Methionine-based carbon monoxide releasing polymer for the prevention of biofilm formation

Carbon monoxide (CO) is being increasingly appreciated as a major physiological gasomediator and plays significant roles in different biological activities. However, site-specific delivery of this toxic gas faces major difficulties in the healthcare system in terms of unavailability of appropriate e...

Full description

Saved in:
Bibliographic Details
Published inPolymer chemistry Vol. 12; no. 27; pp. 3968 - 3975
Main Authors Maiti, Binoy, Ng, Gervase, Abramov, Alex, Boyer, Cyrille, Díaz, David Díaz
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon monoxide (CO) is being increasingly appreciated as a major physiological gasomediator and plays significant roles in different biological activities. However, site-specific delivery of this toxic gas faces major difficulties in the healthcare system in terms of unavailability of appropriate equipment for delivery. A well-known and most studied carbon monoxide releasing molecule (CORM) is tricarbonyldichlororuthenium( ii ) dimer (Ru 2 Cl 4 (CO) 6 ). However, its use as a therapeutic agent is restricted due to its poor water solubility and a short half-life. In order to solve this issues we have designed and synthesized a water-soluble methionine (methionine methacryloyloxyethyl ester (METMA)) and poly(ethylene glycol methyl ether methacrylate) containing block-copolymer via reversible addition-fragmentation chain transfer (RAFT) polymerization and attached the CORM in the methionine side chain units. Inductively coupled plasma optical emission spectrometry (ICP-OES) and FT-IR confirms the presence of CORM molecule into the polymer. The time-dependent CO release from CORM conjugated block-copolymer was investigated by a myoglobin assay. This CORM conjugated block-copolymer slowly and spontaneously released CO with sustained-release kinetics. Moreover, this CO-releasing polymer was able to prevent biofilm formation against Pseudomonas aeruginosa . A new water-soluble methionine-based CO releasing polymer shows slow and spontaneous release of CO with sustained-release kinetics, preventing biofilm formation against Pseudomonas aeruginosa .
AbstractList Carbon monoxide (CO) is being increasingly appreciated as a major physiological gasomediator and plays significant roles in different biological activities. However, site-specific delivery of this toxic gas faces major difficulties in the healthcare system in terms of unavailability of appropriate equipment for delivery. A well-known and most studied carbon monoxide releasing molecule (CORM) is tricarbonyldichlororuthenium(ii) dimer (Ru2Cl4(CO)6). However, its use as a therapeutic agent is restricted due to its poor water solubility and a short half-life. In order to solve this issues we have designed and synthesized a water-soluble methionine (methionine methacryloyloxyethyl ester (METMA)) and poly(ethylene glycol methyl ether methacrylate) containing block-copolymer via reversible addition–fragmentation chain transfer (RAFT) polymerization and attached the CORM in the methionine side chain units. Inductively coupled plasma optical emission spectrometry (ICP-OES) and FT-IR confirms the presence of CORM molecule into the polymer. The time-dependent CO release from CORM conjugated block-copolymer was investigated by a myoglobin assay. This CORM conjugated block-copolymer slowly and spontaneously released CO with sustained-release kinetics. Moreover, this CO-releasing polymer was able to prevent biofilm formation against Pseudomonas aeruginosa.
Carbon monoxide (CO) is being increasingly appreciated as a major physiological gasomediator and plays significant roles in different biological activities. However, site-specific delivery of this toxic gas faces major difficulties in the healthcare system in terms of unavailability of appropriate equipment for delivery. A well-known and most studied carbon monoxide releasing molecule (CORM) is tricarbonyldichlororuthenium( ii ) dimer (Ru 2 Cl 4 (CO) 6 ). However, its use as a therapeutic agent is restricted due to its poor water solubility and a short half-life. In order to solve this issues we have designed and synthesized a water-soluble methionine (methionine methacryloyloxyethyl ester (METMA)) and poly(ethylene glycol methyl ether methacrylate) containing block-copolymer via reversible addition–fragmentation chain transfer (RAFT) polymerization and attached the CORM in the methionine side chain units. Inductively coupled plasma optical emission spectrometry (ICP-OES) and FT-IR confirms the presence of CORM molecule into the polymer. The time-dependent CO release from CORM conjugated block-copolymer was investigated by a myoglobin assay. This CORM conjugated block-copolymer slowly and spontaneously released CO with sustained-release kinetics. Moreover, this CO-releasing polymer was able to prevent biofilm formation against Pseudomonas aeruginosa .
Carbon monoxide (CO) is being increasingly appreciated as a major physiological gasomediator and plays significant roles in different biological activities. However, site-specific delivery of this toxic gas faces major difficulties in the healthcare system in terms of unavailability of appropriate equipment for delivery. A well-known and most studied carbon monoxide releasing molecule (CORM) is tricarbonyldichlororuthenium( ii ) dimer (Ru 2 Cl 4 (CO) 6 ). However, its use as a therapeutic agent is restricted due to its poor water solubility and a short half-life. In order to solve this issues we have designed and synthesized a water-soluble methionine (methionine methacryloyloxyethyl ester (METMA)) and poly(ethylene glycol methyl ether methacrylate) containing block-copolymer via reversible addition-fragmentation chain transfer (RAFT) polymerization and attached the CORM in the methionine side chain units. Inductively coupled plasma optical emission spectrometry (ICP-OES) and FT-IR confirms the presence of CORM molecule into the polymer. The time-dependent CO release from CORM conjugated block-copolymer was investigated by a myoglobin assay. This CORM conjugated block-copolymer slowly and spontaneously released CO with sustained-release kinetics. Moreover, this CO-releasing polymer was able to prevent biofilm formation against Pseudomonas aeruginosa . A new water-soluble methionine-based CO releasing polymer shows slow and spontaneous release of CO with sustained-release kinetics, preventing biofilm formation against Pseudomonas aeruginosa .
Author Díaz, David Díaz
Ng, Gervase
Abramov, Alex
Boyer, Cyrille
Maiti, Binoy
AuthorAffiliation School of Chemical Engineering
Departamento de Química Orgánica
UNSW Australia
Institut für Organische Chemie
Universität Regensburg
Instituto de Bio-Orgánica Antonio González
Universidad de La Laguna
Australian Centre for NanoMedicine (ACN)
AuthorAffiliation_xml – name: Australian Centre for NanoMedicine (ACN)
– name: UNSW Australia
– name: Universidad de La Laguna
– name: Universität Regensburg
– name: School of Chemical Engineering
– name: Instituto de Bio-Orgánica Antonio González
– name: Institut für Organische Chemie
– name: Departamento de Química Orgánica
Author_xml – sequence: 1
  givenname: Binoy
  surname: Maiti
  fullname: Maiti, Binoy
– sequence: 2
  givenname: Gervase
  surname: Ng
  fullname: Ng, Gervase
– sequence: 3
  givenname: Alex
  surname: Abramov
  fullname: Abramov, Alex
– sequence: 4
  givenname: Cyrille
  surname: Boyer
  fullname: Boyer, Cyrille
– sequence: 5
  givenname: David Díaz
  surname: Díaz
  fullname: Díaz, David Díaz
BookMark eNptkU1LAzEQhoNUsNZevAsBb8Jq0myym6PUT6go6EUvSzYfNmU3WZOt2H9v2koFcS4zzDzvzDBzCAbOOw3AMUbnGBF-oXC3QojmTO2BIS4ozzhnk8EupvkBGMe4QMkIzieEDcHbg-7n1jvrdFaLqBWUItTewdY7_2WVhkE3WkTr3mHnm1WrAzQ-wH6uYRf0p3Z9UkNvYG29sU27rrZinTwC-0Y0UY9__Ag831y_TO-y2ePt_fRylkmCiz5jecklxrpIHimTU8UwzjmfUFojUvIClYowLpVgjFGU14axkqIilUojyQicbrt2wX8sdeyrhV8GlwZWqQOijNIJSxTaUjL4GIM2lbT9Zss-CNtUGFXrE1ZX-Ol1c8KrJDn7I-mCbUVY_Q-fbOEQ5Y77_Qf5BuGvfL4
CitedBy_id crossref_primary_10_1080_10601325_2023_2189434
crossref_primary_10_1016_j_bioactmat_2022_10_008
crossref_primary_10_1002_cmdc_202100555
crossref_primary_10_1016_j_jconrel_2023_04_025
crossref_primary_10_1002_anie_202310040
crossref_primary_10_1016_j_bcp_2022_114991
crossref_primary_10_1002_ange_202310040
crossref_primary_10_1016_j_giant_2023_100153
crossref_primary_10_1016_j_jconrel_2022_08_055
Cites_doi 10.3389/fmicb.2018.00195
10.1039/C6DT00858E
10.1021/ja1075025
10.1039/C5PY01230A
10.1002/anie.201202414
10.1096/fj.08-122804
10.1021/ic902147n
10.1021/jacs.7b00867
10.1021/ar500172f
10.1517/13543784.14.11.1305
10.1021/acs.biomac.5b00716
10.1371/journal.pone.0035499
10.1161/hh0202.104530
10.1155/2018/8547364
10.1002/macp.201500271
10.1021/om300359a
10.1039/c2cs15317c
10.1016/j.polymer.2004.12.061
10.1039/c3cc40869h
10.1073/pnas.1431233100
10.1089/ars.2011.3959
10.1002/anie.201311225
10.1002/ejic.201100545
10.1039/C6DT03515A
10.1021/acsami.0c15221
10.1039/C6RA21703F
10.1039/b704873d
10.1021/bm500422v
10.1016/S0021-9258(18)63477-5
10.1039/C7PY02014G
10.1002/marc.201500755
10.2174/1381612033453785
10.1038/nrd3228
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1039/d1py00546d
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-9962
EndPage 3975
ExternalDocumentID 10_1039_D1PY00546D
d1py00546d
GroupedDBID 0-7
0R
29O
4.4
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
HZ
H~N
J3I
JG
O-G
O9-
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ADNWM
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AHGCF
AKBGW
AKMSF
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SR
8FD
JG9
ID FETCH-LOGICAL-c317t-6489c11e74890df45d611499255b0389708d369cda666504bf6685073898fc3
ISSN 1759-9954
IngestDate Mon Jun 30 02:27:10 EDT 2025
Tue Jul 01 03:34:17 EDT 2025
Thu Apr 24 22:58:06 EDT 2025
Sat Apr 16 10:02:51 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-6489c11e74890df45d611499255b0389708d369cda666504bf6685073898fc3
Notes 10.1039/d1py00546d
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4564-4702
0000-0002-0557-3364
OpenAccessLink http://riull.ull.es/xmlui/handle/915/42194
PQID 2550565526
PQPubID 2047483
PageCount 8
ParticipantIDs crossref_citationtrail_10_1039_D1PY00546D
proquest_journals_2550565526
rsc_primary_d1py00546d
crossref_primary_10_1039_D1PY00546D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-21
PublicationDateYYYYMMDD 2021-07-21
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Polymer chemistry
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Mottelini (D1PY00546D-(cit17)/*[position()=1]) 2003; 9
Bauri (D1PY00546D-(cit24b)/*[position()=1]) 2018; 9
Datta (D1PY00546D-(cit26)/*[position()=1]) 2015; 6
Flanagan (D1PY00546D-(cit10)/*[position()=1]) 2018; 9
Ismailova (D1PY00546D-(cit11)/*[position()=1]) 2018; 2018
Yepuri (D1PY00546D-(cit31)/*[position()=1]) 2013; 49
Motterlini (D1PY00546D-(cit8)/*[position()=1]) 2002; 90
Nguyen (D1PY00546D-(cit22)/*[position()=1]) 2015; 16
Nguyen (D1PY00546D-(cit23)/*[position()=1]) 2016; 37
Bauri (D1PY00546D-(cit24a)/*[position()=1]) 2016; 217
Mann (D1PY00546D-(cit2)/*[position()=1]) 2007; 41
Brückmann (D1PY00546D-(cit20)/*[position()=1]) 2011; 29
Ng (D1PY00546D-(cit28)/*[position()=1]) 2020; 12
Farrugia (D1PY00546D-(cit5)/*[position()=1]) 2003; 100
Murray (D1PY00546D-(cit32)/*[position()=1]) 2012; 7
Chakraborty (D1PY00546D-(cit13)/*[position()=1]) 2014; 47
Mottelini (D1PY00546D-(cit18)/*[position()=1]) 2005; 14
Nguyen (D1PY00546D-(cit27)/*[position()=1]) 2016; 6
Moad (D1PY00546D-(cit25)/*[position()=1]) 2005; 46
Motterlini (D1PY00546D-(cit3)/*[position()=1]) 2010; 9
Garcia-Gallego (D1PY00546D-(cit7)/*[position()=1]) 2014; 53
Barraud (D1PY00546D-(cit29)/*[position()=1]) 2012; 51
Romao (D1PY00546D-(cit6)/*[position()=1]) 2012; 41
Barraud (D1PY00546D-(cit35)/*[position()=1]) 2014; 1149
Motterlini (D1PY00546D-(cit9)/*[position()=1]) 2002
Hasegawa (D1PY00546D-(cit21)/*[position()=1]) 2010; 132
Rimmer (D1PY00546D-(cit12)/*[position()=1]) 2010; 49
Romanski (D1PY00546D-(cit16)/*[position()=1]) 2012; 31
Kottelat (D1PY00546D-(cit14)/*[position()=1]) 2016; 45
Kautz (D1PY00546D-(cit19)/*[position()=1]) 2016; 45
Suffredini (D1PY00546D-(cit4)/*[position()=1])
Desmard (D1PY00546D-(cit33)/*[position()=1]) 2009; 23
Tenhunen (D1PY00546D-(cit1)/*[position()=1]) 1969; 244
Reddy (D1PY00546D-(cit15)/*[position()=1]) 2017; 139
Desmard (D1PY00546D-(cit34)/*[position()=1]) 2012; 16
Duong (D1PY00546D-(cit30)/*[position()=1]) 2014; 15
References_xml – doi: Suffredini
– issn: 2014
  issue: 1149
  volume-title: Methods for Studying Biofilm Dispersal in Pseudomonas aeruginosa
  publication-title: Pseudomonas Methods and Protocols. Methods in Molecular Biology (Methods and Protocols)
  doi: Barraud Moscoso Ghigo Filloux
– issn: 2002
  end-page: 249
  publication-title: Carbon Monoxide and Cardiovascular Functions
  doi: Motterlini Foresti Green
– volume: 9
  start-page: 195
  year: 2018
  ident: D1PY00546D-(cit10)/*[position()=1]
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.00195
– volume: 45
  start-page: 6920
  year: 2016
  ident: D1PY00546D-(cit14)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT00858E
– volume: 132
  start-page: 18273
  year: 2010
  ident: D1PY00546D-(cit21)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1075025
– volume: 6
  start-page: 7796
  year: 2015
  ident: D1PY00546D-(cit26)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C5PY01230A
– volume: 51
  start-page: 9057
  year: 2012
  ident: D1PY00546D-(cit29)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201202414
– volume: 23
  start-page: 1023
  year: 2009
  ident: D1PY00546D-(cit33)/*[position()=1]
  publication-title: FASEB J.
  doi: 10.1096/fj.08-122804
– volume: 49
  start-page: 1180
  year: 2010
  ident: D1PY00546D-(cit12)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic902147n
– volume: 1149
  volume-title: Pseudomonas Methods and Protocols. Methods in Molecular Biology (Methods and Protocols)
  year: 2014
  ident: D1PY00546D-(cit35)/*[position()=1]
– volume: 139
  start-page: 4991
  year: 2017
  ident: D1PY00546D-(cit15)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00867
– volume: 47
  start-page: 2603
  year: 2014
  ident: D1PY00546D-(cit13)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500172f
– volume: 14
  start-page: 1305
  year: 2005
  ident: D1PY00546D-(cit18)/*[position()=1]
  publication-title: Expert Opin. Invest. Drugs
  doi: 10.1517/13543784.14.11.1305
– volume: 16
  start-page: 2776
  year: 2015
  ident: D1PY00546D-(cit22)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b00716
– volume: 7
  start-page: 35499
  year: 2012
  ident: D1PY00546D-(cit32)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0035499
– ident: D1PY00546D-(cit4)/*[position()=1]
– volume: 90
  start-page: 17
  year: 2002
  ident: D1PY00546D-(cit8)/*[position()=1]
  publication-title: Circ. Res.
  doi: 10.1161/hh0202.104530
– volume: 2018
  start-page: 8547364
  year: 2018
  ident: D1PY00546D-(cit11)/*[position()=1]
  publication-title: Bioinorg. Chem. Appl.
  doi: 10.1155/2018/8547364
– volume: 217
  start-page: 365
  year: 2016
  ident: D1PY00546D-(cit24a)/*[position()=1]
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201500271
– volume: 31
  start-page: 5800
  year: 2012
  ident: D1PY00546D-(cit16)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/om300359a
– volume: 41
  start-page: 3571
  year: 2012
  ident: D1PY00546D-(cit6)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15317c
– volume: 46
  start-page: 8458
  year: 2005
  ident: D1PY00546D-(cit25)/*[position()=1]
  publication-title: polym.
  doi: 10.1016/j.polymer.2004.12.061
– volume: 49
  start-page: 4791
  year: 2013
  ident: D1PY00546D-(cit31)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc40869h
– volume: 100
  start-page: 8567
  year: 2003
  ident: D1PY00546D-(cit5)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1431233100
– volume: 16
  start-page: 153
  year: 2012
  ident: D1PY00546D-(cit34)/*[position()=1]
  publication-title: Antioxid. Redox Signaling
  doi: 10.1089/ars.2011.3959
– volume: 53
  start-page: 9712
  year: 2014
  ident: D1PY00546D-(cit7)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201311225
– volume: 29
  start-page: 4571
  year: 2011
  ident: D1PY00546D-(cit20)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201100545
– volume: 45
  start-page: 18045
  year: 2016
  ident: D1PY00546D-(cit19)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT03515A
– volume: 12
  start-page: 55243
  year: 2020
  ident: D1PY00546D-(cit28)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c15221
– volume: 6
  start-page: 92975
  year: 2016
  ident: D1PY00546D-(cit27)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA21703F
– volume: 41
  start-page: 4197
  year: 2007
  ident: D1PY00546D-(cit2)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b704873d
– volume: 15
  start-page: 2583
  year: 2014
  ident: D1PY00546D-(cit30)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/bm500422v
– volume: 244
  start-page: 6388
  year: 1969
  ident: D1PY00546D-(cit1)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)63477-5
– volume: 9
  start-page: 1257
  year: 2018
  ident: D1PY00546D-(cit24b)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C7PY02014G
– start-page: 249
  volume-title: Carbon Monoxide and Cardiovascular Functions
  year: 2002
  ident: D1PY00546D-(cit9)/*[position()=1]
– volume: 37
  start-page: 739
  year: 2016
  ident: D1PY00546D-(cit23)/*[position()=1]
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201500755
– volume: 9
  start-page: 2525
  year: 2003
  ident: D1PY00546D-(cit17)/*[position()=1]
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612033453785
– volume: 9
  start-page: 728
  year: 2010
  ident: D1PY00546D-(cit3)/*[position()=1]
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd3228
SSID ssj0000314236
Score 2.3525696
Snippet Carbon monoxide (CO) is being increasingly appreciated as a major physiological gasomediator and plays significant roles in different biological activities....
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3968
SubjectTerms Addition polymerization
Biofilms
Block copolymers
Carbon monoxide
Chain transfer
Chemical compounds
Dimers
Ethylene glycol
Inductively coupled plasma
Methionine
Myoglobins
Optical emission spectroscopy
Pharmacology
Polymer chemistry
Polymers
Pseudomonas aeruginosa
Releasing
Title Methionine-based carbon monoxide releasing polymer for the prevention of biofilm formation
URI https://www.proquest.com/docview/2550565526
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9gAXVB4VCy2yBBcOgTxsNz5uH1CBWlWiiMIlWttJWam7WYVQdfn1zMSOHapFAi7Ryk6iyN-39szY3wwhL5OpzqtKYdCds4ix1OD-Lo9iHSc61tVUpShOPjkVx5_Y-wt-MVBco7qkVa_1z7W6kv9BFdoAV1TJ_gOy_qXQAL8BX7gCwnD9K4xPyvZbF08tI1yNDOaZVgAnfEB9MzO2Isq0iwYs66vVvGz8qcKlS91kzUU1w8rd8yBlHNqsZ-5R3deGC1HsmT0MsD9b1L719NLG2pvrwcbPBJzyeX3dS2p8EKBeOSHiqkFR4jAGkSYY3LTCZjdt7nEZYWY5u6oM227NtemAUzYpgJs5M2nL67hVGMwkvnaGjzNMkGqS5QqtTWHCOuZPF4bODbKZgvuQjsjm5MP-u88--oZJ-9OufqT_9D53bSbfhBf8bq0EF2Sj6evDdHbI-Ra57xwIOrFseEDulIuH5O5Bj80j8vU2K6hlBe1ZQT0rqGMFBdwpsIIGVtC6oo4V1LPiMfn49uj84DhyFTQiDXZhGwmWS50kJaYYik3FuBHg_0oJfqTCzIp7cW4yIbWZghfLY6YqIXLwEKArr3S2TUaLelE-QWU_2Km50JksNdNVqbKMwdtgdTK4ka7G5FU_ToV2yeWxxslV0R1yyGRxmJx96cb0cExe-HuXNqXK2rt2-uEu3F_ue5GiPy04T8WYbAME_vmA2NM_dTwj9wJ1d8iobX6Uu2BQtuq5Y8cvr_B4aQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methionine-based+carbon+monoxide+releasing+polymer+for+the+prevention+of+biofilm+formation&rft.jtitle=Polymer+chemistry&rft.au=Maiti%2C+Binoy&rft.au=Ng%2C+Gervase&rft.au=Abramov%2C+Alex&rft.au=Boyer%2C+Cyrille&rft.date=2021-07-21&rft.issn=1759-9954&rft.eissn=1759-9962&rft.volume=12&rft.issue=27&rft.spage=3968&rft.epage=3975&rft_id=info:doi/10.1039%2Fd1py00546d&rft.externalDocID=d1py00546d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9954&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9954&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9954&client=summon