Analysis of Shear Layers in a Fluid with Temperature-Dependent Viscosity
The presence of viscosity normally has a stabilizing effect on the flow of a fluid. However, experiments show that the flow of a fluid in which viscosity decreases as temperature increases tends to form shear layers, narrow regions in which the velocity of the fluid changes sharply. In general, adia...
Saved in:
Published in | Journal of computational physics Vol. 173; no. 1; pp. 17 - 60 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
10.10.2001
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9991 1090-2716 |
DOI | 10.1006/jcph.2001.6837 |
Cover
Abstract | The presence of viscosity normally has a stabilizing effect on the flow of a fluid. However, experiments show that the flow of a fluid in which viscosity decreases as temperature increases tends to form shear layers, narrow regions in which the velocity of the fluid changes sharply. In general, adiabatic shear layers are observed not only in fluids but also in thermo-plastic materials subject to shear at a high-strain rate and in combustion and there is widespread interest in modeling their formation. In this paper, we investigate a well-known model representing a basic system of conservation laws for a one-dimensional flow with temperature-dependent viscosity using a combination of analytical andnumerical tools. We present results to substantiate the claim that the formation of shear layers can only occur in solutions of the model when the viscosity decreases sufficiently quickly as temperature increases and we further analyze the structure and stability properties of the layers. |
---|---|
AbstractList | The presence of viscosity normally has a stabilizing effect on the flow of a fluid. However, experiments show that the flow of a fluid in which viscosity decreases as temperature increases tends to form shear layers, narrow regions in which the velocity of the fluid changes sharply. In general, adiabatic shear layers are observed not only in fluids but also in thermo-plastic materials subject to shear at a high-strain rate and in combustion and there is widespread interest in modeling their formation. In this paper, we investigate a well-known model representing a basic system of conservation laws for a 1D flow with temperature-dependent viscosity using a combination of analytical andnumerical tools. We present results to substantiate the claim that the formation of shear layers can only occur in solutions of the model when the viscosity decreases sufficiently quickly as temperature increases and we further analyze the structure and stability properties of the layers. (Author) The presence of viscosity normally has a stabilizing effect on the flow of a fluid. However, experiments show that the flow of a fluid in which viscosity decreases as temperature increases tends to form shear layers, narrow regions in which the velocity of the fluid changes sharply. In general, adiabatic shear layers are observed not only in fluids but also in thermo-plastic materials subject to shear at a high-strain rate and in combustion and there is widespread interest in modeling their formation. In this paper, we investigate a well-known model representing a basic system of conservation laws for a one-dimensional flow with temperature-dependent viscosity using a combination of analytical andnumerical tools. We present results to substantiate the claim that the formation of shear layers can only occur in solutions of the model when the viscosity decreases sufficiently quickly as temperature increases and we further analyze the structure and stability properties of the layers. |
Author | Estep, Donald J. Williams, Roy D. Verduyn Lunel, Sjoerd M. |
Author_xml | – sequence: 1 givenname: Donald J. surname: Estep fullname: Estep, Donald J. organization: Department of Mathematics, Colorado State University, Fort Collins, Colorado, 80523, f1estep@math.colostate.eduf1 – sequence: 2 givenname: Sjoerd M. surname: Verduyn Lunel fullname: Verduyn Lunel, Sjoerd M. organization: Mathematisch Instituut, Universiteit Leiden, 9512, RA Leiden, 2300, The Netherlandsf2verduyn@math.leidenuniv.nlf2 – sequence: 3 givenname: Roy D. surname: Williams fullname: Williams, Roy D. organization: Center for Advanced Computing Research, California Institute of Technology, Pasadena, California, 91125, f3roy@willow.caltech.eduf3 |
BookMark | eNp1kLFOwzAURS1UJNrCyuyJLcFOHMceq0IpUiUGCqvlOi-qq9QJtgPq35OoTEid7nLP07tnhiaudYDQPSUpJYQ_Hky3TzNCaMpFXl6hKSWSJFlJ-QRNCcloIqWkN2gWwoEQIgompmi9cLo5BRtwW-P3PWiPN_oEPmDrsMarprcV_rFxj7dw7MDr2HtInqADV4GL-NMG0wYbT7foutZNgLu_nKOP1fN2uU42by-vy8UmMTktY1LUACUv6lwaJnemkDyXu7LOeGWqnSgE05yyquamFAwE5zznGnjGuGFVziTL5-jhfLfz7VcPIarj8AI0jXbQ9kFlXLAs5-VQTM9F49sQPNSq8_ao_UlRokZhahSmRmFqFDYA7B9gbNTRti56bZvLmDhjMKz-tuBVMBacgcp6MFFVrb2E_gLP84TT |
CitedBy_id | crossref_primary_10_1007_s00205_016_1071_2 crossref_primary_10_1016_j_jmps_2016_08_015 crossref_primary_10_1016_j_euromechflu_2005_02_002 crossref_primary_10_1137_21M1458247 crossref_primary_10_1142_S0218202510004295 crossref_primary_10_1137_080727919 |
Cites_doi | 10.1137/0522021 10.1137/S0036139997322419 10.1007/BF00282051 10.1016/B978-0-12-309770-5.50007-2 10.1115/1.3176046 10.1115/1.3121382 10.1088/0965-0393/2/5/001 10.1512/iumj.1977.26.26029 10.1016/0749-6419(92)90023-6 10.1016/0020-7683(87)90008-4 10.1016/0045-7825(94)90110-4 10.1007/978-1-4684-0152-3 10.1016/S0022-5096(96)00098-1 10.1016/0020-7683(92)90193-W 10.1016/0362-546X(82)90058-X 10.1090/qam/700660 10.1090/qam/860899 10.1137/S0036139995289593 10.1016/0022-5096(90)90012-S 10.1016/0022-5096(87)90008-1 10.1002/(SICI)1098-2426(199605)12:3<393::AID-NUM5>3.0.CO;2-J 10.1007/BF00363993 10.1016/0036-9748(84)90418-6 10.1090/qam/840438 10.1216/jiea/1181075606 10.1016/0022-5096(87)90051-2 10.1016/0022-5096(95)00066-6 |
ContentType | Journal Article |
Copyright | 2001 Academic Press |
Copyright_xml | – notice: 2001 Academic Press |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1006/jcph.2001.6837 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1090-2716 |
EndPage | 60 |
ExternalDocumentID | 10_1006_jcph_2001_6837 S0021999101968378 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR AZFZN BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBOLZ HLZ HVGLF HZ~ IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K T9H TN5 UPT UQL XFK YQT ZMT ZU3 ~02 ~G- 4.4 6OB 6TJ 8WZ A6W AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADNMO AEBSH AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF BBWZM BNPGV CITATION EBS EJD G-2 GBLVA HME HMV NDZJH P-8 SBC SEW SHN SPG SSH WUQ ZY4 8FD EFKBS H8D L7M |
ID | FETCH-LOGICAL-c317t-5fee765f39c49bc59639b7f26dcdb8584a614df6c784e866636ae6246c4d34943 |
IEDL.DBID | .~1 |
ISSN | 0021-9991 |
IngestDate | Fri Sep 05 03:24:09 EDT 2025 Tue Jul 01 04:33:14 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 Fri Feb 23 02:30:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | blow-up, conservation laws adaptive error control plane Couette flow reaction–diffusion equations shear layers temperature-dependent viscosity finite element methods fluid flow invariant rectangles thermal diffusion residual errors a posteriori error estimates |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c317t-5fee765f39c49bc59639b7f26dcdb8584a614df6c784e866636ae6246c4d34943 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 26842367 |
PQPubID | 23500 |
PageCount | 44 |
ParticipantIDs | proquest_miscellaneous_26842367 crossref_primary_10_1006_jcph_2001_6837 crossref_citationtrail_10_1006_jcph_2001_6837 elsevier_sciencedirect_doi_10_1006_jcph_2001_6837 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-10-10 |
PublicationDateYYYYMMDD | 2001-10-10 |
PublicationDate_xml | – month: 10 year: 2001 text: 2001-10-10 day: 10 |
PublicationDecade | 2000 |
PublicationTitle | Journal of computational physics |
PublicationYear | 2001 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Bertsch, Peletier, Verduyn Lunel (RF6) 1991; 22 Drew, Flaherty (RF14) 1984; 52 Chueh, Conley, Smoller (RF7) 1977; 26 French (RF18) 1996; 12 Dafermos, Hsiao (RF9) 1982; 6 Needleman (RF21) 1989; 56 Walter (RF26) 1992; 8 Bayliss, Belytshko, Kulkarnia, Lott-Crumbler (RF5) 1994 Estep, Larson, Williams (RF16) 2000; 146 Maddocks, Malek-Madani (RF20) 1992; 29 Edwards, French (RF15) 1998; 59 Wright, Walter (RF29) 1987; 35 Tzavaras (RF25) 1991; 3 Wright (RF27) 1987; 35 Tzavaras (RF24) 1987; 99 French, Garcia (RF19) 1994; 118 Batra (RF2) 1987; 23 D. J. Estep, S. M. Verduyn Lunel, and, R. D. Williams, An adaptive finite element method for the approximation of a shear flow with temperature-dependent viscosity, in preparation. Bai, Dodd (RF1) 1992 Wright (RF28) 1990; 38 Dafermos, Hsiao (RF10) 1983; XLI Dafermos, Hsiao (RF11) 1986; XLIV Clifton, Duffy, Hartley, Shawki (RF8) 1984; 18 Wright, Walter (RF30) 1996; 44 Tzavaras (RF23) 1986; 44 DiLellio, Olmstead (RF12) 1997; 57 Batra (RF3) 1992; 45 Batra, Ko (RF4) 1992; 10 DiLellio, Olmstead (RF13) 1997; 45 Smoller (RF22) 1983 Dafermos (10.1006/jcph.2001.6837_RF11) 1986; XLIV Batra (10.1006/jcph.2001.6837_RF2) 1987; 23 Estep (10.1006/jcph.2001.6837_RF16) 2000; 146 Batra (10.1006/jcph.2001.6837_RF4) 1992; 10 Needleman (10.1006/jcph.2001.6837_RF21) 1989; 56 10.1006/jcph.2001.6837_RF17 Maddocks (10.1006/jcph.2001.6837_RF20) 1992; 29 Wright (10.1006/jcph.2001.6837_RF28) 1990; 38 Dafermos (10.1006/jcph.2001.6837_RF10) 1983; XLI Dafermos (10.1006/jcph.2001.6837_RF9) 1982; 6 Walter (10.1006/jcph.2001.6837_RF26) 1992; 8 Bai (10.1006/jcph.2001.6837_RF1) 1992 Batra (10.1006/jcph.2001.6837_RF3) 1992; 45 Smoller (10.1006/jcph.2001.6837_RF22) 1983 Chueh (10.1006/jcph.2001.6837_RF7) 1977; 26 Tzavaras (10.1006/jcph.2001.6837_RF25) 1991; 3 Clifton (10.1006/jcph.2001.6837_RF8) 1984; 18 Tzavaras (10.1006/jcph.2001.6837_RF23) 1986; 44 Bayliss (10.1006/jcph.2001.6837_RF5) 1994 Bertsch (10.1006/jcph.2001.6837_RF6) 1991; 22 DiLellio (10.1006/jcph.2001.6837_RF13) 1997; 45 Wright (10.1006/jcph.2001.6837_RF29) 1987; 35 Wright (10.1006/jcph.2001.6837_RF30) 1996; 44 Wright (10.1006/jcph.2001.6837_RF27) 1987; 35 DiLellio (10.1006/jcph.2001.6837_RF12) 1997; 57 French (10.1006/jcph.2001.6837_RF19) 1994; 118 Edwards (10.1006/jcph.2001.6837_RF15) 1998; 59 Drew (10.1006/jcph.2001.6837_RF14) 1984; 52 French (10.1006/jcph.2001.6837_RF18) 1996; 12 Tzavaras (10.1006/jcph.2001.6837_RF24) 1987; 99 |
References_xml | – volume: 57 start-page: 959 year: 1997 ident: RF12 article-title: Shear band formation due to a thermal flux inhomogeneity publication-title: SIAM J. Appl. Math. – volume: 35 start-page: 269 year: 1987 ident: RF27 article-title: Steady shearing in a viscoplastic solid publication-title: J. Mech. Phys. Solids – volume: 45 start-page: 123 year: 1992 ident: RF3 article-title: Analysis of shear bands in simple shearing deformations of nonpolar and dipolar viscoplastic materials publication-title: Appl. Mech. Rev. – volume: XLIV start-page: 463 year: 1986 ident: RF11 article-title: Development of singularities in solutions of the euqations of nonlinear thermoelasticity publication-title: Q. Appl. Math. – volume: 10 start-page: 369 year: 1992 ident: RF4 article-title: An adaptive mesh refinement technique for the analysis of shear bands in plane strain compression of a thermoviscoplastic solid publication-title: Comput. Mech. – volume: 29 start-page: 2039 year: 1992 ident: RF20 article-title: Steady-state shear-bands in thermo-plasticity I. Vanishing yield stress publication-title: Int. J. Solids Struct. – volume: 35 start-page: 701 year: 1987 ident: RF29 article-title: On stress collapse in adiabatic shear bands publication-title: J. Mech. Phys. Solids – reference: D. J. Estep, S. M. Verduyn Lunel, and, R. D. Williams, An adaptive finite element method for the approximation of a shear flow with temperature-dependent viscosity, in preparation. – volume: 3 start-page: 195 year: 1991 ident: RF25 article-title: Strain softening in viscoelasticity of the rate type publication-title: J. Integral Equations Appl. – volume: 44 start-page: 1 year: 1986 ident: RF23 article-title: Shearing of materials exhibiting thermal softening or temperature dependent viscosity publication-title: Quart. Appl. Math. – volume: 118 start-page: 153 year: 1994 ident: RF19 article-title: Finite element approximation of an evolution problem modeling shear band formation publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 56 start-page: 1 year: 1989 ident: RF21 article-title: Dynamic shear band development in plane strain publication-title: J. Appl. Mech. – volume: 8 start-page: 657 year: 1992 ident: RF26 article-title: Numerical experiments on adiabatic shear band formation in one dimension publication-title: Int. J. Plasticity – volume: 52 start-page: 37 year: 1984 ident: RF14 article-title: Adaptive finite element methods and the numerical solution of shear band problems publication-title: Phase Transformations and Material Instabilities in Solids (Madison, WI. 1983) – year: 1983 ident: RF22 publication-title: Shock Waves and Reaction–Diffusion Equations – volume: 59 start-page: 700 year: 1998 ident: RF15 article-title: Asymptotic and computational analysis of larger shear deformations of a thermoplastic material publication-title: SIAM J. Appl. Math. – volume: 38 start-page: 515 year: 1990 ident: RF28 article-title: Approximate analysis for the formation of adiabatic shear bands publication-title: J. Mech. Phys. Solids – volume: 45 start-page: 345 year: 1997 ident: RF13 article-title: Temporal evolution of shear band thickness publication-title: J. Mech. Phys. Solids – volume: 22 start-page: 328 year: 1991 ident: RF6 article-title: Stabilizing effects for an adiabatic rectilinear shearing of an incompressible viscous fluid publication-title: SIAM J. Math. Anal. – year: 1992 ident: RF1 publication-title: Adiabatic Shear Localization: Occurrence, Theories and Applications – volume: 44 start-page: 77 year: 1996 ident: RF30 article-title: The asymptotic structure of an adiabatic shear bnad in antiplane motion publication-title: J. Mech. Phys. Solids – volume: 99 start-page: 349 year: 1987 ident: RF24 article-title: Effect of thermal softening in shearing of strain-rate dependent materials publication-title: Arch. Rat. Mech. Anal. – volume: 6 start-page: 435 year: 1982 ident: RF9 article-title: Global smooth thermomechanical processes in one-dimensional nonlinear thermovisoelasticity publication-title: Nonlinear Anal. T.M.A. – volume: 23 start-page: 1435 year: 1987 ident: RF2 article-title: Effect of material parameters on the initiation and growth of adiabatic shear bands publication-title: Int. J. Solids Struct. – start-page: 941 year: 1994 ident: RF5 article-title: On the dynamics and the role of imperfections localization in thermo-viscoelastic materials publication-title: Mod. Sim. Mat. Sci. – volume: 12 start-page: 393 year: 1996 ident: RF18 article-title: Computation of large shear deformations of a thermoplastic material publication-title: Numer. Meth. Part. Differential Equations – volume: XLI start-page: 45 year: 1983 ident: RF10 article-title: Adiabatic shearing of incompressible fluids with temperature dependent viscosity publication-title: Q. Appl. Math. – volume: 26 start-page: 373 year: 1977 ident: RF7 article-title: Positive invariant regions for systems of nonlinear diffusion equations publication-title: Indiana Univ. Math. J. – volume: 146 start-page: 1 year: 2000 ident: RF16 article-title: Estimating the error of numerical solutions of systems of reaction–diffusion equations publication-title: Mem. Amer. Math. Soc. – volume: 18 start-page: 443 year: 1984 ident: RF8 article-title: On critical conditions for shear band formation at high strain rates publication-title: Scripta Met. – volume: 22 start-page: 328 year: 1991 ident: 10.1006/jcph.2001.6837_RF6 article-title: Stabilizing effects for an adiabatic rectilinear shearing of an incompressible viscous fluid publication-title: SIAM J. Math. Anal. doi: 10.1137/0522021 – volume: 59 start-page: 700 year: 1998 ident: 10.1006/jcph.2001.6837_RF15 article-title: Asymptotic and computational analysis of larger shear deformations of a thermoplastic material publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139997322419 – volume: 99 start-page: 349 year: 1987 ident: 10.1006/jcph.2001.6837_RF24 article-title: Effect of thermal softening in shearing of strain-rate dependent materials publication-title: Arch. Rat. Mech. Anal. doi: 10.1007/BF00282051 – volume: 52 start-page: 37 year: 1984 ident: 10.1006/jcph.2001.6837_RF14 article-title: Adaptive finite element methods and the numerical solution of shear band problems publication-title: Phase Transformations and Material Instabilities in Solids (Madison, WI. 1983) doi: 10.1016/B978-0-12-309770-5.50007-2 – volume: 56 start-page: 1 year: 1989 ident: 10.1006/jcph.2001.6837_RF21 article-title: Dynamic shear band development in plane strain publication-title: J. Appl. Mech. doi: 10.1115/1.3176046 – volume: 45 start-page: 123 year: 1992 ident: 10.1006/jcph.2001.6837_RF3 article-title: Analysis of shear bands in simple shearing deformations of nonpolar and dipolar viscoplastic materials publication-title: Appl. Mech. Rev. doi: 10.1115/1.3121382 – start-page: 941 year: 1994 ident: 10.1006/jcph.2001.6837_RF5 article-title: On the dynamics and the role of imperfections localization in thermo-viscoelastic materials publication-title: Mod. Sim. Mat. Sci. doi: 10.1088/0965-0393/2/5/001 – volume: 26 start-page: 373 year: 1977 ident: 10.1006/jcph.2001.6837_RF7 article-title: Positive invariant regions for systems of nonlinear diffusion equations publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.1977.26.26029 – volume: 8 start-page: 657 year: 1992 ident: 10.1006/jcph.2001.6837_RF26 article-title: Numerical experiments on adiabatic shear band formation in one dimension publication-title: Int. J. Plasticity doi: 10.1016/0749-6419(92)90023-6 – volume: 23 start-page: 1435 year: 1987 ident: 10.1006/jcph.2001.6837_RF2 article-title: Effect of material parameters on the initiation and growth of adiabatic shear bands publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(87)90008-4 – volume: 118 start-page: 153 year: 1994 ident: 10.1006/jcph.2001.6837_RF19 article-title: Finite element approximation of an evolution problem modeling shear band formation publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/0045-7825(94)90110-4 – year: 1983 ident: 10.1006/jcph.2001.6837_RF22 publication-title: Shock Waves and Reaction–Diffusion Equations doi: 10.1007/978-1-4684-0152-3 – volume: 45 start-page: 345 year: 1997 ident: 10.1006/jcph.2001.6837_RF13 article-title: Temporal evolution of shear band thickness publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(96)00098-1 – volume: 29 start-page: 2039 year: 1992 ident: 10.1006/jcph.2001.6837_RF20 article-title: Steady-state shear-bands in thermo-plasticity I. Vanishing yield stress publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(92)90193-W – volume: 6 start-page: 435 year: 1982 ident: 10.1006/jcph.2001.6837_RF9 article-title: Global smooth thermomechanical processes in one-dimensional nonlinear thermovisoelasticity publication-title: Nonlinear Anal. T.M.A. doi: 10.1016/0362-546X(82)90058-X – volume: 146 start-page: 1 year: 2000 ident: 10.1006/jcph.2001.6837_RF16 article-title: Estimating the error of numerical solutions of systems of reaction–diffusion equations publication-title: Mem. Amer. Math. Soc. – volume: XLI start-page: 45 year: 1983 ident: 10.1006/jcph.2001.6837_RF10 article-title: Adiabatic shearing of incompressible fluids with temperature dependent viscosity publication-title: Q. Appl. Math. doi: 10.1090/qam/700660 – volume: XLIV start-page: 463 year: 1986 ident: 10.1006/jcph.2001.6837_RF11 article-title: Development of singularities in solutions of the euqations of nonlinear thermoelasticity publication-title: Q. Appl. Math. doi: 10.1090/qam/860899 – year: 1992 ident: 10.1006/jcph.2001.6837_RF1 publication-title: Adiabatic Shear Localization: Occurrence, Theories and Applications – volume: 57 start-page: 959 year: 1997 ident: 10.1006/jcph.2001.6837_RF12 article-title: Shear band formation due to a thermal flux inhomogeneity publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139995289593 – volume: 38 start-page: 515 year: 1990 ident: 10.1006/jcph.2001.6837_RF28 article-title: Approximate analysis for the formation of adiabatic shear bands publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(90)90012-S – volume: 35 start-page: 269 year: 1987 ident: 10.1006/jcph.2001.6837_RF27 article-title: Steady shearing in a viscoplastic solid publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(87)90008-1 – volume: 12 start-page: 393 year: 1996 ident: 10.1006/jcph.2001.6837_RF18 article-title: Computation of large shear deformations of a thermoplastic material publication-title: Numer. Meth. Part. Differential Equations doi: 10.1002/(SICI)1098-2426(199605)12:3<393::AID-NUM5>3.0.CO;2-J – volume: 10 start-page: 369 year: 1992 ident: 10.1006/jcph.2001.6837_RF4 article-title: An adaptive mesh refinement technique for the analysis of shear bands in plane strain compression of a thermoviscoplastic solid publication-title: Comput. Mech. doi: 10.1007/BF00363993 – volume: 18 start-page: 443 year: 1984 ident: 10.1006/jcph.2001.6837_RF8 article-title: On critical conditions for shear band formation at high strain rates publication-title: Scripta Met. doi: 10.1016/0036-9748(84)90418-6 – ident: 10.1006/jcph.2001.6837_RF17 – volume: 44 start-page: 1 year: 1986 ident: 10.1006/jcph.2001.6837_RF23 article-title: Shearing of materials exhibiting thermal softening or temperature dependent viscosity publication-title: Quart. Appl. Math. doi: 10.1090/qam/840438 – volume: 3 start-page: 195 year: 1991 ident: 10.1006/jcph.2001.6837_RF25 article-title: Strain softening in viscoelasticity of the rate type publication-title: J. Integral Equations Appl. doi: 10.1216/jiea/1181075606 – volume: 35 start-page: 701 year: 1987 ident: 10.1006/jcph.2001.6837_RF29 article-title: On stress collapse in adiabatic shear bands publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(87)90051-2 – volume: 44 start-page: 77 year: 1996 ident: 10.1006/jcph.2001.6837_RF30 article-title: The asymptotic structure of an adiabatic shear bnad in antiplane motion publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(95)00066-6 |
SSID | ssj0008548 |
Score | 1.7064131 |
Snippet | The presence of viscosity normally has a stabilizing effect on the flow of a fluid. However, experiments show that the flow of a fluid in which viscosity... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17 |
Title | Analysis of Shear Layers in a Fluid with Temperature-Dependent Viscosity |
URI | https://dx.doi.org/10.1006/jcph.2001.6837 https://www.proquest.com/docview/26842367 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH8YDElDYPx0nGqlCFV6cWdbNsx5aCqqSi6cDCb8eXOCCQurBFkW1FZ_vuc_zddwjd-CKRGQeWuAEXDiGRdmJtTq1xonkQaKVILfb8MqXpnDwuwkUHjdtcGKBVWt_f-PTaW9s3Q2vN4SrPIcfXhxx6DxReQBYdMthJBGt98PlD84hD0nhjoCKY1q1wo0uHb3JVX0d4A-i_LTD9cdF13JkcoD0LGPGo-aZD1FHFEdq34BHbrbk-RmkrL4JLjes61fiZA57GeYE5niw3eYbhryueKQOVGyll587WwK3wa76WQOD6OEHzyf1snDq2TIIjTfCvnNBYNKKhDhJJEiFDs6USEWmfZjITsQEY3ITgTFMZxUTF5rgSUK6oT6gkGYjTBKeoW5SFOkM4kG6gPR2FigriaSHMk_aVyLgyOClxe8hpbcSk1RCHUhZL1qgfUwY2hdKWHgOb9tDtd_tVo56xtaXXmpz9mn9mXPvWPtft3DCzKeCmgxeq3KwZSNiANN35P0a9QLs1zwxYK-4l6lbvG3VlgEcl-vXK6qOd0cNTOv0C-uXXnw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjSivekBiCs3DcZIRFaoAbacWdbNsx5aCqrSi6cDCb8eXOCCQurBFkWNFF9_d5_i77xC68UUiMw4scQMuHEIi7cTa7FrjRPMg0EqRSux5NKbplDzPwlkL9ZtaGKBV2thfx_QqWts7PWvN3jLPocbXhxp6DxReQBZ9C22TMIiA13f3-cPziENSh2PgIpjhjXKjS3tvclmdR3h3MMGmzPQnRleJZ3CA9ixixPf1Sx2iliqO0L5Fj9j65uoYpY2-CF5oXDWqxkMOgBrnBeZ4MF_nGYbfrniiDFautZSdB9sEt8Sv-UoCg-vjBE0Hj5N-6tg-CY402b90QmPSiIY6SCRJhAyNTyUi0j7NZCZigzC4ycGZpjKKiYrNfiWgXFGfUEkyUKcJTlG7WBTqDOFAuoH2dBQqKoinhTBX2lci48oApcTtIKexEZNWRBx6WcxZLX9MGdgUelt6DGzaQbff45e1fMbGkV5jcvZrATAT2zc-022-DTNeAUcdvFCL9YqBhg1o053_Y9Yu2kknoyEbPo1fLtBuRToDCot7idrl-1pdGRRSiutqlX0BGOjZMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+shear+layers+in+a+fluid+with+temperature-dependent+viscosity&rft.jtitle=Journal+of+computational+physics&rft.au=Estep%2C+D+J&rft.au=Verduyn+Lunel%2C+S+M&rft.au=Williams%2C+R+D&rft.date=2001-10-10&rft.issn=0021-9991&rft.volume=173&rft.issue=1&rft.spage=17&rft.epage=60&rft_id=info:doi/10.1006%2Fjcph.2001.6837&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |