Methionine-based carbon monoxide releasing polymer for the prevention of biofilm formation
Carbon monoxide (CO) is being increasingly appreciated as a major physiological gasomediator and plays significant roles in different biological activities. However, site-specific delivery of this toxic gas faces major difficulties in the healthcare system in terms of unavailability of appropriate e...
Saved in:
Published in | Polymer chemistry Vol. 12; no. 27; pp. 3968 - 3975 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon monoxide (CO) is being increasingly appreciated as a major physiological gasomediator and plays significant roles in different biological activities. However, site-specific delivery of this toxic gas faces major difficulties in the healthcare system in terms of unavailability of appropriate equipment for delivery. A well-known and most studied carbon monoxide releasing molecule (CORM) is tricarbonyldichlororuthenium(
ii
) dimer (Ru
2
Cl
4
(CO)
6
). However, its use as a therapeutic agent is restricted due to its poor water solubility and a short half-life. In order to solve this issues we have designed and synthesized a water-soluble methionine (methionine methacryloyloxyethyl ester (METMA)) and poly(ethylene glycol methyl ether methacrylate) containing block-copolymer
via
reversible addition-fragmentation chain transfer (RAFT) polymerization and attached the CORM in the methionine side chain units. Inductively coupled plasma optical emission spectrometry (ICP-OES) and FT-IR confirms the presence of CORM molecule into the polymer. The time-dependent CO release from CORM conjugated block-copolymer was investigated by a myoglobin assay. This CORM conjugated block-copolymer slowly and spontaneously released CO with sustained-release kinetics. Moreover, this CO-releasing polymer was able to prevent biofilm formation against
Pseudomonas aeruginosa
.
A new water-soluble methionine-based CO releasing polymer shows slow and spontaneous release of CO with sustained-release kinetics, preventing biofilm formation against
Pseudomonas aeruginosa
. |
---|---|
AbstractList | Carbon monoxide (CO) is being increasingly appreciated as a major physiological gasomediator and plays significant roles in different biological activities. However, site-specific delivery of this toxic gas faces major difficulties in the healthcare system in terms of unavailability of appropriate equipment for delivery. A well-known and most studied carbon monoxide releasing molecule (CORM) is tricarbonyldichlororuthenium(ii) dimer (Ru2Cl4(CO)6). However, its use as a therapeutic agent is restricted due to its poor water solubility and a short half-life. In order to solve this issues we have designed and synthesized a water-soluble methionine (methionine methacryloyloxyethyl ester (METMA)) and poly(ethylene glycol methyl ether methacrylate) containing block-copolymer via reversible addition–fragmentation chain transfer (RAFT) polymerization and attached the CORM in the methionine side chain units. Inductively coupled plasma optical emission spectrometry (ICP-OES) and FT-IR confirms the presence of CORM molecule into the polymer. The time-dependent CO release from CORM conjugated block-copolymer was investigated by a myoglobin assay. This CORM conjugated block-copolymer slowly and spontaneously released CO with sustained-release kinetics. Moreover, this CO-releasing polymer was able to prevent biofilm formation against Pseudomonas aeruginosa. Carbon monoxide (CO) is being increasingly appreciated as a major physiological gasomediator and plays significant roles in different biological activities. However, site-specific delivery of this toxic gas faces major difficulties in the healthcare system in terms of unavailability of appropriate equipment for delivery. A well-known and most studied carbon monoxide releasing molecule (CORM) is tricarbonyldichlororuthenium( ii ) dimer (Ru 2 Cl 4 (CO) 6 ). However, its use as a therapeutic agent is restricted due to its poor water solubility and a short half-life. In order to solve this issues we have designed and synthesized a water-soluble methionine (methionine methacryloyloxyethyl ester (METMA)) and poly(ethylene glycol methyl ether methacrylate) containing block-copolymer via reversible addition–fragmentation chain transfer (RAFT) polymerization and attached the CORM in the methionine side chain units. Inductively coupled plasma optical emission spectrometry (ICP-OES) and FT-IR confirms the presence of CORM molecule into the polymer. The time-dependent CO release from CORM conjugated block-copolymer was investigated by a myoglobin assay. This CORM conjugated block-copolymer slowly and spontaneously released CO with sustained-release kinetics. Moreover, this CO-releasing polymer was able to prevent biofilm formation against Pseudomonas aeruginosa . Carbon monoxide (CO) is being increasingly appreciated as a major physiological gasomediator and plays significant roles in different biological activities. However, site-specific delivery of this toxic gas faces major difficulties in the healthcare system in terms of unavailability of appropriate equipment for delivery. A well-known and most studied carbon monoxide releasing molecule (CORM) is tricarbonyldichlororuthenium( ii ) dimer (Ru 2 Cl 4 (CO) 6 ). However, its use as a therapeutic agent is restricted due to its poor water solubility and a short half-life. In order to solve this issues we have designed and synthesized a water-soluble methionine (methionine methacryloyloxyethyl ester (METMA)) and poly(ethylene glycol methyl ether methacrylate) containing block-copolymer via reversible addition-fragmentation chain transfer (RAFT) polymerization and attached the CORM in the methionine side chain units. Inductively coupled plasma optical emission spectrometry (ICP-OES) and FT-IR confirms the presence of CORM molecule into the polymer. The time-dependent CO release from CORM conjugated block-copolymer was investigated by a myoglobin assay. This CORM conjugated block-copolymer slowly and spontaneously released CO with sustained-release kinetics. Moreover, this CO-releasing polymer was able to prevent biofilm formation against Pseudomonas aeruginosa . A new water-soluble methionine-based CO releasing polymer shows slow and spontaneous release of CO with sustained-release kinetics, preventing biofilm formation against Pseudomonas aeruginosa . |
Author | Díaz, David Díaz Ng, Gervase Abramov, Alex Boyer, Cyrille Maiti, Binoy |
AuthorAffiliation | School of Chemical Engineering Departamento de Química Orgánica UNSW Australia Institut für Organische Chemie Universität Regensburg Instituto de Bio-Orgánica Antonio González Universidad de La Laguna Australian Centre for NanoMedicine (ACN) |
AuthorAffiliation_xml | – name: Australian Centre for NanoMedicine (ACN) – name: UNSW Australia – name: Universidad de La Laguna – name: Universität Regensburg – name: School of Chemical Engineering – name: Instituto de Bio-Orgánica Antonio González – name: Institut für Organische Chemie – name: Departamento de Química Orgánica |
Author_xml | – sequence: 1 givenname: Binoy surname: Maiti fullname: Maiti, Binoy – sequence: 2 givenname: Gervase surname: Ng fullname: Ng, Gervase – sequence: 3 givenname: Alex surname: Abramov fullname: Abramov, Alex – sequence: 4 givenname: Cyrille surname: Boyer fullname: Boyer, Cyrille – sequence: 5 givenname: David Díaz surname: Díaz fullname: Díaz, David Díaz |
BookMark | eNptkU1LAzEQhoNUsNZevAsBb8Jq0myym6PUT6go6EUvSzYfNmU3WZOt2H9v2koFcS4zzDzvzDBzCAbOOw3AMUbnGBF-oXC3QojmTO2BIS4ozzhnk8EupvkBGMe4QMkIzieEDcHbg-7n1jvrdFaLqBWUItTewdY7_2WVhkE3WkTr3mHnm1WrAzQ-wH6uYRf0p3Z9UkNvYG29sU27rrZinTwC-0Y0UY9__Ag831y_TO-y2ePt_fRylkmCiz5jecklxrpIHimTU8UwzjmfUFojUvIClYowLpVgjFGU14axkqIilUojyQicbrt2wX8sdeyrhV8GlwZWqQOijNIJSxTaUjL4GIM2lbT9Zss-CNtUGFXrE1ZX-Ol1c8KrJDn7I-mCbUVY_Q-fbOEQ5Y77_Qf5BuGvfL4 |
CitedBy_id | crossref_primary_10_1080_10601325_2023_2189434 crossref_primary_10_1016_j_bioactmat_2022_10_008 crossref_primary_10_1002_cmdc_202100555 crossref_primary_10_1016_j_jconrel_2023_04_025 crossref_primary_10_1002_anie_202310040 crossref_primary_10_1016_j_bcp_2022_114991 crossref_primary_10_1002_ange_202310040 crossref_primary_10_1016_j_giant_2023_100153 crossref_primary_10_1016_j_jconrel_2022_08_055 |
Cites_doi | 10.3389/fmicb.2018.00195 10.1039/C6DT00858E 10.1021/ja1075025 10.1039/C5PY01230A 10.1002/anie.201202414 10.1096/fj.08-122804 10.1021/ic902147n 10.1021/jacs.7b00867 10.1021/ar500172f 10.1517/13543784.14.11.1305 10.1021/acs.biomac.5b00716 10.1371/journal.pone.0035499 10.1161/hh0202.104530 10.1155/2018/8547364 10.1002/macp.201500271 10.1021/om300359a 10.1039/c2cs15317c 10.1016/j.polymer.2004.12.061 10.1039/c3cc40869h 10.1073/pnas.1431233100 10.1089/ars.2011.3959 10.1002/anie.201311225 10.1002/ejic.201100545 10.1039/C6DT03515A 10.1021/acsami.0c15221 10.1039/C6RA21703F 10.1039/b704873d 10.1021/bm500422v 10.1016/S0021-9258(18)63477-5 10.1039/C7PY02014G 10.1002/marc.201500755 10.2174/1381612033453785 10.1038/nrd3228 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1039/d1py00546d |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1759-9962 |
EndPage | 3975 |
ExternalDocumentID | 10_1039_D1PY00546D d1py00546d |
GroupedDBID | 0-7 0R 29O 4.4 705 7~J AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- HZ H~N J3I JG O-G O9- P2P RCNCU RIG RNS RPMJG RRC RSCEA SKF SKH SKJ SKM SKR SKZ SLC SLF 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ADNWM AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKBGW AKMSF APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c317t-6489c11e74890df45d611499255b0389708d369cda666504bf6685073898fc3 |
ISSN | 1759-9954 |
IngestDate | Mon Jun 30 02:27:10 EDT 2025 Tue Jul 01 03:34:17 EDT 2025 Thu Apr 24 22:58:06 EDT 2025 Sat Apr 16 10:02:51 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c317t-6489c11e74890df45d611499255b0389708d369cda666504bf6685073898fc3 |
Notes | 10.1039/d1py00546d Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4564-4702 0000-0002-0557-3364 |
OpenAccessLink | http://riull.ull.es/xmlui/handle/915/42194 |
PQID | 2550565526 |
PQPubID | 2047483 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1039_D1PY00546D proquest_journals_2550565526 rsc_primary_d1py00546d crossref_primary_10_1039_D1PY00546D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-21 |
PublicationDateYYYYMMDD | 2021-07-21 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Polymer chemistry |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Mottelini (D1PY00546D-(cit17)/*[position()=1]) 2003; 9 Bauri (D1PY00546D-(cit24b)/*[position()=1]) 2018; 9 Datta (D1PY00546D-(cit26)/*[position()=1]) 2015; 6 Flanagan (D1PY00546D-(cit10)/*[position()=1]) 2018; 9 Ismailova (D1PY00546D-(cit11)/*[position()=1]) 2018; 2018 Yepuri (D1PY00546D-(cit31)/*[position()=1]) 2013; 49 Motterlini (D1PY00546D-(cit8)/*[position()=1]) 2002; 90 Nguyen (D1PY00546D-(cit22)/*[position()=1]) 2015; 16 Nguyen (D1PY00546D-(cit23)/*[position()=1]) 2016; 37 Bauri (D1PY00546D-(cit24a)/*[position()=1]) 2016; 217 Mann (D1PY00546D-(cit2)/*[position()=1]) 2007; 41 Brückmann (D1PY00546D-(cit20)/*[position()=1]) 2011; 29 Ng (D1PY00546D-(cit28)/*[position()=1]) 2020; 12 Farrugia (D1PY00546D-(cit5)/*[position()=1]) 2003; 100 Murray (D1PY00546D-(cit32)/*[position()=1]) 2012; 7 Chakraborty (D1PY00546D-(cit13)/*[position()=1]) 2014; 47 Mottelini (D1PY00546D-(cit18)/*[position()=1]) 2005; 14 Nguyen (D1PY00546D-(cit27)/*[position()=1]) 2016; 6 Moad (D1PY00546D-(cit25)/*[position()=1]) 2005; 46 Motterlini (D1PY00546D-(cit3)/*[position()=1]) 2010; 9 Garcia-Gallego (D1PY00546D-(cit7)/*[position()=1]) 2014; 53 Barraud (D1PY00546D-(cit29)/*[position()=1]) 2012; 51 Romao (D1PY00546D-(cit6)/*[position()=1]) 2012; 41 Barraud (D1PY00546D-(cit35)/*[position()=1]) 2014; 1149 Motterlini (D1PY00546D-(cit9)/*[position()=1]) 2002 Hasegawa (D1PY00546D-(cit21)/*[position()=1]) 2010; 132 Rimmer (D1PY00546D-(cit12)/*[position()=1]) 2010; 49 Romanski (D1PY00546D-(cit16)/*[position()=1]) 2012; 31 Kottelat (D1PY00546D-(cit14)/*[position()=1]) 2016; 45 Kautz (D1PY00546D-(cit19)/*[position()=1]) 2016; 45 Suffredini (D1PY00546D-(cit4)/*[position()=1]) Desmard (D1PY00546D-(cit33)/*[position()=1]) 2009; 23 Tenhunen (D1PY00546D-(cit1)/*[position()=1]) 1969; 244 Reddy (D1PY00546D-(cit15)/*[position()=1]) 2017; 139 Desmard (D1PY00546D-(cit34)/*[position()=1]) 2012; 16 Duong (D1PY00546D-(cit30)/*[position()=1]) 2014; 15 |
References_xml | – doi: Suffredini – issn: 2014 issue: 1149 volume-title: Methods for Studying Biofilm Dispersal in Pseudomonas aeruginosa publication-title: Pseudomonas Methods and Protocols. Methods in Molecular Biology (Methods and Protocols) doi: Barraud Moscoso Ghigo Filloux – issn: 2002 end-page: 249 publication-title: Carbon Monoxide and Cardiovascular Functions doi: Motterlini Foresti Green – volume: 9 start-page: 195 year: 2018 ident: D1PY00546D-(cit10)/*[position()=1] publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00195 – volume: 45 start-page: 6920 year: 2016 ident: D1PY00546D-(cit14)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT00858E – volume: 132 start-page: 18273 year: 2010 ident: D1PY00546D-(cit21)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1075025 – volume: 6 start-page: 7796 year: 2015 ident: D1PY00546D-(cit26)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C5PY01230A – volume: 51 start-page: 9057 year: 2012 ident: D1PY00546D-(cit29)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201202414 – volume: 23 start-page: 1023 year: 2009 ident: D1PY00546D-(cit33)/*[position()=1] publication-title: FASEB J. doi: 10.1096/fj.08-122804 – volume: 49 start-page: 1180 year: 2010 ident: D1PY00546D-(cit12)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic902147n – volume: 1149 volume-title: Pseudomonas Methods and Protocols. Methods in Molecular Biology (Methods and Protocols) year: 2014 ident: D1PY00546D-(cit35)/*[position()=1] – volume: 139 start-page: 4991 year: 2017 ident: D1PY00546D-(cit15)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00867 – volume: 47 start-page: 2603 year: 2014 ident: D1PY00546D-(cit13)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar500172f – volume: 14 start-page: 1305 year: 2005 ident: D1PY00546D-(cit18)/*[position()=1] publication-title: Expert Opin. Invest. Drugs doi: 10.1517/13543784.14.11.1305 – volume: 16 start-page: 2776 year: 2015 ident: D1PY00546D-(cit22)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00716 – volume: 7 start-page: 35499 year: 2012 ident: D1PY00546D-(cit32)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0035499 – ident: D1PY00546D-(cit4)/*[position()=1] – volume: 90 start-page: 17 year: 2002 ident: D1PY00546D-(cit8)/*[position()=1] publication-title: Circ. Res. doi: 10.1161/hh0202.104530 – volume: 2018 start-page: 8547364 year: 2018 ident: D1PY00546D-(cit11)/*[position()=1] publication-title: Bioinorg. Chem. Appl. doi: 10.1155/2018/8547364 – volume: 217 start-page: 365 year: 2016 ident: D1PY00546D-(cit24a)/*[position()=1] publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201500271 – volume: 31 start-page: 5800 year: 2012 ident: D1PY00546D-(cit16)/*[position()=1] publication-title: Organometallics doi: 10.1021/om300359a – volume: 41 start-page: 3571 year: 2012 ident: D1PY00546D-(cit6)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15317c – volume: 46 start-page: 8458 year: 2005 ident: D1PY00546D-(cit25)/*[position()=1] publication-title: polym. doi: 10.1016/j.polymer.2004.12.061 – volume: 49 start-page: 4791 year: 2013 ident: D1PY00546D-(cit31)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc40869h – volume: 100 start-page: 8567 year: 2003 ident: D1PY00546D-(cit5)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1431233100 – volume: 16 start-page: 153 year: 2012 ident: D1PY00546D-(cit34)/*[position()=1] publication-title: Antioxid. Redox Signaling doi: 10.1089/ars.2011.3959 – volume: 53 start-page: 9712 year: 2014 ident: D1PY00546D-(cit7)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201311225 – volume: 29 start-page: 4571 year: 2011 ident: D1PY00546D-(cit20)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201100545 – volume: 45 start-page: 18045 year: 2016 ident: D1PY00546D-(cit19)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C6DT03515A – volume: 12 start-page: 55243 year: 2020 ident: D1PY00546D-(cit28)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c15221 – volume: 6 start-page: 92975 year: 2016 ident: D1PY00546D-(cit27)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA21703F – volume: 41 start-page: 4197 year: 2007 ident: D1PY00546D-(cit2)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b704873d – volume: 15 start-page: 2583 year: 2014 ident: D1PY00546D-(cit30)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/bm500422v – volume: 244 start-page: 6388 year: 1969 ident: D1PY00546D-(cit1)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)63477-5 – volume: 9 start-page: 1257 year: 2018 ident: D1PY00546D-(cit24b)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C7PY02014G – start-page: 249 volume-title: Carbon Monoxide and Cardiovascular Functions year: 2002 ident: D1PY00546D-(cit9)/*[position()=1] – volume: 37 start-page: 739 year: 2016 ident: D1PY00546D-(cit23)/*[position()=1] publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201500755 – volume: 9 start-page: 2525 year: 2003 ident: D1PY00546D-(cit17)/*[position()=1] publication-title: Curr. Pharm. Des. doi: 10.2174/1381612033453785 – volume: 9 start-page: 728 year: 2010 ident: D1PY00546D-(cit3)/*[position()=1] publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd3228 |
SSID | ssj0000314236 |
Score | 2.3525696 |
Snippet | Carbon monoxide (CO) is being increasingly appreciated as a major physiological gasomediator and plays significant roles in different biological activities.... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3968 |
SubjectTerms | Addition polymerization Biofilms Block copolymers Carbon monoxide Chain transfer Chemical compounds Dimers Ethylene glycol Inductively coupled plasma Methionine Myoglobins Optical emission spectroscopy Pharmacology Polymer chemistry Polymers Pseudomonas aeruginosa Releasing |
Title | Methionine-based carbon monoxide releasing polymer for the prevention of biofilm formation |
URI | https://www.proquest.com/docview/2550565526 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9gAXVB4VCy2yBBcOgTxsNz5uH1CBWlWiiMIlWttJWam7WYVQdfn1zMSOHapFAi7Ryk6iyN-39szY3wwhL5OpzqtKYdCds4ix1OD-Lo9iHSc61tVUpShOPjkVx5_Y-wt-MVBco7qkVa_1z7W6kv9BFdoAV1TJ_gOy_qXQAL8BX7gCwnD9K4xPyvZbF08tI1yNDOaZVgAnfEB9MzO2Isq0iwYs66vVvGz8qcKlS91kzUU1w8rd8yBlHNqsZ-5R3deGC1HsmT0MsD9b1L719NLG2pvrwcbPBJzyeX3dS2p8EKBeOSHiqkFR4jAGkSYY3LTCZjdt7nEZYWY5u6oM227NtemAUzYpgJs5M2nL67hVGMwkvnaGjzNMkGqS5QqtTWHCOuZPF4bODbKZgvuQjsjm5MP-u88--oZJ-9OufqT_9D53bSbfhBf8bq0EF2Sj6evDdHbI-Ra57xwIOrFseEDulIuH5O5Bj80j8vU2K6hlBe1ZQT0rqGMFBdwpsIIGVtC6oo4V1LPiMfn49uj84DhyFTQiDXZhGwmWS50kJaYYik3FuBHg_0oJfqTCzIp7cW4yIbWZghfLY6YqIXLwEKArr3S2TUaLelE-QWU_2Km50JksNdNVqbKMwdtgdTK4ka7G5FU_ToV2yeWxxslV0R1yyGRxmJx96cb0cExe-HuXNqXK2rt2-uEu3F_ue5GiPy04T8WYbAME_vmA2NM_dTwj9wJ1d8iobX6Uu2BQtuq5Y8cvr_B4aQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methionine-based+carbon+monoxide+releasing+polymer+for+the+prevention+of+biofilm+formation&rft.jtitle=Polymer+chemistry&rft.au=Maiti%2C+Binoy&rft.au=Ng%2C+Gervase&rft.au=Abramov%2C+Alex&rft.au=Boyer%2C+Cyrille&rft.date=2021-07-21&rft.issn=1759-9954&rft.eissn=1759-9962&rft.volume=12&rft.issue=27&rft.spage=3968&rft.epage=3975&rft_id=info:doi/10.1039%2Fd1py00546d&rft.externalDocID=d1py00546d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9954&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9954&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9954&client=summon |