Snippet The excessive use of nitrate in agriculture and industry poses a significant threat to human health and ecosystems. To effectively manage the nitrogen cycle...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2682
SubjectTerms Ammonia
Electrochemistry
Environmental impact
Haber Bosch process
Impact analysis
Low concentrations
Nitrate reduction
Nitrates
Nitrogen
Nitrogen cycle
Reduction
Strategic management
Wastewater pollution
Title Rethinking nitrate reduction: redirecting electrochemical efforts from ammonia to nitrogen for realistic environmental impacts
URI https://www.proquest.com/docview/3043663706
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLe67QIHxGuibCBLcEGTRxLHTsytQEfFxpBQq_UWOYmjTdqaqUsvHPhL-GP57NiJgyoEXKLGtZ3H9_P3cL4HQq9jMLe0JkskiBMSp1FIctB0SZikIIw5rQqpN_S_nPPZIv68ZMvR6KfntbRp8uPi-9a4kv-hKrQBXXWU7D9QtpsUGuA30BeOQGE4_hWNv6nmsq19cAQrUyd9OFrrVKzOYQNOWo4GHWy9m8IlCFBVZT4WmPgSqe_5SmpFVE9UwxWN_yFolNcmk7MfEKfTdJjYyrvBtn4bRKiRNOxrZWyPH7tDPZN1z5fX8kZeyUsbngZP1QUQnW5qcqHa2tp6qL9NERnvljaS2Po36c0Q54lqPE1sPTuP-SYsJoy3tfGOldeWBHzAsRMPmanPfnkaeaIcTtlWMRFQnWW1jJUywcCeMHQOAOdfs5PF2Vk2ny7nO2gvAiMEuOje5PT9pwsn6XkUmFyO3X279LdUvO3nHio8vRWzs3YlZowqM3-IHlgbBE9aQD1CI7V6jO57mSmfoB89tLCFFu6g9Q57wMK_AQtbYGENLGyBhZsaO2Bh-Bt3wMIDsGALrKdocTKdf5gRW6qDFKCANkSyhAJ3D_KK5mUBVkOZgqJdMVaKHEzmlEpKyzBUoip4HpZSB4AniotcgMRUcUL30e6qXqlnCMcVFZIrxqpUxkIxGBtwSSUoplElymiM3rj3mRU2j70up3KdGX8KKrKP8XRq3v1kjF51fW_b7C1bex06smR2dd9lVNdm4BSQN0b7QKpufE_Z538ed4Du9QvhEO026416ARpsk7-0QPoFtJ6i8Q
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rethinking+nitrate+reduction%3A+redirecting+electrochemical+efforts+from+ammonia+to+nitrogen+for+realistic+environmental+impacts&rft.jtitle=Energy+%26+environmental+science&rft.au=Huang%2C+Hao&rft.au=Peramaiah%2C+Karthik&rft.au=Kuo-Wei%2C+Huang&rft.date=2024-04-23&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=17&rft.issue=8&rft.spage=2682&rft.epage=2685&rft_id=info:doi/10.1039%2Fd4ee00222a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon