Hydrated eutectic electrolytes for high-performance Mg-ion batteries

Aqueous Mg-ion batteries are a promising electrochemical energy storage technology. However, Mg 2+ ions interact strongly with electrolyte molecules and electrode materials, resulting in insufficient ionic conductivity and solid-state diffusion, and consequently limited cycling stability and rate ca...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 15; no. 3; pp. 1282 - 1292
Main Authors Zhu, Yunpei, Guo, Xianrong, Lei, Yongjiu, Wang, Wenxi, Emwas, Abdul-Hamid, Yuan, Youyou, He, Yao, Alshareef, Husam N
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 16.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aqueous Mg-ion batteries are a promising electrochemical energy storage technology. However, Mg 2+ ions interact strongly with electrolyte molecules and electrode materials, resulting in insufficient ionic conductivity and solid-state diffusion, and consequently limited cycling stability and rate capability. Herein, we design an aqueous Mg-ion battery chemistry involving a hydrated eutectic electrolyte, an organic molecule anode, and a copper hexacyanoferrate (CuHCF) cathode. This hydrated eutectic electrolyte features a three-dimensional percolating hydrogen bond network formed by water molecules, which facilitates fast Mg 2+ transport in the electrolyte. Moreover, the suppression of water activity in the hydrated eutectic electrolyte can efficiently improve the cycling performance of the organic molecule anode by prohibiting the dissolution issue. After coupling with the open-framework CuHCF cathode, the resultant full battery delivers a wide operating voltage of 2.2 V, an energy density of 52.2 W h kg −1 , and a decent low-temperature electrochemical performance. The electrolyte and electrode chemistries proposed in this work show an alternative way to develop low-cost, safe, and high-performance Mg battery technologies. A hydrated eutectic electrolyte with 3D percolating hydrogen bond network is designed for high-performance aqueous Mg-ion batteries.
AbstractList Aqueous Mg-ion batteries are a promising electrochemical energy storage technology. However, Mg 2+ ions interact strongly with electrolyte molecules and electrode materials, resulting in insufficient ionic conductivity and solid-state diffusion, and consequently limited cycling stability and rate capability. Herein, we design an aqueous Mg-ion battery chemistry involving a hydrated eutectic electrolyte, an organic molecule anode, and a copper hexacyanoferrate (CuHCF) cathode. This hydrated eutectic electrolyte features a three-dimensional percolating hydrogen bond network formed by water molecules, which facilitates fast Mg 2+ transport in the electrolyte. Moreover, the suppression of water activity in the hydrated eutectic electrolyte can efficiently improve the cycling performance of the organic molecule anode by prohibiting the dissolution issue. After coupling with the open-framework CuHCF cathode, the resultant full battery delivers a wide operating voltage of 2.2 V, an energy density of 52.2 W h kg −1 , and a decent low-temperature electrochemical performance. The electrolyte and electrode chemistries proposed in this work show an alternative way to develop low-cost, safe, and high-performance Mg battery technologies. A hydrated eutectic electrolyte with 3D percolating hydrogen bond network is designed for high-performance aqueous Mg-ion batteries.
Aqueous Mg-ion batteries are a promising electrochemical energy storage technology. However, Mg2+ ions interact strongly with electrolyte molecules and electrode materials, resulting in insufficient ionic conductivity and solid-state diffusion, and consequently limited cycling stability and rate capability. Herein, we design an aqueous Mg-ion battery chemistry involving a hydrated eutectic electrolyte, an organic molecule anode, and a copper hexacyanoferrate (CuHCF) cathode. This hydrated eutectic electrolyte features a three-dimensional percolating hydrogen bond network formed by water molecules, which facilitates fast Mg2+ transport in the electrolyte. Moreover, the suppression of water activity in the hydrated eutectic electrolyte can efficiently improve the cycling performance of the organic molecule anode by prohibiting the dissolution issue. After coupling with the open-framework CuHCF cathode, the resultant full battery delivers a wide operating voltage of 2.2 V, an energy density of 52.2 W h kg−1, and a decent low-temperature electrochemical performance. The electrolyte and electrode chemistries proposed in this work show an alternative way to develop low-cost, safe, and high-performance Mg battery technologies.
Aqueous Mg-ion batteries are a promising electrochemical energy storage technology. However, Mg 2+ ions interact strongly with electrolyte molecules and electrode materials, resulting in insufficient ionic conductivity and solid-state diffusion, and consequently limited cycling stability and rate capability. Herein, we design an aqueous Mg-ion battery chemistry involving a hydrated eutectic electrolyte, an organic molecule anode, and a copper hexacyanoferrate (CuHCF) cathode. This hydrated eutectic electrolyte features a three-dimensional percolating hydrogen bond network formed by water molecules, which facilitates fast Mg 2+ transport in the electrolyte. Moreover, the suppression of water activity in the hydrated eutectic electrolyte can efficiently improve the cycling performance of the organic molecule anode by prohibiting the dissolution issue. After coupling with the open-framework CuHCF cathode, the resultant full battery delivers a wide operating voltage of 2.2 V, an energy density of 52.2 W h kg −1 , and a decent low-temperature electrochemical performance. The electrolyte and electrode chemistries proposed in this work show an alternative way to develop low-cost, safe, and high-performance Mg battery technologies.
Author He, Yao
Lei, Yongjiu
Alshareef, Husam N
Emwas, Abdul-Hamid
Guo, Xianrong
Yuan, Youyou
Wang, Wenxi
Zhu, Yunpei
AuthorAffiliation King Abdullah University of Science and Technology (KAUST)
Core Labs
Materials Science and Engineering
AuthorAffiliation_xml – name: Core Labs
– name: Materials Science and Engineering
– name: King Abdullah University of Science and Technology (KAUST)
Author_xml – sequence: 1
  givenname: Yunpei
  surname: Zhu
  fullname: Zhu, Yunpei
– sequence: 2
  givenname: Xianrong
  surname: Guo
  fullname: Guo, Xianrong
– sequence: 3
  givenname: Yongjiu
  surname: Lei
  fullname: Lei, Yongjiu
– sequence: 4
  givenname: Wenxi
  surname: Wang
  fullname: Wang, Wenxi
– sequence: 5
  givenname: Abdul-Hamid
  surname: Emwas
  fullname: Emwas, Abdul-Hamid
– sequence: 6
  givenname: Youyou
  surname: Yuan
  fullname: Yuan, Youyou
– sequence: 7
  givenname: Yao
  surname: He
  fullname: He, Yao
– sequence: 8
  givenname: Husam N
  surname: Alshareef
  fullname: Alshareef, Husam N
BookMark eNptkEtLAzEUhYNUsK1u3AsD7oTRvCaPpbbVChU3uh4ymTvtlOmkJumi_95ofYC4uofLd-7jjNCgdz0gdE7wNcFM39QEADOhSXWEhkQWPC8kFoNvLTQ9QaMQ1hgLiqUeoul8X3sToc5gF8HG1mbQpepdt48Qssb5bNUuV_kWfNIb01vInpZ56_qsMjGCbyGcouPGdAHOvuoYvd7PXibzfPH88Di5XeSWERlzbUEoiblUTDWEk6qiFIimTGkuikZxrLimhVEMF8RqldpEMm24rQitNWdjdHmYu_XubQchlmu3831aWVLBsS7S5yxR-EBZ70Lw0JS2jSami6M3bVcSXH5kVU7JbPaZ1V2yXP2xbH27MX7_P3xxgH2wP9xv8OwdhIRzTQ
CitedBy_id crossref_primary_10_1021_acs_chemrev_2c00374
crossref_primary_10_1002_smll_202402925
crossref_primary_10_1007_s11426_023_1698_6
crossref_primary_10_1021_acsenergylett_2c01255
crossref_primary_10_1016_j_jma_2024_04_029
crossref_primary_10_1021_acsenergylett_2c02585
crossref_primary_10_1016_j_jpowsour_2024_234780
crossref_primary_10_1016_j_matre_2022_100161
crossref_primary_10_1016_j_ensm_2023_103012
crossref_primary_10_1002_smll_202300148
crossref_primary_10_1039_D4CS00474D
crossref_primary_10_1002_tcr_202300212
crossref_primary_10_1002_smll_202306808
crossref_primary_10_1016_j_jpowsour_2025_236633
crossref_primary_10_1016_j_jma_2024_04_036
crossref_primary_10_1016_j_nanoen_2024_110307
crossref_primary_10_1021_acsenergylett_4c02281
crossref_primary_10_1021_acsnano_4c18422
crossref_primary_10_1021_acs_nanolett_3c00033
crossref_primary_10_1002_anie_202308961
crossref_primary_10_1016_j_cej_2022_139907
crossref_primary_10_1002_adfm_202316474
crossref_primary_10_1016_j_mattod_2024_07_003
crossref_primary_10_1007_s11581_024_05699_8
crossref_primary_10_1002_adma_202208392
crossref_primary_10_1039_D3MA00622K
crossref_primary_10_1063_5_0140107
crossref_primary_10_1002_anie_202310284
crossref_primary_10_1021_jacs_4c00227
crossref_primary_10_1016_j_ensm_2024_103361
crossref_primary_10_1038_s41467_023_41277_8
crossref_primary_10_1002_advs_202305524
crossref_primary_10_1016_j_jma_2023_07_011
crossref_primary_10_1016_j_jma_2023_08_009
crossref_primary_10_1021_acsami_3c13117
crossref_primary_10_1021_acsenergylett_4c00113
crossref_primary_10_1016_j_ensm_2023_103019
crossref_primary_10_1002_ange_202213757
crossref_primary_10_1016_j_ensm_2022_10_046
crossref_primary_10_1016_j_scib_2023_07_027
crossref_primary_10_1021_acsami_3c19534
crossref_primary_10_1007_s40820_023_01160_z
crossref_primary_10_1016_j_ensm_2025_104049
crossref_primary_10_1002_cssc_202201373
crossref_primary_10_1002_ange_202310284
crossref_primary_10_1002_smll_202200550
crossref_primary_10_1002_smtd_202300554
crossref_primary_10_1021_acsaem_4c01505
crossref_primary_10_1016_j_electacta_2022_140753
crossref_primary_10_1016_j_ensm_2025_104088
crossref_primary_10_1016_j_nanoen_2024_110298
crossref_primary_10_1038_s41529_024_00473_7
crossref_primary_10_1016_j_ensm_2024_103197
crossref_primary_10_2139_ssrn_4118140
crossref_primary_10_1016_j_cartre_2024_100366
crossref_primary_10_1021_acsaem_2c02847
crossref_primary_10_1002_anie_202405428
crossref_primary_10_1016_j_jma_2023_11_008
crossref_primary_10_1039_D2TA03053E
crossref_primary_10_1002_anie_202301934
crossref_primary_10_1021_acssuschemeng_4c04018
crossref_primary_10_1016_j_cej_2024_152864
crossref_primary_10_1016_j_est_2023_108356
crossref_primary_10_1039_D3EE03729K
crossref_primary_10_1002_anie_202213757
crossref_primary_10_1002_adma_202407233
crossref_primary_10_1002_aenm_202303549
crossref_primary_10_1002_bte2_20240089
crossref_primary_10_1039_D3TA04373H
crossref_primary_10_1016_j_ensm_2024_103663
crossref_primary_10_1002_adma_202412104
crossref_primary_10_1038_s41467_023_36198_5
crossref_primary_10_1016_j_flatc_2022_100444
crossref_primary_10_1016_j_ensm_2023_102822
crossref_primary_10_1039_D4EE05298F
crossref_primary_10_1002_cssc_202300285
crossref_primary_10_1002_ange_202301934
crossref_primary_10_1002_ange_202405428
crossref_primary_10_1016_j_cej_2023_145154
crossref_primary_10_1002_ange_202308961
crossref_primary_10_1016_j_esci_2024_100293
Cites_doi 10.1021/acsami.1c06106
10.1038/s41467-019-13436-3
10.1021/cr300162p
10.1039/D0TA03947K
10.1038/s41578-019-0166-4
10.1002/anie.201702486
10.1039/C5EE01215E
10.1021/acsnano.7b05664
10.1002/advs.202000146
10.1021/jacs.7b06313
10.1021/acs.accounts.0c00360
10.1073/pnas.1619795114
10.1002/anie.201412202
10.1021/acsenergylett.8b00009
10.1021/acs.chemmater.5b03983
10.1021/jacs.8b07696
10.1021/acs.chemrev.0c00767
10.1039/C8CS00319J
10.1039/c2ee03029b
10.1073/pnas.1400675111
10.1039/D1EE01472B
10.1002/aenm.201200598
10.1021/jacs.6b12598
10.1002/adfm.201908445
10.1002/chem.201703806
10.1021/acs.chemrev.9b00482
10.1038/s41560-020-0655-0
10.1021/acsenergylett.7b00040
10.1002/adfm.202107523
10.1021/nl403669a
10.1039/c3ta13205f
10.1038/s41560-020-00734-0
10.1063/1.1813431
10.1002/aenm.201903591
10.1038/nmat4919
10.1002/aenm.202002128
10.1021/acs.nanolett.5b05273
10.1038/s41563-020-0667-y
10.1002/advs.201700465
10.1038/s41467-020-19991-4
10.1038/nenergy.2016.129
10.1021/acssuschemeng.7b00982
10.1039/C7EE02304A
10.1021/acs.jpcb.9b08961
10.1016/j.ccr.2014.11.005
10.1016/j.chempr.2019.02.014
10.1126/science.aab1595
10.1038/s41570-020-0160-9
10.1038/s41560-019-0388-0
10.1021/acs.nanolett.5b01109
10.1016/j.chempr.2017.12.018
10.1002/anie.201908830
10.1016/j.molliq.2018.05.070
10.1002/advs.201500124
10.1016/j.nanoen.2018.12.086
10.1021/acs.jpcb.8b09439
10.1038/nchem.763
10.1016/j.joule.2020.05.018
10.1021/acs.chemrev.0c00438
10.1016/j.joule.2019.12.007
10.1016/j.joule.2018.10.028
10.1039/C5CP00486A
10.1038/s41467-018-07331-6
10.1039/C4CP05591H
10.1039/C8EE00833G
10.1021/acscentsci.7b00361
10.1039/C6EE02641A
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d1ee03691b
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 1292
ExternalDocumentID 10_1039_D1EE03691B
d1ee03691b
GroupedDBID 0-7
0R
29G
4.4
5GY
70
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
M4U
N9A
O-G
O9-
P2P
RCNCU
RIG
RPMJG
RRC
RSCEA
SKA
SLH
TOV
UCJ
0R~
70~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c317t-9ce687047838f141bb22e192389465f84084925a83051c988941739a4cb12d943
ISSN 1754-5692
IngestDate Mon Jun 30 12:05:31 EDT 2025
Thu Apr 24 23:00:19 EDT 2025
Tue Jul 01 01:45:51 EDT 2025
Tue Mar 22 05:00:46 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-9ce687047838f141bb22e192389465f84084925a83051c988941739a4cb12d943
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d1ee03691b
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5029-2142
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2022/ee/d1ee03691b
PQID 2640953693
PQPubID 2047494
PageCount 11
ParticipantIDs proquest_journals_2640953693
crossref_citationtrail_10_1039_D1EE03691B
crossref_primary_10_1039_D1EE03691B
rsc_primary_d1ee03691b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-16
PublicationDateYYYYMMDD 2022-03-16
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-16
  day: 16
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Mizuno (D1EE03691B/cit23/1) 2013; 1
Li (D1EE03691B/cit16/1) 2021; 31
Zhu (D1EE03691B/cit46/1) 2021; 31
Du (D1EE03691B/cit62/1) 2017; 10
Gautam (D1EE03691B/cit13/1) 2016; 16
Whittingham (D1EE03691B/cit1/1) 2020; 120
Angell (D1EE03691B/cit48/1) 2017; 114
Luo (D1EE03691B/cit68/1) 2010; 2
Suo (D1EE03691B/cit36/1) 2015; 350
Krestyaninov (D1EE03691B/cit49/1) 2018; 264
Grey (D1EE03691B/cit3/1) 2020; 11
Wang (D1EE03691B/cit22/1) 2013; 13
Lim (D1EE03691B/cit57/1) 2018; 140
Andrews (D1EE03691B/cit6/1) 2018; 4
Younesi (D1EE03691B/cit51/1) 2015; 8
Nam (D1EE03691B/cit14/1) 2015; 15
Zhang (D1EE03691B/cit66/1) 2021; 13
Zhu (D1EE03691B/cit11/1) 2020; 10
Liang (D1EE03691B/cit33/1) 2017; 16
Song (D1EE03691B/cit35/1) 2015; 2
Guo (D1EE03691B/cit9/1) 2020; 10
Xu (D1EE03691B/cit12/1) 2019; 5
Wang (D1EE03691B/cit19/1) 2017; 3
Fernández-Serra (D1EE03691B/cit60/1) 2004; 121
Zheng (D1EE03691B/cit40/1) 2019; 58
Hammond (D1EE03691B/cit43/1) 2017; 56
Zhang (D1EE03691B/cit45/1) 2020; 53
Mizuno (D1EE03691B/cit65/1) 2013; 1
Han (D1EE03691B/cit52/1) 2020; 8
D’Amico (D1EE03691B/cit50/1) 2015; 17
Chen (D1EE03691B/cit20/1) 2017; 2
Leonard (D1EE03691B/cit38/1) 2018; 3
Mao (D1EE03691B/cit8/1) 2018; 47
Zhu (D1EE03691B/cit54/1) 2021; 14
Tutusaus (D1EE03691B/cit17/1) 2015; 54
Xie (D1EE03691B/cit42/1) 2020; 19
Smith (D1EE03691B/cit44/1) 2014; 114
Liu (D1EE03691B/cit34/1) 2017; 10
Xue (D1EE03691B/cit63/1) 2017; 139
Ding (D1EE03691B/cit59/1) 2014; 111
Attias (D1EE03691B/cit5/1) 2019; 3
Lukatskaya (D1EE03691B/cit37/1) 2018; 11
Li (D1EE03691B/cit58/1) 2019; 123
Qiu (D1EE03691B/cit47/1) 2019; 10
Borodin (D1EE03691B/cit53/1) 2020; 4
Liu (D1EE03691B/cit67/1) 2020; 7
Lu (D1EE03691B/cit29/1) 2020; 4
Tian (D1EE03691B/cit2/1) 2021; 121
Rodríguez-Pérez (D1EE03691B/cit25/1) 2017; 139
Gheytani (D1EE03691B/cit64/1) 2017; 4
Huie (D1EE03691B/cit10/1) 2015; 287
Liang (D1EE03691B/cit4/1) 2020; 5
Li (D1EE03691B/cit7/1) 2020; 5
Zhao (D1EE03691B/cit55/1) 2019; 57
Song (D1EE03691B/cit24/1) 2015; 17
Sun (D1EE03691B/cit21/1) 2016; 28
Zhang (D1EE03691B/cit26/1) 2017; 5
Muldoon (D1EE03691B/cit15/1) 2012; 5
Yamada (D1EE03691B/cit39/1) 2016; 1
Jiang (D1EE03691B/cit31/1) 2019; 4
Zhang (D1EE03691B/cit27/1) 2017; 23
Dong (D1EE03691B/cit18/1) 2020; 5
Borodin (D1EE03691B/cit56/1) 2017; 11
Poizot (D1EE03691B/cit28/1) 2020; 120
Dokko (D1EE03691B/cit61/1) 2018; 122
Yang (D1EE03691B/cit32/1) 2020; 4
Li (D1EE03691B/cit69/1) 2013; 3
Yin (D1EE03691B/cit30/1) 2020; 30
He (D1EE03691B/cit41/1) 2018; 9
References_xml – volume: 31
  start-page: 100650
  year: 2021
  ident: D1EE03691B/cit16/1
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 40451
  year: 2021
  ident: D1EE03691B/cit66/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c06106
– volume: 10
  start-page: 5374
  year: 2019
  ident: D1EE03691B/cit47/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13436-3
– volume: 114
  start-page: 11060
  year: 2014
  ident: D1EE03691B/cit44/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr300162p
– volume: 8
  start-page: 15479
  year: 2020
  ident: D1EE03691B/cit52/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03947K
– volume: 5
  start-page: 276
  year: 2020
  ident: D1EE03691B/cit7/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0166-4
– volume: 56
  start-page: 9782
  year: 2017
  ident: D1EE03691B/cit43/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702486
– volume: 8
  start-page: 1905
  year: 2015
  ident: D1EE03691B/cit51/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01215E
– volume: 11
  start-page: 10462
  year: 2017
  ident: D1EE03691B/cit56/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05664
– volume: 7
  start-page: 2000146
  year: 2020
  ident: D1EE03691B/cit67/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000146
– volume: 139
  start-page: 13031
  year: 2017
  ident: D1EE03691B/cit25/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06313
– volume: 53
  start-page: 1648
  year: 2020
  ident: D1EE03691B/cit45/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00360
– volume: 114
  start-page: 834
  year: 2017
  ident: D1EE03691B/cit48/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1619795114
– volume: 54
  start-page: 7900
  year: 2015
  ident: D1EE03691B/cit17/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201412202
– volume: 3
  start-page: 373
  year: 2018
  ident: D1EE03691B/cit38/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00009
– volume: 28
  start-page: 534
  year: 2016
  ident: D1EE03691B/cit21/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03983
– volume: 140
  start-page: 15661
  issue: 46
  year: 2018
  ident: D1EE03691B/cit57/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07696
– volume: 121
  start-page: 1623
  year: 2021
  ident: D1EE03691B/cit2/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00767
– volume: 47
  start-page: 8804
  year: 2018
  ident: D1EE03691B/cit8/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00319J
– volume: 5
  start-page: 5941
  year: 2012
  ident: D1EE03691B/cit15/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03029b
– volume: 111
  start-page: 3310
  year: 2014
  ident: D1EE03691B/cit59/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1400675111
– volume: 14
  start-page: 4463
  year: 2021
  ident: D1EE03691B/cit54/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01472B
– volume: 3
  start-page: 290
  year: 2013
  ident: D1EE03691B/cit69/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200598
– volume: 139
  start-page: 2164
  year: 2017
  ident: D1EE03691B/cit63/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12598
– volume: 30
  start-page: 1908445
  year: 2020
  ident: D1EE03691B/cit30/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908445
– volume: 23
  start-page: 17118
  year: 2017
  ident: D1EE03691B/cit27/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201703806
– volume: 120
  start-page: 6490
  year: 2020
  ident: D1EE03691B/cit28/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00482
– volume: 5
  start-page: 646
  year: 2020
  ident: D1EE03691B/cit4/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0655-0
– volume: 2
  start-page: 1115
  year: 2017
  ident: D1EE03691B/cit20/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00040
– volume: 31
  start-page: 2107523
  year: 2021
  ident: D1EE03691B/cit46/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107523
– volume: 13
  start-page: 5748
  year: 2013
  ident: D1EE03691B/cit22/1
  publication-title: Nano Lett.
  doi: 10.1021/nl403669a
– volume: 1
  start-page: 13055
  year: 2013
  ident: D1EE03691B/cit65/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13205f
– volume: 5
  start-page: 1043
  year: 2020
  ident: D1EE03691B/cit18/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00734-0
– volume: 121
  start-page: 11136
  year: 2004
  ident: D1EE03691B/cit60/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1813431
– volume: 10
  start-page: 1903591
  year: 2020
  ident: D1EE03691B/cit9/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903591
– volume: 16
  start-page: 841
  year: 2017
  ident: D1EE03691B/cit33/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4919
– volume: 10
  start-page: 2002128
  year: 2020
  ident: D1EE03691B/cit11/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002128
– volume: 16
  start-page: 2426
  year: 2016
  ident: D1EE03691B/cit13/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05273
– volume: 19
  start-page: 1006
  year: 2020
  ident: D1EE03691B/cit42/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0667-y
– volume: 4
  start-page: 1700465
  year: 2017
  ident: D1EE03691B/cit64/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700465
– volume: 11
  start-page: 6279
  year: 2020
  ident: D1EE03691B/cit3/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19991-4
– volume: 1
  start-page: 16129
  year: 2016
  ident: D1EE03691B/cit39/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.129
– volume: 5
  start-page: 6727
  year: 2017
  ident: D1EE03691B/cit26/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00982
– volume: 10
  start-page: 2616
  year: 2017
  ident: D1EE03691B/cit62/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02304A
– volume: 123
  start-page: 10514
  year: 2019
  ident: D1EE03691B/cit58/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.9b08961
– volume: 287
  start-page: 15
  year: 2015
  ident: D1EE03691B/cit10/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2014.11.005
– volume: 1
  start-page: 13055
  year: 2013
  ident: D1EE03691B/cit23/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13205f
– volume: 5
  start-page: 1194
  year: 2019
  ident: D1EE03691B/cit12/1
  publication-title: Chemistry
  doi: 10.1016/j.chempr.2019.02.014
– volume: 350
  start-page: 938
  year: 2015
  ident: D1EE03691B/cit36/1
  publication-title: Science
  doi: 10.1126/science.aab1595
– volume: 4
  start-page: 127
  year: 2020
  ident: D1EE03691B/cit29/1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-020-0160-9
– volume: 4
  start-page: 495
  year: 2019
  ident: D1EE03691B/cit31/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0388-0
– volume: 15
  start-page: 4071
  year: 2015
  ident: D1EE03691B/cit14/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01109
– volume: 4
  start-page: 564
  year: 2018
  ident: D1EE03691B/cit6/1
  publication-title: Chemistry
  doi: 10.1016/j.chempr.2017.12.018
– volume: 58
  start-page: 14202
  year: 2019
  ident: D1EE03691B/cit40/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908830
– volume: 264
  start-page: 343
  year: 2018
  ident: D1EE03691B/cit49/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.05.070
– volume: 2
  start-page: 1500124
  year: 2015
  ident: D1EE03691B/cit35/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500124
– volume: 57
  start-page: 625
  year: 2019
  ident: D1EE03691B/cit55/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.086
– volume: 122
  start-page: 10736
  issue: 47
  year: 2018
  ident: D1EE03691B/cit61/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b09439
– volume: 2
  start-page: 760
  year: 2010
  ident: D1EE03691B/cit68/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.763
– volume: 4
  start-page: 1557
  year: 2020
  ident: D1EE03691B/cit32/1
  publication-title: Joule
  doi: 10.1016/j.joule.2020.05.018
– volume: 120
  start-page: 6328
  year: 2020
  ident: D1EE03691B/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00438
– volume: 4
  start-page: 69
  year: 2020
  ident: D1EE03691B/cit53/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.12.007
– volume: 3
  start-page: 27
  year: 2019
  ident: D1EE03691B/cit5/1
  publication-title: Joule
  doi: 10.1016/j.joule.2018.10.028
– volume: 17
  start-page: 10987
  year: 2015
  ident: D1EE03691B/cit50/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP00486A
– volume: 9
  start-page: 5320
  year: 2018
  ident: D1EE03691B/cit41/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07331-6
– volume: 17
  start-page: 5256
  year: 2015
  ident: D1EE03691B/cit24/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05591H
– volume: 11
  start-page: 2876
  year: 2018
  ident: D1EE03691B/cit37/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00833G
– volume: 3
  start-page: 1121
  year: 2017
  ident: D1EE03691B/cit19/1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00361
– volume: 10
  start-page: 205
  year: 2017
  ident: D1EE03691B/cit34/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02641A
SSID ssj0062079
Score 2.615809
Snippet Aqueous Mg-ion batteries are a promising electrochemical energy storage technology. However, Mg 2+ ions interact strongly with electrolyte molecules and...
Aqueous Mg-ion batteries are a promising electrochemical energy storage technology. However, Mg2+ ions interact strongly with electrolyte molecules and...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1282
SubjectTerms Anodes
Anodic dissolution
Batteries
Cathodes
Cathodic dissolution
Coupling (molecular)
Diffusion rate
Dissolution
Electrochemical analysis
Electrochemistry
Electrode materials
Electrodes
Electrolytes
Energy storage
Eutectics
Flux density
Hydrogen bonds
Ion currents
Lithium
Low temperature
Magnesium
Organic chemistry
Percolation
Storage batteries
Water activity
Water chemistry
Title Hydrated eutectic electrolytes for high-performance Mg-ion batteries
URI https://www.proquest.com/docview/2640953693
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYd4ED2oCJsoEiwQVVHkn8kfi4sW4VdOPSqhWXqHacrWjKqtFI2_56np048VCFgEtUWU5U-f3yvvLe7yH0oVikSrOEYi6VwDTJJZZUMVyENGdcEqoWJlA8v-CjKf0yZ_OurMh2l6zloXrY2FfyP1KFNZCr6ZL9B8m2D4UF-A3yhStIGK5_JePRfW6YHvKBrsy3gKUaNFNtru9NOtVUEBo6YrzyugPOL7GRuLS8mq6C0KXm60ZAgwavAc61TXYY-H5VWdVdlSu9bCt4Kpt1nRsGoZvGHlp1Ul7-WFaDcbdz1uSoZ7q8W_ppB4hYTQ0bb4FSJzdcZamtHGnm03nKNGEUM17PujvU3loS8kcamHlII546BeMZe6YZfJN4o9oPiWFNzSOtwSCLSHbGzX3Qv_iWnU7H42wynE-20HYMQUXcQ9tHX4_PZs5y8zi03Izt_3Z0tkR86p792IHpopKtWzcyxromkx30vIkpgqMaILvoiS5foGce0-RLdOKgEjioBD5UAoBH8DtUghoqQQuVV2h6Opx8HuFmgAZW4BausVCagz6mSUrSIqKRlHGsjUufCspZAbF9argpFyko_UiJFJajhIgFVTKKc0HJHuqVN6V-jQKeslCnxFQjw4OKRKpE5JIykRsroVQffXSnkqmGXd4MObnObJUDEdlJNBzaEzzuo_ft3lXNqbJx14E73Kx5535m4L4bgkQuSB_twYG393fyefPn-_bR0w7OB6i3vq30W_Ar1_JdA4dfnhV5fg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrated+eutectic+electrolytes+for+high-performance+Mg-ion+batteries&rft.jtitle=Energy+%26+environmental+science&rft.au=Zhu%2C+Yunpei&rft.au=Guo%2C+Xianrong&rft.au=Yongjiu+Lei&rft.au=Wang%2C+Wenxi&rft.date=2022-03-16&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=15&rft.issue=3&rft.spage=1282&rft.epage=1292&rft_id=info:doi/10.1039%2Fd1ee03691b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon