Muscle weakness assessment tool for automated therapy selection in elbow rehabilitation
Clinical observations and subjective judgements have traditionally been used to evaluate patients with muscular and neurological disorders. As a result, identifying and analyzing functional improvements are difficult, especially in the absence of expertise. Quantitative assessment, which serves as t...
Saved in:
Published in | Robotica Vol. 41; no. 3; pp. 833 - 849 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0263-5747 1469-8668 |
DOI | 10.1017/S0263574722000844 |
Cover
Loading…
Abstract | Clinical observations and subjective judgements have traditionally been used to evaluate patients with muscular and neurological disorders. As a result, identifying and analyzing functional improvements are difficult, especially in the absence of expertise. Quantitative assessment, which serves as the motivation for this study, is an essential prerequisite to forecast the task of the rehabilitation device in order to develop rehabilitation training. This work provides a quantitative assessment tool for muscle weakness in the human upper limbs for robotic-assisted rehabilitation. The goal is to map the assessment metrics to the recommended rehabilitation exercises. Measurable interaction forces and muscle correlation factors are the selected parameters to design a framework for muscular nerve cell condition detection and appropriate limb trajectory selection. In this work, a data collection setup is intended for extracting muscle intervention and assessment using MyoMeter, Goniometer and surface electromyography data for upper limbs. Force signals and human physiological response data are evaluated and categorized to infer the relevant progress. Based upon the most influencing muscles, curve fitting is performed. Trajectory-based data points are collected through a scaled geometric Open-Sim musculoskeletal model that fits the subject’s anthropometric data. These data are found to be most suitable to prescribe relevant exercise and to design customized robotic assistance. Case studies demonstrate the approach’s efficacy, including optimally synthesized automated configuration for the desired trajectory. |
---|---|
AbstractList | Clinical observations and subjective judgements have traditionally been used to evaluate patients with muscular and neurological disorders. As a result, identifying and analyzing functional improvements are difficult, especially in the absence of expertise. Quantitative assessment, which serves as the motivation for this study, is an essential prerequisite to forecast the task of the rehabilitation device in order to develop rehabilitation training. This work provides a quantitative assessment tool for muscle weakness in the human upper limbs for robotic-assisted rehabilitation. The goal is to map the assessment metrics to the recommended rehabilitation exercises. Measurable interaction forces and muscle correlation factors are the selected parameters to design a framework for muscular nerve cell condition detection and appropriate limb trajectory selection. In this work, a data collection setup is intended for extracting muscle intervention and assessment using MyoMeter, Goniometer and surface electromyography data for upper limbs. Force signals and human physiological response data are evaluated and categorized to infer the relevant progress. Based upon the most influencing muscles, curve fitting is performed. Trajectory-based data points are collected through a scaled geometric Open-Sim musculoskeletal model that fits the subject’s anthropometric data. These data are found to be most suitable to prescribe relevant exercise and to design customized robotic assistance. Case studies demonstrate the approach’s efficacy, including optimally synthesized automated configuration for the desired trajectory. |
Author | Agrawal, Anupam Singla, Ekta Gupta, Sakshi |
Author_xml | – sequence: 1 givenname: Sakshi orcidid: 0000-0002-0682-5551 surname: Gupta fullname: Gupta, Sakshi organization: Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India – sequence: 2 givenname: Anupam surname: Agrawal fullname: Agrawal, Anupam organization: Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India – sequence: 3 givenname: Ekta orcidid: 0000-0003-2842-3446 surname: Singla fullname: Singla, Ekta email: ekta@iitrpr.ac.in organization: Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India |
BookMark | eNp9kF1LwzAUhoNMcJv-AO8CXlfz0SbppQy_YOKFipclTU9cZ9vMJGXs39uygaDo1QvnvM_5eGdo0rkOEDqn5JISKq-eCRM8k6lkjBCi0vQITWkq8kQJoSZoOraTsX-CZiGsCaGcpnKK3h77YBrAW9AfHYSAdQiDtNBFHJ1rsHUe6z66VkeocFyB15sdDtCAibXrcN1haEq3xR5WuqybOuqxfoqOrW4CnB10jl5vb14W98ny6e5hcb1MDKcyJiKlquIlIUCMpdpqYqXNFctZlWuV06zkXJg8yyHjClRmFDCrdEmZyEgpOJ-ji_3cjXefPYRYrF3vu2FlwaRMhygkyQcX3buMdyF4sMXG1632u4KSYsyv-JXfwMgfjDn8Fr2um39JfiB1W_q6eofvo_6mvgBAm4V2 |
CitedBy_id | crossref_primary_10_3390_s24041047 |
Cites_doi | 10.1016/j.procs.2014.11.049 10.1056/NEJMoa0911341 10.1186/1743-0003-10-18 10.1109/EMBC.2017.8037035 10.3389/fnhum.2014.00381 10.1109/ICIEA.2013.6566603 10.1016/0021-9290(95)00178-6 10.1007/s42835-020-00475-w 10.1016/j.pmcj.2016.08.007 10.3233/NRE-171452 10.1080/02701367.1983.10605290 10.1016/S0022-510X(00)00305-1 10.1016/j.crvi.2011.10.006 10.1109/TRA.2004.825515 10.1177/154596802401105171 10.1109/TBME.2006.880883 10.1177/154596830201600303 10.5772/56717 |
ContentType | Journal Article |
Copyright | The Author(s), 2022. Published by Cambridge University Press |
Copyright_xml | – notice: The Author(s), 2022. Published by Cambridge University Press |
DBID | AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO F28 FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1017/S0263574722000844 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1469-8668 |
EndPage | 849 |
ExternalDocumentID | 10_1017_S0263574722000844 |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N -~X .DC .FH 09C 09E 0E1 0R~ 123 29P 3V. 4.4 5VS 6~7 74X 74Y 7~V 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABXAU ABZCX ACBMC ACCHT ACETC ACGFS ACIMK ACIWK ACMRT ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADGEJ ADKIL ADOCW ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFNX AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD F5P GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KC5 KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M7S M7~ M8. MVM NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S6- S6U SAAAG T9M TN5 UT1 VOH WFFJZ WH7 WQ3 WXU WXY WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 AAKNA AAYXX ABGDZ ABHFL ABVKB ABVZP ABXHF ACDLN ACEJA ACOZI ADMLS AFZFC AKMAY ANOYL CITATION PHGZM PHGZT 7SC 7SP 7TB 7XB 8AL 8FD 8FK F28 FR3 JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c317t-6418d3b00e0cf1afa0f7f98292d9a8915b336c959e538e85c8e2f8ab12650b633 |
IEDL.DBID | BENPR |
ISSN | 0263-5747 |
IngestDate | Sat Aug 23 14:33:33 EDT 2025 Tue Jul 01 00:58:55 EDT 2025 Thu Apr 24 23:05:54 EDT 2025 Wed Mar 13 05:48:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | upper-limb exoskeleton task-based device muscles weakness assessment tool rehabilitation robotics electromyography |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c317t-6418d3b00e0cf1afa0f7f98292d9a8915b336c959e538e85c8e2f8ab12650b633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0682-5551 0000-0003-2842-3446 |
PQID | 2774008709 |
PQPubID | 37292 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2774008709 crossref_primary_10_1017_S0263574722000844 crossref_citationtrail_10_1017_S0263574722000844 cambridge_journals_10_1017_S0263574722000844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Robotica |
PublicationTitleAlternate | Robotica |
PublicationYear | 2023 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2002; 16 2004; 20 2017; 41 1996; 29 2020; 3 2006; 53 2013; 10 2017; 34 1983; 54 2020; 15 2010; 362 2000; 176 2012; 335 2014; 8 2014; 42 Thompson (S0263574722000844_ref23) 2013 S0263574722000844_ref17 S0263574722000844_ref16 S0263574722000844_ref19 S0263574722000844_ref18 S0263574722000844_ref13 S0263574722000844_ref15 S0263574722000844_ref14 S0263574722000844_ref11 S0263574722000844_ref9 S0263574722000844_ref7 S0263574722000844_ref8 S0263574722000844_ref5 S0263574722000844_ref6 S0263574722000844_ref4 Olaya (S0263574722000844_ref3) 2015 S0263574722000844_ref1 S0263574722000844_ref2 S0263574722000844_ref26 S0263574722000844_ref25 S0263574722000844_ref20 Radomski (S0263574722000844_ref10) 2008 S0263574722000844_ref22 O’Sullivan (S0263574722000844_ref24) 2019 S0263574722000844_ref21 Majidirad (S0263574722000844_ref12) 2020; 3 |
References_xml | – volume: 335 start-page: 1 issue: 1 year: 2012 end-page: 8 article-title: Interfacing the neural system to restore deficient functions: From theoretical studies to neuroprothesis design publication-title: C. R. Biol. – volume: 176 start-page: 45 issue: 1 year: 2000 end-page: 56 article-title: Abnormal muscle activation characteristics associated with loss of dexterity after stroke publication-title: J. Neurol. Sci. – volume: 15 start-page: 2287 issue: 5 year: 2020 end-page: 2298 article-title: Joint torque estimation using semg and deep neural network publication-title: J. Electr. Eng. Technol. – volume: 8 start-page: 381 year: 2014 article-title: Finding an optimal rehabilitation paradigm after stroke: Enhancing fiber growth and training of the brain at the right moment publication-title: Front. Hum. Neurosci. – volume: 41 start-page: 5 issue: 1 year: 2017 end-page: 15 article-title: Upper limb robotics applied to neurorehabilitation: An overview of clinical practice publication-title: NeuroRehabilitation – volume: 53 start-page: 2387 issue: 11 year: 2006 end-page: 2396 article-title: Real-time myoprocessors for a neural controlled powered exoskeleton arm publication-title: IEEE Trans. Biomed. Eng. – volume: 42 start-page: 175 year: 2014 end-page: 182 article-title: Joint torque estimation model of Surface Electromyography (SEMG) based on swarm intelligence algorithm for robotic assistive device publication-title: Procedia Comput. Sci. – volume: 20 start-page: 574 issue: 3 year: 2004 end-page: 582 article-title: Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-dof robotic orthosis publication-title: IEEE Trans. Robot. Autom. – volume: 10 start-page: 369 issue: 10 year: 2013 article-title: Estimation of upper limb joint angle using surface emg signal publication-title: Int. J. Adv. Robot Syst. – volume: 54 start-page: 169 issue: 2 year: 1983 end-page: 178 article-title: Anatomical data for analyzing human motion publication-title: Res. Q. Exercise Sport. – volume: 362 start-page: 1772 issue: 19 year: 2010 end-page: 1783 article-title: Robot-assisted therapy for long-term upper-limb impairment after stroke publication-title: New Engl. J. Med. – volume: 3 start-page: 1 issue: 2 year: 2020 article-title: Toward an integrated intervention and assessment of robot-based rehabilitation publication-title: J. Eng. Sci. Med. Diagn. Therapy – volume: 16 start-page: 241 issue: 3 year: 2002 end-page: 248 article-title: Muscle weakness and cocontraction in upper limb hemiparesis: relationship to motor impairment and physical disability publication-title: Neurorehab. Neural Repair – volume: 29 start-page: 1223 issue: 9 year: 1996 end-page: 1230 article-title: Adjustments to zatsiorsky-seluyanov’s segment inertia parameters publication-title: J. Biomech. – volume: 10 start-page: 1 issue: 1 year: 2013 end-page: 10 article-title: EMG and kinematic analysis of sensorimotor control for patients after stroke using cyclic voluntary movement with visual feedback publication-title: J. Neuroeng. Rehabil. – volume: 16 start-page: 232 issue: 3 year: 2002 end-page: 240 article-title: The fugl-meyer assessment of motor recovery after stroke: A critical review of its measurement properties publication-title: Neurorehab. Neural Repair – volume: 34 start-page: 91 year: 2017 end-page: 105 article-title: Tangibot: A tangible-mediated robot to support cognitive games for ageing people—A usability study publication-title: Pervasive Mob. Comput. – ident: S0263574722000844_ref20 doi: 10.1016/j.procs.2014.11.049 – volume-title: Occupational Therapy for Stroke Rehabilitation year: 2013 ident: S0263574722000844_ref23 – ident: S0263574722000844_ref4 doi: 10.1056/NEJMoa0911341 – ident: S0263574722000844_ref8 doi: 10.1186/1743-0003-10-18 – ident: S0263574722000844_ref11 doi: 10.1109/EMBC.2017.8037035 – ident: S0263574722000844_ref16 – volume-title: Occupational Therapy for Physical Dysfunction year: 2008 ident: S0263574722000844_ref10 – ident: S0263574722000844_ref2 doi: 10.3389/fnhum.2014.00381 – ident: S0263574722000844_ref19 doi: 10.1109/ICIEA.2013.6566603 – ident: S0263574722000844_ref25 doi: 10.1016/0021-9290(95)00178-6 – ident: S0263574722000844_ref21 doi: 10.1007/s42835-020-00475-w – ident: S0263574722000844_ref13 doi: 10.1016/j.pmcj.2016.08.007 – ident: S0263574722000844_ref6 doi: 10.3233/NRE-171452 – ident: S0263574722000844_ref26 doi: 10.1080/02701367.1983.10605290 – ident: S0263574722000844_ref14 doi: 10.1016/S0022-510X(00)00305-1 – volume: 3 start-page: 1 year: 2020 ident: S0263574722000844_ref12 article-title: Toward an integrated intervention and assessment of robot-based rehabilitation publication-title: J. Eng. Sci. Med. Diagn. Therapy – start-page: 1 volume-title: Assistive Technologies for Physical and Cognitive Disabilities year: 2015 ident: S0263574722000844_ref3 – ident: S0263574722000844_ref1 doi: 10.1016/j.crvi.2011.10.006 – ident: S0263574722000844_ref5 doi: 10.1109/TRA.2004.825515 – ident: S0263574722000844_ref9 doi: 10.1177/154596802401105171 – ident: S0263574722000844_ref17 doi: 10.1109/TBME.2006.880883 – ident: S0263574722000844_ref15 doi: 10.1177/154596830201600303 – ident: S0263574722000844_ref22 – ident: S0263574722000844_ref7 – ident: S0263574722000844_ref18 doi: 10.5772/56717 – volume-title: Physical Rehabilitation year: 2019 ident: S0263574722000844_ref24 |
SSID | ssj0013147 |
Score | 2.3321154 |
Snippet | Clinical observations and subjective judgements have traditionally been used to evaluate patients with muscular and neurological disorders. As a result,... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 833 |
SubjectTerms | Advances in Medical Robotics Algorithms Curve fitting Data collection Data points Design parameters Digitization Elbow Evaluation Limbs Mathematical models Motor ability Muscles Neurological diseases Patients Rehabilitation Robotics Sensors Signal processing Trajectories |
Title | Muscle weakness assessment tool for automated therapy selection in elbow rehabilitation |
URI | https://www.cambridge.org/core/product/identifier/S0263574722000844/type/journal_article https://www.proquest.com/docview/2774008709 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1lj14EoNJNo_dk6i0FsEiYrG3sk8QS1KblOK_dzaPPhB63iwkM5OZLzuT70PoWhkDdT8KHSmMbTMq40AoC8cIyWSkYhfW7bTFIOoPg5dROKoO3LJqrLLOiUWiVqm0Z-R3PuAUy5_msvvpj2NVo2x3tZLQ2EVNSMEUIrz52B28va_6CF4hMQYfGsQJATnXfc2CNNrysMSWLNEWwiBYZ1fYrFKbSbqoPL1DdFBBRvxQ-vgI7ejkGO2vEQmeoM_XeQZreKH5t81dmC8JN3GephMM0BTzeZ4CPtUKlz9d_eKsEMEBz-CvBOuJSBd4tsHcfYqGve7HU9-pJBMcCUAgd6LAo4rAq6RdaTxuuGtiw6jPfMU4ZV4oCIkkC5mGRKdpKKn2DeXC88FjIiLkDDWSNNHnCHMiBAm5inTsBdxlXHk6pLaTRrjwXdpCt0tzjavAz8bl0Fg8_mfdFnJri45l9RBWBWOybcvNcsu05N7YdnG7dtPqblZBc7F9-RLtWR35crisjRr5bK6vAG3kooN2ae-5UwXWH-xw0E4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELWqcgAOiFUUCvgAF0REEmexDwghoJSlPYHoLXiVEFUDNFXVn-IbGSdNS4XUW89OpHj8MjP2jN9D6FgZA3E_Ch0pjC0zKuMAlIVjhGQyUrEL47bboh01X4KHTtipoJ_yLoxtqyx9Yu6oVSrtGfm5D3mK5U9z2eXnl2NVo2x1tZTQKGDxqEdD2LL1L-5vYH1PfL9x-3zddMaqAo6EWJk5UeBRRQBt2pXG44a7JjaM-sxXjFPmhYKQSLKQafAFmoaSat9QLjwfJiUiewAKLn8pIITZFkLauJtWLbxc0Ay2NcQJIU8vq6g5RbVlfYktNaMNu0Hwl8thNibOhoQ8zjXW0do4QcVXBaI2UEX3NtHqH9rCLfTaGvRhDA81_7CeEvMJvSfO0rSLIRHGfJClkA1rhYsrXiPczyV3AAf4vYd1V6RD_D3DE76NXhZiyh1U7aU9vYswJ0KQkKtIx17AXcaVp0Nq63aEC9-lNXQ2MVcy_s36SdGiFif_rFtDbmnRRI4nYTU3uvNeOZ288lkwfcx7uF4u0_RrphDdmz98hJabz62n5Om-_biPVqyCfdHWVkfV7HugDyDPycRhDi6M3haN5l8GegoZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscle+weakness+assessment+tool+for+automated+therapy+selection+in+elbow+rehabilitation&rft.jtitle=Robotica&rft.au=Gupta%2C+Sakshi&rft.au=Agrawal%2C+Anupam&rft.au=Singla%2C+Ekta&rft.date=2023-03-01&rft.pub=Cambridge+University+Press&rft.issn=0263-5747&rft.eissn=1469-8668&rft.volume=41&rft.issue=3&rft.spage=833&rft.epage=849&rft_id=info:doi/10.1017%2FS0263574722000844 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5747&client=summon |