Hydrated eutectic electrolytes for high-performance Mg-ion batteries
Aqueous Mg-ion batteries are a promising electrochemical energy storage technology. However, Mg 2+ ions interact strongly with electrolyte molecules and electrode materials, resulting in insufficient ionic conductivity and solid-state diffusion, and consequently limited cycling stability and rate ca...
Saved in:
Published in | Energy & environmental science Vol. 15; no. 3; pp. 1282 - 1292 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
16.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aqueous Mg-ion batteries are a promising electrochemical energy storage technology. However, Mg
2+
ions interact strongly with electrolyte molecules and electrode materials, resulting in insufficient ionic conductivity and solid-state diffusion, and consequently limited cycling stability and rate capability. Herein, we design an aqueous Mg-ion battery chemistry involving a hydrated eutectic electrolyte, an organic molecule anode, and a copper hexacyanoferrate (CuHCF) cathode. This hydrated eutectic electrolyte features a three-dimensional percolating hydrogen bond network formed by water molecules, which facilitates fast Mg
2+
transport in the electrolyte. Moreover, the suppression of water activity in the hydrated eutectic electrolyte can efficiently improve the cycling performance of the organic molecule anode by prohibiting the dissolution issue. After coupling with the open-framework CuHCF cathode, the resultant full battery delivers a wide operating voltage of 2.2 V, an energy density of 52.2 W h kg
−1
, and a decent low-temperature electrochemical performance. The electrolyte and electrode chemistries proposed in this work show an alternative way to develop low-cost, safe, and high-performance Mg battery technologies.
A hydrated eutectic electrolyte with 3D percolating hydrogen bond network is designed for high-performance aqueous Mg-ion batteries. |
---|---|
AbstractList | Aqueous Mg-ion batteries are a promising electrochemical energy storage technology. However, Mg
2+
ions interact strongly with electrolyte molecules and electrode materials, resulting in insufficient ionic conductivity and solid-state diffusion, and consequently limited cycling stability and rate capability. Herein, we design an aqueous Mg-ion battery chemistry involving a hydrated eutectic electrolyte, an organic molecule anode, and a copper hexacyanoferrate (CuHCF) cathode. This hydrated eutectic electrolyte features a three-dimensional percolating hydrogen bond network formed by water molecules, which facilitates fast Mg
2+
transport in the electrolyte. Moreover, the suppression of water activity in the hydrated eutectic electrolyte can efficiently improve the cycling performance of the organic molecule anode by prohibiting the dissolution issue. After coupling with the open-framework CuHCF cathode, the resultant full battery delivers a wide operating voltage of 2.2 V, an energy density of 52.2 W h kg
−1
, and a decent low-temperature electrochemical performance. The electrolyte and electrode chemistries proposed in this work show an alternative way to develop low-cost, safe, and high-performance Mg battery technologies.
A hydrated eutectic electrolyte with 3D percolating hydrogen bond network is designed for high-performance aqueous Mg-ion batteries. Aqueous Mg-ion batteries are a promising electrochemical energy storage technology. However, Mg2+ ions interact strongly with electrolyte molecules and electrode materials, resulting in insufficient ionic conductivity and solid-state diffusion, and consequently limited cycling stability and rate capability. Herein, we design an aqueous Mg-ion battery chemistry involving a hydrated eutectic electrolyte, an organic molecule anode, and a copper hexacyanoferrate (CuHCF) cathode. This hydrated eutectic electrolyte features a three-dimensional percolating hydrogen bond network formed by water molecules, which facilitates fast Mg2+ transport in the electrolyte. Moreover, the suppression of water activity in the hydrated eutectic electrolyte can efficiently improve the cycling performance of the organic molecule anode by prohibiting the dissolution issue. After coupling with the open-framework CuHCF cathode, the resultant full battery delivers a wide operating voltage of 2.2 V, an energy density of 52.2 W h kg−1, and a decent low-temperature electrochemical performance. The electrolyte and electrode chemistries proposed in this work show an alternative way to develop low-cost, safe, and high-performance Mg battery technologies. Aqueous Mg-ion batteries are a promising electrochemical energy storage technology. However, Mg 2+ ions interact strongly with electrolyte molecules and electrode materials, resulting in insufficient ionic conductivity and solid-state diffusion, and consequently limited cycling stability and rate capability. Herein, we design an aqueous Mg-ion battery chemistry involving a hydrated eutectic electrolyte, an organic molecule anode, and a copper hexacyanoferrate (CuHCF) cathode. This hydrated eutectic electrolyte features a three-dimensional percolating hydrogen bond network formed by water molecules, which facilitates fast Mg 2+ transport in the electrolyte. Moreover, the suppression of water activity in the hydrated eutectic electrolyte can efficiently improve the cycling performance of the organic molecule anode by prohibiting the dissolution issue. After coupling with the open-framework CuHCF cathode, the resultant full battery delivers a wide operating voltage of 2.2 V, an energy density of 52.2 W h kg −1 , and a decent low-temperature electrochemical performance. The electrolyte and electrode chemistries proposed in this work show an alternative way to develop low-cost, safe, and high-performance Mg battery technologies. |
Author | He, Yao Lei, Yongjiu Alshareef, Husam N Emwas, Abdul-Hamid Guo, Xianrong Yuan, Youyou Wang, Wenxi Zhu, Yunpei |
AuthorAffiliation | King Abdullah University of Science and Technology (KAUST) Core Labs Materials Science and Engineering |
AuthorAffiliation_xml | – name: Core Labs – name: Materials Science and Engineering – name: King Abdullah University of Science and Technology (KAUST) |
Author_xml | – sequence: 1 givenname: Yunpei surname: Zhu fullname: Zhu, Yunpei – sequence: 2 givenname: Xianrong surname: Guo fullname: Guo, Xianrong – sequence: 3 givenname: Yongjiu surname: Lei fullname: Lei, Yongjiu – sequence: 4 givenname: Wenxi surname: Wang fullname: Wang, Wenxi – sequence: 5 givenname: Abdul-Hamid surname: Emwas fullname: Emwas, Abdul-Hamid – sequence: 6 givenname: Youyou surname: Yuan fullname: Yuan, Youyou – sequence: 7 givenname: Yao surname: He fullname: He, Yao – sequence: 8 givenname: Husam N surname: Alshareef fullname: Alshareef, Husam N |
BookMark | eNptkEtLAzEUhYNUsK1u3AsD7oTRvCaPpbbVChU3uh4ymTvtlOmkJumi_95ofYC4uofLd-7jjNCgdz0gdE7wNcFM39QEADOhSXWEhkQWPC8kFoNvLTQ9QaMQ1hgLiqUeoul8X3sToc5gF8HG1mbQpepdt48Qssb5bNUuV_kWfNIb01vInpZ56_qsMjGCbyGcouPGdAHOvuoYvd7PXibzfPH88Di5XeSWERlzbUEoiblUTDWEk6qiFIimTGkuikZxrLimhVEMF8RqldpEMm24rQitNWdjdHmYu_XubQchlmu3831aWVLBsS7S5yxR-EBZ70Lw0JS2jSami6M3bVcSXH5kVU7JbPaZ1V2yXP2xbH27MX7_P3xxgH2wP9xv8OwdhIRzTQ |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_2c00374 crossref_primary_10_1002_smll_202402925 crossref_primary_10_1007_s11426_023_1698_6 crossref_primary_10_1021_acsenergylett_2c01255 crossref_primary_10_1016_j_jma_2024_04_029 crossref_primary_10_1021_acsenergylett_2c02585 crossref_primary_10_1016_j_jpowsour_2024_234780 crossref_primary_10_1016_j_matre_2022_100161 crossref_primary_10_1016_j_ensm_2023_103012 crossref_primary_10_1002_smll_202300148 crossref_primary_10_1039_D4CS00474D crossref_primary_10_1002_tcr_202300212 crossref_primary_10_1002_smll_202306808 crossref_primary_10_1016_j_jpowsour_2025_236633 crossref_primary_10_1016_j_jma_2024_04_036 crossref_primary_10_1016_j_nanoen_2024_110307 crossref_primary_10_1021_acsenergylett_4c02281 crossref_primary_10_1021_acsnano_4c18422 crossref_primary_10_1021_acs_nanolett_3c00033 crossref_primary_10_1002_anie_202308961 crossref_primary_10_1016_j_cej_2022_139907 crossref_primary_10_1002_adfm_202316474 crossref_primary_10_1016_j_mattod_2024_07_003 crossref_primary_10_1007_s11581_024_05699_8 crossref_primary_10_1002_adma_202208392 crossref_primary_10_1039_D3MA00622K crossref_primary_10_1063_5_0140107 crossref_primary_10_1002_anie_202310284 crossref_primary_10_1021_jacs_4c00227 crossref_primary_10_1016_j_ensm_2024_103361 crossref_primary_10_1038_s41467_023_41277_8 crossref_primary_10_1002_advs_202305524 crossref_primary_10_1016_j_jma_2023_07_011 crossref_primary_10_1016_j_jma_2023_08_009 crossref_primary_10_1021_acsami_3c13117 crossref_primary_10_1021_acsenergylett_4c00113 crossref_primary_10_1016_j_ensm_2023_103019 crossref_primary_10_1002_ange_202213757 crossref_primary_10_1016_j_ensm_2022_10_046 crossref_primary_10_1016_j_scib_2023_07_027 crossref_primary_10_1021_acsami_3c19534 crossref_primary_10_1007_s40820_023_01160_z crossref_primary_10_1016_j_ensm_2025_104049 crossref_primary_10_1002_cssc_202201373 crossref_primary_10_1002_ange_202310284 crossref_primary_10_1002_smll_202200550 crossref_primary_10_1002_smtd_202300554 crossref_primary_10_1021_acsaem_4c01505 crossref_primary_10_1016_j_electacta_2022_140753 crossref_primary_10_1016_j_ensm_2025_104088 crossref_primary_10_1016_j_nanoen_2024_110298 crossref_primary_10_1038_s41529_024_00473_7 crossref_primary_10_1016_j_ensm_2024_103197 crossref_primary_10_2139_ssrn_4118140 crossref_primary_10_1016_j_cartre_2024_100366 crossref_primary_10_1021_acsaem_2c02847 crossref_primary_10_1002_anie_202405428 crossref_primary_10_1016_j_jma_2023_11_008 crossref_primary_10_1039_D2TA03053E crossref_primary_10_1002_anie_202301934 crossref_primary_10_1021_acssuschemeng_4c04018 crossref_primary_10_1016_j_cej_2024_152864 crossref_primary_10_1016_j_est_2023_108356 crossref_primary_10_1039_D3EE03729K crossref_primary_10_1002_anie_202213757 crossref_primary_10_1002_adma_202407233 crossref_primary_10_1002_aenm_202303549 crossref_primary_10_1002_bte2_20240089 crossref_primary_10_1039_D3TA04373H crossref_primary_10_1016_j_ensm_2024_103663 crossref_primary_10_1002_adma_202412104 crossref_primary_10_1038_s41467_023_36198_5 crossref_primary_10_1016_j_flatc_2022_100444 crossref_primary_10_1016_j_ensm_2023_102822 crossref_primary_10_1039_D4EE05298F crossref_primary_10_1002_cssc_202300285 crossref_primary_10_1002_ange_202301934 crossref_primary_10_1002_ange_202405428 crossref_primary_10_1016_j_cej_2023_145154 crossref_primary_10_1002_ange_202308961 crossref_primary_10_1016_j_esci_2024_100293 |
Cites_doi | 10.1021/acsami.1c06106 10.1038/s41467-019-13436-3 10.1021/cr300162p 10.1039/D0TA03947K 10.1038/s41578-019-0166-4 10.1002/anie.201702486 10.1039/C5EE01215E 10.1021/acsnano.7b05664 10.1002/advs.202000146 10.1021/jacs.7b06313 10.1021/acs.accounts.0c00360 10.1073/pnas.1619795114 10.1002/anie.201412202 10.1021/acsenergylett.8b00009 10.1021/acs.chemmater.5b03983 10.1021/jacs.8b07696 10.1021/acs.chemrev.0c00767 10.1039/C8CS00319J 10.1039/c2ee03029b 10.1073/pnas.1400675111 10.1039/D1EE01472B 10.1002/aenm.201200598 10.1021/jacs.6b12598 10.1002/adfm.201908445 10.1002/chem.201703806 10.1021/acs.chemrev.9b00482 10.1038/s41560-020-0655-0 10.1021/acsenergylett.7b00040 10.1002/adfm.202107523 10.1021/nl403669a 10.1039/c3ta13205f 10.1038/s41560-020-00734-0 10.1063/1.1813431 10.1002/aenm.201903591 10.1038/nmat4919 10.1002/aenm.202002128 10.1021/acs.nanolett.5b05273 10.1038/s41563-020-0667-y 10.1002/advs.201700465 10.1038/s41467-020-19991-4 10.1038/nenergy.2016.129 10.1021/acssuschemeng.7b00982 10.1039/C7EE02304A 10.1021/acs.jpcb.9b08961 10.1016/j.ccr.2014.11.005 10.1016/j.chempr.2019.02.014 10.1126/science.aab1595 10.1038/s41570-020-0160-9 10.1038/s41560-019-0388-0 10.1021/acs.nanolett.5b01109 10.1016/j.chempr.2017.12.018 10.1002/anie.201908830 10.1016/j.molliq.2018.05.070 10.1002/advs.201500124 10.1016/j.nanoen.2018.12.086 10.1021/acs.jpcb.8b09439 10.1038/nchem.763 10.1016/j.joule.2020.05.018 10.1021/acs.chemrev.0c00438 10.1016/j.joule.2019.12.007 10.1016/j.joule.2018.10.028 10.1039/C5CP00486A 10.1038/s41467-018-07331-6 10.1039/C4CP05591H 10.1039/C8EE00833G 10.1021/acscentsci.7b00361 10.1039/C6EE02641A |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d1ee03691b |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 1292 |
ExternalDocumentID | 10_1039_D1EE03691B d1ee03691b |
GroupedDBID | 0-7 0R 29G 4.4 5GY 70 705 7~J AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 EBS ECGLT EE0 EF- GNO HZ H~N J3I JG M4U N9A O-G O9- P2P RCNCU RIG RPMJG RRC RSCEA SKA SLH TOV UCJ 0R~ 70~ AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c317t-9ce687047838f141bb22e192389465f84084925a83051c988941739a4cb12d943 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 12:05:31 EDT 2025 Thu Apr 24 23:00:19 EDT 2025 Tue Jul 01 01:45:51 EDT 2025 Tue Mar 22 05:00:46 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c317t-9ce687047838f141bb22e192389465f84084925a83051c988941739a4cb12d943 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d1ee03691b ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5029-2142 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2022/ee/d1ee03691b |
PQID | 2640953693 |
PQPubID | 2047494 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2640953693 crossref_citationtrail_10_1039_D1EE03691B crossref_primary_10_1039_D1EE03691B rsc_primary_d1ee03691b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-16 |
PublicationDateYYYYMMDD | 2022-03-16 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Mizuno (D1EE03691B/cit23/1) 2013; 1 Li (D1EE03691B/cit16/1) 2021; 31 Zhu (D1EE03691B/cit46/1) 2021; 31 Du (D1EE03691B/cit62/1) 2017; 10 Gautam (D1EE03691B/cit13/1) 2016; 16 Whittingham (D1EE03691B/cit1/1) 2020; 120 Angell (D1EE03691B/cit48/1) 2017; 114 Luo (D1EE03691B/cit68/1) 2010; 2 Suo (D1EE03691B/cit36/1) 2015; 350 Krestyaninov (D1EE03691B/cit49/1) 2018; 264 Grey (D1EE03691B/cit3/1) 2020; 11 Wang (D1EE03691B/cit22/1) 2013; 13 Lim (D1EE03691B/cit57/1) 2018; 140 Andrews (D1EE03691B/cit6/1) 2018; 4 Younesi (D1EE03691B/cit51/1) 2015; 8 Nam (D1EE03691B/cit14/1) 2015; 15 Zhang (D1EE03691B/cit66/1) 2021; 13 Zhu (D1EE03691B/cit11/1) 2020; 10 Liang (D1EE03691B/cit33/1) 2017; 16 Song (D1EE03691B/cit35/1) 2015; 2 Guo (D1EE03691B/cit9/1) 2020; 10 Xu (D1EE03691B/cit12/1) 2019; 5 Wang (D1EE03691B/cit19/1) 2017; 3 Fernández-Serra (D1EE03691B/cit60/1) 2004; 121 Zheng (D1EE03691B/cit40/1) 2019; 58 Hammond (D1EE03691B/cit43/1) 2017; 56 Zhang (D1EE03691B/cit45/1) 2020; 53 Mizuno (D1EE03691B/cit65/1) 2013; 1 Han (D1EE03691B/cit52/1) 2020; 8 D’Amico (D1EE03691B/cit50/1) 2015; 17 Chen (D1EE03691B/cit20/1) 2017; 2 Leonard (D1EE03691B/cit38/1) 2018; 3 Mao (D1EE03691B/cit8/1) 2018; 47 Zhu (D1EE03691B/cit54/1) 2021; 14 Tutusaus (D1EE03691B/cit17/1) 2015; 54 Xie (D1EE03691B/cit42/1) 2020; 19 Smith (D1EE03691B/cit44/1) 2014; 114 Liu (D1EE03691B/cit34/1) 2017; 10 Xue (D1EE03691B/cit63/1) 2017; 139 Ding (D1EE03691B/cit59/1) 2014; 111 Attias (D1EE03691B/cit5/1) 2019; 3 Lukatskaya (D1EE03691B/cit37/1) 2018; 11 Li (D1EE03691B/cit58/1) 2019; 123 Qiu (D1EE03691B/cit47/1) 2019; 10 Borodin (D1EE03691B/cit53/1) 2020; 4 Liu (D1EE03691B/cit67/1) 2020; 7 Lu (D1EE03691B/cit29/1) 2020; 4 Tian (D1EE03691B/cit2/1) 2021; 121 Rodríguez-Pérez (D1EE03691B/cit25/1) 2017; 139 Gheytani (D1EE03691B/cit64/1) 2017; 4 Huie (D1EE03691B/cit10/1) 2015; 287 Liang (D1EE03691B/cit4/1) 2020; 5 Li (D1EE03691B/cit7/1) 2020; 5 Zhao (D1EE03691B/cit55/1) 2019; 57 Song (D1EE03691B/cit24/1) 2015; 17 Sun (D1EE03691B/cit21/1) 2016; 28 Zhang (D1EE03691B/cit26/1) 2017; 5 Muldoon (D1EE03691B/cit15/1) 2012; 5 Yamada (D1EE03691B/cit39/1) 2016; 1 Jiang (D1EE03691B/cit31/1) 2019; 4 Zhang (D1EE03691B/cit27/1) 2017; 23 Dong (D1EE03691B/cit18/1) 2020; 5 Borodin (D1EE03691B/cit56/1) 2017; 11 Poizot (D1EE03691B/cit28/1) 2020; 120 Dokko (D1EE03691B/cit61/1) 2018; 122 Yang (D1EE03691B/cit32/1) 2020; 4 Li (D1EE03691B/cit69/1) 2013; 3 Yin (D1EE03691B/cit30/1) 2020; 30 He (D1EE03691B/cit41/1) 2018; 9 |
References_xml | – volume: 31 start-page: 100650 year: 2021 ident: D1EE03691B/cit16/1 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 40451 year: 2021 ident: D1EE03691B/cit66/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c06106 – volume: 10 start-page: 5374 year: 2019 ident: D1EE03691B/cit47/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13436-3 – volume: 114 start-page: 11060 year: 2014 ident: D1EE03691B/cit44/1 publication-title: Chem. Rev. doi: 10.1021/cr300162p – volume: 8 start-page: 15479 year: 2020 ident: D1EE03691B/cit52/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03947K – volume: 5 start-page: 276 year: 2020 ident: D1EE03691B/cit7/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0166-4 – volume: 56 start-page: 9782 year: 2017 ident: D1EE03691B/cit43/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702486 – volume: 8 start-page: 1905 year: 2015 ident: D1EE03691B/cit51/1 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01215E – volume: 11 start-page: 10462 year: 2017 ident: D1EE03691B/cit56/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b05664 – volume: 7 start-page: 2000146 year: 2020 ident: D1EE03691B/cit67/1 publication-title: Adv. Sci. doi: 10.1002/advs.202000146 – volume: 139 start-page: 13031 year: 2017 ident: D1EE03691B/cit25/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06313 – volume: 53 start-page: 1648 year: 2020 ident: D1EE03691B/cit45/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00360 – volume: 114 start-page: 834 year: 2017 ident: D1EE03691B/cit48/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1619795114 – volume: 54 start-page: 7900 year: 2015 ident: D1EE03691B/cit17/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201412202 – volume: 3 start-page: 373 year: 2018 ident: D1EE03691B/cit38/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00009 – volume: 28 start-page: 534 year: 2016 ident: D1EE03691B/cit21/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03983 – volume: 140 start-page: 15661 issue: 46 year: 2018 ident: D1EE03691B/cit57/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07696 – volume: 121 start-page: 1623 year: 2021 ident: D1EE03691B/cit2/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00767 – volume: 47 start-page: 8804 year: 2018 ident: D1EE03691B/cit8/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00319J – volume: 5 start-page: 5941 year: 2012 ident: D1EE03691B/cit15/1 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03029b – volume: 111 start-page: 3310 year: 2014 ident: D1EE03691B/cit59/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1400675111 – volume: 14 start-page: 4463 year: 2021 ident: D1EE03691B/cit54/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01472B – volume: 3 start-page: 290 year: 2013 ident: D1EE03691B/cit69/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200598 – volume: 139 start-page: 2164 year: 2017 ident: D1EE03691B/cit63/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12598 – volume: 30 start-page: 1908445 year: 2020 ident: D1EE03691B/cit30/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908445 – volume: 23 start-page: 17118 year: 2017 ident: D1EE03691B/cit27/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201703806 – volume: 120 start-page: 6490 year: 2020 ident: D1EE03691B/cit28/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00482 – volume: 5 start-page: 646 year: 2020 ident: D1EE03691B/cit4/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-0655-0 – volume: 2 start-page: 1115 year: 2017 ident: D1EE03691B/cit20/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00040 – volume: 31 start-page: 2107523 year: 2021 ident: D1EE03691B/cit46/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107523 – volume: 13 start-page: 5748 year: 2013 ident: D1EE03691B/cit22/1 publication-title: Nano Lett. doi: 10.1021/nl403669a – volume: 1 start-page: 13055 year: 2013 ident: D1EE03691B/cit65/1 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13205f – volume: 5 start-page: 1043 year: 2020 ident: D1EE03691B/cit18/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-00734-0 – volume: 121 start-page: 11136 year: 2004 ident: D1EE03691B/cit60/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1813431 – volume: 10 start-page: 1903591 year: 2020 ident: D1EE03691B/cit9/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903591 – volume: 16 start-page: 841 year: 2017 ident: D1EE03691B/cit33/1 publication-title: Nat. Mater. doi: 10.1038/nmat4919 – volume: 10 start-page: 2002128 year: 2020 ident: D1EE03691B/cit11/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002128 – volume: 16 start-page: 2426 year: 2016 ident: D1EE03691B/cit13/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05273 – volume: 19 start-page: 1006 year: 2020 ident: D1EE03691B/cit42/1 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0667-y – volume: 4 start-page: 1700465 year: 2017 ident: D1EE03691B/cit64/1 publication-title: Adv. Sci. doi: 10.1002/advs.201700465 – volume: 11 start-page: 6279 year: 2020 ident: D1EE03691B/cit3/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19991-4 – volume: 1 start-page: 16129 year: 2016 ident: D1EE03691B/cit39/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.129 – volume: 5 start-page: 6727 year: 2017 ident: D1EE03691B/cit26/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b00982 – volume: 10 start-page: 2616 year: 2017 ident: D1EE03691B/cit62/1 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02304A – volume: 123 start-page: 10514 year: 2019 ident: D1EE03691B/cit58/1 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.9b08961 – volume: 287 start-page: 15 year: 2015 ident: D1EE03691B/cit10/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2014.11.005 – volume: 1 start-page: 13055 year: 2013 ident: D1EE03691B/cit23/1 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13205f – volume: 5 start-page: 1194 year: 2019 ident: D1EE03691B/cit12/1 publication-title: Chemistry doi: 10.1016/j.chempr.2019.02.014 – volume: 350 start-page: 938 year: 2015 ident: D1EE03691B/cit36/1 publication-title: Science doi: 10.1126/science.aab1595 – volume: 4 start-page: 127 year: 2020 ident: D1EE03691B/cit29/1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-020-0160-9 – volume: 4 start-page: 495 year: 2019 ident: D1EE03691B/cit31/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0388-0 – volume: 15 start-page: 4071 year: 2015 ident: D1EE03691B/cit14/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01109 – volume: 4 start-page: 564 year: 2018 ident: D1EE03691B/cit6/1 publication-title: Chemistry doi: 10.1016/j.chempr.2017.12.018 – volume: 58 start-page: 14202 year: 2019 ident: D1EE03691B/cit40/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908830 – volume: 264 start-page: 343 year: 2018 ident: D1EE03691B/cit49/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.05.070 – volume: 2 start-page: 1500124 year: 2015 ident: D1EE03691B/cit35/1 publication-title: Adv. Sci. doi: 10.1002/advs.201500124 – volume: 57 start-page: 625 year: 2019 ident: D1EE03691B/cit55/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.086 – volume: 122 start-page: 10736 issue: 47 year: 2018 ident: D1EE03691B/cit61/1 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b09439 – volume: 2 start-page: 760 year: 2010 ident: D1EE03691B/cit68/1 publication-title: Nat. Chem. doi: 10.1038/nchem.763 – volume: 4 start-page: 1557 year: 2020 ident: D1EE03691B/cit32/1 publication-title: Joule doi: 10.1016/j.joule.2020.05.018 – volume: 120 start-page: 6328 year: 2020 ident: D1EE03691B/cit1/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00438 – volume: 4 start-page: 69 year: 2020 ident: D1EE03691B/cit53/1 publication-title: Joule doi: 10.1016/j.joule.2019.12.007 – volume: 3 start-page: 27 year: 2019 ident: D1EE03691B/cit5/1 publication-title: Joule doi: 10.1016/j.joule.2018.10.028 – volume: 17 start-page: 10987 year: 2015 ident: D1EE03691B/cit50/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP00486A – volume: 9 start-page: 5320 year: 2018 ident: D1EE03691B/cit41/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07331-6 – volume: 17 start-page: 5256 year: 2015 ident: D1EE03691B/cit24/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05591H – volume: 11 start-page: 2876 year: 2018 ident: D1EE03691B/cit37/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00833G – volume: 3 start-page: 1121 year: 2017 ident: D1EE03691B/cit19/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00361 – volume: 10 start-page: 205 year: 2017 ident: D1EE03691B/cit34/1 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02641A |
SSID | ssj0062079 |
Score | 2.615809 |
Snippet | Aqueous Mg-ion batteries are a promising electrochemical energy storage technology. However, Mg
2+
ions interact strongly with electrolyte molecules and... Aqueous Mg-ion batteries are a promising electrochemical energy storage technology. However, Mg2+ ions interact strongly with electrolyte molecules and... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1282 |
SubjectTerms | Anodes Anodic dissolution Batteries Cathodes Cathodic dissolution Coupling (molecular) Diffusion rate Dissolution Electrochemical analysis Electrochemistry Electrode materials Electrodes Electrolytes Energy storage Eutectics Flux density Hydrogen bonds Ion currents Lithium Low temperature Magnesium Organic chemistry Percolation Storage batteries Water activity Water chemistry |
Title | Hydrated eutectic electrolytes for high-performance Mg-ion batteries |
URI | https://www.proquest.com/docview/2640953693 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYd4ED2oCJsoEiwQVVHkn8kfi4sW4VdOPSqhWXqHacrWjKqtFI2_56np048VCFgEtUWU5U-f3yvvLe7yH0oVikSrOEYi6VwDTJJZZUMVyENGdcEqoWJlA8v-CjKf0yZ_OurMh2l6zloXrY2FfyP1KFNZCr6ZL9B8m2D4UF-A3yhStIGK5_JePRfW6YHvKBrsy3gKUaNFNtru9NOtVUEBo6YrzyugPOL7GRuLS8mq6C0KXm60ZAgwavAc61TXYY-H5VWdVdlSu9bCt4Kpt1nRsGoZvGHlp1Ul7-WFaDcbdz1uSoZ7q8W_ppB4hYTQ0bb4FSJzdcZamtHGnm03nKNGEUM17PujvU3loS8kcamHlII546BeMZe6YZfJN4o9oPiWFNzSOtwSCLSHbGzX3Qv_iWnU7H42wynE-20HYMQUXcQ9tHX4_PZs5y8zi03Izt_3Z0tkR86p792IHpopKtWzcyxromkx30vIkpgqMaILvoiS5foGce0-RLdOKgEjioBD5UAoBH8DtUghoqQQuVV2h6Opx8HuFmgAZW4BausVCagz6mSUrSIqKRlHGsjUufCspZAbF9argpFyko_UiJFJajhIgFVTKKc0HJHuqVN6V-jQKeslCnxFQjw4OKRKpE5JIykRsroVQffXSnkqmGXd4MObnObJUDEdlJNBzaEzzuo_ft3lXNqbJx14E73Kx5535m4L4bgkQuSB_twYG393fyefPn-_bR0w7OB6i3vq30W_Ar1_JdA4dfnhV5fg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrated+eutectic+electrolytes+for+high-performance+Mg-ion+batteries&rft.jtitle=Energy+%26+environmental+science&rft.au=Zhu%2C+Yunpei&rft.au=Guo%2C+Xianrong&rft.au=Yongjiu+Lei&rft.au=Wang%2C+Wenxi&rft.date=2022-03-16&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=15&rft.issue=3&rft.spage=1282&rft.epage=1292&rft_id=info:doi/10.1039%2Fd1ee03691b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |