Muscle weakness assessment tool for automated therapy selection in elbow rehabilitation

Clinical observations and subjective judgements have traditionally been used to evaluate patients with muscular and neurological disorders. As a result, identifying and analyzing functional improvements are difficult, especially in the absence of expertise. Quantitative assessment, which serves as t...

Full description

Saved in:
Bibliographic Details
Published inRobotica Vol. 41; no. 3; pp. 833 - 849
Main Authors Gupta, Sakshi, Agrawal, Anupam, Singla, Ekta
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.03.2023
Subjects
Online AccessGet full text
ISSN0263-5747
1469-8668
DOI10.1017/S0263574722000844

Cover

Loading…
Abstract Clinical observations and subjective judgements have traditionally been used to evaluate patients with muscular and neurological disorders. As a result, identifying and analyzing functional improvements are difficult, especially in the absence of expertise. Quantitative assessment, which serves as the motivation for this study, is an essential prerequisite to forecast the task of the rehabilitation device in order to develop rehabilitation training. This work provides a quantitative assessment tool for muscle weakness in the human upper limbs for robotic-assisted rehabilitation. The goal is to map the assessment metrics to the recommended rehabilitation exercises. Measurable interaction forces and muscle correlation factors are the selected parameters to design a framework for muscular nerve cell condition detection and appropriate limb trajectory selection. In this work, a data collection setup is intended for extracting muscle intervention and assessment using MyoMeter, Goniometer and surface electromyography data for upper limbs. Force signals and human physiological response data are evaluated and categorized to infer the relevant progress. Based upon the most influencing muscles, curve fitting is performed. Trajectory-based data points are collected through a scaled geometric Open-Sim musculoskeletal model that fits the subject’s anthropometric data. These data are found to be most suitable to prescribe relevant exercise and to design customized robotic assistance. Case studies demonstrate the approach’s efficacy, including optimally synthesized automated configuration for the desired trajectory.
AbstractList Clinical observations and subjective judgements have traditionally been used to evaluate patients with muscular and neurological disorders. As a result, identifying and analyzing functional improvements are difficult, especially in the absence of expertise. Quantitative assessment, which serves as the motivation for this study, is an essential prerequisite to forecast the task of the rehabilitation device in order to develop rehabilitation training. This work provides a quantitative assessment tool for muscle weakness in the human upper limbs for robotic-assisted rehabilitation. The goal is to map the assessment metrics to the recommended rehabilitation exercises. Measurable interaction forces and muscle correlation factors are the selected parameters to design a framework for muscular nerve cell condition detection and appropriate limb trajectory selection. In this work, a data collection setup is intended for extracting muscle intervention and assessment using MyoMeter, Goniometer and surface electromyography data for upper limbs. Force signals and human physiological response data are evaluated and categorized to infer the relevant progress. Based upon the most influencing muscles, curve fitting is performed. Trajectory-based data points are collected through a scaled geometric Open-Sim musculoskeletal model that fits the subject’s anthropometric data. These data are found to be most suitable to prescribe relevant exercise and to design customized robotic assistance. Case studies demonstrate the approach’s efficacy, including optimally synthesized automated configuration for the desired trajectory.
Author Agrawal, Anupam
Singla, Ekta
Gupta, Sakshi
Author_xml – sequence: 1
  givenname: Sakshi
  orcidid: 0000-0002-0682-5551
  surname: Gupta
  fullname: Gupta, Sakshi
  organization: Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
– sequence: 2
  givenname: Anupam
  surname: Agrawal
  fullname: Agrawal, Anupam
  organization: Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
– sequence: 3
  givenname: Ekta
  orcidid: 0000-0003-2842-3446
  surname: Singla
  fullname: Singla, Ekta
  email: ekta@iitrpr.ac.in
  organization: Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
BookMark eNp9kF1LwzAUhoNMcJv-AO8CXlfz0SbppQy_YOKFipclTU9cZ9vMJGXs39uygaDo1QvnvM_5eGdo0rkOEDqn5JISKq-eCRM8k6lkjBCi0vQITWkq8kQJoSZoOraTsX-CZiGsCaGcpnKK3h77YBrAW9AfHYSAdQiDtNBFHJ1rsHUe6z66VkeocFyB15sdDtCAibXrcN1haEq3xR5WuqybOuqxfoqOrW4CnB10jl5vb14W98ny6e5hcb1MDKcyJiKlquIlIUCMpdpqYqXNFctZlWuV06zkXJg8yyHjClRmFDCrdEmZyEgpOJ-ji_3cjXefPYRYrF3vu2FlwaRMhygkyQcX3buMdyF4sMXG1632u4KSYsyv-JXfwMgfjDn8Fr2um39JfiB1W_q6eofvo_6mvgBAm4V2
CitedBy_id crossref_primary_10_3390_s24041047
Cites_doi 10.1016/j.procs.2014.11.049
10.1056/NEJMoa0911341
10.1186/1743-0003-10-18
10.1109/EMBC.2017.8037035
10.3389/fnhum.2014.00381
10.1109/ICIEA.2013.6566603
10.1016/0021-9290(95)00178-6
10.1007/s42835-020-00475-w
10.1016/j.pmcj.2016.08.007
10.3233/NRE-171452
10.1080/02701367.1983.10605290
10.1016/S0022-510X(00)00305-1
10.1016/j.crvi.2011.10.006
10.1109/TRA.2004.825515
10.1177/154596802401105171
10.1109/TBME.2006.880883
10.1177/154596830201600303
10.5772/56717
ContentType Journal Article
Copyright The Author(s), 2022. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2022. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0263574722000844
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1469-8668
EndPage 849
ExternalDocumentID 10_1017_S0263574722000844
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.DC
.FH
09C
09E
0E1
0R~
123
29P
3V.
4.4
5VS
6~7
74X
74Y
7~V
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ACBMC
ACCHT
ACETC
ACGFS
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M7S
M7~
M8.
MVM
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S6-
S6U
SAAAG
T9M
TN5
UT1
VOH
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AAYXX
ABGDZ
ABHFL
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACOZI
ADMLS
AFZFC
AKMAY
ANOYL
CITATION
PHGZM
PHGZT
7SC
7SP
7TB
7XB
8AL
8FD
8FK
F28
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c317t-6418d3b00e0cf1afa0f7f98292d9a8915b336c959e538e85c8e2f8ab12650b633
IEDL.DBID BENPR
ISSN 0263-5747
IngestDate Sat Aug 23 14:33:33 EDT 2025
Tue Jul 01 00:58:55 EDT 2025
Thu Apr 24 23:05:54 EDT 2025
Wed Mar 13 05:48:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords upper-limb exoskeleton
task-based device
muscles weakness assessment tool
rehabilitation robotics
electromyography
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-6418d3b00e0cf1afa0f7f98292d9a8915b336c959e538e85c8e2f8ab12650b633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0682-5551
0000-0003-2842-3446
PQID 2774008709
PQPubID 37292
PageCount 17
ParticipantIDs proquest_journals_2774008709
crossref_primary_10_1017_S0263574722000844
crossref_citationtrail_10_1017_S0263574722000844
cambridge_journals_10_1017_S0263574722000844
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Robotica
PublicationTitleAlternate Robotica
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2002; 16
2004; 20
2017; 41
1996; 29
2020; 3
2006; 53
2013; 10
2017; 34
1983; 54
2020; 15
2010; 362
2000; 176
2012; 335
2014; 8
2014; 42
Thompson (S0263574722000844_ref23) 2013
S0263574722000844_ref17
S0263574722000844_ref16
S0263574722000844_ref19
S0263574722000844_ref18
S0263574722000844_ref13
S0263574722000844_ref15
S0263574722000844_ref14
S0263574722000844_ref11
S0263574722000844_ref9
S0263574722000844_ref7
S0263574722000844_ref8
S0263574722000844_ref5
S0263574722000844_ref6
S0263574722000844_ref4
Olaya (S0263574722000844_ref3) 2015
S0263574722000844_ref1
S0263574722000844_ref2
S0263574722000844_ref26
S0263574722000844_ref25
S0263574722000844_ref20
Radomski (S0263574722000844_ref10) 2008
S0263574722000844_ref22
O’Sullivan (S0263574722000844_ref24) 2019
S0263574722000844_ref21
Majidirad (S0263574722000844_ref12) 2020; 3
References_xml – volume: 335
  start-page: 1
  issue: 1
  year: 2012
  end-page: 8
  article-title: Interfacing the neural system to restore deficient functions: From theoretical studies to neuroprothesis design
  publication-title: C. R. Biol.
– volume: 176
  start-page: 45
  issue: 1
  year: 2000
  end-page: 56
  article-title: Abnormal muscle activation characteristics associated with loss of dexterity after stroke
  publication-title: J. Neurol. Sci.
– volume: 15
  start-page: 2287
  issue: 5
  year: 2020
  end-page: 2298
  article-title: Joint torque estimation using semg and deep neural network
  publication-title: J. Electr. Eng. Technol.
– volume: 8
  start-page: 381
  year: 2014
  article-title: Finding an optimal rehabilitation paradigm after stroke: Enhancing fiber growth and training of the brain at the right moment
  publication-title: Front. Hum. Neurosci.
– volume: 41
  start-page: 5
  issue: 1
  year: 2017
  end-page: 15
  article-title: Upper limb robotics applied to neurorehabilitation: An overview of clinical practice
  publication-title: NeuroRehabilitation
– volume: 53
  start-page: 2387
  issue: 11
  year: 2006
  end-page: 2396
  article-title: Real-time myoprocessors for a neural controlled powered exoskeleton arm
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 42
  start-page: 175
  year: 2014
  end-page: 182
  article-title: Joint torque estimation model of Surface Electromyography (SEMG) based on swarm intelligence algorithm for robotic assistive device
  publication-title: Procedia Comput. Sci.
– volume: 20
  start-page: 574
  issue: 3
  year: 2004
  end-page: 582
  article-title: Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-dof robotic orthosis
  publication-title: IEEE Trans. Robot. Autom.
– volume: 10
  start-page: 369
  issue: 10
  year: 2013
  article-title: Estimation of upper limb joint angle using surface emg signal
  publication-title: Int. J. Adv. Robot Syst.
– volume: 54
  start-page: 169
  issue: 2
  year: 1983
  end-page: 178
  article-title: Anatomical data for analyzing human motion
  publication-title: Res. Q. Exercise Sport.
– volume: 362
  start-page: 1772
  issue: 19
  year: 2010
  end-page: 1783
  article-title: Robot-assisted therapy for long-term upper-limb impairment after stroke
  publication-title: New Engl. J. Med.
– volume: 3
  start-page: 1
  issue: 2
  year: 2020
  article-title: Toward an integrated intervention and assessment of robot-based rehabilitation
  publication-title: J. Eng. Sci. Med. Diagn. Therapy
– volume: 16
  start-page: 241
  issue: 3
  year: 2002
  end-page: 248
  article-title: Muscle weakness and cocontraction in upper limb hemiparesis: relationship to motor impairment and physical disability
  publication-title: Neurorehab. Neural Repair
– volume: 29
  start-page: 1223
  issue: 9
  year: 1996
  end-page: 1230
  article-title: Adjustments to zatsiorsky-seluyanov’s segment inertia parameters
  publication-title: J. Biomech.
– volume: 10
  start-page: 1
  issue: 1
  year: 2013
  end-page: 10
  article-title: EMG and kinematic analysis of sensorimotor control for patients after stroke using cyclic voluntary movement with visual feedback
  publication-title: J. Neuroeng. Rehabil.
– volume: 16
  start-page: 232
  issue: 3
  year: 2002
  end-page: 240
  article-title: The fugl-meyer assessment of motor recovery after stroke: A critical review of its measurement properties
  publication-title: Neurorehab. Neural Repair
– volume: 34
  start-page: 91
  year: 2017
  end-page: 105
  article-title: Tangibot: A tangible-mediated robot to support cognitive games for ageing people—A usability study
  publication-title: Pervasive Mob. Comput.
– ident: S0263574722000844_ref20
  doi: 10.1016/j.procs.2014.11.049
– volume-title: Occupational Therapy for Stroke Rehabilitation
  year: 2013
  ident: S0263574722000844_ref23
– ident: S0263574722000844_ref4
  doi: 10.1056/NEJMoa0911341
– ident: S0263574722000844_ref8
  doi: 10.1186/1743-0003-10-18
– ident: S0263574722000844_ref11
  doi: 10.1109/EMBC.2017.8037035
– ident: S0263574722000844_ref16
– volume-title: Occupational Therapy for Physical Dysfunction
  year: 2008
  ident: S0263574722000844_ref10
– ident: S0263574722000844_ref2
  doi: 10.3389/fnhum.2014.00381
– ident: S0263574722000844_ref19
  doi: 10.1109/ICIEA.2013.6566603
– ident: S0263574722000844_ref25
  doi: 10.1016/0021-9290(95)00178-6
– ident: S0263574722000844_ref21
  doi: 10.1007/s42835-020-00475-w
– ident: S0263574722000844_ref13
  doi: 10.1016/j.pmcj.2016.08.007
– ident: S0263574722000844_ref6
  doi: 10.3233/NRE-171452
– ident: S0263574722000844_ref26
  doi: 10.1080/02701367.1983.10605290
– ident: S0263574722000844_ref14
  doi: 10.1016/S0022-510X(00)00305-1
– volume: 3
  start-page: 1
  year: 2020
  ident: S0263574722000844_ref12
  article-title: Toward an integrated intervention and assessment of robot-based rehabilitation
  publication-title: J. Eng. Sci. Med. Diagn. Therapy
– start-page: 1
  volume-title: Assistive Technologies for Physical and Cognitive Disabilities
  year: 2015
  ident: S0263574722000844_ref3
– ident: S0263574722000844_ref1
  doi: 10.1016/j.crvi.2011.10.006
– ident: S0263574722000844_ref5
  doi: 10.1109/TRA.2004.825515
– ident: S0263574722000844_ref9
  doi: 10.1177/154596802401105171
– ident: S0263574722000844_ref17
  doi: 10.1109/TBME.2006.880883
– ident: S0263574722000844_ref15
  doi: 10.1177/154596830201600303
– ident: S0263574722000844_ref22
– ident: S0263574722000844_ref7
– ident: S0263574722000844_ref18
  doi: 10.5772/56717
– volume-title: Physical Rehabilitation
  year: 2019
  ident: S0263574722000844_ref24
SSID ssj0013147
Score 2.3321154
Snippet Clinical observations and subjective judgements have traditionally been used to evaluate patients with muscular and neurological disorders. As a result,...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 833
SubjectTerms Advances in Medical Robotics
Algorithms
Curve fitting
Data collection
Data points
Design parameters
Digitization
Elbow
Evaluation
Limbs
Mathematical models
Motor ability
Muscles
Neurological diseases
Patients
Rehabilitation
Robotics
Sensors
Signal processing
Trajectories
Title Muscle weakness assessment tool for automated therapy selection in elbow rehabilitation
URI https://www.cambridge.org/core/product/identifier/S0263574722000844/type/journal_article
https://www.proquest.com/docview/2774008709
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1lj14EoNJNo_dk6i0FsEiYrG3sk8QS1KblOK_dzaPPhB63iwkM5OZLzuT70PoWhkDdT8KHSmMbTMq40AoC8cIyWSkYhfW7bTFIOoPg5dROKoO3LJqrLLOiUWiVqm0Z-R3PuAUy5_msvvpj2NVo2x3tZLQ2EVNSMEUIrz52B28va_6CF4hMQYfGsQJATnXfc2CNNrysMSWLNEWwiBYZ1fYrFKbSbqoPL1DdFBBRvxQ-vgI7ejkGO2vEQmeoM_XeQZreKH5t81dmC8JN3GephMM0BTzeZ4CPtUKlz9d_eKsEMEBz-CvBOuJSBd4tsHcfYqGve7HU9-pJBMcCUAgd6LAo4rAq6RdaTxuuGtiw6jPfMU4ZV4oCIkkC5mGRKdpKKn2DeXC88FjIiLkDDWSNNHnCHMiBAm5inTsBdxlXHk6pLaTRrjwXdpCt0tzjavAz8bl0Fg8_mfdFnJri45l9RBWBWOybcvNcsu05N7YdnG7dtPqblZBc7F9-RLtWR35crisjRr5bK6vAG3kooN2ae-5UwXWH-xw0E4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELWqcgAOiFUUCvgAF0REEmexDwghoJSlPYHoLXiVEFUDNFXVn-IbGSdNS4XUW89OpHj8MjP2jN9D6FgZA3E_Ch0pjC0zKuMAlIVjhGQyUrEL47bboh01X4KHTtipoJ_yLoxtqyx9Yu6oVSrtGfm5D3mK5U9z2eXnl2NVo2x1tZTQKGDxqEdD2LL1L-5vYH1PfL9x-3zddMaqAo6EWJk5UeBRRQBt2pXG44a7JjaM-sxXjFPmhYKQSLKQafAFmoaSat9QLjwfJiUiewAKLn8pIITZFkLauJtWLbxc0Ay2NcQJIU8vq6g5RbVlfYktNaMNu0Hwl8thNibOhoQ8zjXW0do4QcVXBaI2UEX3NtHqH9rCLfTaGvRhDA81_7CeEvMJvSfO0rSLIRHGfJClkA1rhYsrXiPczyV3AAf4vYd1V6RD_D3DE76NXhZiyh1U7aU9vYswJ0KQkKtIx17AXcaVp0Nq63aEC9-lNXQ2MVcy_s36SdGiFif_rFtDbmnRRI4nYTU3uvNeOZ288lkwfcx7uF4u0_RrphDdmz98hJabz62n5Om-_biPVqyCfdHWVkfV7HugDyDPycRhDi6M3haN5l8GegoZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscle+weakness+assessment+tool+for+automated+therapy+selection+in+elbow+rehabilitation&rft.jtitle=Robotica&rft.au=Gupta%2C+Sakshi&rft.au=Agrawal%2C+Anupam&rft.au=Singla%2C+Ekta&rft.date=2023-03-01&rft.pub=Cambridge+University+Press&rft.issn=0263-5747&rft.eissn=1469-8668&rft.volume=41&rft.issue=3&rft.spage=833&rft.epage=849&rft_id=info:doi/10.1017%2FS0263574722000844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5747&client=summon