Semi-quantitative determination of active sites in heterogeneous catalysts for photo/electrocatalysis
Catalysis is a widely applied process due to its predominant role in the chemical industry. Developing highly active exposed facets via defect engineering is considered to be the most promising strategy for optimizing the electrical and optical properties of catalysts to improve their catalytic acti...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 6; pp. 2528 - 2543 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
08.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Catalysis is a widely applied process due to its predominant role in the chemical industry. Developing highly active exposed facets
via
defect engineering is considered to be the most promising strategy for optimizing the electrical and optical properties of catalysts to improve their catalytic activity. Therefore, quantitative determination and calculation of the concentration of defect structures related to the highly exposed active crystal plane provided an efficient route for elucidating the catalytic active sites, and has attracted increasing attention. This work not only summarizes the existing defect characterization methods and the calculation methods of defect concentrations reported in recent years but also proposes a semi-quantitative method based on X-ray absorption fine structure (XAFS) and related methods for the determination and classification of active sites related to the active surface, which can be applied for the semi-quantitative calculation of defect concentrations in widely used metals and metal oxides. In addition, we emphasize the deficiencies of current defect concentration quantitative methods and look forward to the future development of defect characterization methods under working conditions. This review further reveals the structure-activity relationship between the content of active sites and the reaction performance.
This review focuses on exploring the defect active sites by determining the location and type and semi-quantitative calculation of defect concentrations by a variety of representational methods. |
---|---|
AbstractList | Catalysis is a widely applied process due to its predominant role in the chemical industry. Developing highly active exposed facets
via
defect engineering is considered to be the most promising strategy for optimizing the electrical and optical properties of catalysts to improve their catalytic activity. Therefore, quantitative determination and calculation of the concentration of defect structures related to the highly exposed active crystal plane provided an efficient route for elucidating the catalytic active sites, and has attracted increasing attention. This work not only summarizes the existing defect characterization methods and the calculation methods of defect concentrations reported in recent years but also proposes a semi-quantitative method based on X-ray absorption fine structure (XAFS) and related methods for the determination and classification of active sites related to the active surface, which can be applied for the semi-quantitative calculation of defect concentrations in widely used metals and metal oxides. In addition, we emphasize the deficiencies of current defect concentration quantitative methods and look forward to the future development of defect characterization methods under working conditions. This review further reveals the structure-activity relationship between the content of active sites and the reaction performance.
This review focuses on exploring the defect active sites by determining the location and type and semi-quantitative calculation of defect concentrations by a variety of representational methods. Catalysis is a widely applied process due to its predominant role in the chemical industry. Developing highly active exposed facets via defect engineering is considered to be the most promising strategy for optimizing the electrical and optical properties of catalysts to improve their catalytic activity. Therefore, quantitative determination and calculation of the concentration of defect structures related to the highly exposed active crystal plane provided an efficient route for elucidating the catalytic active sites, and has attracted increasing attention. This work not only summarizes the existing defect characterization methods and the calculation methods of defect concentrations reported in recent years but also proposes a semi-quantitative method based on X-ray absorption fine structure (XAFS) and related methods for the determination and classification of active sites related to the active surface, which can be applied for the semi-quantitative calculation of defect concentrations in widely used metals and metal oxides. In addition, we emphasize the deficiencies of current defect concentration quantitative methods and look forward to the future development of defect characterization methods under working conditions. This review further reveals the structure–activity relationship between the content of active sites and the reaction performance. Catalysis is a widely applied process due to its predominant role in the chemical industry. Developing highly active exposed facets via defect engineering is considered to be the most promising strategy for optimizing the electrical and optical properties of catalysts to improve their catalytic activity. Therefore, quantitative determination and calculation of the concentration of defect structures related to the highly exposed active crystal plane provided an efficient route for elucidating the catalytic active sites, and has attracted increasing attention. This work not only summarizes the existing defect characterization methods and the calculation methods of defect concentrations reported in recent years but also proposes a semi-quantitative method based on X-ray absorption fine structure (XAFS) and related methods for the determination and classification of active sites related to the active surface, which can be applied for the semi-quantitative calculation of defect concentrations in widely used metals and metal oxides. In addition, we emphasize the deficiencies of current defect concentration quantitative methods and look forward to the future development of defect characterization methods under working conditions. This review further reveals the structure–activity relationship between the content of active sites and the reaction performance. |
Author | Li, Guangchao Peng, Yung-Kang Duan, Xue Zhao, Yufei Tan, Ling Meng-Jung Li, Molly Ren, Jing Chi, Haoyuan |
AuthorAffiliation | Department of Chemistry State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization The Hong Kong Polytechnic University State Key Laboratory of Chemical Resource Engineering ANSTEEL Research Institute of Vanadium & Titanium (Iron & Steel) City University of Hong Kong Beijing University of Chemical Technology Department of Applied Physics |
AuthorAffiliation_xml | – sequence: 0 name: City University of Hong Kong – sequence: 0 name: Department of Chemistry – sequence: 0 name: The Hong Kong Polytechnic University – sequence: 0 name: State Key Laboratory of Chemical Resource Engineering – sequence: 0 name: ANSTEEL Research Institute of Vanadium & Titanium (Iron & Steel) – sequence: 0 name: State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization – sequence: 0 name: Beijing University of Chemical Technology – sequence: 0 name: Department of Applied Physics |
Author_xml | – sequence: 1 givenname: Jing surname: Ren fullname: Ren, Jing – sequence: 2 givenname: Haoyuan surname: Chi fullname: Chi, Haoyuan – sequence: 3 givenname: Ling surname: Tan fullname: Tan, Ling – sequence: 4 givenname: Yung-Kang surname: Peng fullname: Peng, Yung-Kang – sequence: 5 givenname: Guangchao surname: Li fullname: Li, Guangchao – sequence: 6 givenname: Molly surname: Meng-Jung Li fullname: Meng-Jung Li, Molly – sequence: 7 givenname: Yufei surname: Zhao fullname: Zhao, Yufei – sequence: 8 givenname: Xue surname: Duan fullname: Duan, Xue |
BookMark | eNptkUtrwzAMgM3oYF3Xy-6DwG6DrLKdOMmxdE8Y7LDuHBxHWV1Su7WdQf_90gcdjOmi1ycJSZdkYKxBQq4p3FPgxaRmQUIBnKszMmSQQpwlhRic7Dy_IGPvl9BLDiCKYkjwA1c63nTSBB1k0N8Y1RjQrbTpPWsi20RS7eNeB_SRNtFiB9gvNGg7HykZZLv1wUeNddF6YYOdYIsqOHtMaX9FzhvZehwf9Yh8Pj3OZy_x2_vz62z6FitOsxDnwAqW0yqplZBCAlS5kLVolKoLbHjaIFMplSiTqk5pUdUAmUy4xAayrBKUj8jtoe_a2U2HPpRL2znTjyxZliWUiyxlPQUHSjnrvcOmVPvdrQlO6rakUO7uWT6w-XR_z1lfcvenZO30Srrt__DNAXZenbjf5_AfC1WEXQ |
CitedBy_id | crossref_primary_10_1039_D4TA05885B crossref_primary_10_1039_D4EE02365J crossref_primary_10_1007_s12274_023_6339_x crossref_primary_10_1016_j_isci_2024_110420 crossref_primary_10_1016_j_cplett_2024_141624 crossref_primary_10_1016_j_ces_2024_120553 crossref_primary_10_1039_D4NR02645D crossref_primary_10_1002_aenm_202402441 crossref_primary_10_1021_acsaelm_3c00515 crossref_primary_10_1016_j_cej_2024_154111 crossref_primary_10_1155_2024_9582237 crossref_primary_10_1016_j_gee_2024_02_005 crossref_primary_10_26599_NRE_2024_9120132 |
Cites_doi | 10.1002/anie.202104397 10.1021/cg9012944 10.1016/j.ces.2021.116839 10.1016/j.nanoen.2017.05.044 10.1021/jacs.8b04819 10.1146/annurev.pc.45.100194.003445 10.1021/ic062394m 10.1002/advs.201900053 10.1021/acssuschemeng.2c04436 10.1038/s41467-019-12385-1 10.1002/anie.201904246 10.1002/cssc.201802248 10.1039/D0GC02786C 10.1021/acsanm.0c00092 10.1002/anie.201711255 10.1126/science.1093425 10.1039/b816376f 10.1039/C4CS00236A 10.1002/anie.201701477 10.1021/am300835p 10.1126/science.1157581 10.1038/s41596-020-0385-6 10.1126/science.1197461 10.1103/PhysRevLett.87.266104 10.1126/science.1078962 10.1021/acs.chemmater.6b01784 10.1039/C4NR01887G 10.1039/D2TA00070A 10.1002/aenm.201703585 10.1016/j.jechem.2018.09.011 10.1021/acs.iecr.9b06464 10.1016/j.apcatb.2015.04.016 10.1039/c0cs00176g 10.1002/adma.202101772 10.1002/aenm.201900881 10.1016/j.chemosphere.2021.131191 10.1016/0926-860X(94)80353-6 10.1016/j.cattod.2018.07.010 10.1016/j.apcatb.2020.119247 10.1002/adfm.201909832 10.1021/acsami.6b12616 10.31635/ccschem.021.202000750 10.1016/S0166-9834(00)81550-X 10.1016/j.jechem.2020.04.063 10.1016/j.jcat.2018.07.018 10.1002/smtd.201800006 10.1002/adma.201604765 10.1016/j.apcatb.2022.121575 10.1021/cm300739y 10.1002/anie.202204500 10.1016/0166-9834(91)80103-4 10.1021/jp505559u 10.1021/acsnano.1c06189 10.1021/acscatal.0c00014 10.1016/j.apsusc.2013.04.007 10.1002/adma.201701546 10.1039/C6RA04071C 10.1039/c1cp20417c 10.1016/j.gee.2020.04.014 10.1016/j.esci.2022.05.004 10.1007/s12274-018-2033-9 10.1002/smtd.201800406 10.1016/j.cplett.2018.05.055 10.1016/j.nanoen.2019.03.024 10.1021/cr200434v 10.1016/j.nantod.2017.12.011 10.1039/C7SC04828A 10.1016/j.xcrp.2021.100322 10.1126/science.1141483 10.1038/s41929-022-00839-7 10.1039/C7CC07186H 10.1002/smll.202202336 10.1002/smtd.201800083 10.1016/j.mrl.2021.10.002 10.1002/adfm.202001097 10.1016/j.joule.2020.10.002 10.1002/cctc.201601341 10.1021/ja402956f 10.1016/j.ccr.2021.213983 10.1021/jacs.5b12080 10.1021/acs.chemrev.7b00289 10.1021/ja207826q 10.1021/jacs.7b06856 10.1021/jacs.1c03166 10.1021/acs.inorgchem.5b00493 10.1021/acsenergylett.1c00057 10.1007/s12209-020-00277-1 10.1021/jp109585t 10.1002/adma.201703828 10.1038/s41467-020-17070-2 10.1016/j.jhazmat.2021.126816 10.1021/jacs.1c05754 10.1002/anie.202211991 10.1016/j.jmst.2021.09.054 10.1038/s41467-017-00619-z 10.1039/C9CC01561B 10.1038/s41467-019-08697-x 10.1038/s41467-020-14848-2 10.1016/j.apcatb.2019.118508 10.1016/j.apcatb.2020.118884 10.1021/acscatal.8b00719 10.1002/adfm.202010291 10.1126/science.abm3371 10.1021/jacs.6b01606 10.1016/j.cogsc.2022.100646 10.1016/j.cej.2021.132310 10.1021/cm200029q 10.1016/j.nanoen.2018.08.058 10.1021/acs.jpclett.0c01557 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d2ta09033c |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 2543 |
ExternalDocumentID | 10_1039_D2TA09033C d2ta09033c |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c317t-8029281b4dc6a6a00b86ad6fccd9ef35fe2c51aea4bd519bd007a43aef077b613 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 12:04:24 EDT 2025 Tue Jul 01 01:13:35 EDT 2025 Thu Apr 24 22:51:24 EDT 2025 Tue Dec 17 20:58:44 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c317t-8029281b4dc6a6a00b86ad6fccd9ef35fe2c51aea4bd519bd007a43aef077b613 |
Notes | Chem. Soc. Rev. Dr Peng obtained his PhD degree in 2017 from the University of Oxford in Inorganic Chemistry, for which he served as an Oxford Clarendon scholar as top 3% graduate of 2013 admission year. He is currently an Assistant in Chemistry Department of City University of Hong Kong working on the understanding of surface chemistry for the design and synthesis of hetero(photo) catalysts. He has published over 50 SCI papers in the relevant field and secured fundings more than 4 million HKD as PI. J. Am. Soc. Chem. Chem. Eng. Sci. He was the "Highly Cited Researcher" selected by Clarivate since 2019-2022. IECR , . in situ Haoyuan Chi received his BS degree from China University of Petroleum in 2018 and obtained MS degrees from Beijing University of Chemical Technology in 2021 under the supervision of Prof. Yufei Zhao and Prof. Yufei Song. He is currently a PhD candidate under the guidance of Prof. Xinbin Ma at Tianjin University. His research focuses on preparation and application of layered double hydroxides. Angew. Chem. 2 Prof. Xue Duan, Academician of the Chinese Academy of Sciences, is the Executive Vice-Chair of the Academic Committee of the State Key Laboratory of Chemical Resource Engineering. Over the past 30 years has established a distinctive research program covering "Intercalation Assembly of Layered Materials and Resource Utilization". He has proposed many innovative concepts such as understanding intercalated structures based on assembly of octahedral units, coupling of catalytic reaction enthalpy and heat transfer ultrastable mineralization, high-efficiency low-cost green hydrogen, and dual carbon utilization in industrial carbonate hydrorefining. He has been one of the China's most highly cited scientists for many years. and Jing Ren is currently studying for her PhD in Beijing University of Chemical Technology under the supervision of Prof. Yufei Zhao at the State Key Laboratory of Chemical Resource Engineering. Her main research interest is photo/electrocatalytic water splitting coupling with organic synthesis. Adv. Mater. Prof. Yufei Zhao was employed by the State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology in 2018. His works focus on industrial-scale preparation and application of two-dimensional monolayer materials, efficient utilization of resources, and photocatalytic and electrocatalytic synthesis of high-value fine chemicals. He has published more than 100 SCI papers with more than 18 000 citations (H factor 64), and more than 50 SCI papers as the first/corresponding author, including Ling Tan was born in 1993 in Sichuan Province, China. She completed her Bachelor's degree in 2016 at Beijing University of Chemical Technology (BUCT) and obtained her PhD in 2021 at BUCT under the supervision of Prof. Yu-Fei Song. Her research interests mainly focus on the application of 2D nanomaterials in photoreduction of CO ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5325-8991 0000-0002-9494-9676 0000-0001-9590-6902 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2023/ta/d2ta09033c |
PQID | 2774136752 |
PQPubID | 2047523 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1039_D2TA09033C crossref_primary_10_1039_D2TA09033C rsc_primary_d2ta09033c proquest_journals_2774136752 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-08 |
PublicationDateYYYYMMDD | 2023-02-08 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Peng (D2TA09033C/cit88/1) 2016; 138 Beck (D2TA09033C/cit51/1) 2020; 11 Qin (D2TA09033C/cit109/1) 2019; 60 Hao (D2TA09033C/cit57/1) 2020; 59 Huang (D2TA09033C/cit14/1) 2022; 4 Yildirimcan (D2TA09033C/cit118/1) 2016; 6 Li (D2TA09033C/cit103/1) 2022; 61 Yi (D2TA09033C/cit98/1) 2018; 140 Lee (D2TA09033C/cit49/1) 2021; 6 Schneider (D2TA09033C/cit106/1) 2009; 19 Kayaci (D2TA09033C/cit114/1) 2014; 6 Fang (D2TA09033C/cit78/1) 2020; 11 Zhang (D2TA09033C/cit21/1) 2019; 3 Li (D2TA09033C/cit102/1) 2021; 143 Peng (D2TA09033C/cit84/1) 2018; 18 Jin (D2TA09033C/cit83/1) 2022; 10 Misono (D2TA09033C/cit4/1) 1990; 64 Yang (D2TA09033C/cit35/1) 2022; 315 Wang (D2TA09033C/cit26/1) 2017; 56 You (D2TA09033C/cit110/1) 2010; 10 Wang (D2TA09033C/cit59/1) 2017; 56 Terlingen (D2TA09033C/cit116/1) 2022; 61 Zhou (D2TA09033C/cit17/1) 2022; 18 Somorjai (D2TA09033C/cit5/1) 1994; 45 Giuli (D2TA09033C/cit64/1) 2015; 54 Zhou (D2TA09033C/cit8/1) 2011; 40 Wang (D2TA09033C/cit111/1) 2012; 4 Liu (D2TA09033C/cit42/1) 2018; 2 Liu (D2TA09033C/cit58/1) 2017; 29 Chauvel (D2TA09033C/cit3/1) 1994; 115 Sun (D2TA09033C/cit43/1) 2022; 421 Jaramillo (D2TA09033C/cit36/1) 2007; 317 Liu (D2TA09033C/cit28/1) 2017; 29 Tan (D2TA09033C/cit40/1) 2019; 58 Kong (D2TA09033C/cit41/1) 2011; 133 Rana (D2TA09033C/cit65/1) 2017; 9 Xie (D2TA09033C/cit44/1) 2017; 29 Peng (D2TA09033C/cit99/1) 2022; 2 Zhang (D2TA09033C/cit16/1) 2020; 277 Zhang (D2TA09033C/cit18/1) 2019; 6 Tan (D2TA09033C/cit55/1) 2019; 58 Liu (D2TA09033C/cit113/1) 2018; 366 Xin (D2TA09033C/cit108/1) 2015; 176–177 Raskar (D2TA09033C/cit119/1) 2019; 30 Zuzeng Qin (D2TA09033C/cit20/1) 2021; 37 Rossi (D2TA09033C/cit63/1) 2014; 118 Xie (D2TA09033C/cit31/1) 2018; 11 Zhang (D2TA09033C/cit33/1) 2022; 36 Wu (D2TA09033C/cit74/1) 2017; 38 Ding (D2TA09033C/cit77/1) 2021; 143 Rao (D2TA09033C/cit22/1) 2022; 2 Schaub (D2TA09033C/cit37/1) 2003; 299 Delgado (D2TA09033C/cit73/1) 2019; 333 Geng (D2TA09033C/cit112/1) 2018; 57 Chen (D2TA09033C/cit100/1) 2021; 38 Li (D2TA09033C/cit97/1) 2019; 10 Huang (D2TA09033C/cit52/1) 2021; 33 Chen (D2TA09033C/cit24/1) 2020; 30 Tan (D2TA09033C/cit121/1) 2021; 2 Sun (D2TA09033C/cit9/1) 2015; 44 Feng (D2TA09033C/cit46/1) 2018; 8 Sacco (D2TA09033C/cit120/1) 2022; 112 Du (D2TA09033C/cit25/1) 2021; 27 Caetano (D2TA09033C/cit79/1) 2011; 115 Xiao (D2TA09033C/cit12/1) 2021; 53 Zhu (D2TA09033C/cit15/1) 2020; 30 Tao (D2TA09033C/cit39/1) 2011; 331 Wang (D2TA09033C/cit54/1) 2020; 22 Wang (D2TA09033C/cit95/1) 2021; 60 Rana (D2TA09033C/cit70/1) 2017; 9 Sideris (D2TA09033C/cit80/1) 2008; 321 Zhao (D2TA09033C/cit61/1) 2018; 8 Liu (D2TA09033C/cit19/1) 2021; 6 Ni (D2TA09033C/cit32/1) 2021; 441 Gutiérrez (D2TA09033C/cit75/1) 2013; 276 Caetano (D2TA09033C/cit71/1) 2011; 115 Peck (D2TA09033C/cit76/1) 2012; 24 Zhao (D2TA09033C/cit60/1) 2017; 29 Zheng (D2TA09033C/cit87/1) 2011; 13 Vedrine (D2TA09033C/cit1/1) 2019; 12 Ertl (D2TA09033C/cit6/1) 2000; 45 Cadars (D2TA09033C/cit81/1) 2011; 23 Guan (D2TA09033C/cit104/1) 2013; 135 Xiao (D2TA09033C/cit7/1) 2020; 4 Kuwa (D2TA09033C/cit72/1) 2020; 3 Peng (D2TA09033C/cit90/1) 2017; 8 Yi (D2TA09033C/cit85/1) 2020; 15 Bai (D2TA09033C/cit11/1) 2018; 53 Wang (D2TA09033C/cit69/1) 2020; 270 Zhao (D2TA09033C/cit68/1) 2016; 138 Geng (D2TA09033C/cit115/1) 2018; 57 Wang (D2TA09033C/cit107/1) 2021; 283 Li (D2TA09033C/cit48/1) 2021; 31 Fan (D2TA09033C/cit53/1) 2021; 15 Zhou (D2TA09033C/cit27/1) 2017; 53 Kreissl (D2TA09033C/cit101/1) 2017; 139 Peng (D2TA09033C/cit91/1) 2018; 9 Zhang (D2TA09033C/cit62/1) 2019; 9 Chen (D2TA09033C/cit34/1) 2022; 10 Tan (D2TA09033C/cit93/1) 2020; 264 Schaub (D2TA09033C/cit47/1) 2001; 87 Wang (D2TA09033C/cit56/1) 2012; 112 Chen (D2TA09033C/cit45/1) 2019; 10 Zhong (D2TA09033C/cit13/1) 2022; 429 Peck (D2TA09033C/cit66/1) 2012; 24 Ren (D2TA09033C/cit10/1) 2021; 72 Peng (D2TA09033C/cit96/1) 2019; 55 Chen (D2TA09033C/cit105/1) 2016; 28 Zheng (D2TA09033C/cit117/1) 2007; 46 Peng (D2TA09033C/cit89/1) 2017; 9 Tan (D2TA09033C/cit94/1) 2020; 10 Jia (D2TA09033C/cit30/1) 2019; 34 Zheng (D2TA09033C/cit86/1) 2017; 117 Li (D2TA09033C/cit122/1) 2021; 245 Yu (D2TA09033C/cit82/1) 2018; 706 Guo (D2TA09033C/cit23/1) 2022; 5 Zhou (D2TA09033C/cit29/1) 2018; 2 Gutiérrez (D2TA09033C/cit67/1) 2013; 276 Frey (D2TA09033C/cit50/1) 2022; 376 Armor (D2TA09033C/cit2/1) 1991; 78 Wahlstrom (D2TA09033C/cit38/1) 2004; 303 Tan (D2TA09033C/cit92/1) 2020; 11 |
References_xml | – issn: 2000 issue: vol. 45 end-page: p 1-69 publication-title: Advances in Catalysis doi: Ertl – volume: 60 start-page: 16149 year: 2021 ident: D2TA09033C/cit95/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202104397 – volume: 10 start-page: 983 year: 2010 ident: D2TA09033C/cit110/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg9012944 – volume: 245 start-page: 116839 year: 2021 ident: D2TA09033C/cit122/1 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.116839 – volume: 38 start-page: 167 year: 2017 ident: D2TA09033C/cit74/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.044 – volume: 140 start-page: 10764 year: 2018 ident: D2TA09033C/cit98/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04819 – volume: 45 start-page: 721 year: 1994 ident: D2TA09033C/cit5/1 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.45.100194.003445 – volume: 46 start-page: 6675 year: 2007 ident: D2TA09033C/cit117/1 publication-title: Inorg. Chem. doi: 10.1021/ic062394m – volume: 6 start-page: 1900053 year: 2019 ident: D2TA09033C/cit18/1 publication-title: Adv. Sci. doi: 10.1002/advs.201900053 – volume: 10 start-page: 12955 year: 2022 ident: D2TA09033C/cit83/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.2c04436 – volume: 10 start-page: 4421 year: 2019 ident: D2TA09033C/cit97/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12385-1 – volume: 58 start-page: 11860 year: 2019 ident: D2TA09033C/cit40/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904246 – volume: 12 start-page: 577 year: 2019 ident: D2TA09033C/cit1/1 publication-title: ChemSusChem doi: 10.1002/cssc.201802248 – volume: 22 start-page: 8604 year: 2020 ident: D2TA09033C/cit54/1 publication-title: Green Chem. doi: 10.1039/D0GC02786C – volume: 3 start-page: 2745 year: 2020 ident: D2TA09033C/cit72/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c00092 – volume: 57 start-page: 6054 year: 2018 ident: D2TA09033C/cit112/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201711255 – volume: 303 start-page: 511 year: 2004 ident: D2TA09033C/cit38/1 publication-title: Science doi: 10.1126/science.1093425 – volume: 19 start-page: 1449 year: 2009 ident: D2TA09033C/cit106/1 publication-title: J. Mater. Chem. doi: 10.1039/b816376f – volume: 44 start-page: 623 year: 2015 ident: D2TA09033C/cit9/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00236A – volume: 56 start-page: 5867 year: 2017 ident: D2TA09033C/cit59/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201701477 – volume: 4 start-page: 4024 year: 2012 ident: D2TA09033C/cit111/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am300835p – volume: 37 start-page: 2005027 year: 2021 ident: D2TA09033C/cit20/1 publication-title: Acta Phys.-Chim. Sin. – volume: 321 start-page: 113 year: 2008 ident: D2TA09033C/cit80/1 publication-title: Science doi: 10.1126/science.1157581 – volume: 15 start-page: 3527 year: 2020 ident: D2TA09033C/cit85/1 publication-title: Nat. Protoc. doi: 10.1038/s41596-020-0385-6 – volume: 331 start-page: 171 year: 2011 ident: D2TA09033C/cit39/1 publication-title: Science doi: 10.1126/science.1197461 – volume: 87 start-page: 266104 year: 2001 ident: D2TA09033C/cit47/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.266104 – volume: 299 start-page: 377 year: 2003 ident: D2TA09033C/cit37/1 publication-title: Science doi: 10.1126/science.1078962 – volume: 28 start-page: 4751 year: 2016 ident: D2TA09033C/cit105/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01784 – volume: 6 start-page: 10224 year: 2014 ident: D2TA09033C/cit114/1 publication-title: Nanoscale doi: 10.1039/C4NR01887G – volume: 10 start-page: 6927 year: 2022 ident: D2TA09033C/cit34/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA00070A – volume: 45 start-page: 1 volume-title: Advances in Catalysis year: 2000 ident: D2TA09033C/cit6/1 – volume: 8 start-page: 1703585 year: 2018 ident: D2TA09033C/cit61/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703585 – volume: 34 start-page: 57 year: 2019 ident: D2TA09033C/cit30/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.09.011 – volume: 59 start-page: 3008 year: 2020 ident: D2TA09033C/cit57/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b06464 – volume: 176–177 start-page: 354 year: 2015 ident: D2TA09033C/cit108/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2015.04.016 – volume: 40 start-page: 4167 year: 2011 ident: D2TA09033C/cit8/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00176g – volume: 33 start-page: e2101772 year: 2021 ident: D2TA09033C/cit52/1 publication-title: Adv. Mater. doi: 10.1002/adma.202101772 – volume: 9 start-page: 1900881 year: 2019 ident: D2TA09033C/cit62/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900881 – volume: 283 start-page: 131191 year: 2021 ident: D2TA09033C/cit107/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131191 – volume: 115 start-page: 173 year: 1994 ident: D2TA09033C/cit3/1 publication-title: Appl. Catal., A doi: 10.1016/0926-860X(94)80353-6 – volume: 333 start-page: 10 year: 2019 ident: D2TA09033C/cit73/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2018.07.010 – volume: 277 start-page: 119247 year: 2020 ident: D2TA09033C/cit16/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119247 – volume: 30 start-page: 1909832 year: 2020 ident: D2TA09033C/cit24/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909832 – volume: 9 start-page: 7691 year: 2017 ident: D2TA09033C/cit70/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12616 – volume: 4 start-page: 566 year: 2022 ident: D2TA09033C/cit14/1 publication-title: CCS Chem. doi: 10.31635/ccschem.021.202000750 – volume: 64 start-page: 1 year: 1990 ident: D2TA09033C/cit4/1 publication-title: Appl. Catal. doi: 10.1016/S0166-9834(00)81550-X – volume: 53 start-page: 208 year: 2021 ident: D2TA09033C/cit12/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.04.063 – volume: 366 start-page: 282 year: 2018 ident: D2TA09033C/cit113/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2018.07.018 – volume: 2 start-page: 1800006 year: 2018 ident: D2TA09033C/cit42/1 publication-title: Small Methods doi: 10.1002/smtd.201800006 – volume: 29 start-page: 1604765 year: 2017 ident: D2TA09033C/cit44/1 publication-title: Adv. Mater. doi: 10.1002/adma.201604765 – volume: 315 start-page: 121575 year: 2022 ident: D2TA09033C/cit35/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121575 – volume: 24 start-page: 4483 year: 2012 ident: D2TA09033C/cit66/1 publication-title: Chem. Mater. doi: 10.1021/cm300739y – volume: 61 start-page: e202204500 year: 2022 ident: D2TA09033C/cit103/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202204500 – volume: 78 start-page: 141 year: 1991 ident: D2TA09033C/cit2/1 publication-title: Appl. Catal. doi: 10.1016/0166-9834(91)80103-4 – volume: 118 start-page: 19422 year: 2014 ident: D2TA09033C/cit63/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp505559u – volume: 15 start-page: 17895 year: 2021 ident: D2TA09033C/cit53/1 publication-title: ACS Nano doi: 10.1021/acsnano.1c06189 – volume: 10 start-page: 4003 year: 2020 ident: D2TA09033C/cit94/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c00014 – volume: 276 start-page: 832 year: 2013 ident: D2TA09033C/cit75/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.04.007 – volume: 29 start-page: 1701546 year: 2017 ident: D2TA09033C/cit58/1 publication-title: Adv. Mater. doi: 10.1002/adma.201701546 – volume: 6 start-page: 39511 year: 2016 ident: D2TA09033C/cit118/1 publication-title: RSC Adv. doi: 10.1039/C6RA04071C – volume: 13 start-page: 14889 year: 2011 ident: D2TA09033C/cit87/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp20417c – volume: 6 start-page: 244 year: 2021 ident: D2TA09033C/cit19/1 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2020.04.014 – volume: 2 start-page: 399 year: 2022 ident: D2TA09033C/cit22/1 publication-title: eScience doi: 10.1016/j.esci.2022.05.004 – volume: 11 start-page: 4524 year: 2018 ident: D2TA09033C/cit31/1 publication-title: Nano Res. doi: 10.1007/s12274-018-2033-9 – volume: 3 start-page: 1800406 year: 2019 ident: D2TA09033C/cit21/1 publication-title: Small Methods doi: 10.1002/smtd.201800406 – volume: 706 start-page: 47 year: 2018 ident: D2TA09033C/cit82/1 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2018.05.055 – volume: 60 start-page: 43 year: 2019 ident: D2TA09033C/cit109/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.024 – volume: 112 start-page: 4124 year: 2012 ident: D2TA09033C/cit56/1 publication-title: Chem. Rev. doi: 10.1021/cr200434v – volume: 9 start-page: 7691 year: 2017 ident: D2TA09033C/cit65/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12616 – volume: 58 start-page: 11860 year: 2019 ident: D2TA09033C/cit55/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904246 – volume: 24 start-page: 4483 year: 2012 ident: D2TA09033C/cit76/1 publication-title: Chem. Mater. doi: 10.1021/cm300739y – volume: 18 start-page: 15 year: 2018 ident: D2TA09033C/cit84/1 publication-title: Nano Today doi: 10.1016/j.nantod.2017.12.011 – volume: 9 start-page: 2493 year: 2018 ident: D2TA09033C/cit91/1 publication-title: Chem. Sci. doi: 10.1039/C7SC04828A – volume: 2 start-page: 100322 year: 2021 ident: D2TA09033C/cit121/1 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2021.100322 – volume: 317 start-page: 100 year: 2007 ident: D2TA09033C/cit36/1 publication-title: Science doi: 10.1126/science.1141483 – volume: 5 start-page: 766 year: 2022 ident: D2TA09033C/cit23/1 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00839-7 – volume: 53 start-page: 11778 year: 2017 ident: D2TA09033C/cit27/1 publication-title: Chem. Commun. doi: 10.1039/C7CC07186H – volume: 18 start-page: 2202336 year: 2022 ident: D2TA09033C/cit17/1 publication-title: Small doi: 10.1002/smll.202202336 – volume: 2 start-page: 1800083 year: 2018 ident: D2TA09033C/cit29/1 publication-title: Small Methods doi: 10.1002/smtd.201800083 – volume: 2 start-page: 9 year: 2022 ident: D2TA09033C/cit99/1 publication-title: Magn. Reson. Lett. doi: 10.1016/j.mrl.2021.10.002 – volume: 30 start-page: 2001097 year: 2020 ident: D2TA09033C/cit15/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001097 – volume: 4 start-page: 2562 year: 2020 ident: D2TA09033C/cit7/1 publication-title: Joule doi: 10.1016/j.joule.2020.10.002 – volume: 9 start-page: 155 year: 2017 ident: D2TA09033C/cit89/1 publication-title: ChemCatChem doi: 10.1002/cctc.201601341 – volume: 38 start-page: 491 year: 2021 ident: D2TA09033C/cit100/1 publication-title: Chin. J. Magn. Reson. – volume: 135 start-page: 10411 year: 2013 ident: D2TA09033C/cit104/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402956f – volume: 441 start-page: 213983 year: 2021 ident: D2TA09033C/cit32/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213983 – volume: 138 start-page: 2225 year: 2016 ident: D2TA09033C/cit88/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12080 – volume: 117 start-page: 12475 year: 2017 ident: D2TA09033C/cit86/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00289 – volume: 133 start-page: 16414 year: 2011 ident: D2TA09033C/cit41/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207826q – volume: 139 start-page: 12670 year: 2017 ident: D2TA09033C/cit101/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06856 – volume: 143 start-page: 8761 year: 2021 ident: D2TA09033C/cit102/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c03166 – volume: 57 start-page: 6054 year: 2018 ident: D2TA09033C/cit115/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201711255 – volume: 54 start-page: 9393 year: 2015 ident: D2TA09033C/cit64/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b00493 – volume: 6 start-page: 789 year: 2021 ident: D2TA09033C/cit49/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00057 – volume: 27 start-page: 24 year: 2021 ident: D2TA09033C/cit25/1 publication-title: Trans. Tianjin Univ. doi: 10.1007/s12209-020-00277-1 – volume: 115 start-page: 4404 year: 2011 ident: D2TA09033C/cit79/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp109585t – volume: 29 start-page: 1701546 year: 2017 ident: D2TA09033C/cit28/1 publication-title: Adv. Mater. doi: 10.1002/adma.201701546 – volume: 29 start-page: 1703828 year: 2017 ident: D2TA09033C/cit60/1 publication-title: Adv. Mater. doi: 10.1002/adma.201703828 – volume: 11 start-page: 3220 year: 2020 ident: D2TA09033C/cit51/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17070-2 – volume: 421 start-page: 126816 year: 2022 ident: D2TA09033C/cit43/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126816 – volume: 30 start-page: 10886 year: 2019 ident: D2TA09033C/cit119/1 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 143 start-page: 11317 year: 2021 ident: D2TA09033C/cit77/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c05754 – volume: 61 start-page: e202211991 year: 2022 ident: D2TA09033C/cit116/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202211991 – volume: 112 start-page: 49 year: 2022 ident: D2TA09033C/cit120/1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.09.054 – volume: 8 start-page: 675 year: 2017 ident: D2TA09033C/cit90/1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00619-z – volume: 276 start-page: 832 year: 2013 ident: D2TA09033C/cit67/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.04.007 – volume: 55 start-page: 4415 year: 2019 ident: D2TA09033C/cit96/1 publication-title: Chem. Commun. doi: 10.1039/C9CC01561B – volume: 10 start-page: 788 year: 2019 ident: D2TA09033C/cit45/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08697-x – volume: 11 start-page: 1029 year: 2020 ident: D2TA09033C/cit78/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14848-2 – volume: 264 start-page: 118508 year: 2020 ident: D2TA09033C/cit93/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118508 – volume: 115 start-page: 4404 year: 2011 ident: D2TA09033C/cit71/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp109585t – volume: 270 start-page: 118884 year: 2020 ident: D2TA09033C/cit69/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.118884 – volume: 8 start-page: 4288 year: 2018 ident: D2TA09033C/cit46/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b00719 – volume: 31 start-page: 2010291 year: 2021 ident: D2TA09033C/cit48/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010291 – volume: 376 start-page: 982 year: 2022 ident: D2TA09033C/cit50/1 publication-title: Science doi: 10.1126/science.abm3371 – volume: 138 start-page: 6517 year: 2016 ident: D2TA09033C/cit68/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01606 – volume: 36 start-page: 100646 year: 2022 ident: D2TA09033C/cit33/1 publication-title: Curr. Opin. Green Sustainable Chem. doi: 10.1016/j.cogsc.2022.100646 – volume: 72 start-page: 398 year: 2021 ident: D2TA09033C/cit10/1 publication-title: CIESC J. – volume: 429 start-page: 132310 year: 2022 ident: D2TA09033C/cit13/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132310 – volume: 56 start-page: 5867 year: 2017 ident: D2TA09033C/cit26/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201701477 – volume: 23 start-page: 2821 year: 2011 ident: D2TA09033C/cit81/1 publication-title: Chem. Mater. doi: 10.1021/cm200029q – volume: 53 start-page: 296 year: 2018 ident: D2TA09033C/cit11/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.058 – volume: 11 start-page: 5390 year: 2020 ident: D2TA09033C/cit92/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01557 |
SSID | ssj0000800699 |
Score | 2.458149 |
SecondaryResourceType | review_article |
Snippet | Catalysis is a widely applied process due to its predominant role in the chemical industry. Developing highly active exposed facets
via
defect engineering is... Catalysis is a widely applied process due to its predominant role in the chemical industry. Developing highly active exposed facets via defect engineering is... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2528 |
SubjectTerms | Catalysis Catalysts Catalytic activity Chemical industry Crystal defects Fine structure Industrial development Mathematical analysis Metal concentrations Metal oxides Metals Optical properties Quantitative analysis Ultrastructure Working conditions X ray absorption |
Title | Semi-quantitative determination of active sites in heterogeneous catalysts for photo/electrocatalysis |
URI | https://www.proquest.com/docview/2774136752 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa22wscUHlULBRkCS5olTZrx97kuCqtylMIUqmcVnZiqytBUrrZQ_vH-HuMX0m2W6TCJUr8kpL5Mp4ZzwOh1yJTNJ2mPBKKscjklIok0TJShZ5KnrJkUhqD_qfP_OQ0eX_GzgaD3z2vpVUj94vrW-NK_oeq0AZ0NVGy_0DZdlFogHugL1yBwnC9E42_qZ-L6NdKVDZSzPgAlcG7JQiCwvKzsTkjtp6v52ZADSsq4_tqjTdXy8YmZRhfnNemqNKxL43jOxfLvwiwIOu6lxwXoWrc_njmAoBCj00o7sILrYU-hGsZj9zWmP_VB4iEXdR6G7hq2qK-WnX4zX2gRG_gF-WY1XdgWtEH4Tu8GYNQ6_nc47wkZrFJbOqaVL_Nlbxt2fWkB8s13st8mLnyjy7_08YeEVOTYvUtyWfGRkUPu50wnP7f2CBbt0V7YE-zeTd3C20T0E_IEG3PjvJ3H1vznhHEua1e2r5YSI5Ls4NugXVxqNNxti5DARor6OQ76IEnMJ45uD1EA1U9Qvd7eSsfI7UBPLwGPFxr7ICHLfDwosJrwMMt8DAgBFvgHdyE3RN0enyUH55Evl5HVIAU2oCwQzICalBSFlxwEccy5aLkuijKTGnKtCIFmwglElmC4iBLkE9FQoXS8RQYw4TuomFVV-opwopTXqYpUxkrE6m1lKB2J8poGFLzKR2hN-GzzQufzN7UVPkx36TRCL1qx164FC63jtoLX3_uf_HlHGibmJyGjIzQLlCknV-SRth5xbM7rf4c3etAv4eGzeVKvQBptpEvPXL-AMqypNc |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-quantitative+determination+of+active+sites+in+heterogeneous+catalysts+for+photo%2Felectrocatalysis&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Ren%2C+Jing&rft.au=Chi%2C+Haoyuan&rft.au=Tan%2C+Ling&rft.au=Peng%2C+Yung-Kang&rft.date=2023-02-08&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=6&rft.spage=2528&rft.epage=2543&rft_id=info:doi/10.1039%2FD2TA09033C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2TA09033C |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |