Treatment with AICAR inhibits blastocyst development, trophectoderm differentiation and tight junction formation and function in mice

What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function? AMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur. AMPK isofor...

Full description

Saved in:
Bibliographic Details
Published inMolecular human reproduction Vol. 23; no. 11; pp. 771 - 785
Main Authors Calder, Michele D, Edwards, Nicole A, Betts, Dean H, Watson, Andrew J
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function? AMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur. AMPK isoforms are detectable in oocytes, cumulus cells and preimplantation embryos. Cultured embryos are subject to many stresses that can activate AMPK. Two primary experiments were carried out to determine the effect of AICAR treatment on embryo development and maintenance of the blastocoel cavity. Embryos were recovered from superovulated mice. First, 2-cell embryos were treated with a concentration series (0-2000 μM) of AICAR for 48 h until blastocyst formation would normally occur. In the second experiment, expanded mouse blastocysts were treated for 9 h with 1000 μM AICAR. Outcomes measured included development to the blastocyst stage, cell number, blastocyst volume, AMPK phosphorylation, Cdx2 and blastocyst formation gene family expression (mRNAs and protein measured using quantitative RT-PCR, immunoblotting, immunofluorescence), tight junction function (FITC dextran dye uptake assay), and blastocyst ATP levels. The reversibility of AICAR treatment was assessed using Compound C (CC), a well-known inhibitor of AMPK, alone or in combination with AICAR. Prolonged treatment with AICAR from the 2-cell stage onward decreases blastocyst formation, reduces total cell number, embryo diameter, leads to loss of trophectoderm cell contacts and membrane zona occludens-1 staining, and increased nuclear condensation. Treatment with CC alone inhibited blastocyst development only at concentrations that are higher than normally used. AICAR treated embryos displayed altered mRNA and protein levels of blastocyst formation genes. Treatment of blastocysts with AICAR for 9 h induced blastocyst collapse, altered blastocyst formation gene expression, increased tight junction permeability and decreased CDX2. Treated blastocysts displayed three phenotypes: those that were unaffected by treatment, those in which treatment was reversible, and those in which effects were irreversible. Not applicable. Our study investigates the effects of AICAR treatment on early development. While AICAR does increase AMPK activity and this is demonstrated in our study, AICAR is not a natural regulator of AMPK activity and some outcomes may result from off target non-AMPK AICAR regulated events. To support our results, blastocyst developmental outcomes were confirmed with two other well-known small molecule activators of AMPK, metformin and phenformin. Metformin, an AMPK activator, is widely used to treat type II diabetes and polycystic ovarian disorder (PCOS). Our results indicate that early embryonic AMPK levels must be tightly regulated to ensure normal preimplantation development. Thus, use of metformin should be carefully considered during preimplantation and early post-embryo transfer phases of fertility treatment cycles. Canadian Institutes of Health Research (CIHR) operating funds. There are no competing interests.
AbstractList What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function?STUDY QUESTIONWhat is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function?AMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur.SUMMARY ANSWERAMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur.AMPK isoforms are detectable in oocytes, cumulus cells and preimplantation embryos. Cultured embryos are subject to many stresses that can activate AMPK.WHAT IS KNOWN ALREADYAMPK isoforms are detectable in oocytes, cumulus cells and preimplantation embryos. Cultured embryos are subject to many stresses that can activate AMPK.Two primary experiments were carried out to determine the effect of AICAR treatment on embryo development and maintenance of the blastocoel cavity. Embryos were recovered from superovulated mice. First, 2-cell embryos were treated with a concentration series (0-2000 μM) of AICAR for 48 h until blastocyst formation would normally occur. In the second experiment, expanded mouse blastocysts were treated for 9 h with 1000 μM AICAR.STUDY DESIGN, SIZE, DURATIONTwo primary experiments were carried out to determine the effect of AICAR treatment on embryo development and maintenance of the blastocoel cavity. Embryos were recovered from superovulated mice. First, 2-cell embryos were treated with a concentration series (0-2000 μM) of AICAR for 48 h until blastocyst formation would normally occur. In the second experiment, expanded mouse blastocysts were treated for 9 h with 1000 μM AICAR.Outcomes measured included development to the blastocyst stage, cell number, blastocyst volume, AMPK phosphorylation, Cdx2 and blastocyst formation gene family expression (mRNAs and protein measured using quantitative RT-PCR, immunoblotting, immunofluorescence), tight junction function (FITC dextran dye uptake assay), and blastocyst ATP levels. The reversibility of AICAR treatment was assessed using Compound C (CC), a well-known inhibitor of AMPK, alone or in combination with AICAR.PARTICIPANTS/MATERIALS, SETTING, METHODSOutcomes measured included development to the blastocyst stage, cell number, blastocyst volume, AMPK phosphorylation, Cdx2 and blastocyst formation gene family expression (mRNAs and protein measured using quantitative RT-PCR, immunoblotting, immunofluorescence), tight junction function (FITC dextran dye uptake assay), and blastocyst ATP levels. The reversibility of AICAR treatment was assessed using Compound C (CC), a well-known inhibitor of AMPK, alone or in combination with AICAR.Prolonged treatment with AICAR from the 2-cell stage onward decreases blastocyst formation, reduces total cell number, embryo diameter, leads to loss of trophectoderm cell contacts and membrane zona occludens-1 staining, and increased nuclear condensation. Treatment with CC alone inhibited blastocyst development only at concentrations that are higher than normally used. AICAR treated embryos displayed altered mRNA and protein levels of blastocyst formation genes. Treatment of blastocysts with AICAR for 9 h induced blastocyst collapse, altered blastocyst formation gene expression, increased tight junction permeability and decreased CDX2. Treated blastocysts displayed three phenotypes: those that were unaffected by treatment, those in which treatment was reversible, and those in which effects were irreversible.MAIN RESULTS AND THE ROLE OF CHANCEProlonged treatment with AICAR from the 2-cell stage onward decreases blastocyst formation, reduces total cell number, embryo diameter, leads to loss of trophectoderm cell contacts and membrane zona occludens-1 staining, and increased nuclear condensation. Treatment with CC alone inhibited blastocyst development only at concentrations that are higher than normally used. AICAR treated embryos displayed altered mRNA and protein levels of blastocyst formation genes. Treatment of blastocysts with AICAR for 9 h induced blastocyst collapse, altered blastocyst formation gene expression, increased tight junction permeability and decreased CDX2. Treated blastocysts displayed three phenotypes: those that were unaffected by treatment, those in which treatment was reversible, and those in which effects were irreversible.Not applicable.LARGE SCALE DATANot applicable.Our study investigates the effects of AICAR treatment on early development. While AICAR does increase AMPK activity and this is demonstrated in our study, AICAR is not a natural regulator of AMPK activity and some outcomes may result from off target non-AMPK AICAR regulated events. To support our results, blastocyst developmental outcomes were confirmed with two other well-known small molecule activators of AMPK, metformin and phenformin.LIMITATIONS, REASONS FOR CAUTIONOur study investigates the effects of AICAR treatment on early development. While AICAR does increase AMPK activity and this is demonstrated in our study, AICAR is not a natural regulator of AMPK activity and some outcomes may result from off target non-AMPK AICAR regulated events. To support our results, blastocyst developmental outcomes were confirmed with two other well-known small molecule activators of AMPK, metformin and phenformin.Metformin, an AMPK activator, is widely used to treat type II diabetes and polycystic ovarian disorder (PCOS). Our results indicate that early embryonic AMPK levels must be tightly regulated to ensure normal preimplantation development. Thus, use of metformin should be carefully considered during preimplantation and early post-embryo transfer phases of fertility treatment cycles.WIDER IMPLICATIONS OF THE FINDINGSMetformin, an AMPK activator, is widely used to treat type II diabetes and polycystic ovarian disorder (PCOS). Our results indicate that early embryonic AMPK levels must be tightly regulated to ensure normal preimplantation development. Thus, use of metformin should be carefully considered during preimplantation and early post-embryo transfer phases of fertility treatment cycles.Canadian Institutes of Health Research (CIHR) operating funds. There are no competing interests.STUDY FUNDING AND COMPETING INTEREST(S)Canadian Institutes of Health Research (CIHR) operating funds. There are no competing interests.
What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function? AMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur. AMPK isoforms are detectable in oocytes, cumulus cells and preimplantation embryos. Cultured embryos are subject to many stresses that can activate AMPK. Two primary experiments were carried out to determine the effect of AICAR treatment on embryo development and maintenance of the blastocoel cavity. Embryos were recovered from superovulated mice. First, 2-cell embryos were treated with a concentration series (0-2000 μM) of AICAR for 48 h until blastocyst formation would normally occur. In the second experiment, expanded mouse blastocysts were treated for 9 h with 1000 μM AICAR. Outcomes measured included development to the blastocyst stage, cell number, blastocyst volume, AMPK phosphorylation, Cdx2 and blastocyst formation gene family expression (mRNAs and protein measured using quantitative RT-PCR, immunoblotting, immunofluorescence), tight junction function (FITC dextran dye uptake assay), and blastocyst ATP levels. The reversibility of AICAR treatment was assessed using Compound C (CC), a well-known inhibitor of AMPK, alone or in combination with AICAR. Prolonged treatment with AICAR from the 2-cell stage onward decreases blastocyst formation, reduces total cell number, embryo diameter, leads to loss of trophectoderm cell contacts and membrane zona occludens-1 staining, and increased nuclear condensation. Treatment with CC alone inhibited blastocyst development only at concentrations that are higher than normally used. AICAR treated embryos displayed altered mRNA and protein levels of blastocyst formation genes. Treatment of blastocysts with AICAR for 9 h induced blastocyst collapse, altered blastocyst formation gene expression, increased tight junction permeability and decreased CDX2. Treated blastocysts displayed three phenotypes: those that were unaffected by treatment, those in which treatment was reversible, and those in which effects were irreversible. Not applicable. Our study investigates the effects of AICAR treatment on early development. While AICAR does increase AMPK activity and this is demonstrated in our study, AICAR is not a natural regulator of AMPK activity and some outcomes may result from off target non-AMPK AICAR regulated events. To support our results, blastocyst developmental outcomes were confirmed with two other well-known small molecule activators of AMPK, metformin and phenformin. Metformin, an AMPK activator, is widely used to treat type II diabetes and polycystic ovarian disorder (PCOS). Our results indicate that early embryonic AMPK levels must be tightly regulated to ensure normal preimplantation development. Thus, use of metformin should be carefully considered during preimplantation and early post-embryo transfer phases of fertility treatment cycles. Canadian Institutes of Health Research (CIHR) operating funds. There are no competing interests.
Author Calder, Michele D
Watson, Andrew J
Edwards, Nicole A
Betts, Dean H
AuthorAffiliation 3 Children’s Health Research Institute (CHRI), Lawson Health Research Institute (LHRI), London, Ontario , Canada
1 Departments of Physiology and Pharmacology , Western University, London, Ontario, Canada
2 Obstetrics and Gynaecology, Schulich School of Medicine , Western University , London, Ontario, Canada
AuthorAffiliation_xml – name: 2 Obstetrics and Gynaecology, Schulich School of Medicine , Western University , London, Ontario, Canada
– name: 1 Departments of Physiology and Pharmacology , Western University, London, Ontario, Canada
– name: 3 Children’s Health Research Institute (CHRI), Lawson Health Research Institute (LHRI), London, Ontario , Canada
Author_xml – sequence: 1
  givenname: Michele D
  surname: Calder
  fullname: Calder, Michele D
  organization: Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada, Obstetrics and Gynaecology, Schulich School of Medicine, Western University, London, Ontario, Canada
– sequence: 2
  givenname: Nicole A
  surname: Edwards
  fullname: Edwards, Nicole A
  organization: Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada
– sequence: 3
  givenname: Dean H
  surname: Betts
  fullname: Betts, Dean H
  organization: Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada, Obstetrics and Gynaecology, Schulich School of Medicine, Western University, London, Ontario, Canada, Children’s Health Research Institute (CHRI), Lawson Health Research Institute (LHRI), London, Ontario, Canada
– sequence: 4
  givenname: Andrew J
  surname: Watson
  fullname: Watson, Andrew J
  organization: Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada, Obstetrics and Gynaecology, Schulich School of Medicine, Western University, London, Ontario, Canada, Children’s Health Research Institute (CHRI), Lawson Health Research Institute (LHRI), London, Ontario, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28962017$$D View this record in MEDLINE/PubMed
BookMark eNptUctOHDEQtBARr-SYa-RjDhnwYzweXyIhlJeEFAmRs-X1tHeMZuyN7SXhA_Lf8bJsgIiT213VVa3qY7QfYgCE3lJySoniZ3OcYExnS_ObCLKHjmjbkYa1RO7XmtdaqVYeouOcbwihkon-AB2yXnWs_o7Qn-sEpswQCv7ly4jPv12cX2EfRr_wJePFZHKJ9i4XPMAtTHG1oX7AJcXVCLbEAdKMB-8cpAp4U3wM2IQBF78cC75ZB3vfcjHNj6DbtX3As7fwGr1yZsrw5uE9QT8-f7q--Npcfv9SF7psLKeyNJI7y-XgnJPSOtlLEIIrboWgAHQxUMV73hm5yUBRKghxzPVCEGZs1w6Sn6CPW93VejHDYOvKyUx6lfxs0p2OxuvnSPCjXsZbLRRRfUerwPsHgRR_riEXPftsYZpMgLjOmqpWMMZExyr13VOvfya77CuBbwk2xZwTOG19uc-oWvtJU6I3F9bbC-vthetU89_UTvhl_l_i9a8e
CitedBy_id crossref_primary_10_1007_s43032_020_00223_5
crossref_primary_10_1073_pnas_2026804118
crossref_primary_10_3389_fphar_2018_00761
crossref_primary_10_1007_s10815_018_1213_6
crossref_primary_10_1096_fj_201801887R
crossref_primary_10_1007_s10815_019_01470_5
crossref_primary_10_3389_fendo_2023_1150017
crossref_primary_10_1016_j_stem_2023_08_002
crossref_primary_10_1007_s10815_020_01709_6
crossref_primary_10_1089_scd_2018_0131
crossref_primary_10_3389_fcell_2020_593005
crossref_primary_10_1002_mrd_23250
Cites_doi 10.1073/pnas.1311121111
10.1006/dbio.2000.9708
10.1017/S0967199410000195
10.1016/j.mrfmmm.2004.06.055
10.1111/j.1432-1033.1989.tb15186.x
10.1007/s10815-016-0735-z
10.1530/ERC-12-0046
10.1038/nrm3311
10.1074/jbc.M700696200
10.1158/0008-5472.CAN-14-0135
10.1093/molehr/gaw043
10.1007/s10495-015-1111-7
10.1006/dbio.1998.8874
10.1016/S0015-0282(01)02825-4
10.3109/00498259409043220
10.2337/db07-0074
10.1016/S1016-8478(23)13034-2
10.1186/1471-213X-7-2
10.1083/jcb.108.4.1407
10.1016/j.ydbio.2005.11.004
10.1016/j.ydbio.2005.11.039
10.1111/j.1432-1033.1995.tb20498.x
10.1002/dvg.1020110106
10.1101/gad.17420111
10.1056/NEJM199806253382603
10.1095/biolreprod.107.060848
10.1371/journal.pone.0059528
10.1074/jbc.M705232200
10.2165/11534750-000000000-00000
10.1073/pnas.0906606106
10.1186/1477-7827-12-3
10.1074/jbc.C200256200
10.1242/dev.01801
10.1016/0012-1606(88)90241-2
10.1152/physiolgenomics.00111.2006
10.1074/jbc.M608866200
10.1371/journal.pone.0063878
10.1089/scd.2012.0352
10.1002/tera.1420490405
10.1006/dbio.2002.0613
10.1016/j.anireprosci.2004.04.004
10.1371/journal.pone.0119680
10.1073/pnas.0608531103
10.1017/S0967199413000075
10.1095/biolreprod.106.057828
10.1016/j.abb.2011.08.002
10.1073/pnas.97.8.4023
10.1093/humupd/dmv034
10.1158/0008-5472.CAN-06-2013
10.1074/jbc.M605488200
10.1093/humrep/del025
10.1016/S0012-1606(02)00127-6
10.1071/RD14339
10.1093/nar/29.9.e45
10.1038/386084a0
10.1073/pnas.0610157104
10.1017/S0967199413000300
10.1530/REP-10-0268
10.1016/j.bbrc.2005.11.068
10.1172/JCI13505
10.1002/mrd.20563
ContentType Journal Article
Copyright The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017
Copyright_xml – notice: The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
– notice: The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/molehr/gax050
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1460-2407
EndPage 785
ExternalDocumentID PMC5909861
28962017
10_1093_molehr_gax050
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
  grantid: MOP 130396
– fundername: ; ; ;
GroupedDBID ---
-E4
.2P
.I3
0R~
123
18M
29M
2WC
4.4
482
48X
53G
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABMNT
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACPRK
ACUFI
ACUTJ
ACUTO
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
BAYMD
BCRHZ
BEYMZ
BQDIO
BSWAC
BTRTY
BVRKM
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HH5
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
NVLIB
O9-
OAWHX
OBOKY
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
SV3
TEORI
TJX
TLC
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~S-
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c317t-73fc37dfff77cf787e55393c551ee1bd193836a71460911500f2f85502ac64d73
ISSN 1360-9947
1460-2407
IngestDate Thu Aug 21 14:04:12 EDT 2025
Fri Jul 11 06:44:53 EDT 2025
Mon Jul 21 06:02:51 EDT 2025
Tue Jul 01 04:26:07 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords AMPK
preimplantation
assisted reproductive technologies
blastocyst formation
embryo culture
stress pathways
Language English
License The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-73fc37dfff77cf787e55393c551ee1bd193836a71460911500f2f85502ac64d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/molehr/article-pdf/23/11/771/24369071/gax050.pdf
PMID 28962017
PQID 1945222562
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5909861
proquest_miscellaneous_1945222562
pubmed_primary_28962017
crossref_citationtrail_10_1093_molehr_gax050
crossref_primary_10_1093_molehr_gax050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Molecular human reproduction
PublicationTitleAlternate Mol Hum Reprod
PublicationYear 2017
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Chen ( key 20180328135236_gax050C14) 2015; 20
El-Sayed ( key 20180328135236_gax050C22) 2006; 28
Okoshi ( key 20180328135236_gax050C41) 2008; 283
Zheng ( key 20180328135236_gax050C61) 2007; 104
Bilodeau-Goeseels ( key 20180328135236_gax050C7) 2011; 19
Carling ( key 20180328135236_gax050C11) 1989; 186
Blume ( key 20180328135236_gax050C9) 2007; 282
Chen ( key 20180328135236_gax050C13) 2006; 291
Watson ( key 20180328135236_gax050C52) 1988; 126
Bedaiwy ( key 20180328135236_gax050C3) 2001; 76
MacPhee ( key 20180328135236_gax050C36) 2000; 222
Hardie ( key 20180328135236_gax050C29) 2011; 25
Wale ( key 20180328135236_gax050C51) 2016; 22
Barcroft ( key 20180328135236_gax050C1) 2003; 256
Zhan ( key 20180328135236_gax050C59) 2005; 569
Denno ( key 20180328135236_gax050C18) 1994; 49
Fong ( key 20180328135236_gax050C25) 2007; 7
Tang ( key 20180328135236_gax050C47) 2006; 21
Zhang ( key 20180328135236_gax050C60) 2006; 103
Liu ( key 20180328135236_gax050C33) 2014; 111
Bilodeau-Goeseels ( key 20180328135236_gax050C8) 2014; 22
Furukawa-Hibi ( key 20180328135236_gax050C26) 2002; 277
Downs ( key 20180328135236_gax050C20) 2002; 245
Klubo-Gwiezdzinska ( key 20180328135236_gax050C32) 2012; 19
Xie ( key 20180328135236_gax050C57) 2013; 22
Pfaffl ( key 20180328135236_gax050C44) 2001; 25
Bertoldo ( key 20180328135236_gax050C5) 2015; 10
Graham ( key 20180328135236_gax050C27) 2011; 50
Palomba ( key 20180328135236_gax050C42) 2014; 12
Strumpf ( key 20180328135236_gax050C46) 2005; 132
Tront ( key 20180328135236_gax050C49) 2006; 66
Bolnick ( key 20180328135236_gax050C10) 2016; 33
Corton ( key 20180328135236_gax050C16) 1995; 229
Guo ( key 20180328135236_gax050C28) 2009; 106
Kim ( key 20180328135236_gax050C31) 2004; 17
Watson ( key 20180328135236_gax050C54) 2004; 82–83
Zhou ( key 20180328135236_gax050C63) 2001; 1008
Ding ( key 20180328135236_gax050C19) 2013; 8
Mayes ( key 20180328135236_gax050C38) 2007; 76
Meley ( key 20180328135236_gax050C39) 2006; 281
Louden ( key 20180328135236_gax050C35) 2014; 27
Pikiou ( key 20180328135236_gax050C43) 2013; 23
Edwards ( key 20180328135236_gax050C21) 2016; 22
da Silva Xavier ( key 20180328135236_gax050C17) 2000; 97
Zhong ( key 20180328135236_gax050C62) 2010; 140
Nestler ( key 20180328135236_gax050C40) 1998; 338
Watson ( key 20180328135236_gax050C53) 1990; 11
Xie ( key 20180328135236_gax050C56) 2007; 74
Liu ( key 20180328135236_gax050C34) 2006; 339
Ratchford ( key 20180328135236_gax050C45) 2007; 293
Yokoyama ( key 20180328135236_gax050C58) 2011; 515
Chou ( key 20180328135236_gax050C15) 2014; 74
Barcroft ( key 20180328135236_gax050C2) 2004; 121
Bell ( key 20180328135236_gax050C4) 2013; 8
Chawengsaksophak ( key 20180328135236_gax050C12) 1997; 386
Fleming ( key 20180328135236_gax050C24) 1989; 108
Betts ( key 20180328135236_gax050C6) 1998; 197
Tosca ( key 20180328135236_gax050C48) 2007; 77
Eng ( key 20180328135236_gax050C23) 2007; 56
Violette ( key 20180328135236_gax050C50) 2006; 289
Madan ( key 20180328135236_gax050C37) 2007; 282
Hardie ( key 20180328135236_gax050C30) 2012; 13
Wilcock ( key 20180328135236_gax050C55) 1994; 24
17492777 - Mol Reprod Dev. 2007 Oct;74(10):1287-94
18056705 - J Biol Chem. 2008 Feb 15;283(7):3979-87
20876741 - Reproduction. 2010 Dec;140(6):921-30
17684106 - Am J Physiol Endocrinol Metab. 2007 Nov;293(5):E1198-206
20569514 - Zygote. 2011 May;19(2):97-106
17018689 - Physiol Genomics. 2006 Dec 13;28(1):84-96
15603758 - Mutat Res. 2005 Jan 6;569(1-2):133-43
15147760 - Mech Dev. 2004 May;121(5):417-26
11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45
9637806 - N Engl J Med. 1998 Jun 25;338(26):1876-80
16356488 - Dev Biol. 2006 Jan 15;289(2):406-19
11704144 - Fertil Steril. 2001 Nov;76(5):1078-9
2830159 - Dev Biol. 1988 Mar;126(1):80-90
2598924 - Eur J Biochem. 1989 Dec 8;186(1-2):129-36
21937710 - Genes Dev. 2011 Sep 15;25(18):1895-908
17204563 - Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):819-22
8165821 - Xenobiotica. 1994 Jan;24(1):49-57
9052785 - Nature. 1997 Mar 6;386(6620):84-7
16443210 - Dev Biol. 2006 Mar 15;291(2):227-38
24387273 - Reprod Biol Endocrinol. 2014 Jan 03;12:3
22436748 - Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):251-62
24994714 - Cancer Res. 2014 Sep 1;74(17 ):4783-95
17575082 - Diabetes. 2007 Sep;56(9):2228-34
15788452 - Development. 2005 May;132(9):2093-102
11969266 - Dev Biol. 2002 May 1;245(1):200-12
17088526 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17272-7
12048180 - J Biol Chem. 2002 Jul 26;277(30):26729-32
12679107 - Dev Biol. 2003 Apr 15;256(2):342-54
17082196 - J Biol Chem. 2007 Feb 16;282(7):4601-12
24474794 - Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E435-44
23593143 - PLoS One. 2013 Apr 04;8(4):e59528
15271481 - Anim Reprod Sci. 2004 Jul;82-83:583-92
23578544 - Zygote. 2014 May;22(2):275-85
16501038 - Hum Reprod. 2006 Jun;21(6):1416-25
23870192 - Zygote. 2015 Feb;23(1):58-67
2647768 - J Cell Biol. 1989 Apr;108(4):1407-18
23316940 - Stem Cells Dev. 2013 May 15;22(10 ):1564-75
25472042 - Reprod Fertil Dev. 2014 Dec;27(1):31-9
15179038 - Mol Cells. 2004 Apr 30;17(2):248-54
27385725 - Mol Hum Reprod. 2016 Sep;22(9):634-47
2163294 - Dev Genet. 1990;11(1):41-8
10837135 - Dev Biol. 2000 Jun 15;222(2):486-98
10760274 - Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4023-8
16990266 - J Biol Chem. 2006 Nov 17;281(46):34870-9
25767884 - PLoS One. 2015 Mar 13;10(3):e0119680
17317668 - J Biol Chem. 2007 Apr 20;282(16):12127-34
26207016 - Hum Reprod Update. 2016 Jan-Feb;22(1):2-22
17167165 - Biol Reprod. 2007 Apr;76(4):589-97
11602624 - J Clin Invest. 2001 Oct;108(8):1167-74
21241070 - Clin Pharmacokinet. 2011 Feb;50(2):81-98
7744080 - Eur J Biochem. 1995 Apr 15;229(2):558-65
23667684 - PLoS One. 2013 May 07;8(5):e63878
16316631 - Biochem Biophys Res Commun. 2006 Jan 13;339(2):701-7
21867676 - Arch Biochem Biophys. 2011 Nov;515(1-2):80-8
16951155 - Cancer Res. 2006 Sep 1;66(17):8448-54
9578620 - Dev Biol. 1998 May 1;197(1):77-92
19625624 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12932-7
22389381 - Endocr Relat Cancer. 2012 May 24;19(3):447-56
25721362 - Apoptosis. 2015 Jun;20(6):821-30
17214902 - BMC Dev Biol. 2007 Jan 10;7:2
27230877 - J Assist Reprod Genet. 2016 Aug;33(8):1027-39
17567959 - Biol Reprod. 2007 Sep;77(3):452-65
8073364 - Teratology. 1994 Apr;49(4):260-6
References_xml – volume: 111
  start-page: E435
  year: 2014
  ident: key 20180328135236_gax050C33
  article-title: Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK
  publication-title: Proc Nat Acad Sci USA
  doi: 10.1073/pnas.1311121111
– volume: 222
  start-page: 486
  year: 2000
  ident: key 20180328135236_gax050C36
  article-title: Differential involvement of Na(+),K(+)-ATPase isozymes in preimplantation development of the mouse
  publication-title: Dev Biol
  doi: 10.1006/dbio.2000.9708
– volume: 19
  start-page: 97
  year: 2011
  ident: key 20180328135236_gax050C7
  article-title: Activation of AMP-activated kinase may not be involved in AICAR- and metformin-mediated meiotic arrest in bovine denuded and cumulus-enclosed oocytes in vitro
  publication-title: Zygote
  doi: 10.1017/S0967199410000195
– volume: 569
  start-page: 133
  year: 2005
  ident: key 20180328135236_gax050C59
  article-title: Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage
  publication-title: Mutat Res
  doi: 10.1016/j.mrfmmm.2004.06.055
– volume: 186
  start-page: 129
  year: 1989
  ident: key 20180328135236_gax050C11
  article-title: Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities
  publication-title: Eur J Biochem
  doi: 10.1111/j.1432-1033.1989.tb15186.x
– volume: 33
  start-page: 1027
  year: 2016
  ident: key 20180328135236_gax050C10
  article-title: Commonly used fertility drugs, a diet supplement, and stress force AMPK-dependent block of stemness and development in cultured mammalian embryos
  publication-title: J Assist Reprod Genet
  doi: 10.1007/s10815-016-0735-z
– volume: 19
  start-page: 447
  year: 2012
  ident: key 20180328135236_gax050C32
  article-title: Metformin inhibits growth and decreases resistance to anoikis in medullary thyroid cancer cells
  publication-title: Endocr Relat Cancer
  doi: 10.1530/ERC-12-0046
– volume: 13
  start-page: 251
  year: 2012
  ident: key 20180328135236_gax050C30
  article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3311
– volume: 282
  start-page: 12127
  year: 2007
  ident: key 20180328135236_gax050C37
  article-title: Na/K-ATPase beta1 subunit expression is required for blastocyst formation and normal assembly of trophectoderm tight junction-associated proteins
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M700696200
– volume: 74
  start-page: 4783
  year: 2014
  ident: key 20180328135236_gax050C15
  article-title: AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signalling axis
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-0135
– volume: 22
  start-page: 634
  year: 2016
  ident: key 20180328135236_gax050C21
  article-title: P66Shc, a key regulator of metabolism and mitochondrial ROS production, is dysregulated by mouse embryo culture
  publication-title: Mol Hum Reprod
  doi: 10.1093/molehr/gaw043
– volume: 20
  start-page: 821
  year: 2015
  ident: key 20180328135236_gax050C14
  article-title: Adenosine monophosphate activated protein kinase (AMPK), a mediator of estradiol-induced apoptosis in long-term estrogen deprived breast cancer cells
  publication-title: Apoptosis
  doi: 10.1007/s10495-015-1111-7
– volume: 197
  start-page: 77
  year: 1998
  ident: key 20180328135236_gax050C6
  article-title: Na/K-ATPase-mediated 86Rb+ uptake and asymmetrical trophectoderm localization of alpha1 and alpha3 Na/K-ATPase isoforms during bovine preattachment development
  publication-title: Dev Biol
  doi: 10.1006/dbio.1998.8874
– volume: 76
  start-page: 1078
  year: 2001
  ident: key 20180328135236_gax050C3
  article-title: Effect of metformin on mouse embryo development
  publication-title: Fertil Steril
  doi: 10.1016/S0015-0282(01)02825-4
– volume: 24
  start-page: 49
  year: 1994
  ident: key 20180328135236_gax050C55
  article-title: Accumulation of metformin by tissues in the normal and diabetic mouse
  publication-title: Xenobiotica
  doi: 10.3109/00498259409043220
– volume: 56
  start-page: 2228
  year: 2007
  ident: key 20180328135236_gax050C23
  article-title: AMP kinase activation increases glucose uptake, decreases apoptosis, and improves pregnancy outcome in embryos exposed to high IGF-I concentrations
  publication-title: Diabetes
  doi: 10.2337/db07-0074
– volume: 17
  start-page: 248
  year: 2004
  ident: key 20180328135236_gax050C31
  article-title: The role of occludin, a tight junction protein, in blastocoel formation, and the paracellular permeability and differentiation of trophectoderm in preimplantation mouse embryo
  publication-title: Mol Cell
  doi: 10.1016/S1016-8478(23)13034-2
– volume: 7
  start-page: 2
  year: 2007
  ident: key 20180328135236_gax050C25
  article-title: Mouse preimplantation embryo responses to culture medium osmolarity include increased expression of CCM2 and p38 MAPK activation
  publication-title: BMC Dev Biol
  doi: 10.1186/1471-213X-7-2
– volume: 108
  start-page: 1407
  year: 1989
  ident: key 20180328135236_gax050C24
  article-title: Development of tight junctions de novo in the mouse early embryo: Control of assembly of the tight junction-specific protein, ZO-1
  publication-title: J Cell Biol
  doi: 10.1083/jcb.108.4.1407
– volume: 289
  start-page: 406
  year: 2006
  ident: key 20180328135236_gax050C50
  article-title: Na+/K+-ATPase regulates tight junction function formation and function during mouse preimplantation development
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2005.11.004
– volume: 291
  start-page: 227
  year: 2006
  ident: key 20180328135236_gax050C13
  article-title: AMPK regulation of mouse oocyte meiotic resumption in vitro
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2005.11.039
– volume: 229
  start-page: 558
  year: 1995
  ident: key 20180328135236_gax050C16
  article-title: 5-amidoimidazole-4-carboxamide ribonucleoside: a specific method for activating AMP-activated protein kinase in intact cells
  publication-title: Eur J Biochem
  doi: 10.1111/j.1432-1033.1995.tb20498.x
– volume: 11
  start-page: 41
  year: 1990
  ident: key 20180328135236_gax050C53
  article-title: Expression of Na, K-ATPase alpha and beta subunit genes during preimplantation development of the mouse
  publication-title: Dev Genetics
  doi: 10.1002/dvg.1020110106
– volume: 25
  start-page: 1895
  year: 2011
  ident: key 20180328135236_gax050C29
  article-title: AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function
  publication-title: Genes Dev
  doi: 10.1101/gad.17420111
– volume: 338
  start-page: 1876
  year: 1998
  ident: key 20180328135236_gax050C40
  article-title: Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199806253382603
– volume: 77
  start-page: 452
  year: 2007
  ident: key 20180328135236_gax050C48
  article-title: Possible role of 5’AMP-activated protein kinase in the metformin-mediated arrest of bovine oocytes at the germinal vesicle stage during in vitro maturation
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod.107.060848
– volume: 8
  start-page: e59528
  year: 2013
  ident: key 20180328135236_gax050C4
  article-title: p38 MAPK regulates cavitation and tight junction function in the mouse blastocyst
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0059528
– volume: 283
  start-page: 3979
  year: 2008
  ident: key 20180328135236_gax050C41
  article-title: Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M705232200
– volume: 50
  start-page: 81
  year: 2011
  ident: key 20180328135236_gax050C27
  article-title: Clinicopharmacokinetics of Metformin
  publication-title: Clin Pharmacokin
  doi: 10.2165/11534750-000000000-00000
– volume: 106
  start-page: 12932
  year: 2009
  ident: key 20180328135236_gax050C28
  article-title: The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0906606106
– volume: 12
  year: 2014
  ident: key 20180328135236_gax050C42
  article-title: Metformin and gonadotropins for ovulation induction in patients with polycystic ovary syndrome: a systematic review with meta-analysis of randomized controlled trials
  publication-title: Reprod Biol Endocrinol
  doi: 10.1186/1477-7827-12-3
– volume: 277
  start-page: 26729
  year: 2002
  ident: key 20180328135236_gax050C26
  article-title: FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C200256200
– volume: 293
  start-page: E1198
  year: 2007
  ident: key 20180328135236_gax050C45
  article-title: Maternal diabetes adversely affects AMP-kinase activity and cellular metabolism in murine oocytes
  publication-title: Am J Physiol Metab
– volume: 132
  start-page: 2093
  year: 2005
  ident: key 20180328135236_gax050C46
  article-title: Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst
  publication-title: Development
  doi: 10.1242/dev.01801
– volume: 126
  start-page: 80
  year: 1988
  ident: key 20180328135236_gax050C52
  article-title: Immunofluorescence assessment of the timing of appearance and cellular distribution of Na/K-ATPase during mouse embryogenesis
  publication-title: Dev Biol
  doi: 10.1016/0012-1606(88)90241-2
– volume: 28
  start-page: 84
  year: 2006
  ident: key 20180328135236_gax050C22
  article-title: Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients
  publication-title: Physiol Genomics
  doi: 10.1152/physiolgenomics.00111.2006
– volume: 282
  start-page: 4601
  year: 2007
  ident: key 20180328135236_gax050C9
  article-title: AMP-activated protein kinase impairs endothelial actin cytoskeleton assembly by phosphorylating vasodilator-stimulated phosphoprotein
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M608866200
– volume: 8
  start-page: e63878
  year: 2013
  ident: key 20180328135236_gax050C19
  article-title: Adiponectin increases secretion of the rat submandibular gland via adiponectin receptors-mediated AMPK signalling
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0063878
– volume: 22
  start-page: 1564
  year: 2013
  ident: key 20180328135236_gax050C57
  article-title: Stress induces AMP-dependent loss of potency factors Id2 and cdx2 in embryos and stem cells
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2012.0352
– volume: 49
  start-page: 260
  year: 1994
  ident: key 20180328135236_gax050C18
  article-title: Effects of the biguanide class of oral hypoglycemic agents on mouse embryogenesis
  publication-title: Teratology
  doi: 10.1002/tera.1420490405
– volume: 245
  start-page: 200
  year: 2002
  ident: key 20180328135236_gax050C20
  article-title: A potential role for AMP-activated protein kinase in meiotic induction in mouse oocytes
  publication-title: Dev Biol
  doi: 10.1006/dbio.2002.0613
– volume: 82–83
  start-page: 583
  year: 2004
  ident: key 20180328135236_gax050C54
  article-title: Molecular regulation of blastocyst formation
  publication-title: Anim Reprod Sci
  doi: 10.1016/j.anireprosci.2004.04.004
– volume: 10
  start-page: e0119680
  year: 2015
  ident: key 20180328135236_gax050C5
  article-title: Specific deletion of AMP-activated protein kinase (α1 AMPK) in murine oocytes alters junctional protein expression and mitochondrial physiology
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0119680
– volume: 121
  start-page: 417
  year: 2004
  ident: key 20180328135236_gax050C2
  article-title: Deletion of the Na/K-ATPase alpha1-subunit gene (Atp1a1) does not prevent cavitation of the preimplantation mouse embryo
  publication-title: Mech Dev
– volume: 103
  start-page: 17272
  year: 2006
  ident: key 20180328135236_gax050C60
  article-title: AMP-activated protein kinase regulates the assembly of epithelial tight junctions
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0608531103
– volume: 22
  start-page: 275
  year: 2014
  ident: key 20180328135236_gax050C8
  article-title: Characterization of the effects of metformin on porcine oocyte meiosis and on AMP-activated protein kinase activation in oocytes and cumulus cells
  publication-title: Zygote
  doi: 10.1017/S0967199413000075
– volume: 76
  start-page: 589
  year: 2007
  ident: key 20180328135236_gax050C38
  article-title: Adenosine 5’-monophosphate kinase-activated protein kinase (PRKA) activators delay meiotic resumption in porcine oocytes
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod.106.057828
– volume: 515
  start-page: 80
  year: 2011
  ident: key 20180328135236_gax050C58
  article-title: AMP-activated protein kinase modulates the gene expression of aquaporin 9 via forkhead box a2
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2011.08.002
– volume: 97
  start-page: 4023
  year: 2000
  ident: key 20180328135236_gax050C17
  article-title: Role of AMP-activated protein kinase in the regulation by glucose of islet beta cell gene expression
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.97.8.4023
– volume: 22
  start-page: 2
  year: 2016
  ident: key 20180328135236_gax050C51
  article-title: The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction
  publication-title: Hum Reprod Update
  doi: 10.1093/humupd/dmv034
– volume: 66
  start-page: 8448
  year: 2006
  ident: key 20180328135236_gax050C49
  article-title: Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-2013
– volume: 281
  start-page: 34870
  year: 2006
  ident: key 20180328135236_gax050C39
  article-title: AMP-activated protein kinase and the regulation of autophagic proteolysis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M605488200
– volume: 21
  start-page: 1416
  year: 2006
  ident: key 20180328135236_gax050C47
  article-title: The use of metformin for women with PCOS undergoing IVF treatment
  publication-title: Hum Reprod
  doi: 10.1093/humrep/del025
– volume: 256
  start-page: 342
  year: 2003
  ident: key 20180328135236_gax050C1
  article-title: Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation
  publication-title: Dev Biol
  doi: 10.1016/S0012-1606(02)00127-6
– volume: 27
  start-page: 31
  year: 2014
  ident: key 20180328135236_gax050C35
  article-title: TallyHO obese female mice experience poor reproductive outcomes and abnormal blastocyst metabolism that is reversed by metformin
  publication-title: Reprod Fertil Dev
  doi: 10.1071/RD14339
– volume: 25
  start-page: e45
  year: 2001
  ident: key 20180328135236_gax050C44
  article-title: A new mathematical model for relative quantification in real-time RT-PCR
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.9.e45
– volume: 386
  start-page: 84
  year: 1997
  ident: key 20180328135236_gax050C12
  article-title: Homeosis and intestinal tumours in Cdx2 mutant mice
  publication-title: Nature
  doi: 10.1038/386084a0
– volume: 104
  start-page: 819
  year: 2007
  ident: key 20180328135236_gax050C61
  article-title: Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0610157104
– volume: 23
  start-page: 58
  year: 2013
  ident: key 20180328135236_gax050C43
  article-title: Effects of metformin on fertilisation of bovine oocytes and early embryo development: possible involvement of AMPK3-mediated TSC2 activation
  publication-title: Zygote
  doi: 10.1017/S0967199413000300
– volume: 140
  start-page: 921
  year: 2010
  ident: key 20180328135236_gax050C62
  article-title: Cellular stress causes reversible, PRKAA1/2- and proteasome-dependent ID2 protein loss in trophoblast stem cells
  publication-title: Reproduction
  doi: 10.1530/REP-10-0268
– volume: 339
  start-page: 701
  year: 2006
  ident: key 20180328135236_gax050C34
  article-title: High-fat diet feeding impairs both the expression and activity of AMPKa in rats’ skeletal muscle
  publication-title: Biochem Biophys Res Comm
  doi: 10.1016/j.bbrc.2005.11.068
– volume: 1008
  start-page: 1167
  year: 2001
  ident: key 20180328135236_gax050C63
  article-title: Role of AMP-activated protein kinase in the mechanism of metformin action
  publication-title: J Clin Invest
  doi: 10.1172/JCI13505
– volume: 74
  start-page: 1287
  year: 2007
  ident: key 20180328135236_gax050C56
  article-title: Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos
  publication-title: Mol Reprod Dev
  doi: 10.1002/mrd.20563
– reference: 20569514 - Zygote. 2011 May;19(2):97-106
– reference: 17214902 - BMC Dev Biol. 2007 Jan 10;7:2
– reference: 2647768 - J Cell Biol. 1989 Apr;108(4):1407-18
– reference: 12048180 - J Biol Chem. 2002 Jul 26;277(30):26729-32
– reference: 9637806 - N Engl J Med. 1998 Jun 25;338(26):1876-80
– reference: 17082196 - J Biol Chem. 2007 Feb 16;282(7):4601-12
– reference: 11969266 - Dev Biol. 2002 May 1;245(1):200-12
– reference: 23578544 - Zygote. 2014 May;22(2):275-85
– reference: 21937710 - Genes Dev. 2011 Sep 15;25(18):1895-908
– reference: 25721362 - Apoptosis. 2015 Jun;20(6):821-30
– reference: 23593143 - PLoS One. 2013 Apr 04;8(4):e59528
– reference: 18056705 - J Biol Chem. 2008 Feb 15;283(7):3979-87
– reference: 22389381 - Endocr Relat Cancer. 2012 May 24;19(3):447-56
– reference: 24994714 - Cancer Res. 2014 Sep 1;74(17 ):4783-95
– reference: 15788452 - Development. 2005 May;132(9):2093-102
– reference: 17317668 - J Biol Chem. 2007 Apr 20;282(16):12127-34
– reference: 17575082 - Diabetes. 2007 Sep;56(9):2228-34
– reference: 23316940 - Stem Cells Dev. 2013 May 15;22(10 ):1564-75
– reference: 15147760 - Mech Dev. 2004 May;121(5):417-26
– reference: 15179038 - Mol Cells. 2004 Apr 30;17(2):248-54
– reference: 22436748 - Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):251-62
– reference: 20876741 - Reproduction. 2010 Dec;140(6):921-30
– reference: 8165821 - Xenobiotica. 1994 Jan;24(1):49-57
– reference: 16501038 - Hum Reprod. 2006 Jun;21(6):1416-25
– reference: 2830159 - Dev Biol. 1988 Mar;126(1):80-90
– reference: 23870192 - Zygote. 2015 Feb;23(1):58-67
– reference: 17088526 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17272-7
– reference: 15603758 - Mutat Res. 2005 Jan 6;569(1-2):133-43
– reference: 16443210 - Dev Biol. 2006 Mar 15;291(2):227-38
– reference: 11602624 - J Clin Invest. 2001 Oct;108(8):1167-74
– reference: 25767884 - PLoS One. 2015 Mar 13;10(3):e0119680
– reference: 23667684 - PLoS One. 2013 May 07;8(5):e63878
– reference: 24387273 - Reprod Biol Endocrinol. 2014 Jan 03;12:3
– reference: 16316631 - Biochem Biophys Res Commun. 2006 Jan 13;339(2):701-7
– reference: 26207016 - Hum Reprod Update. 2016 Jan-Feb;22(1):2-22
– reference: 15271481 - Anim Reprod Sci. 2004 Jul;82-83:583-92
– reference: 24474794 - Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E435-44
– reference: 17167165 - Biol Reprod. 2007 Apr;76(4):589-97
– reference: 16951155 - Cancer Res. 2006 Sep 1;66(17):8448-54
– reference: 2598924 - Eur J Biochem. 1989 Dec 8;186(1-2):129-36
– reference: 27230877 - J Assist Reprod Genet. 2016 Aug;33(8):1027-39
– reference: 27385725 - Mol Hum Reprod. 2016 Sep;22(9):634-47
– reference: 21241070 - Clin Pharmacokinet. 2011 Feb;50(2):81-98
– reference: 17492777 - Mol Reprod Dev. 2007 Oct;74(10):1287-94
– reference: 25472042 - Reprod Fertil Dev. 2014 Dec;27(1):31-9
– reference: 11704144 - Fertil Steril. 2001 Nov;76(5):1078-9
– reference: 19625624 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12932-7
– reference: 10837135 - Dev Biol. 2000 Jun 15;222(2):486-98
– reference: 8073364 - Teratology. 1994 Apr;49(4):260-6
– reference: 2163294 - Dev Genet. 1990;11(1):41-8
– reference: 9052785 - Nature. 1997 Mar 6;386(6620):84-7
– reference: 16356488 - Dev Biol. 2006 Jan 15;289(2):406-19
– reference: 9578620 - Dev Biol. 1998 May 1;197(1):77-92
– reference: 11328886 - Nucleic Acids Res. 2001 May 1;29(9):e45
– reference: 12679107 - Dev Biol. 2003 Apr 15;256(2):342-54
– reference: 17567959 - Biol Reprod. 2007 Sep;77(3):452-65
– reference: 7744080 - Eur J Biochem. 1995 Apr 15;229(2):558-65
– reference: 17204563 - Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):819-22
– reference: 16990266 - J Biol Chem. 2006 Nov 17;281(46):34870-9
– reference: 17018689 - Physiol Genomics. 2006 Dec 13;28(1):84-96
– reference: 17684106 - Am J Physiol Endocrinol Metab. 2007 Nov;293(5):E1198-206
– reference: 21867676 - Arch Biochem Biophys. 2011 Nov;515(1-2):80-8
– reference: 10760274 - Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4023-8
SSID ssj0017258
Score 2.2940981
Snippet What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 771
SubjectTerms Adenosine Triphosphate - biosynthesis
Aminoimidazole Carboxamide - analogs & derivatives
Aminoimidazole Carboxamide - pharmacology
AMP-Activated Protein Kinases - genetics
AMP-Activated Protein Kinases - metabolism
Animals
Blastocyst - drug effects
Blastocyst - metabolism
Blastocyst - ultrastructure
CDX2 Transcription Factor - genetics
CDX2 Transcription Factor - metabolism
Cell Differentiation - drug effects
Dose-Response Relationship, Drug
Embryo Culture Techniques
Embryonic Development - drug effects
Female
Gene Expression Regulation, Developmental - drug effects
Hypoglycemic Agents - pharmacology
Mice
Original Research
Oxazines - pharmacology
Phosphorylation - drug effects
Ribonucleotides - pharmacology
Signal Transduction
Tight Junctions - drug effects
Tight Junctions - metabolism
Tight Junctions - ultrastructure
Title Treatment with AICAR inhibits blastocyst development, trophectoderm differentiation and tight junction formation and function in mice
URI https://www.ncbi.nlm.nih.gov/pubmed/28962017
https://www.proquest.com/docview/1945222562
https://pubmed.ncbi.nlm.nih.gov/PMC5909861
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFAeOjDJCR0F66sHw7eawKaAONB7SJvUVJbNOiJZ1WV9p454_gv-XOjp10YxIgVVFlp3aU-9W-8939jpA3WVUyJC3wWMYZljDzvZKDsRJWWZrlMq_TEhOFjz6nByfxx9PkdDT6NYhaWqvqbf3jj3kl_yNVaAO5YpbsP0jWDQoN8B3kC1eQMFz_TsYuSlwfp04PZ9Mvk0U7X1ToDqhAMVbL-mqlbGqUPgmEd6oukE2gVlgHrXE1UpSRkompRJt98h02PRuL2PSd0jYv2knTxc5ZBffIltvtqv8haabmlB34-2flGTdIMYGoog87NjWkVw6jYnDWKpQyOj86D5yH62upuqQxE5vZ-bm6gwzYHAN3kCHM4hunPnp72HB1NtnIFoXBYK1lpnbLjT3A8GM18IhzZGD5Vl76htt2gIjzRkMCrM0UH6XfDF2Iou26Q-6GYIFgcYx3h5-cg4qFSdZRtsJ8-2a2fTMXEkx3v97Udm6YMNcjcQeqzfEDcr-zSejUAOwhGYn2EdmetqVaNld0l-ooYe1-2SY_HeYoYo5qzFGLOdpjjg4wt0c3EEevIY4CqKhGHLWIow5xutMiDiaiiLjH5OTD--PZgdeV8vBqUFCVxyJZR4xLKRnyYGVMJEmURzXo60IEFQczIotSWDYAAjkaKb4MJXLthWWdxpxFT8hWu2zFM0JlxZmMsWpBzOME1hIOexCrwVTADw_HZM--8qLueO6x3MpZYeItosIIqzDCGpNdd_u5IXi57cbXVn4FLMHoVytbsVyviiDHsgRgO8DcT4083VAWCGPCNiTtbkB6982edjHXNO9J7udZGjy_dcwdcq__H70gW-piLV6CiqyqVxqsvwHC_sgn
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Treatment+with+AICAR+inhibits+blastocyst+development%2C+trophectoderm+differentiation+and+tight+junction+formation+and+function+in+mice&rft.jtitle=Molecular+human+reproduction&rft.au=Calder%2C+Michele+D&rft.au=Edwards%2C+Nicole+A&rft.au=Betts%2C+Dean+H&rft.au=Watson%2C+Andrew+J&rft.date=2017-11-01&rft.eissn=1460-2407&rft.volume=23&rft.issue=11&rft.spage=771&rft_id=info:doi/10.1093%2Fmolehr%2Fgax050&rft_id=info%3Apmid%2F28962017&rft.externalDocID=28962017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-9947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-9947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-9947&client=summon