Semi-quantitative determination of active sites in heterogeneous catalysts for photo/electrocatalysis

Catalysis is a widely applied process due to its predominant role in the chemical industry. Developing highly active exposed facets via defect engineering is considered to be the most promising strategy for optimizing the electrical and optical properties of catalysts to improve their catalytic acti...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 6; pp. 2528 - 2543
Main Authors Ren, Jing, Chi, Haoyuan, Tan, Ling, Peng, Yung-Kang, Li, Guangchao, Meng-Jung Li, Molly, Zhao, Yufei, Duan, Xue
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 08.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Catalysis is a widely applied process due to its predominant role in the chemical industry. Developing highly active exposed facets via defect engineering is considered to be the most promising strategy for optimizing the electrical and optical properties of catalysts to improve their catalytic activity. Therefore, quantitative determination and calculation of the concentration of defect structures related to the highly exposed active crystal plane provided an efficient route for elucidating the catalytic active sites, and has attracted increasing attention. This work not only summarizes the existing defect characterization methods and the calculation methods of defect concentrations reported in recent years but also proposes a semi-quantitative method based on X-ray absorption fine structure (XAFS) and related methods for the determination and classification of active sites related to the active surface, which can be applied for the semi-quantitative calculation of defect concentrations in widely used metals and metal oxides. In addition, we emphasize the deficiencies of current defect concentration quantitative methods and look forward to the future development of defect characterization methods under working conditions. This review further reveals the structure-activity relationship between the content of active sites and the reaction performance. This review focuses on exploring the defect active sites by determining the location and type and semi-quantitative calculation of defect concentrations by a variety of representational methods.
AbstractList Catalysis is a widely applied process due to its predominant role in the chemical industry. Developing highly active exposed facets via defect engineering is considered to be the most promising strategy for optimizing the electrical and optical properties of catalysts to improve their catalytic activity. Therefore, quantitative determination and calculation of the concentration of defect structures related to the highly exposed active crystal plane provided an efficient route for elucidating the catalytic active sites, and has attracted increasing attention. This work not only summarizes the existing defect characterization methods and the calculation methods of defect concentrations reported in recent years but also proposes a semi-quantitative method based on X-ray absorption fine structure (XAFS) and related methods for the determination and classification of active sites related to the active surface, which can be applied for the semi-quantitative calculation of defect concentrations in widely used metals and metal oxides. In addition, we emphasize the deficiencies of current defect concentration quantitative methods and look forward to the future development of defect characterization methods under working conditions. This review further reveals the structure-activity relationship between the content of active sites and the reaction performance. This review focuses on exploring the defect active sites by determining the location and type and semi-quantitative calculation of defect concentrations by a variety of representational methods.
Catalysis is a widely applied process due to its predominant role in the chemical industry. Developing highly active exposed facets via defect engineering is considered to be the most promising strategy for optimizing the electrical and optical properties of catalysts to improve their catalytic activity. Therefore, quantitative determination and calculation of the concentration of defect structures related to the highly exposed active crystal plane provided an efficient route for elucidating the catalytic active sites, and has attracted increasing attention. This work not only summarizes the existing defect characterization methods and the calculation methods of defect concentrations reported in recent years but also proposes a semi-quantitative method based on X-ray absorption fine structure (XAFS) and related methods for the determination and classification of active sites related to the active surface, which can be applied for the semi-quantitative calculation of defect concentrations in widely used metals and metal oxides. In addition, we emphasize the deficiencies of current defect concentration quantitative methods and look forward to the future development of defect characterization methods under working conditions. This review further reveals the structure–activity relationship between the content of active sites and the reaction performance.
Catalysis is a widely applied process due to its predominant role in the chemical industry. Developing highly active exposed facets via defect engineering is considered to be the most promising strategy for optimizing the electrical and optical properties of catalysts to improve their catalytic activity. Therefore, quantitative determination and calculation of the concentration of defect structures related to the highly exposed active crystal plane provided an efficient route for elucidating the catalytic active sites, and has attracted increasing attention. This work not only summarizes the existing defect characterization methods and the calculation methods of defect concentrations reported in recent years but also proposes a semi-quantitative method based on X-ray absorption fine structure (XAFS) and related methods for the determination and classification of active sites related to the active surface, which can be applied for the semi-quantitative calculation of defect concentrations in widely used metals and metal oxides. In addition, we emphasize the deficiencies of current defect concentration quantitative methods and look forward to the future development of defect characterization methods under working conditions. This review further reveals the structure–activity relationship between the content of active sites and the reaction performance.
Author Li, Guangchao
Peng, Yung-Kang
Duan, Xue
Zhao, Yufei
Tan, Ling
Meng-Jung Li, Molly
Ren, Jing
Chi, Haoyuan
AuthorAffiliation Department of Chemistry
State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization
The Hong Kong Polytechnic University
State Key Laboratory of Chemical Resource Engineering
ANSTEEL Research Institute of Vanadium & Titanium (Iron & Steel)
City University of Hong Kong
Beijing University of Chemical Technology
Department of Applied Physics
AuthorAffiliation_xml – sequence: 0
  name: City University of Hong Kong
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: The Hong Kong Polytechnic University
– sequence: 0
  name: State Key Laboratory of Chemical Resource Engineering
– sequence: 0
  name: ANSTEEL Research Institute of Vanadium & Titanium (Iron & Steel)
– sequence: 0
  name: State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization
– sequence: 0
  name: Beijing University of Chemical Technology
– sequence: 0
  name: Department of Applied Physics
Author_xml – sequence: 1
  givenname: Jing
  surname: Ren
  fullname: Ren, Jing
– sequence: 2
  givenname: Haoyuan
  surname: Chi
  fullname: Chi, Haoyuan
– sequence: 3
  givenname: Ling
  surname: Tan
  fullname: Tan, Ling
– sequence: 4
  givenname: Yung-Kang
  surname: Peng
  fullname: Peng, Yung-Kang
– sequence: 5
  givenname: Guangchao
  surname: Li
  fullname: Li, Guangchao
– sequence: 6
  givenname: Molly
  surname: Meng-Jung Li
  fullname: Meng-Jung Li, Molly
– sequence: 7
  givenname: Yufei
  surname: Zhao
  fullname: Zhao, Yufei
– sequence: 8
  givenname: Xue
  surname: Duan
  fullname: Duan, Xue
BookMark eNptkUtrwzAMgM3oYF3Xy-6DwG6DrLKdOMmxdE8Y7LDuHBxHWV1Su7WdQf_90gcdjOmi1ycJSZdkYKxBQq4p3FPgxaRmQUIBnKszMmSQQpwlhRic7Dy_IGPvl9BLDiCKYkjwA1c63nTSBB1k0N8Y1RjQrbTpPWsi20RS7eNeB_SRNtFiB9gvNGg7HykZZLv1wUeNddF6YYOdYIsqOHtMaX9FzhvZehwf9Yh8Pj3OZy_x2_vz62z6FitOsxDnwAqW0yqplZBCAlS5kLVolKoLbHjaIFMplSiTqk5pUdUAmUy4xAayrBKUj8jtoe_a2U2HPpRL2znTjyxZliWUiyxlPQUHSjnrvcOmVPvdrQlO6rakUO7uWT6w-XR_z1lfcvenZO30Srrt__DNAXZenbjf5_AfC1WEXQ
CitedBy_id crossref_primary_10_1039_D4TA05885B
crossref_primary_10_1039_D4EE02365J
crossref_primary_10_1007_s12274_023_6339_x
crossref_primary_10_1016_j_isci_2024_110420
crossref_primary_10_1016_j_cplett_2024_141624
crossref_primary_10_1016_j_ces_2024_120553
crossref_primary_10_1039_D4NR02645D
crossref_primary_10_1002_aenm_202402441
crossref_primary_10_1021_acsaelm_3c00515
crossref_primary_10_1016_j_cej_2024_154111
crossref_primary_10_1155_2024_9582237
crossref_primary_10_1016_j_gee_2024_02_005
crossref_primary_10_26599_NRE_2024_9120132
Cites_doi 10.1002/anie.202104397
10.1021/cg9012944
10.1016/j.ces.2021.116839
10.1016/j.nanoen.2017.05.044
10.1021/jacs.8b04819
10.1146/annurev.pc.45.100194.003445
10.1021/ic062394m
10.1002/advs.201900053
10.1021/acssuschemeng.2c04436
10.1038/s41467-019-12385-1
10.1002/anie.201904246
10.1002/cssc.201802248
10.1039/D0GC02786C
10.1021/acsanm.0c00092
10.1002/anie.201711255
10.1126/science.1093425
10.1039/b816376f
10.1039/C4CS00236A
10.1002/anie.201701477
10.1021/am300835p
10.1126/science.1157581
10.1038/s41596-020-0385-6
10.1126/science.1197461
10.1103/PhysRevLett.87.266104
10.1126/science.1078962
10.1021/acs.chemmater.6b01784
10.1039/C4NR01887G
10.1039/D2TA00070A
10.1002/aenm.201703585
10.1016/j.jechem.2018.09.011
10.1021/acs.iecr.9b06464
10.1016/j.apcatb.2015.04.016
10.1039/c0cs00176g
10.1002/adma.202101772
10.1002/aenm.201900881
10.1016/j.chemosphere.2021.131191
10.1016/0926-860X(94)80353-6
10.1016/j.cattod.2018.07.010
10.1016/j.apcatb.2020.119247
10.1002/adfm.201909832
10.1021/acsami.6b12616
10.31635/ccschem.021.202000750
10.1016/S0166-9834(00)81550-X
10.1016/j.jechem.2020.04.063
10.1016/j.jcat.2018.07.018
10.1002/smtd.201800006
10.1002/adma.201604765
10.1016/j.apcatb.2022.121575
10.1021/cm300739y
10.1002/anie.202204500
10.1016/0166-9834(91)80103-4
10.1021/jp505559u
10.1021/acsnano.1c06189
10.1021/acscatal.0c00014
10.1016/j.apsusc.2013.04.007
10.1002/adma.201701546
10.1039/C6RA04071C
10.1039/c1cp20417c
10.1016/j.gee.2020.04.014
10.1016/j.esci.2022.05.004
10.1007/s12274-018-2033-9
10.1002/smtd.201800406
10.1016/j.cplett.2018.05.055
10.1016/j.nanoen.2019.03.024
10.1021/cr200434v
10.1016/j.nantod.2017.12.011
10.1039/C7SC04828A
10.1016/j.xcrp.2021.100322
10.1126/science.1141483
10.1038/s41929-022-00839-7
10.1039/C7CC07186H
10.1002/smll.202202336
10.1002/smtd.201800083
10.1016/j.mrl.2021.10.002
10.1002/adfm.202001097
10.1016/j.joule.2020.10.002
10.1002/cctc.201601341
10.1021/ja402956f
10.1016/j.ccr.2021.213983
10.1021/jacs.5b12080
10.1021/acs.chemrev.7b00289
10.1021/ja207826q
10.1021/jacs.7b06856
10.1021/jacs.1c03166
10.1021/acs.inorgchem.5b00493
10.1021/acsenergylett.1c00057
10.1007/s12209-020-00277-1
10.1021/jp109585t
10.1002/adma.201703828
10.1038/s41467-020-17070-2
10.1016/j.jhazmat.2021.126816
10.1021/jacs.1c05754
10.1002/anie.202211991
10.1016/j.jmst.2021.09.054
10.1038/s41467-017-00619-z
10.1039/C9CC01561B
10.1038/s41467-019-08697-x
10.1038/s41467-020-14848-2
10.1016/j.apcatb.2019.118508
10.1016/j.apcatb.2020.118884
10.1021/acscatal.8b00719
10.1002/adfm.202010291
10.1126/science.abm3371
10.1021/jacs.6b01606
10.1016/j.cogsc.2022.100646
10.1016/j.cej.2021.132310
10.1021/cm200029q
10.1016/j.nanoen.2018.08.058
10.1021/acs.jpclett.0c01557
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d2ta09033c
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 2543
ExternalDocumentID 10_1039_D2TA09033C
d2ta09033c
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c317t-8029281b4dc6a6a00b86ad6fccd9ef35fe2c51aea4bd519bd007a43aef077b613
ISSN 2050-7488
IngestDate Mon Jun 30 12:04:24 EDT 2025
Tue Jul 01 01:13:35 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Tue Dec 17 20:58:44 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-8029281b4dc6a6a00b86ad6fccd9ef35fe2c51aea4bd519bd007a43aef077b613
Notes Chem. Soc. Rev.
Dr Peng obtained his PhD degree in 2017 from the University of Oxford in Inorganic Chemistry, for which he served as an Oxford Clarendon scholar as top 3% graduate of 2013 admission year. He is currently an Assistant in Chemistry Department of City University of Hong Kong working on the understanding of surface chemistry for the design and synthesis of hetero(photo) catalysts. He has published over 50 SCI papers in the relevant field and secured fundings more than 4 million HKD as PI.
J. Am. Soc. Chem.
Chem. Eng. Sci.
He was the "Highly Cited Researcher" selected by Clarivate since 2019-2022.
IECR
,
.
in situ
Haoyuan Chi received his BS degree from China University of Petroleum in 2018 and obtained MS degrees from Beijing University of Chemical Technology in 2021 under the supervision of Prof. Yufei Zhao and Prof. Yufei Song. He is currently a PhD candidate under the guidance of Prof. Xinbin Ma at Tianjin University. His research focuses on preparation and application of layered double hydroxides.
Angew. Chem.
2
Prof. Xue Duan, Academician of the Chinese Academy of Sciences, is the Executive Vice-Chair of the Academic Committee of the State Key Laboratory of Chemical Resource Engineering. Over the past 30 years has established a distinctive research program covering "Intercalation Assembly of Layered Materials and Resource Utilization". He has proposed many innovative concepts such as understanding intercalated structures based on assembly of octahedral units, coupling of catalytic reaction enthalpy and heat transfer
ultrastable mineralization, high-efficiency low-cost green hydrogen, and dual carbon utilization in industrial carbonate hydrorefining. He has been one of the China's most highly cited scientists for many years.
and
Jing Ren is currently studying for her PhD in Beijing University of Chemical Technology under the supervision of Prof. Yufei Zhao at the State Key Laboratory of Chemical Resource Engineering. Her main research interest is photo/electrocatalytic water splitting coupling with organic synthesis.
Adv. Mater.
Prof. Yufei Zhao was employed by the State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology in 2018. His works focus on industrial-scale preparation and application of two-dimensional monolayer materials, efficient utilization of resources, and photocatalytic and electrocatalytic synthesis of high-value fine chemicals. He has published more than 100 SCI papers with more than 18 000 citations (H factor 64), and more than 50 SCI papers as the first/corresponding author, including
Ling Tan was born in 1993 in Sichuan Province, China. She completed her Bachelor's degree in 2016 at Beijing University of Chemical Technology (BUCT) and obtained her PhD in 2021 at BUCT under the supervision of Prof. Yu-Fei Song. Her research interests mainly focus on the application of 2D nanomaterials in photoreduction of CO
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5325-8991
0000-0002-9494-9676
0000-0001-9590-6902
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2023/ta/d2ta09033c
PQID 2774136752
PQPubID 2047523
PageCount 16
ParticipantIDs crossref_citationtrail_10_1039_D2TA09033C
crossref_primary_10_1039_D2TA09033C
rsc_primary_d2ta09033c
proquest_journals_2774136752
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-08
PublicationDateYYYYMMDD 2023-02-08
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-08
  day: 08
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Peng (D2TA09033C/cit88/1) 2016; 138
Beck (D2TA09033C/cit51/1) 2020; 11
Qin (D2TA09033C/cit109/1) 2019; 60
Hao (D2TA09033C/cit57/1) 2020; 59
Huang (D2TA09033C/cit14/1) 2022; 4
Yildirimcan (D2TA09033C/cit118/1) 2016; 6
Li (D2TA09033C/cit103/1) 2022; 61
Yi (D2TA09033C/cit98/1) 2018; 140
Lee (D2TA09033C/cit49/1) 2021; 6
Schneider (D2TA09033C/cit106/1) 2009; 19
Kayaci (D2TA09033C/cit114/1) 2014; 6
Fang (D2TA09033C/cit78/1) 2020; 11
Zhang (D2TA09033C/cit21/1) 2019; 3
Li (D2TA09033C/cit102/1) 2021; 143
Peng (D2TA09033C/cit84/1) 2018; 18
Jin (D2TA09033C/cit83/1) 2022; 10
Misono (D2TA09033C/cit4/1) 1990; 64
Yang (D2TA09033C/cit35/1) 2022; 315
Wang (D2TA09033C/cit26/1) 2017; 56
You (D2TA09033C/cit110/1) 2010; 10
Wang (D2TA09033C/cit59/1) 2017; 56
Terlingen (D2TA09033C/cit116/1) 2022; 61
Zhou (D2TA09033C/cit17/1) 2022; 18
Somorjai (D2TA09033C/cit5/1) 1994; 45
Giuli (D2TA09033C/cit64/1) 2015; 54
Zhou (D2TA09033C/cit8/1) 2011; 40
Wang (D2TA09033C/cit111/1) 2012; 4
Liu (D2TA09033C/cit42/1) 2018; 2
Liu (D2TA09033C/cit58/1) 2017; 29
Chauvel (D2TA09033C/cit3/1) 1994; 115
Sun (D2TA09033C/cit43/1) 2022; 421
Jaramillo (D2TA09033C/cit36/1) 2007; 317
Liu (D2TA09033C/cit28/1) 2017; 29
Tan (D2TA09033C/cit40/1) 2019; 58
Kong (D2TA09033C/cit41/1) 2011; 133
Rana (D2TA09033C/cit65/1) 2017; 9
Xie (D2TA09033C/cit44/1) 2017; 29
Peng (D2TA09033C/cit99/1) 2022; 2
Zhang (D2TA09033C/cit16/1) 2020; 277
Zhang (D2TA09033C/cit18/1) 2019; 6
Tan (D2TA09033C/cit55/1) 2019; 58
Liu (D2TA09033C/cit113/1) 2018; 366
Xin (D2TA09033C/cit108/1) 2015; 176–177
Raskar (D2TA09033C/cit119/1) 2019; 30
Zuzeng Qin (D2TA09033C/cit20/1) 2021; 37
Rossi (D2TA09033C/cit63/1) 2014; 118
Xie (D2TA09033C/cit31/1) 2018; 11
Zhang (D2TA09033C/cit33/1) 2022; 36
Wu (D2TA09033C/cit74/1) 2017; 38
Ding (D2TA09033C/cit77/1) 2021; 143
Rao (D2TA09033C/cit22/1) 2022; 2
Schaub (D2TA09033C/cit37/1) 2003; 299
Delgado (D2TA09033C/cit73/1) 2019; 333
Geng (D2TA09033C/cit112/1) 2018; 57
Chen (D2TA09033C/cit100/1) 2021; 38
Li (D2TA09033C/cit97/1) 2019; 10
Huang (D2TA09033C/cit52/1) 2021; 33
Chen (D2TA09033C/cit24/1) 2020; 30
Tan (D2TA09033C/cit121/1) 2021; 2
Sun (D2TA09033C/cit9/1) 2015; 44
Feng (D2TA09033C/cit46/1) 2018; 8
Sacco (D2TA09033C/cit120/1) 2022; 112
Du (D2TA09033C/cit25/1) 2021; 27
Caetano (D2TA09033C/cit79/1) 2011; 115
Xiao (D2TA09033C/cit12/1) 2021; 53
Zhu (D2TA09033C/cit15/1) 2020; 30
Tao (D2TA09033C/cit39/1) 2011; 331
Wang (D2TA09033C/cit54/1) 2020; 22
Wang (D2TA09033C/cit95/1) 2021; 60
Rana (D2TA09033C/cit70/1) 2017; 9
Sideris (D2TA09033C/cit80/1) 2008; 321
Zhao (D2TA09033C/cit61/1) 2018; 8
Liu (D2TA09033C/cit19/1) 2021; 6
Ni (D2TA09033C/cit32/1) 2021; 441
Gutiérrez (D2TA09033C/cit75/1) 2013; 276
Caetano (D2TA09033C/cit71/1) 2011; 115
Peck (D2TA09033C/cit76/1) 2012; 24
Zhao (D2TA09033C/cit60/1) 2017; 29
Zheng (D2TA09033C/cit87/1) 2011; 13
Vedrine (D2TA09033C/cit1/1) 2019; 12
Ertl (D2TA09033C/cit6/1) 2000; 45
Cadars (D2TA09033C/cit81/1) 2011; 23
Guan (D2TA09033C/cit104/1) 2013; 135
Xiao (D2TA09033C/cit7/1) 2020; 4
Kuwa (D2TA09033C/cit72/1) 2020; 3
Peng (D2TA09033C/cit90/1) 2017; 8
Yi (D2TA09033C/cit85/1) 2020; 15
Bai (D2TA09033C/cit11/1) 2018; 53
Wang (D2TA09033C/cit69/1) 2020; 270
Zhao (D2TA09033C/cit68/1) 2016; 138
Geng (D2TA09033C/cit115/1) 2018; 57
Wang (D2TA09033C/cit107/1) 2021; 283
Li (D2TA09033C/cit48/1) 2021; 31
Fan (D2TA09033C/cit53/1) 2021; 15
Zhou (D2TA09033C/cit27/1) 2017; 53
Kreissl (D2TA09033C/cit101/1) 2017; 139
Peng (D2TA09033C/cit91/1) 2018; 9
Zhang (D2TA09033C/cit62/1) 2019; 9
Chen (D2TA09033C/cit34/1) 2022; 10
Tan (D2TA09033C/cit93/1) 2020; 264
Schaub (D2TA09033C/cit47/1) 2001; 87
Wang (D2TA09033C/cit56/1) 2012; 112
Chen (D2TA09033C/cit45/1) 2019; 10
Zhong (D2TA09033C/cit13/1) 2022; 429
Peck (D2TA09033C/cit66/1) 2012; 24
Ren (D2TA09033C/cit10/1) 2021; 72
Peng (D2TA09033C/cit96/1) 2019; 55
Chen (D2TA09033C/cit105/1) 2016; 28
Zheng (D2TA09033C/cit117/1) 2007; 46
Peng (D2TA09033C/cit89/1) 2017; 9
Tan (D2TA09033C/cit94/1) 2020; 10
Jia (D2TA09033C/cit30/1) 2019; 34
Zheng (D2TA09033C/cit86/1) 2017; 117
Li (D2TA09033C/cit122/1) 2021; 245
Yu (D2TA09033C/cit82/1) 2018; 706
Guo (D2TA09033C/cit23/1) 2022; 5
Zhou (D2TA09033C/cit29/1) 2018; 2
Gutiérrez (D2TA09033C/cit67/1) 2013; 276
Frey (D2TA09033C/cit50/1) 2022; 376
Armor (D2TA09033C/cit2/1) 1991; 78
Wahlstrom (D2TA09033C/cit38/1) 2004; 303
Tan (D2TA09033C/cit92/1) 2020; 11
References_xml – issn: 2000
  issue: vol. 45
  end-page: p 1-69
  publication-title: Advances in Catalysis
  doi: Ertl
– volume: 60
  start-page: 16149
  year: 2021
  ident: D2TA09033C/cit95/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202104397
– volume: 10
  start-page: 983
  year: 2010
  ident: D2TA09033C/cit110/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg9012944
– volume: 245
  start-page: 116839
  year: 2021
  ident: D2TA09033C/cit122/1
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.116839
– volume: 38
  start-page: 167
  year: 2017
  ident: D2TA09033C/cit74/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.044
– volume: 140
  start-page: 10764
  year: 2018
  ident: D2TA09033C/cit98/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04819
– volume: 45
  start-page: 721
  year: 1994
  ident: D2TA09033C/cit5/1
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.45.100194.003445
– volume: 46
  start-page: 6675
  year: 2007
  ident: D2TA09033C/cit117/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic062394m
– volume: 6
  start-page: 1900053
  year: 2019
  ident: D2TA09033C/cit18/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900053
– volume: 10
  start-page: 12955
  year: 2022
  ident: D2TA09033C/cit83/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.2c04436
– volume: 10
  start-page: 4421
  year: 2019
  ident: D2TA09033C/cit97/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12385-1
– volume: 58
  start-page: 11860
  year: 2019
  ident: D2TA09033C/cit40/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201904246
– volume: 12
  start-page: 577
  year: 2019
  ident: D2TA09033C/cit1/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201802248
– volume: 22
  start-page: 8604
  year: 2020
  ident: D2TA09033C/cit54/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC02786C
– volume: 3
  start-page: 2745
  year: 2020
  ident: D2TA09033C/cit72/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c00092
– volume: 57
  start-page: 6054
  year: 2018
  ident: D2TA09033C/cit112/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201711255
– volume: 303
  start-page: 511
  year: 2004
  ident: D2TA09033C/cit38/1
  publication-title: Science
  doi: 10.1126/science.1093425
– volume: 19
  start-page: 1449
  year: 2009
  ident: D2TA09033C/cit106/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/b816376f
– volume: 44
  start-page: 623
  year: 2015
  ident: D2TA09033C/cit9/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00236A
– volume: 56
  start-page: 5867
  year: 2017
  ident: D2TA09033C/cit59/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201701477
– volume: 4
  start-page: 4024
  year: 2012
  ident: D2TA09033C/cit111/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am300835p
– volume: 37
  start-page: 2005027
  year: 2021
  ident: D2TA09033C/cit20/1
  publication-title: Acta Phys.-Chim. Sin.
– volume: 321
  start-page: 113
  year: 2008
  ident: D2TA09033C/cit80/1
  publication-title: Science
  doi: 10.1126/science.1157581
– volume: 15
  start-page: 3527
  year: 2020
  ident: D2TA09033C/cit85/1
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-020-0385-6
– volume: 331
  start-page: 171
  year: 2011
  ident: D2TA09033C/cit39/1
  publication-title: Science
  doi: 10.1126/science.1197461
– volume: 87
  start-page: 266104
  year: 2001
  ident: D2TA09033C/cit47/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.266104
– volume: 299
  start-page: 377
  year: 2003
  ident: D2TA09033C/cit37/1
  publication-title: Science
  doi: 10.1126/science.1078962
– volume: 28
  start-page: 4751
  year: 2016
  ident: D2TA09033C/cit105/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01784
– volume: 6
  start-page: 10224
  year: 2014
  ident: D2TA09033C/cit114/1
  publication-title: Nanoscale
  doi: 10.1039/C4NR01887G
– volume: 10
  start-page: 6927
  year: 2022
  ident: D2TA09033C/cit34/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA00070A
– volume: 45
  start-page: 1
  volume-title: Advances in Catalysis
  year: 2000
  ident: D2TA09033C/cit6/1
– volume: 8
  start-page: 1703585
  year: 2018
  ident: D2TA09033C/cit61/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703585
– volume: 34
  start-page: 57
  year: 2019
  ident: D2TA09033C/cit30/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.09.011
– volume: 59
  start-page: 3008
  year: 2020
  ident: D2TA09033C/cit57/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b06464
– volume: 176–177
  start-page: 354
  year: 2015
  ident: D2TA09033C/cit108/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2015.04.016
– volume: 40
  start-page: 4167
  year: 2011
  ident: D2TA09033C/cit8/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00176g
– volume: 33
  start-page: e2101772
  year: 2021
  ident: D2TA09033C/cit52/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101772
– volume: 9
  start-page: 1900881
  year: 2019
  ident: D2TA09033C/cit62/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900881
– volume: 283
  start-page: 131191
  year: 2021
  ident: D2TA09033C/cit107/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131191
– volume: 115
  start-page: 173
  year: 1994
  ident: D2TA09033C/cit3/1
  publication-title: Appl. Catal., A
  doi: 10.1016/0926-860X(94)80353-6
– volume: 333
  start-page: 10
  year: 2019
  ident: D2TA09033C/cit73/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.07.010
– volume: 277
  start-page: 119247
  year: 2020
  ident: D2TA09033C/cit16/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119247
– volume: 30
  start-page: 1909832
  year: 2020
  ident: D2TA09033C/cit24/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909832
– volume: 9
  start-page: 7691
  year: 2017
  ident: D2TA09033C/cit70/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12616
– volume: 4
  start-page: 566
  year: 2022
  ident: D2TA09033C/cit14/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.021.202000750
– volume: 64
  start-page: 1
  year: 1990
  ident: D2TA09033C/cit4/1
  publication-title: Appl. Catal.
  doi: 10.1016/S0166-9834(00)81550-X
– volume: 53
  start-page: 208
  year: 2021
  ident: D2TA09033C/cit12/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.04.063
– volume: 366
  start-page: 282
  year: 2018
  ident: D2TA09033C/cit113/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.07.018
– volume: 2
  start-page: 1800006
  year: 2018
  ident: D2TA09033C/cit42/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201800006
– volume: 29
  start-page: 1604765
  year: 2017
  ident: D2TA09033C/cit44/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604765
– volume: 315
  start-page: 121575
  year: 2022
  ident: D2TA09033C/cit35/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121575
– volume: 24
  start-page: 4483
  year: 2012
  ident: D2TA09033C/cit66/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm300739y
– volume: 61
  start-page: e202204500
  year: 2022
  ident: D2TA09033C/cit103/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202204500
– volume: 78
  start-page: 141
  year: 1991
  ident: D2TA09033C/cit2/1
  publication-title: Appl. Catal.
  doi: 10.1016/0166-9834(91)80103-4
– volume: 118
  start-page: 19422
  year: 2014
  ident: D2TA09033C/cit63/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp505559u
– volume: 15
  start-page: 17895
  year: 2021
  ident: D2TA09033C/cit53/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c06189
– volume: 10
  start-page: 4003
  year: 2020
  ident: D2TA09033C/cit94/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00014
– volume: 276
  start-page: 832
  year: 2013
  ident: D2TA09033C/cit75/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.04.007
– volume: 29
  start-page: 1701546
  year: 2017
  ident: D2TA09033C/cit58/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701546
– volume: 6
  start-page: 39511
  year: 2016
  ident: D2TA09033C/cit118/1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA04071C
– volume: 13
  start-page: 14889
  year: 2011
  ident: D2TA09033C/cit87/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp20417c
– volume: 6
  start-page: 244
  year: 2021
  ident: D2TA09033C/cit19/1
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2020.04.014
– volume: 2
  start-page: 399
  year: 2022
  ident: D2TA09033C/cit22/1
  publication-title: eScience
  doi: 10.1016/j.esci.2022.05.004
– volume: 11
  start-page: 4524
  year: 2018
  ident: D2TA09033C/cit31/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2033-9
– volume: 3
  start-page: 1800406
  year: 2019
  ident: D2TA09033C/cit21/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201800406
– volume: 706
  start-page: 47
  year: 2018
  ident: D2TA09033C/cit82/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2018.05.055
– volume: 60
  start-page: 43
  year: 2019
  ident: D2TA09033C/cit109/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.024
– volume: 112
  start-page: 4124
  year: 2012
  ident: D2TA09033C/cit56/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr200434v
– volume: 9
  start-page: 7691
  year: 2017
  ident: D2TA09033C/cit65/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12616
– volume: 58
  start-page: 11860
  year: 2019
  ident: D2TA09033C/cit55/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201904246
– volume: 24
  start-page: 4483
  year: 2012
  ident: D2TA09033C/cit76/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm300739y
– volume: 18
  start-page: 15
  year: 2018
  ident: D2TA09033C/cit84/1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2017.12.011
– volume: 9
  start-page: 2493
  year: 2018
  ident: D2TA09033C/cit91/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04828A
– volume: 2
  start-page: 100322
  year: 2021
  ident: D2TA09033C/cit121/1
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2021.100322
– volume: 317
  start-page: 100
  year: 2007
  ident: D2TA09033C/cit36/1
  publication-title: Science
  doi: 10.1126/science.1141483
– volume: 5
  start-page: 766
  year: 2022
  ident: D2TA09033C/cit23/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00839-7
– volume: 53
  start-page: 11778
  year: 2017
  ident: D2TA09033C/cit27/1
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC07186H
– volume: 18
  start-page: 2202336
  year: 2022
  ident: D2TA09033C/cit17/1
  publication-title: Small
  doi: 10.1002/smll.202202336
– volume: 2
  start-page: 1800083
  year: 2018
  ident: D2TA09033C/cit29/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201800083
– volume: 2
  start-page: 9
  year: 2022
  ident: D2TA09033C/cit99/1
  publication-title: Magn. Reson. Lett.
  doi: 10.1016/j.mrl.2021.10.002
– volume: 30
  start-page: 2001097
  year: 2020
  ident: D2TA09033C/cit15/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001097
– volume: 4
  start-page: 2562
  year: 2020
  ident: D2TA09033C/cit7/1
  publication-title: Joule
  doi: 10.1016/j.joule.2020.10.002
– volume: 9
  start-page: 155
  year: 2017
  ident: D2TA09033C/cit89/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201601341
– volume: 38
  start-page: 491
  year: 2021
  ident: D2TA09033C/cit100/1
  publication-title: Chin. J. Magn. Reson.
– volume: 135
  start-page: 10411
  year: 2013
  ident: D2TA09033C/cit104/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402956f
– volume: 441
  start-page: 213983
  year: 2021
  ident: D2TA09033C/cit32/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.213983
– volume: 138
  start-page: 2225
  year: 2016
  ident: D2TA09033C/cit88/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12080
– volume: 117
  start-page: 12475
  year: 2017
  ident: D2TA09033C/cit86/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00289
– volume: 133
  start-page: 16414
  year: 2011
  ident: D2TA09033C/cit41/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207826q
– volume: 139
  start-page: 12670
  year: 2017
  ident: D2TA09033C/cit101/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06856
– volume: 143
  start-page: 8761
  year: 2021
  ident: D2TA09033C/cit102/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c03166
– volume: 57
  start-page: 6054
  year: 2018
  ident: D2TA09033C/cit115/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201711255
– volume: 54
  start-page: 9393
  year: 2015
  ident: D2TA09033C/cit64/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00493
– volume: 6
  start-page: 789
  year: 2021
  ident: D2TA09033C/cit49/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00057
– volume: 27
  start-page: 24
  year: 2021
  ident: D2TA09033C/cit25/1
  publication-title: Trans. Tianjin Univ.
  doi: 10.1007/s12209-020-00277-1
– volume: 115
  start-page: 4404
  year: 2011
  ident: D2TA09033C/cit79/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp109585t
– volume: 29
  start-page: 1701546
  year: 2017
  ident: D2TA09033C/cit28/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701546
– volume: 29
  start-page: 1703828
  year: 2017
  ident: D2TA09033C/cit60/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703828
– volume: 11
  start-page: 3220
  year: 2020
  ident: D2TA09033C/cit51/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17070-2
– volume: 421
  start-page: 126816
  year: 2022
  ident: D2TA09033C/cit43/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126816
– volume: 30
  start-page: 10886
  year: 2019
  ident: D2TA09033C/cit119/1
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 143
  start-page: 11317
  year: 2021
  ident: D2TA09033C/cit77/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c05754
– volume: 61
  start-page: e202211991
  year: 2022
  ident: D2TA09033C/cit116/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202211991
– volume: 112
  start-page: 49
  year: 2022
  ident: D2TA09033C/cit120/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.09.054
– volume: 8
  start-page: 675
  year: 2017
  ident: D2TA09033C/cit90/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00619-z
– volume: 276
  start-page: 832
  year: 2013
  ident: D2TA09033C/cit67/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.04.007
– volume: 55
  start-page: 4415
  year: 2019
  ident: D2TA09033C/cit96/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01561B
– volume: 10
  start-page: 788
  year: 2019
  ident: D2TA09033C/cit45/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08697-x
– volume: 11
  start-page: 1029
  year: 2020
  ident: D2TA09033C/cit78/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14848-2
– volume: 264
  start-page: 118508
  year: 2020
  ident: D2TA09033C/cit93/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118508
– volume: 115
  start-page: 4404
  year: 2011
  ident: D2TA09033C/cit71/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp109585t
– volume: 270
  start-page: 118884
  year: 2020
  ident: D2TA09033C/cit69/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.118884
– volume: 8
  start-page: 4288
  year: 2018
  ident: D2TA09033C/cit46/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00719
– volume: 31
  start-page: 2010291
  year: 2021
  ident: D2TA09033C/cit48/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202010291
– volume: 376
  start-page: 982
  year: 2022
  ident: D2TA09033C/cit50/1
  publication-title: Science
  doi: 10.1126/science.abm3371
– volume: 138
  start-page: 6517
  year: 2016
  ident: D2TA09033C/cit68/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01606
– volume: 36
  start-page: 100646
  year: 2022
  ident: D2TA09033C/cit33/1
  publication-title: Curr. Opin. Green Sustainable Chem.
  doi: 10.1016/j.cogsc.2022.100646
– volume: 72
  start-page: 398
  year: 2021
  ident: D2TA09033C/cit10/1
  publication-title: CIESC J.
– volume: 429
  start-page: 132310
  year: 2022
  ident: D2TA09033C/cit13/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132310
– volume: 56
  start-page: 5867
  year: 2017
  ident: D2TA09033C/cit26/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201701477
– volume: 23
  start-page: 2821
  year: 2011
  ident: D2TA09033C/cit81/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm200029q
– volume: 53
  start-page: 296
  year: 2018
  ident: D2TA09033C/cit11/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.058
– volume: 11
  start-page: 5390
  year: 2020
  ident: D2TA09033C/cit92/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01557
SSID ssj0000800699
Score 2.458149
SecondaryResourceType review_article
Snippet Catalysis is a widely applied process due to its predominant role in the chemical industry. Developing highly active exposed facets via defect engineering is...
Catalysis is a widely applied process due to its predominant role in the chemical industry. Developing highly active exposed facets via defect engineering is...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2528
SubjectTerms Catalysis
Catalysts
Catalytic activity
Chemical industry
Crystal defects
Fine structure
Industrial development
Mathematical analysis
Metal concentrations
Metal oxides
Metals
Optical properties
Quantitative analysis
Ultrastructure
Working conditions
X ray absorption
Title Semi-quantitative determination of active sites in heterogeneous catalysts for photo/electrocatalysis
URI https://www.proquest.com/docview/2774136752
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa22wscUHlULBRkCS5olTZrx97kuCqtylMIUqmcVnZiqytBUrrZQ_vH-HuMX0m2W6TCJUr8kpL5Mp4ZzwOh1yJTNJ2mPBKKscjklIok0TJShZ5KnrJkUhqD_qfP_OQ0eX_GzgaD3z2vpVUj94vrW-NK_oeq0AZ0NVGy_0DZdlFogHugL1yBwnC9E42_qZ-L6NdKVDZSzPgAlcG7JQiCwvKzsTkjtp6v52ZADSsq4_tqjTdXy8YmZRhfnNemqNKxL43jOxfLvwiwIOu6lxwXoWrc_njmAoBCj00o7sILrYU-hGsZj9zWmP_VB4iEXdR6G7hq2qK-WnX4zX2gRG_gF-WY1XdgWtEH4Tu8GYNQ6_nc47wkZrFJbOqaVL_Nlbxt2fWkB8s13st8mLnyjy7_08YeEVOTYvUtyWfGRkUPu50wnP7f2CBbt0V7YE-zeTd3C20T0E_IEG3PjvJ3H1vznhHEua1e2r5YSI5Ls4NugXVxqNNxti5DARor6OQ76IEnMJ45uD1EA1U9Qvd7eSsfI7UBPLwGPFxr7ICHLfDwosJrwMMt8DAgBFvgHdyE3RN0enyUH55Evl5HVIAU2oCwQzICalBSFlxwEccy5aLkuijKTGnKtCIFmwglElmC4iBLkE9FQoXS8RQYw4TuomFVV-opwopTXqYpUxkrE6m1lKB2J8poGFLzKR2hN-GzzQufzN7UVPkx36TRCL1qx164FC63jtoLX3_uf_HlHGibmJyGjIzQLlCknV-SRth5xbM7rf4c3etAv4eGzeVKvQBptpEvPXL-AMqypNc
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-quantitative+determination+of+active+sites+in+heterogeneous+catalysts+for+photo%2Felectrocatalysis&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Ren%2C+Jing&rft.au=Chi%2C+Haoyuan&rft.au=Tan%2C+Ling&rft.au=Peng%2C+Yung-Kang&rft.date=2023-02-08&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=6&rft.spage=2528&rft.epage=2543&rft_id=info:doi/10.1039%2FD2TA09033C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2TA09033C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon