Treatment with AICAR inhibits blastocyst development, trophectoderm differentiation and tight junction formation and function in mice
What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function? AMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur. AMPK isofor...
Saved in:
Published in | Molecular human reproduction Vol. 23; no. 11; pp. 771 - 785 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function?
AMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur.
AMPK isoforms are detectable in oocytes, cumulus cells and preimplantation embryos. Cultured embryos are subject to many stresses that can activate AMPK.
Two primary experiments were carried out to determine the effect of AICAR treatment on embryo development and maintenance of the blastocoel cavity. Embryos were recovered from superovulated mice. First, 2-cell embryos were treated with a concentration series (0-2000 μM) of AICAR for 48 h until blastocyst formation would normally occur. In the second experiment, expanded mouse blastocysts were treated for 9 h with 1000 μM AICAR.
Outcomes measured included development to the blastocyst stage, cell number, blastocyst volume, AMPK phosphorylation, Cdx2 and blastocyst formation gene family expression (mRNAs and protein measured using quantitative RT-PCR, immunoblotting, immunofluorescence), tight junction function (FITC dextran dye uptake assay), and blastocyst ATP levels. The reversibility of AICAR treatment was assessed using Compound C (CC), a well-known inhibitor of AMPK, alone or in combination with AICAR.
Prolonged treatment with AICAR from the 2-cell stage onward decreases blastocyst formation, reduces total cell number, embryo diameter, leads to loss of trophectoderm cell contacts and membrane zona occludens-1 staining, and increased nuclear condensation. Treatment with CC alone inhibited blastocyst development only at concentrations that are higher than normally used. AICAR treated embryos displayed altered mRNA and protein levels of blastocyst formation genes. Treatment of blastocysts with AICAR for 9 h induced blastocyst collapse, altered blastocyst formation gene expression, increased tight junction permeability and decreased CDX2. Treated blastocysts displayed three phenotypes: those that were unaffected by treatment, those in which treatment was reversible, and those in which effects were irreversible.
Not applicable.
Our study investigates the effects of AICAR treatment on early development. While AICAR does increase AMPK activity and this is demonstrated in our study, AICAR is not a natural regulator of AMPK activity and some outcomes may result from off target non-AMPK AICAR regulated events. To support our results, blastocyst developmental outcomes were confirmed with two other well-known small molecule activators of AMPK, metformin and phenformin.
Metformin, an AMPK activator, is widely used to treat type II diabetes and polycystic ovarian disorder (PCOS). Our results indicate that early embryonic AMPK levels must be tightly regulated to ensure normal preimplantation development. Thus, use of metformin should be carefully considered during preimplantation and early post-embryo transfer phases of fertility treatment cycles.
Canadian Institutes of Health Research (CIHR) operating funds. There are no competing interests. |
---|---|
AbstractList | What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function?STUDY QUESTIONWhat is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function?AMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur.SUMMARY ANSWERAMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur.AMPK isoforms are detectable in oocytes, cumulus cells and preimplantation embryos. Cultured embryos are subject to many stresses that can activate AMPK.WHAT IS KNOWN ALREADYAMPK isoforms are detectable in oocytes, cumulus cells and preimplantation embryos. Cultured embryos are subject to many stresses that can activate AMPK.Two primary experiments were carried out to determine the effect of AICAR treatment on embryo development and maintenance of the blastocoel cavity. Embryos were recovered from superovulated mice. First, 2-cell embryos were treated with a concentration series (0-2000 μM) of AICAR for 48 h until blastocyst formation would normally occur. In the second experiment, expanded mouse blastocysts were treated for 9 h with 1000 μM AICAR.STUDY DESIGN, SIZE, DURATIONTwo primary experiments were carried out to determine the effect of AICAR treatment on embryo development and maintenance of the blastocoel cavity. Embryos were recovered from superovulated mice. First, 2-cell embryos were treated with a concentration series (0-2000 μM) of AICAR for 48 h until blastocyst formation would normally occur. In the second experiment, expanded mouse blastocysts were treated for 9 h with 1000 μM AICAR.Outcomes measured included development to the blastocyst stage, cell number, blastocyst volume, AMPK phosphorylation, Cdx2 and blastocyst formation gene family expression (mRNAs and protein measured using quantitative RT-PCR, immunoblotting, immunofluorescence), tight junction function (FITC dextran dye uptake assay), and blastocyst ATP levels. The reversibility of AICAR treatment was assessed using Compound C (CC), a well-known inhibitor of AMPK, alone or in combination with AICAR.PARTICIPANTS/MATERIALS, SETTING, METHODSOutcomes measured included development to the blastocyst stage, cell number, blastocyst volume, AMPK phosphorylation, Cdx2 and blastocyst formation gene family expression (mRNAs and protein measured using quantitative RT-PCR, immunoblotting, immunofluorescence), tight junction function (FITC dextran dye uptake assay), and blastocyst ATP levels. The reversibility of AICAR treatment was assessed using Compound C (CC), a well-known inhibitor of AMPK, alone or in combination with AICAR.Prolonged treatment with AICAR from the 2-cell stage onward decreases blastocyst formation, reduces total cell number, embryo diameter, leads to loss of trophectoderm cell contacts and membrane zona occludens-1 staining, and increased nuclear condensation. Treatment with CC alone inhibited blastocyst development only at concentrations that are higher than normally used. AICAR treated embryos displayed altered mRNA and protein levels of blastocyst formation genes. Treatment of blastocysts with AICAR for 9 h induced blastocyst collapse, altered blastocyst formation gene expression, increased tight junction permeability and decreased CDX2. Treated blastocysts displayed three phenotypes: those that were unaffected by treatment, those in which treatment was reversible, and those in which effects were irreversible.MAIN RESULTS AND THE ROLE OF CHANCEProlonged treatment with AICAR from the 2-cell stage onward decreases blastocyst formation, reduces total cell number, embryo diameter, leads to loss of trophectoderm cell contacts and membrane zona occludens-1 staining, and increased nuclear condensation. Treatment with CC alone inhibited blastocyst development only at concentrations that are higher than normally used. AICAR treated embryos displayed altered mRNA and protein levels of blastocyst formation genes. Treatment of blastocysts with AICAR for 9 h induced blastocyst collapse, altered blastocyst formation gene expression, increased tight junction permeability and decreased CDX2. Treated blastocysts displayed three phenotypes: those that were unaffected by treatment, those in which treatment was reversible, and those in which effects were irreversible.Not applicable.LARGE SCALE DATANot applicable.Our study investigates the effects of AICAR treatment on early development. While AICAR does increase AMPK activity and this is demonstrated in our study, AICAR is not a natural regulator of AMPK activity and some outcomes may result from off target non-AMPK AICAR regulated events. To support our results, blastocyst developmental outcomes were confirmed with two other well-known small molecule activators of AMPK, metformin and phenformin.LIMITATIONS, REASONS FOR CAUTIONOur study investigates the effects of AICAR treatment on early development. While AICAR does increase AMPK activity and this is demonstrated in our study, AICAR is not a natural regulator of AMPK activity and some outcomes may result from off target non-AMPK AICAR regulated events. To support our results, blastocyst developmental outcomes were confirmed with two other well-known small molecule activators of AMPK, metformin and phenformin.Metformin, an AMPK activator, is widely used to treat type II diabetes and polycystic ovarian disorder (PCOS). Our results indicate that early embryonic AMPK levels must be tightly regulated to ensure normal preimplantation development. Thus, use of metformin should be carefully considered during preimplantation and early post-embryo transfer phases of fertility treatment cycles.WIDER IMPLICATIONS OF THE FINDINGSMetformin, an AMPK activator, is widely used to treat type II diabetes and polycystic ovarian disorder (PCOS). Our results indicate that early embryonic AMPK levels must be tightly regulated to ensure normal preimplantation development. Thus, use of metformin should be carefully considered during preimplantation and early post-embryo transfer phases of fertility treatment cycles.Canadian Institutes of Health Research (CIHR) operating funds. There are no competing interests.STUDY FUNDING AND COMPETING INTEREST(S)Canadian Institutes of Health Research (CIHR) operating funds. There are no competing interests. What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function? AMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur. AMPK isoforms are detectable in oocytes, cumulus cells and preimplantation embryos. Cultured embryos are subject to many stresses that can activate AMPK. Two primary experiments were carried out to determine the effect of AICAR treatment on embryo development and maintenance of the blastocoel cavity. Embryos were recovered from superovulated mice. First, 2-cell embryos were treated with a concentration series (0-2000 μM) of AICAR for 48 h until blastocyst formation would normally occur. In the second experiment, expanded mouse blastocysts were treated for 9 h with 1000 μM AICAR. Outcomes measured included development to the blastocyst stage, cell number, blastocyst volume, AMPK phosphorylation, Cdx2 and blastocyst formation gene family expression (mRNAs and protein measured using quantitative RT-PCR, immunoblotting, immunofluorescence), tight junction function (FITC dextran dye uptake assay), and blastocyst ATP levels. The reversibility of AICAR treatment was assessed using Compound C (CC), a well-known inhibitor of AMPK, alone or in combination with AICAR. Prolonged treatment with AICAR from the 2-cell stage onward decreases blastocyst formation, reduces total cell number, embryo diameter, leads to loss of trophectoderm cell contacts and membrane zona occludens-1 staining, and increased nuclear condensation. Treatment with CC alone inhibited blastocyst development only at concentrations that are higher than normally used. AICAR treated embryos displayed altered mRNA and protein levels of blastocyst formation genes. Treatment of blastocysts with AICAR for 9 h induced blastocyst collapse, altered blastocyst formation gene expression, increased tight junction permeability and decreased CDX2. Treated blastocysts displayed three phenotypes: those that were unaffected by treatment, those in which treatment was reversible, and those in which effects were irreversible. Not applicable. Our study investigates the effects of AICAR treatment on early development. While AICAR does increase AMPK activity and this is demonstrated in our study, AICAR is not a natural regulator of AMPK activity and some outcomes may result from off target non-AMPK AICAR regulated events. To support our results, blastocyst developmental outcomes were confirmed with two other well-known small molecule activators of AMPK, metformin and phenformin. Metformin, an AMPK activator, is widely used to treat type II diabetes and polycystic ovarian disorder (PCOS). Our results indicate that early embryonic AMPK levels must be tightly regulated to ensure normal preimplantation development. Thus, use of metformin should be carefully considered during preimplantation and early post-embryo transfer phases of fertility treatment cycles. Canadian Institutes of Health Research (CIHR) operating funds. There are no competing interests. |
Author | Calder, Michele D Watson, Andrew J Edwards, Nicole A Betts, Dean H |
AuthorAffiliation | 3 Children’s Health Research Institute (CHRI), Lawson Health Research Institute (LHRI), London, Ontario , Canada 1 Departments of Physiology and Pharmacology , Western University, London, Ontario, Canada 2 Obstetrics and Gynaecology, Schulich School of Medicine , Western University , London, Ontario, Canada |
AuthorAffiliation_xml | – name: 2 Obstetrics and Gynaecology, Schulich School of Medicine , Western University , London, Ontario, Canada – name: 1 Departments of Physiology and Pharmacology , Western University, London, Ontario, Canada – name: 3 Children’s Health Research Institute (CHRI), Lawson Health Research Institute (LHRI), London, Ontario , Canada |
Author_xml | – sequence: 1 givenname: Michele D surname: Calder fullname: Calder, Michele D organization: Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada, Obstetrics and Gynaecology, Schulich School of Medicine, Western University, London, Ontario, Canada – sequence: 2 givenname: Nicole A surname: Edwards fullname: Edwards, Nicole A organization: Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada – sequence: 3 givenname: Dean H surname: Betts fullname: Betts, Dean H organization: Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada, Obstetrics and Gynaecology, Schulich School of Medicine, Western University, London, Ontario, Canada, Children’s Health Research Institute (CHRI), Lawson Health Research Institute (LHRI), London, Ontario, Canada – sequence: 4 givenname: Andrew J surname: Watson fullname: Watson, Andrew J organization: Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada, Obstetrics and Gynaecology, Schulich School of Medicine, Western University, London, Ontario, Canada, Children’s Health Research Institute (CHRI), Lawson Health Research Institute (LHRI), London, Ontario, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28962017$$D View this record in MEDLINE/PubMed |
BookMark | eNptUctOHDEQtBARr-SYa-RjDhnwYzweXyIhlJeEFAmRs-X1tHeMZuyN7SXhA_Lf8bJsgIiT213VVa3qY7QfYgCE3lJySoniZ3OcYExnS_ObCLKHjmjbkYa1RO7XmtdaqVYeouOcbwihkon-AB2yXnWs_o7Qn-sEpswQCv7ly4jPv12cX2EfRr_wJePFZHKJ9i4XPMAtTHG1oX7AJcXVCLbEAdKMB-8cpAp4U3wM2IQBF78cC75ZB3vfcjHNj6DbtX3As7fwGr1yZsrw5uE9QT8-f7q--Npcfv9SF7psLKeyNJI7y-XgnJPSOtlLEIIrboWgAHQxUMV73hm5yUBRKghxzPVCEGZs1w6Sn6CPW93VejHDYOvKyUx6lfxs0p2OxuvnSPCjXsZbLRRRfUerwPsHgRR_riEXPftsYZpMgLjOmqpWMMZExyr13VOvfya77CuBbwk2xZwTOG19uc-oWvtJU6I3F9bbC-vthetU89_UTvhl_l_i9a8e |
CitedBy_id | crossref_primary_10_1007_s43032_020_00223_5 crossref_primary_10_1073_pnas_2026804118 crossref_primary_10_3389_fphar_2018_00761 crossref_primary_10_1007_s10815_018_1213_6 crossref_primary_10_1096_fj_201801887R crossref_primary_10_1007_s10815_019_01470_5 crossref_primary_10_3389_fendo_2023_1150017 crossref_primary_10_1016_j_stem_2023_08_002 crossref_primary_10_1007_s10815_020_01709_6 crossref_primary_10_1089_scd_2018_0131 crossref_primary_10_3389_fcell_2020_593005 crossref_primary_10_1002_mrd_23250 |
Cites_doi | 10.1073/pnas.1311121111 10.1006/dbio.2000.9708 10.1017/S0967199410000195 10.1016/j.mrfmmm.2004.06.055 10.1111/j.1432-1033.1989.tb15186.x 10.1007/s10815-016-0735-z 10.1530/ERC-12-0046 10.1038/nrm3311 10.1074/jbc.M700696200 10.1158/0008-5472.CAN-14-0135 10.1093/molehr/gaw043 10.1007/s10495-015-1111-7 10.1006/dbio.1998.8874 10.1016/S0015-0282(01)02825-4 10.3109/00498259409043220 10.2337/db07-0074 10.1016/S1016-8478(23)13034-2 10.1186/1471-213X-7-2 10.1083/jcb.108.4.1407 10.1016/j.ydbio.2005.11.004 10.1016/j.ydbio.2005.11.039 10.1111/j.1432-1033.1995.tb20498.x 10.1002/dvg.1020110106 10.1101/gad.17420111 10.1056/NEJM199806253382603 10.1095/biolreprod.107.060848 10.1371/journal.pone.0059528 10.1074/jbc.M705232200 10.2165/11534750-000000000-00000 10.1073/pnas.0906606106 10.1186/1477-7827-12-3 10.1074/jbc.C200256200 10.1242/dev.01801 10.1016/0012-1606(88)90241-2 10.1152/physiolgenomics.00111.2006 10.1074/jbc.M608866200 10.1371/journal.pone.0063878 10.1089/scd.2012.0352 10.1002/tera.1420490405 10.1006/dbio.2002.0613 10.1016/j.anireprosci.2004.04.004 10.1371/journal.pone.0119680 10.1073/pnas.0608531103 10.1017/S0967199413000075 10.1095/biolreprod.106.057828 10.1016/j.abb.2011.08.002 10.1073/pnas.97.8.4023 10.1093/humupd/dmv034 10.1158/0008-5472.CAN-06-2013 10.1074/jbc.M605488200 10.1093/humrep/del025 10.1016/S0012-1606(02)00127-6 10.1071/RD14339 10.1093/nar/29.9.e45 10.1038/386084a0 10.1073/pnas.0610157104 10.1017/S0967199413000300 10.1530/REP-10-0268 10.1016/j.bbrc.2005.11.068 10.1172/JCI13505 10.1002/mrd.20563 |
ContentType | Journal Article |
Copyright | The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017 |
Copyright_xml | – notice: The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com – notice: The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/molehr/gax050 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1460-2407 |
EndPage | 785 |
ExternalDocumentID | PMC5909861 28962017 10_1093_molehr_gax050 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CIHR grantid: MOP 130396 – fundername: ; ; ; |
GroupedDBID | --- -E4 .2P .I3 0R~ 123 18M 29M 2WC 4.4 482 48X 53G 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAYXX ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACPRK ACUFI ACUTJ ACUTO ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ AEGPL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHMMS AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG BAYMD BCRHZ BEYMZ BQDIO BSWAC BTRTY BVRKM CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBD EBS EE~ EJD EMOBN F5P F9B FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HH5 HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z N9A NGC NLBLG NOMLY NOYVH NU- NVLIB O9- OAWHX OBOKY OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO SV3 TEORI TJX TLC TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~S- CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c317t-73fc37dfff77cf787e55393c551ee1bd193836a71460911500f2f85502ac64d73 |
ISSN | 1360-9947 1460-2407 |
IngestDate | Thu Aug 21 14:04:12 EDT 2025 Fri Jul 11 06:44:53 EDT 2025 Mon Jul 21 06:02:51 EDT 2025 Tue Jul 01 04:26:07 EDT 2025 Thu Apr 24 22:57:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | AMPK preimplantation assisted reproductive technologies blastocyst formation embryo culture stress pathways |
Language | English |
License | The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c317t-73fc37dfff77cf787e55393c551ee1bd193836a71460911500f2f85502ac64d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/molehr/article-pdf/23/11/771/24369071/gax050.pdf |
PMID | 28962017 |
PQID | 1945222562 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5909861 proquest_miscellaneous_1945222562 pubmed_primary_28962017 crossref_citationtrail_10_1093_molehr_gax050 crossref_primary_10_1093_molehr_gax050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Molecular human reproduction |
PublicationTitleAlternate | Mol Hum Reprod |
PublicationYear | 2017 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Chen ( key 20180328135236_gax050C14) 2015; 20 El-Sayed ( key 20180328135236_gax050C22) 2006; 28 Okoshi ( key 20180328135236_gax050C41) 2008; 283 Zheng ( key 20180328135236_gax050C61) 2007; 104 Bilodeau-Goeseels ( key 20180328135236_gax050C7) 2011; 19 Carling ( key 20180328135236_gax050C11) 1989; 186 Blume ( key 20180328135236_gax050C9) 2007; 282 Chen ( key 20180328135236_gax050C13) 2006; 291 Watson ( key 20180328135236_gax050C52) 1988; 126 Bedaiwy ( key 20180328135236_gax050C3) 2001; 76 MacPhee ( key 20180328135236_gax050C36) 2000; 222 Hardie ( key 20180328135236_gax050C29) 2011; 25 Wale ( key 20180328135236_gax050C51) 2016; 22 Barcroft ( key 20180328135236_gax050C1) 2003; 256 Zhan ( key 20180328135236_gax050C59) 2005; 569 Denno ( key 20180328135236_gax050C18) 1994; 49 Fong ( key 20180328135236_gax050C25) 2007; 7 Tang ( key 20180328135236_gax050C47) 2006; 21 Zhang ( key 20180328135236_gax050C60) 2006; 103 Liu ( key 20180328135236_gax050C33) 2014; 111 Bilodeau-Goeseels ( key 20180328135236_gax050C8) 2014; 22 Furukawa-Hibi ( key 20180328135236_gax050C26) 2002; 277 Downs ( key 20180328135236_gax050C20) 2002; 245 Klubo-Gwiezdzinska ( key 20180328135236_gax050C32) 2012; 19 Xie ( key 20180328135236_gax050C57) 2013; 22 Pfaffl ( key 20180328135236_gax050C44) 2001; 25 Bertoldo ( key 20180328135236_gax050C5) 2015; 10 Graham ( key 20180328135236_gax050C27) 2011; 50 Palomba ( key 20180328135236_gax050C42) 2014; 12 Strumpf ( key 20180328135236_gax050C46) 2005; 132 Tront ( key 20180328135236_gax050C49) 2006; 66 Bolnick ( key 20180328135236_gax050C10) 2016; 33 Corton ( key 20180328135236_gax050C16) 1995; 229 Guo ( key 20180328135236_gax050C28) 2009; 106 Kim ( key 20180328135236_gax050C31) 2004; 17 Watson ( key 20180328135236_gax050C54) 2004; 82–83 Zhou ( key 20180328135236_gax050C63) 2001; 1008 Ding ( key 20180328135236_gax050C19) 2013; 8 Mayes ( key 20180328135236_gax050C38) 2007; 76 Meley ( key 20180328135236_gax050C39) 2006; 281 Louden ( key 20180328135236_gax050C35) 2014; 27 Pikiou ( key 20180328135236_gax050C43) 2013; 23 Edwards ( key 20180328135236_gax050C21) 2016; 22 da Silva Xavier ( key 20180328135236_gax050C17) 2000; 97 Zhong ( key 20180328135236_gax050C62) 2010; 140 Nestler ( key 20180328135236_gax050C40) 1998; 338 Watson ( key 20180328135236_gax050C53) 1990; 11 Xie ( key 20180328135236_gax050C56) 2007; 74 Liu ( key 20180328135236_gax050C34) 2006; 339 Ratchford ( key 20180328135236_gax050C45) 2007; 293 Yokoyama ( key 20180328135236_gax050C58) 2011; 515 Chou ( key 20180328135236_gax050C15) 2014; 74 Barcroft ( key 20180328135236_gax050C2) 2004; 121 Bell ( key 20180328135236_gax050C4) 2013; 8 Chawengsaksophak ( key 20180328135236_gax050C12) 1997; 386 Fleming ( key 20180328135236_gax050C24) 1989; 108 Betts ( key 20180328135236_gax050C6) 1998; 197 Tosca ( key 20180328135236_gax050C48) 2007; 77 Eng ( key 20180328135236_gax050C23) 2007; 56 Violette ( key 20180328135236_gax050C50) 2006; 289 Madan ( key 20180328135236_gax050C37) 2007; 282 Hardie ( key 20180328135236_gax050C30) 2012; 13 Wilcock ( key 20180328135236_gax050C55) 1994; 24 17492777 - Mol Reprod Dev. 2007 Oct;74(10):1287-94 18056705 - J Biol Chem. 2008 Feb 15;283(7):3979-87 20876741 - Reproduction. 2010 Dec;140(6):921-30 17684106 - Am J Physiol Endocrinol Metab. 2007 Nov;293(5):E1198-206 20569514 - Zygote. 2011 May;19(2):97-106 17018689 - Physiol Genomics. 2006 Dec 13;28(1):84-96 15603758 - Mutat Res. 2005 Jan 6;569(1-2):133-43 15147760 - Mech Dev. 2004 May;121(5):417-26 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 9637806 - N Engl J Med. 1998 Jun 25;338(26):1876-80 16356488 - Dev Biol. 2006 Jan 15;289(2):406-19 11704144 - Fertil Steril. 2001 Nov;76(5):1078-9 2830159 - Dev Biol. 1988 Mar;126(1):80-90 2598924 - Eur J Biochem. 1989 Dec 8;186(1-2):129-36 21937710 - Genes Dev. 2011 Sep 15;25(18):1895-908 17204563 - Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):819-22 8165821 - Xenobiotica. 1994 Jan;24(1):49-57 9052785 - Nature. 1997 Mar 6;386(6620):84-7 16443210 - Dev Biol. 2006 Mar 15;291(2):227-38 24387273 - Reprod Biol Endocrinol. 2014 Jan 03;12:3 22436748 - Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):251-62 24994714 - Cancer Res. 2014 Sep 1;74(17 ):4783-95 17575082 - Diabetes. 2007 Sep;56(9):2228-34 15788452 - Development. 2005 May;132(9):2093-102 11969266 - Dev Biol. 2002 May 1;245(1):200-12 17088526 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17272-7 12048180 - J Biol Chem. 2002 Jul 26;277(30):26729-32 12679107 - Dev Biol. 2003 Apr 15;256(2):342-54 17082196 - J Biol Chem. 2007 Feb 16;282(7):4601-12 24474794 - Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E435-44 23593143 - PLoS One. 2013 Apr 04;8(4):e59528 15271481 - Anim Reprod Sci. 2004 Jul;82-83:583-92 23578544 - Zygote. 2014 May;22(2):275-85 16501038 - Hum Reprod. 2006 Jun;21(6):1416-25 23870192 - Zygote. 2015 Feb;23(1):58-67 2647768 - J Cell Biol. 1989 Apr;108(4):1407-18 23316940 - Stem Cells Dev. 2013 May 15;22(10 ):1564-75 25472042 - Reprod Fertil Dev. 2014 Dec;27(1):31-9 15179038 - Mol Cells. 2004 Apr 30;17(2):248-54 27385725 - Mol Hum Reprod. 2016 Sep;22(9):634-47 2163294 - Dev Genet. 1990;11(1):41-8 10837135 - Dev Biol. 2000 Jun 15;222(2):486-98 10760274 - Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4023-8 16990266 - J Biol Chem. 2006 Nov 17;281(46):34870-9 25767884 - PLoS One. 2015 Mar 13;10(3):e0119680 17317668 - J Biol Chem. 2007 Apr 20;282(16):12127-34 26207016 - Hum Reprod Update. 2016 Jan-Feb;22(1):2-22 17167165 - Biol Reprod. 2007 Apr;76(4):589-97 11602624 - J Clin Invest. 2001 Oct;108(8):1167-74 21241070 - Clin Pharmacokinet. 2011 Feb;50(2):81-98 7744080 - Eur J Biochem. 1995 Apr 15;229(2):558-65 23667684 - PLoS One. 2013 May 07;8(5):e63878 16316631 - Biochem Biophys Res Commun. 2006 Jan 13;339(2):701-7 21867676 - Arch Biochem Biophys. 2011 Nov;515(1-2):80-8 16951155 - Cancer Res. 2006 Sep 1;66(17):8448-54 9578620 - Dev Biol. 1998 May 1;197(1):77-92 19625624 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12932-7 22389381 - Endocr Relat Cancer. 2012 May 24;19(3):447-56 25721362 - Apoptosis. 2015 Jun;20(6):821-30 17214902 - BMC Dev Biol. 2007 Jan 10;7:2 27230877 - J Assist Reprod Genet. 2016 Aug;33(8):1027-39 17567959 - Biol Reprod. 2007 Sep;77(3):452-65 8073364 - Teratology. 1994 Apr;49(4):260-6 |
References_xml | – volume: 111 start-page: E435 year: 2014 ident: key 20180328135236_gax050C33 article-title: Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.1311121111 – volume: 222 start-page: 486 year: 2000 ident: key 20180328135236_gax050C36 article-title: Differential involvement of Na(+),K(+)-ATPase isozymes in preimplantation development of the mouse publication-title: Dev Biol doi: 10.1006/dbio.2000.9708 – volume: 19 start-page: 97 year: 2011 ident: key 20180328135236_gax050C7 article-title: Activation of AMP-activated kinase may not be involved in AICAR- and metformin-mediated meiotic arrest in bovine denuded and cumulus-enclosed oocytes in vitro publication-title: Zygote doi: 10.1017/S0967199410000195 – volume: 569 start-page: 133 year: 2005 ident: key 20180328135236_gax050C59 article-title: Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage publication-title: Mutat Res doi: 10.1016/j.mrfmmm.2004.06.055 – volume: 186 start-page: 129 year: 1989 ident: key 20180328135236_gax050C11 article-title: Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities publication-title: Eur J Biochem doi: 10.1111/j.1432-1033.1989.tb15186.x – volume: 33 start-page: 1027 year: 2016 ident: key 20180328135236_gax050C10 article-title: Commonly used fertility drugs, a diet supplement, and stress force AMPK-dependent block of stemness and development in cultured mammalian embryos publication-title: J Assist Reprod Genet doi: 10.1007/s10815-016-0735-z – volume: 19 start-page: 447 year: 2012 ident: key 20180328135236_gax050C32 article-title: Metformin inhibits growth and decreases resistance to anoikis in medullary thyroid cancer cells publication-title: Endocr Relat Cancer doi: 10.1530/ERC-12-0046 – volume: 13 start-page: 251 year: 2012 ident: key 20180328135236_gax050C30 article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3311 – volume: 282 start-page: 12127 year: 2007 ident: key 20180328135236_gax050C37 article-title: Na/K-ATPase beta1 subunit expression is required for blastocyst formation and normal assembly of trophectoderm tight junction-associated proteins publication-title: J Biol Chem doi: 10.1074/jbc.M700696200 – volume: 74 start-page: 4783 year: 2014 ident: key 20180328135236_gax050C15 article-title: AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signalling axis publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-0135 – volume: 22 start-page: 634 year: 2016 ident: key 20180328135236_gax050C21 article-title: P66Shc, a key regulator of metabolism and mitochondrial ROS production, is dysregulated by mouse embryo culture publication-title: Mol Hum Reprod doi: 10.1093/molehr/gaw043 – volume: 20 start-page: 821 year: 2015 ident: key 20180328135236_gax050C14 article-title: Adenosine monophosphate activated protein kinase (AMPK), a mediator of estradiol-induced apoptosis in long-term estrogen deprived breast cancer cells publication-title: Apoptosis doi: 10.1007/s10495-015-1111-7 – volume: 197 start-page: 77 year: 1998 ident: key 20180328135236_gax050C6 article-title: Na/K-ATPase-mediated 86Rb+ uptake and asymmetrical trophectoderm localization of alpha1 and alpha3 Na/K-ATPase isoforms during bovine preattachment development publication-title: Dev Biol doi: 10.1006/dbio.1998.8874 – volume: 76 start-page: 1078 year: 2001 ident: key 20180328135236_gax050C3 article-title: Effect of metformin on mouse embryo development publication-title: Fertil Steril doi: 10.1016/S0015-0282(01)02825-4 – volume: 24 start-page: 49 year: 1994 ident: key 20180328135236_gax050C55 article-title: Accumulation of metformin by tissues in the normal and diabetic mouse publication-title: Xenobiotica doi: 10.3109/00498259409043220 – volume: 56 start-page: 2228 year: 2007 ident: key 20180328135236_gax050C23 article-title: AMP kinase activation increases glucose uptake, decreases apoptosis, and improves pregnancy outcome in embryos exposed to high IGF-I concentrations publication-title: Diabetes doi: 10.2337/db07-0074 – volume: 17 start-page: 248 year: 2004 ident: key 20180328135236_gax050C31 article-title: The role of occludin, a tight junction protein, in blastocoel formation, and the paracellular permeability and differentiation of trophectoderm in preimplantation mouse embryo publication-title: Mol Cell doi: 10.1016/S1016-8478(23)13034-2 – volume: 7 start-page: 2 year: 2007 ident: key 20180328135236_gax050C25 article-title: Mouse preimplantation embryo responses to culture medium osmolarity include increased expression of CCM2 and p38 MAPK activation publication-title: BMC Dev Biol doi: 10.1186/1471-213X-7-2 – volume: 108 start-page: 1407 year: 1989 ident: key 20180328135236_gax050C24 article-title: Development of tight junctions de novo in the mouse early embryo: Control of assembly of the tight junction-specific protein, ZO-1 publication-title: J Cell Biol doi: 10.1083/jcb.108.4.1407 – volume: 289 start-page: 406 year: 2006 ident: key 20180328135236_gax050C50 article-title: Na+/K+-ATPase regulates tight junction function formation and function during mouse preimplantation development publication-title: Dev Biol doi: 10.1016/j.ydbio.2005.11.004 – volume: 291 start-page: 227 year: 2006 ident: key 20180328135236_gax050C13 article-title: AMPK regulation of mouse oocyte meiotic resumption in vitro publication-title: Dev Biol doi: 10.1016/j.ydbio.2005.11.039 – volume: 229 start-page: 558 year: 1995 ident: key 20180328135236_gax050C16 article-title: 5-amidoimidazole-4-carboxamide ribonucleoside: a specific method for activating AMP-activated protein kinase in intact cells publication-title: Eur J Biochem doi: 10.1111/j.1432-1033.1995.tb20498.x – volume: 11 start-page: 41 year: 1990 ident: key 20180328135236_gax050C53 article-title: Expression of Na, K-ATPase alpha and beta subunit genes during preimplantation development of the mouse publication-title: Dev Genetics doi: 10.1002/dvg.1020110106 – volume: 25 start-page: 1895 year: 2011 ident: key 20180328135236_gax050C29 article-title: AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function publication-title: Genes Dev doi: 10.1101/gad.17420111 – volume: 338 start-page: 1876 year: 1998 ident: key 20180328135236_gax050C40 article-title: Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome publication-title: N Engl J Med doi: 10.1056/NEJM199806253382603 – volume: 77 start-page: 452 year: 2007 ident: key 20180328135236_gax050C48 article-title: Possible role of 5’AMP-activated protein kinase in the metformin-mediated arrest of bovine oocytes at the germinal vesicle stage during in vitro maturation publication-title: Biol Reprod doi: 10.1095/biolreprod.107.060848 – volume: 8 start-page: e59528 year: 2013 ident: key 20180328135236_gax050C4 article-title: p38 MAPK regulates cavitation and tight junction function in the mouse blastocyst publication-title: PLoS One doi: 10.1371/journal.pone.0059528 – volume: 283 start-page: 3979 year: 2008 ident: key 20180328135236_gax050C41 article-title: Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress publication-title: J Biol Chem doi: 10.1074/jbc.M705232200 – volume: 50 start-page: 81 year: 2011 ident: key 20180328135236_gax050C27 article-title: Clinicopharmacokinetics of Metformin publication-title: Clin Pharmacokin doi: 10.2165/11534750-000000000-00000 – volume: 106 start-page: 12932 year: 2009 ident: key 20180328135236_gax050C28 article-title: The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0906606106 – volume: 12 year: 2014 ident: key 20180328135236_gax050C42 article-title: Metformin and gonadotropins for ovulation induction in patients with polycystic ovary syndrome: a systematic review with meta-analysis of randomized controlled trials publication-title: Reprod Biol Endocrinol doi: 10.1186/1477-7827-12-3 – volume: 277 start-page: 26729 year: 2002 ident: key 20180328135236_gax050C26 article-title: FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress publication-title: J Biol Chem doi: 10.1074/jbc.C200256200 – volume: 293 start-page: E1198 year: 2007 ident: key 20180328135236_gax050C45 article-title: Maternal diabetes adversely affects AMP-kinase activity and cellular metabolism in murine oocytes publication-title: Am J Physiol Metab – volume: 132 start-page: 2093 year: 2005 ident: key 20180328135236_gax050C46 article-title: Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst publication-title: Development doi: 10.1242/dev.01801 – volume: 126 start-page: 80 year: 1988 ident: key 20180328135236_gax050C52 article-title: Immunofluorescence assessment of the timing of appearance and cellular distribution of Na/K-ATPase during mouse embryogenesis publication-title: Dev Biol doi: 10.1016/0012-1606(88)90241-2 – volume: 28 start-page: 84 year: 2006 ident: key 20180328135236_gax050C22 article-title: Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients publication-title: Physiol Genomics doi: 10.1152/physiolgenomics.00111.2006 – volume: 282 start-page: 4601 year: 2007 ident: key 20180328135236_gax050C9 article-title: AMP-activated protein kinase impairs endothelial actin cytoskeleton assembly by phosphorylating vasodilator-stimulated phosphoprotein publication-title: J Biol Chem doi: 10.1074/jbc.M608866200 – volume: 8 start-page: e63878 year: 2013 ident: key 20180328135236_gax050C19 article-title: Adiponectin increases secretion of the rat submandibular gland via adiponectin receptors-mediated AMPK signalling publication-title: PLoS One doi: 10.1371/journal.pone.0063878 – volume: 22 start-page: 1564 year: 2013 ident: key 20180328135236_gax050C57 article-title: Stress induces AMP-dependent loss of potency factors Id2 and cdx2 in embryos and stem cells publication-title: Stem Cells Dev doi: 10.1089/scd.2012.0352 – volume: 49 start-page: 260 year: 1994 ident: key 20180328135236_gax050C18 article-title: Effects of the biguanide class of oral hypoglycemic agents on mouse embryogenesis publication-title: Teratology doi: 10.1002/tera.1420490405 – volume: 245 start-page: 200 year: 2002 ident: key 20180328135236_gax050C20 article-title: A potential role for AMP-activated protein kinase in meiotic induction in mouse oocytes publication-title: Dev Biol doi: 10.1006/dbio.2002.0613 – volume: 82–83 start-page: 583 year: 2004 ident: key 20180328135236_gax050C54 article-title: Molecular regulation of blastocyst formation publication-title: Anim Reprod Sci doi: 10.1016/j.anireprosci.2004.04.004 – volume: 10 start-page: e0119680 year: 2015 ident: key 20180328135236_gax050C5 article-title: Specific deletion of AMP-activated protein kinase (α1 AMPK) in murine oocytes alters junctional protein expression and mitochondrial physiology publication-title: PLoS One doi: 10.1371/journal.pone.0119680 – volume: 121 start-page: 417 year: 2004 ident: key 20180328135236_gax050C2 article-title: Deletion of the Na/K-ATPase alpha1-subunit gene (Atp1a1) does not prevent cavitation of the preimplantation mouse embryo publication-title: Mech Dev – volume: 103 start-page: 17272 year: 2006 ident: key 20180328135236_gax050C60 article-title: AMP-activated protein kinase regulates the assembly of epithelial tight junctions publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0608531103 – volume: 22 start-page: 275 year: 2014 ident: key 20180328135236_gax050C8 article-title: Characterization of the effects of metformin on porcine oocyte meiosis and on AMP-activated protein kinase activation in oocytes and cumulus cells publication-title: Zygote doi: 10.1017/S0967199413000075 – volume: 76 start-page: 589 year: 2007 ident: key 20180328135236_gax050C38 article-title: Adenosine 5’-monophosphate kinase-activated protein kinase (PRKA) activators delay meiotic resumption in porcine oocytes publication-title: Biol Reprod doi: 10.1095/biolreprod.106.057828 – volume: 515 start-page: 80 year: 2011 ident: key 20180328135236_gax050C58 article-title: AMP-activated protein kinase modulates the gene expression of aquaporin 9 via forkhead box a2 publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2011.08.002 – volume: 97 start-page: 4023 year: 2000 ident: key 20180328135236_gax050C17 article-title: Role of AMP-activated protein kinase in the regulation by glucose of islet beta cell gene expression publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.97.8.4023 – volume: 22 start-page: 2 year: 2016 ident: key 20180328135236_gax050C51 article-title: The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction publication-title: Hum Reprod Update doi: 10.1093/humupd/dmv034 – volume: 66 start-page: 8448 year: 2006 ident: key 20180328135236_gax050C49 article-title: Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-2013 – volume: 281 start-page: 34870 year: 2006 ident: key 20180328135236_gax050C39 article-title: AMP-activated protein kinase and the regulation of autophagic proteolysis publication-title: J Biol Chem doi: 10.1074/jbc.M605488200 – volume: 21 start-page: 1416 year: 2006 ident: key 20180328135236_gax050C47 article-title: The use of metformin for women with PCOS undergoing IVF treatment publication-title: Hum Reprod doi: 10.1093/humrep/del025 – volume: 256 start-page: 342 year: 2003 ident: key 20180328135236_gax050C1 article-title: Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation publication-title: Dev Biol doi: 10.1016/S0012-1606(02)00127-6 – volume: 27 start-page: 31 year: 2014 ident: key 20180328135236_gax050C35 article-title: TallyHO obese female mice experience poor reproductive outcomes and abnormal blastocyst metabolism that is reversed by metformin publication-title: Reprod Fertil Dev doi: 10.1071/RD14339 – volume: 25 start-page: e45 year: 2001 ident: key 20180328135236_gax050C44 article-title: A new mathematical model for relative quantification in real-time RT-PCR publication-title: Nucleic Acids Res doi: 10.1093/nar/29.9.e45 – volume: 386 start-page: 84 year: 1997 ident: key 20180328135236_gax050C12 article-title: Homeosis and intestinal tumours in Cdx2 mutant mice publication-title: Nature doi: 10.1038/386084a0 – volume: 104 start-page: 819 year: 2007 ident: key 20180328135236_gax050C61 article-title: Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0610157104 – volume: 23 start-page: 58 year: 2013 ident: key 20180328135236_gax050C43 article-title: Effects of metformin on fertilisation of bovine oocytes and early embryo development: possible involvement of AMPK3-mediated TSC2 activation publication-title: Zygote doi: 10.1017/S0967199413000300 – volume: 140 start-page: 921 year: 2010 ident: key 20180328135236_gax050C62 article-title: Cellular stress causes reversible, PRKAA1/2- and proteasome-dependent ID2 protein loss in trophoblast stem cells publication-title: Reproduction doi: 10.1530/REP-10-0268 – volume: 339 start-page: 701 year: 2006 ident: key 20180328135236_gax050C34 article-title: High-fat diet feeding impairs both the expression and activity of AMPKa in rats’ skeletal muscle publication-title: Biochem Biophys Res Comm doi: 10.1016/j.bbrc.2005.11.068 – volume: 1008 start-page: 1167 year: 2001 ident: key 20180328135236_gax050C63 article-title: Role of AMP-activated protein kinase in the mechanism of metformin action publication-title: J Clin Invest doi: 10.1172/JCI13505 – volume: 74 start-page: 1287 year: 2007 ident: key 20180328135236_gax050C56 article-title: Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos publication-title: Mol Reprod Dev doi: 10.1002/mrd.20563 – reference: 20569514 - Zygote. 2011 May;19(2):97-106 – reference: 17214902 - BMC Dev Biol. 2007 Jan 10;7:2 – reference: 2647768 - J Cell Biol. 1989 Apr;108(4):1407-18 – reference: 12048180 - J Biol Chem. 2002 Jul 26;277(30):26729-32 – reference: 9637806 - N Engl J Med. 1998 Jun 25;338(26):1876-80 – reference: 17082196 - J Biol Chem. 2007 Feb 16;282(7):4601-12 – reference: 11969266 - Dev Biol. 2002 May 1;245(1):200-12 – reference: 23578544 - Zygote. 2014 May;22(2):275-85 – reference: 21937710 - Genes Dev. 2011 Sep 15;25(18):1895-908 – reference: 25721362 - Apoptosis. 2015 Jun;20(6):821-30 – reference: 23593143 - PLoS One. 2013 Apr 04;8(4):e59528 – reference: 18056705 - J Biol Chem. 2008 Feb 15;283(7):3979-87 – reference: 22389381 - Endocr Relat Cancer. 2012 May 24;19(3):447-56 – reference: 24994714 - Cancer Res. 2014 Sep 1;74(17 ):4783-95 – reference: 15788452 - Development. 2005 May;132(9):2093-102 – reference: 17317668 - J Biol Chem. 2007 Apr 20;282(16):12127-34 – reference: 17575082 - Diabetes. 2007 Sep;56(9):2228-34 – reference: 23316940 - Stem Cells Dev. 2013 May 15;22(10 ):1564-75 – reference: 15147760 - Mech Dev. 2004 May;121(5):417-26 – reference: 15179038 - Mol Cells. 2004 Apr 30;17(2):248-54 – reference: 22436748 - Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):251-62 – reference: 20876741 - Reproduction. 2010 Dec;140(6):921-30 – reference: 8165821 - Xenobiotica. 1994 Jan;24(1):49-57 – reference: 16501038 - Hum Reprod. 2006 Jun;21(6):1416-25 – reference: 2830159 - Dev Biol. 1988 Mar;126(1):80-90 – reference: 23870192 - Zygote. 2015 Feb;23(1):58-67 – reference: 17088526 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17272-7 – reference: 15603758 - Mutat Res. 2005 Jan 6;569(1-2):133-43 – reference: 16443210 - Dev Biol. 2006 Mar 15;291(2):227-38 – reference: 11602624 - J Clin Invest. 2001 Oct;108(8):1167-74 – reference: 25767884 - PLoS One. 2015 Mar 13;10(3):e0119680 – reference: 23667684 - PLoS One. 2013 May 07;8(5):e63878 – reference: 24387273 - Reprod Biol Endocrinol. 2014 Jan 03;12:3 – reference: 16316631 - Biochem Biophys Res Commun. 2006 Jan 13;339(2):701-7 – reference: 26207016 - Hum Reprod Update. 2016 Jan-Feb;22(1):2-22 – reference: 15271481 - Anim Reprod Sci. 2004 Jul;82-83:583-92 – reference: 24474794 - Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E435-44 – reference: 17167165 - Biol Reprod. 2007 Apr;76(4):589-97 – reference: 16951155 - Cancer Res. 2006 Sep 1;66(17):8448-54 – reference: 2598924 - Eur J Biochem. 1989 Dec 8;186(1-2):129-36 – reference: 27230877 - J Assist Reprod Genet. 2016 Aug;33(8):1027-39 – reference: 27385725 - Mol Hum Reprod. 2016 Sep;22(9):634-47 – reference: 21241070 - Clin Pharmacokinet. 2011 Feb;50(2):81-98 – reference: 17492777 - Mol Reprod Dev. 2007 Oct;74(10):1287-94 – reference: 25472042 - Reprod Fertil Dev. 2014 Dec;27(1):31-9 – reference: 11704144 - Fertil Steril. 2001 Nov;76(5):1078-9 – reference: 19625624 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12932-7 – reference: 10837135 - Dev Biol. 2000 Jun 15;222(2):486-98 – reference: 8073364 - Teratology. 1994 Apr;49(4):260-6 – reference: 2163294 - Dev Genet. 1990;11(1):41-8 – reference: 9052785 - Nature. 1997 Mar 6;386(6620):84-7 – reference: 16356488 - Dev Biol. 2006 Jan 15;289(2):406-19 – reference: 9578620 - Dev Biol. 1998 May 1;197(1):77-92 – reference: 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45 – reference: 12679107 - Dev Biol. 2003 Apr 15;256(2):342-54 – reference: 17567959 - Biol Reprod. 2007 Sep;77(3):452-65 – reference: 7744080 - Eur J Biochem. 1995 Apr 15;229(2):558-65 – reference: 17204563 - Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):819-22 – reference: 16990266 - J Biol Chem. 2006 Nov 17;281(46):34870-9 – reference: 17018689 - Physiol Genomics. 2006 Dec 13;28(1):84-96 – reference: 17684106 - Am J Physiol Endocrinol Metab. 2007 Nov;293(5):E1198-206 – reference: 21867676 - Arch Biochem Biophys. 2011 Nov;515(1-2):80-8 – reference: 10760274 - Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4023-8 |
SSID | ssj0017258 |
Score | 2.2940981 |
Snippet | What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 771 |
SubjectTerms | Adenosine Triphosphate - biosynthesis Aminoimidazole Carboxamide - analogs & derivatives Aminoimidazole Carboxamide - pharmacology AMP-Activated Protein Kinases - genetics AMP-Activated Protein Kinases - metabolism Animals Blastocyst - drug effects Blastocyst - metabolism Blastocyst - ultrastructure CDX2 Transcription Factor - genetics CDX2 Transcription Factor - metabolism Cell Differentiation - drug effects Dose-Response Relationship, Drug Embryo Culture Techniques Embryonic Development - drug effects Female Gene Expression Regulation, Developmental - drug effects Hypoglycemic Agents - pharmacology Mice Original Research Oxazines - pharmacology Phosphorylation - drug effects Ribonucleotides - pharmacology Signal Transduction Tight Junctions - drug effects Tight Junctions - metabolism Tight Junctions - ultrastructure |
Title | Treatment with AICAR inhibits blastocyst development, trophectoderm differentiation and tight junction formation and function in mice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28962017 https://www.proquest.com/docview/1945222562 https://pubmed.ncbi.nlm.nih.gov/PMC5909861 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFAeOjDJCR0F66sHw7eawKaAONB7SJvUVJbNOiJZ1WV9p454_gv-XOjp10YxIgVVFlp3aU-9W-8939jpA3WVUyJC3wWMYZljDzvZKDsRJWWZrlMq_TEhOFjz6nByfxx9PkdDT6NYhaWqvqbf3jj3kl_yNVaAO5YpbsP0jWDQoN8B3kC1eQMFz_TsYuSlwfp04PZ9Mvk0U7X1ToDqhAMVbL-mqlbGqUPgmEd6oukE2gVlgHrXE1UpSRkompRJt98h02PRuL2PSd0jYv2knTxc5ZBffIltvtqv8haabmlB34-2flGTdIMYGoog87NjWkVw6jYnDWKpQyOj86D5yH62upuqQxE5vZ-bm6gwzYHAN3kCHM4hunPnp72HB1NtnIFoXBYK1lpnbLjT3A8GM18IhzZGD5Vl76htt2gIjzRkMCrM0UH6XfDF2Iou26Q-6GYIFgcYx3h5-cg4qFSdZRtsJ8-2a2fTMXEkx3v97Udm6YMNcjcQeqzfEDcr-zSejUAOwhGYn2EdmetqVaNld0l-ooYe1-2SY_HeYoYo5qzFGLOdpjjg4wt0c3EEevIY4CqKhGHLWIow5xutMiDiaiiLjH5OTD--PZgdeV8vBqUFCVxyJZR4xLKRnyYGVMJEmURzXo60IEFQczIotSWDYAAjkaKb4MJXLthWWdxpxFT8hWu2zFM0JlxZmMsWpBzOME1hIOexCrwVTADw_HZM--8qLueO6x3MpZYeItosIIqzDCGpNdd_u5IXi57cbXVn4FLMHoVytbsVyviiDHsgRgO8DcT4083VAWCGPCNiTtbkB6982edjHXNO9J7udZGjy_dcwdcq__H70gW-piLV6CiqyqVxqsvwHC_sgn |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Treatment+with+AICAR+inhibits+blastocyst+development%2C+trophectoderm+differentiation+and+tight+junction+formation+and+function+in+mice&rft.jtitle=Molecular+human+reproduction&rft.au=Calder%2C+Michele+D&rft.au=Edwards%2C+Nicole+A&rft.au=Betts%2C+Dean+H&rft.au=Watson%2C+Andrew+J&rft.date=2017-11-01&rft.eissn=1460-2407&rft.volume=23&rft.issue=11&rft.spage=771&rft_id=info:doi/10.1093%2Fmolehr%2Fgax050&rft_id=info%3Apmid%2F28962017&rft.externalDocID=28962017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-9947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-9947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-9947&client=summon |