Challenges and opportunities for characterisation of high-temperature polymer electrolyte membrane fuel cells: a review

High-temperature (120-200 °C) polymer electrolyte membrane fuel cells (HT-PEMFCs) are promising energy conversion devices that offer multiple advantages over the established low-temperature (LT) PEMFC technology, namely: faster reaction kinetics, improved impurity tolerance, simpler water and therma...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 12; no. 14; pp. 814 - 864
Main Authors Zucconi, Adam, Hack, Jennifer, Stocker, Richard, Suter, Theo A. M, Rettie, Alexander J. E, Brett, Dan J. L
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 02.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-temperature (120-200 °C) polymer electrolyte membrane fuel cells (HT-PEMFCs) are promising energy conversion devices that offer multiple advantages over the established low-temperature (LT) PEMFC technology, namely: faster reaction kinetics, improved impurity tolerance, simpler water and thermal management, and increased potential to utilise waste heat. Whilst HT- and LT-PEMFCs share several components, important differences in the membrane materials, transport mechanisms and operating conditions provide new challenges and considerations for characterisation. This review focuses on phosphoric acid-doped HT-PEMFCs and provides a detailed discussion of the similarities and differences compared to LT-PEMFCs, as well as state-of-the-art performance and materials. Commonly used characterisation techniques including electrochemical, imaging, and spectroscopic methods are reviewed with a focus on use in HT-PEMFCs, how experimentation or analyses differ from LT-PEMFCs, and new opportunities for research using these techniques. Particular consideration is given to the presence of phosphoric acid and the absence of liquid water. The importance of accelerated stress tests for effective characterisation and durability estimation for HT-PEMFCs is discussed, and existing protocols are comprehensively reviewed focusing on acid loss, catalyst layer degradation, and start-up/shutdown cycling. The lack of standardisation of these testing protocols in HT-PEMFC research is highlighted as is the need to develop such standards. High-temperature polymer electrolyte membrane fuel cells require advancements to capitalise on their advantages over conventional PEMFCs, the critical roles and opportunities for characterisation and durability testing are discussed in this review.
AbstractList High-temperature (120–200 °C) polymer electrolyte membrane fuel cells (HT-PEMFCs) are promising energy conversion devices that offer multiple advantages over the established low-temperature (LT) PEMFC technology, namely: faster reaction kinetics, improved impurity tolerance, simpler water and thermal management, and increased potential to utilise waste heat. Whilst HT- and LT-PEMFCs share several components, important differences in the membrane materials, transport mechanisms and operating conditions provide new challenges and considerations for characterisation. This review focuses on phosphoric acid-doped HT-PEMFCs and provides a detailed discussion of the similarities and differences compared to LT-PEMFCs, as well as state-of-the-art performance and materials. Commonly used characterisation techniques including electrochemical, imaging, and spectroscopic methods are reviewed with a focus on use in HT-PEMFCs, how experimentation or analyses differ from LT-PEMFCs, and new opportunities for research using these techniques. Particular consideration is given to the presence of phosphoric acid and the absence of liquid water. The importance of accelerated stress tests for effective characterisation and durability estimation for HT-PEMFCs is discussed, and existing protocols are comprehensively reviewed focusing on acid loss, catalyst layer degradation, and start-up/shutdown cycling. The lack of standardisation of these testing protocols in HT-PEMFC research is highlighted as is the need to develop such standards.
High-temperature (120-200 °C) polymer electrolyte membrane fuel cells (HT-PEMFCs) are promising energy conversion devices that offer multiple advantages over the established low-temperature (LT) PEMFC technology, namely: faster reaction kinetics, improved impurity tolerance, simpler water and thermal management, and increased potential to utilise waste heat. Whilst HT- and LT-PEMFCs share several components, important differences in the membrane materials, transport mechanisms and operating conditions provide new challenges and considerations for characterisation. This review focuses on phosphoric acid-doped HT-PEMFCs and provides a detailed discussion of the similarities and differences compared to LT-PEMFCs, as well as state-of-the-art performance and materials. Commonly used characterisation techniques including electrochemical, imaging, and spectroscopic methods are reviewed with a focus on use in HT-PEMFCs, how experimentation or analyses differ from LT-PEMFCs, and new opportunities for research using these techniques. Particular consideration is given to the presence of phosphoric acid and the absence of liquid water. The importance of accelerated stress tests for effective characterisation and durability estimation for HT-PEMFCs is discussed, and existing protocols are comprehensively reviewed focusing on acid loss, catalyst layer degradation, and start-up/shutdown cycling. The lack of standardisation of these testing protocols in HT-PEMFC research is highlighted as is the need to develop such standards. High-temperature polymer electrolyte membrane fuel cells require advancements to capitalise on their advantages over conventional PEMFCs, the critical roles and opportunities for characterisation and durability testing are discussed in this review.
Author Rettie, Alexander J. E
Zucconi, Adam
Suter, Theo A. M
Brett, Dan J. L
Stocker, Richard
Hack, Jennifer
AuthorAffiliation HORIBA Instruments Inc
HORIBA MIRA
Department of Materials Science & Engineering
Electrochemical Innovation Lab
Department of Chemical Engineering
Mobility Innovation Hub
University of Sheffield
UCL
AuthorAffiliation_xml – sequence: 0
  name: HORIBA MIRA
– sequence: 0
  name: UCL
– sequence: 0
  name: Electrochemical Innovation Lab
– sequence: 0
  name: Department of Materials Science & Engineering
– sequence: 0
  name: Mobility Innovation Hub
– sequence: 0
  name: University of Sheffield
– sequence: 0
  name: Department of Chemical Engineering
– sequence: 0
  name: HORIBA Instruments Inc
Author_xml – sequence: 1
  givenname: Adam
  surname: Zucconi
  fullname: Zucconi, Adam
– sequence: 2
  givenname: Jennifer
  surname: Hack
  fullname: Hack, Jennifer
– sequence: 3
  givenname: Richard
  surname: Stocker
  fullname: Stocker, Richard
– sequence: 4
  givenname: Theo A. M
  surname: Suter
  fullname: Suter, Theo A. M
– sequence: 5
  givenname: Alexander J. E
  surname: Rettie
  fullname: Rettie, Alexander J. E
– sequence: 6
  givenname: Dan J. L
  surname: Brett
  fullname: Brett, Dan J. L
BookMark eNptkc9rFTEQx4NUsNZevAsBb8Lq5GV_JN4ez59Q8FLPy2x20peS3ayTrKX_vWufVBDnMj_4zAzznefibE4zCfFSwVsF2r4bdUFojW3wiTjfQQNVV9v27DE25pm4zPkWNjMArbXn4u5wxBhpvqEscR5lWpbEZZ1DCVvFJ5buiIyuEIeMJaRZJi-P4eZYFZoWYiwrk1xSvJ-IJUVyhbekkJxoGhhnkn6lKB3FmN9LlEw_A929EE89xkyXf_yF-P7p4_XhS3X17fPXw_6qclp1pWqwq6H1LfnB1jigqn0D5BulOjOOrenAKTe0pIw3A2jtvEUzNmZ0O08GOn0hXp_mLpx-rJRLf5tWnreVvQYN1tq63m0UnCjHKWcm37tQHq4tjCH2CvrfCvcf9PX-QeH91vLmn5aFw4R8_3_41Qnm7B65v-_SvwB7w4qE
CitedBy_id crossref_primary_10_1016_j_electacta_2024_145620
crossref_primary_10_59761_RCR5121
crossref_primary_10_1039_D4TA03998J
crossref_primary_10_1016_j_fuel_2024_133623
crossref_primary_10_1007_s12209_024_00396_z
crossref_primary_10_1016_j_cscee_2024_100920
crossref_primary_10_1016_S1872_2067_24_60162_2
crossref_primary_10_1016_j_ijhydene_2025_02_424
crossref_primary_10_1016_j_apenergy_2025_125493
crossref_primary_10_1016_j_jece_2024_114998
crossref_primary_10_1016_j_paerosci_2024_101052
crossref_primary_10_1016_j_ijhydene_2024_06_324
crossref_primary_10_1016_j_memsci_2024_123483
crossref_primary_10_1016_j_cej_2024_156408
crossref_primary_10_1016_j_jallcom_2024_177546
crossref_primary_10_1149_1945_7111_ad790e
crossref_primary_10_3390_ijms25116001
crossref_primary_10_1016_j_ijhydene_2024_10_293
crossref_primary_10_1016_j_mtcomm_2024_110232
crossref_primary_10_1021_acssuschemeng_4c10258
crossref_primary_10_1002_asia_202400662
crossref_primary_10_1016_j_memsci_2024_122997
crossref_primary_10_1016_j_ijhydene_2024_04_028
crossref_primary_10_14579_MEMBRANE_JOURNAL_2024_34_6_348
crossref_primary_10_1016_j_jpowsour_2024_235411
crossref_primary_10_1007_s11581_025_06167_7
Cites_doi 10.1149/2.005208jes
10.1002/fuce.201800047
10.1016/j.ijhydene.2012.02.024
10.3762/bjnano.5.5
10.1016/j.electacta.2022.140121
10.1016/j.ijhydene.2018.05.166
10.1016/j.jpowsour.2013.10.141
10.1016/j.jpowsour.2021.230036
10.1002/adma.200701767
10.1021/acsenergylett.1c00718
10.1016/j.jpowsour.2016.06.119
10.1016/j.jpowsour.2007.03.082
10.1016/j.ijhydene.2016.09.109
10.1063/1.2946664
10.1016/S0378-7753(03)00797-3
10.1002/fuce.200900153
10.1016/j.jelechem.2020.113832
10.1016/j.electacta.2015.06.081
10.1002/fuce.201100006
10.1002/fuce.200800145
10.1016/j.electacta.2015.09.097
10.3390/en14112994
10.1016/j.ijhydene.2012.04.093
10.1016/j.jpowsour.2022.231319
10.1016/j.apcatb.2020.119717
10.1016/j.jpowsour.2016.12.075
10.1016/j.elecom.2008.01.018
10.1021/jp309282n
10.1149/1945-7111/abf77b
10.1016/j.ijhydene.2010.01.005
10.1016/j.electacta.2017.05.028
10.1149/2.0101806jes
10.1016/j.electacta.2006.03.008
10.1016/j.ssi.2013.08.032
10.1007/s12678-017-0427-1
10.1016/j.cscee.2022.100260
10.1016/j.ijhydene.2010.04.082
10.1149/05801.0919ecst
10.1016/j.enconman.2019.112198
10.1002/aenm.202101025
10.1149/1.3569711
10.1016/j.pecs.2020.100842
10.1021/acs.jpclett.6b00216
10.1016/j.apsusc.2020.145444
10.1016/j.ijheatmasstransfer.2006.07.003
10.1016/j.jpowsour.2016.08.092
10.1016/j.memsci.2016.09.009
10.3762/bjnano.6.8
10.1016/j.ijhydene.2011.03.059
10.1149/1.3436652
10.1038/s41560-021-00971-x
10.1016/j.ijhydene.2014.07.017
10.1039/D1TA01002F
10.1039/C8RA07177B
10.1016/j.ijhydene.2015.12.134
10.1016/j.jpowsour.2019.227074
10.3390/nano8100775
10.1021/cm051781b
10.1016/j.electacta.2016.06.121
10.1016/j.ijhydene.2016.04.132
10.1016/j.jpowsour.2022.231000
10.1007/s10800-008-9758-1
10.1016/j.apsusc.2022.152579
10.3390/en13030567
10.1134/S102319351005006X
10.1016/j.ijhydene.2016.10.152
10.1002/fuce.201200139
10.1002/fuce.201500167
10.1016/j.electacta.2017.05.111
10.1016/j.jpowsour.2023.233574
10.1016/j.cej.2015.03.026
10.1016/S0022-0728(83)80542-7
10.1016/j.jpowsour.2009.08.097
10.1016/j.electacta.2013.12.030
10.1016/j.jpowsour.2020.228469
10.1016/j.jpowsour.2020.229179
10.1016/j.compstruct.2014.09.010
10.1002/cnma.202200008
10.1149/1.1803051
10.3390/ma13061474
10.1021/acscatal.0c00779
10.1016/j.jpowsour.2014.05.023
10.1177/09540083211014251
10.1149/1.1739314
10.1016/j.egyai.2020.100014
10.1016/j.jpcs.2004.05.005
10.1007/s11356-019-05550-y
10.1016/j.electacta.2006.03.108
10.1039/c3py00408b
10.3390/membranes9070083
10.1007/978-1-84882-846-9
10.1016/j.jpowsour.2021.230347
10.1016/j.jpowsour.2014.11.115
10.1016/j.memsci.2013.12.004
10.1016/j.ijhydene.2021.01.192
10.1016/j.memsci.2019.117691
10.1016/j.ijhydene.2013.03.012
10.1149/2.045405jes
10.1002/fuce.201000181
10.1016/j.jpowsour.2017.05.021
10.1016/j.ijhydene.2017.02.030
10.1016/j.jpowsour.2019.04.045
10.1016/j.ijhydene.2019.11.069
10.1016/j.progpolymsci.2011.01.003
10.1002/fuce.201300186
10.1149/1.3635675
10.1007/s10450-020-00295-4
10.1149/1.2780958
10.1016/j.ijhydene.2018.01.174
10.1016/j.ijhydene.2012.07.023
10.1016/j.elecom.2013.06.012
10.1016/j.jpowsour.2012.01.074
10.1021/cr050182l
10.1016/j.energy.2016.08.086
10.1149/1.2172559
10.1016/j.ijhydene.2011.09.159
10.1039/c1jm10093a
10.1016/j.ijhydene.2020.02.013
10.1016/j.jpowsour.2012.07.129
10.1016/j.jpowsour.2015.02.107
10.1002/fuce.201300236
10.1016/j.jpowsour.2014.02.016
10.1016/j.electacta.2017.02.011
10.1016/j.electacta.2020.136778
10.1016/j.ijhydene.2014.07.099
10.1149/1.3556103
10.1149/2.0031409jes
10.1021/acs.jpcc.1c10334
10.1002/fuce.201700144
10.1016/j.renene.2023.05.008
10.1016/j.ijhydene.2022.12.344
10.1149/1945-7111/abef87
10.3390/jimaging2010002
10.1016/j.powera.2022.100084
10.1002/pi.4708
10.1016/j.apcatb.2016.11.053
10.1016/j.apenergy.2013.02.067
10.1107/S1600576719008343
10.1016/j.jpowsour.2019.03.097
10.1080/23322039.2016.1170653
10.1002/fuce.201700181
10.21037/qims.2017.11.03
10.1149/2.0011407eel
10.1002/fuce.201200186
10.1016/j.ijhydene.2007.03.013
10.1016/j.ijhydene.2014.08.042
10.1149/1.3486168
10.1016/j.renene.2017.02.015
10.1016/j.apenergy.2009.09.012
10.1007/s10800-013-0597-3
10.1002/celc.201500228
10.1088/1748-9326/ab6658
10.1016/j.memsci.2013.04.014
10.1016/j.memsci.2018.05.006
10.1039/D0CS00296H
10.1016/j.memsci.2013.10.018
10.1016/j.electacta.2015.03.123
10.1002/fuce.201100197
10.1016/j.memsci.2015.12.065
10.1002/adfm.201101525
10.1016/j.memsci.2017.04.067
10.1016/j.jpowsour.2017.01.114
10.1149/1.2781004
10.1016/j.jpowsour.2018.07.085
10.1016/j.pecs.2017.10.002
10.1016/j.econmod.2017.01.006
10.1016/j.jpowsour.2014.01.032
10.1016/j.jpowsour.2021.230951
10.1016/j.progpolymsci.2008.12.003
10.1016/j.apenergy.2021.116481
10.1016/j.ijhydene.2012.07.032
10.4061/2011/261065
10.1016/j.ijhydene.2020.10.116
10.1149/2.0051806jes
10.1016/j.snb.2009.10.058
10.3390/ma10070687
10.1016/j.powera.2020.100042
10.1016/j.memsci.2006.01.028
10.1016/j.jpowsour.2015.08.094
10.1002/fuce.200320239
10.1016/j.jpowsour.2005.10.059
10.3390/en3040770
10.1039/C9TA01756A
10.1016/S0022-0728(00)00492-7
10.1021/acs.jpcc.7b11189
10.1016/j.ijhydene.2009.05.003
10.1016/j.apenergy.2021.117357
10.1016/j.ijhydene.2016.05.091
10.1016/j.jpowsour.2008.10.124
10.1016/j.jpowsour.2019.227279
10.1115/1.1811119
10.1016/j.jpowsour.2003.12.035
10.3866/PKU.WHXB202009049
10.1016/j.memsci.2007.09.037
10.1039/c2ee21834h
10.1016/j.jpowsour.2019.227090
10.1016/j.ijhydene.2017.07.054
10.1016/j.ijhydene.2018.07.192
10.1002/fuce.201800127
10.1016/j.jechem.2021.06.024
10.1016/j.jpowsour.2017.07.109
10.1149/2.0501814jes
10.1016/j.ijhydene.2012.02.148
10.1149/2.0341806jes
10.1039/c1jm10439j
10.1016/j.jclepro.2020.121038
10.1149/2.0591512jes
10.1149/06403.0741ecst
10.1016/j.electacta.2007.11.002
10.3390/ijms22115430
10.1016/j.ijhydene.2011.01.036
10.1149/2.036408jes
10.1246/cl.190017
10.1149/1.3247355
10.1016/j.jpowsour.2021.230059
10.1016/j.memsci.2020.117981
10.1016/j.mattod.2018.03.001
10.1149/1945-7111/abf4eb
10.1016/j.nanoen.2020.105534
10.1149/1.1619984
10.3390/en5082724
10.1016/j.jpowsour.2005.01.075
10.1149/2.072404jes
10.1016/j.jpowsour.2013.04.011
10.1149/1.2929823
10.1016/j.jpowsour.2005.06.027
10.1016/j.memsci.2007.12.025
10.1016/j.jpowsour.2010.12.084
10.1016/S0013-4686(03)00528-0
10.1016/j.jpowsour.2011.08.035
10.1039/c2ee03055a
10.1016/j.ijhydene.2021.05.010
10.1016/j.ijhydene.2016.10.040
10.1016/j.pecs.2019.05.002
10.1016/j.electacta.2022.140133
10.3390/en16124671
10.1149/1.1830355
10.1149/2.0231806jes
10.1016/j.jpowsour.2007.11.081
10.1016/j.ijhydene.2012.09.077
10.1002/fuce.201500160
10.1007/s11244-008-9117-9
10.1016/j.ssi.2004.02.013
10.1007/s11242-022-01833-0
10.3390/en12010152
10.1149/1945-7111/abc10f
10.1149/2.067205jes
10.1016/j.electacta.2019.06.118
10.1038/s41467-022-29313-5
10.1016/j.apsusc.2020.145461
10.1149/1.2981859
10.1039/c0jm04265j
10.1016/j.egypro.2012.09.009
10.1149/2.1051714jes
10.1039/C6TA01562J
10.1016/j.ijhydene.2014.09.018
10.1016/j.ijhydene.2016.10.035
10.1016/j.apenergy.2018.08.125
10.1149/1.2789377
10.1016/j.jpowsour.2013.05.046
10.1016/j.ijhydene.2015.03.148
10.1039/B9NR00140A
10.1016/j.jpowsour.2009.06.059
10.1016/j.jpowsour.2004.11.054
10.1038/srep30568
10.1002/fuce.201000180
10.1016/j.jpowsour.2015.07.011
10.1016/S1388-2481(01)00234-X
10.1021/acsami.0c10527
10.1016/j.jpowsour.2014.09.159
10.1021/acs.jpcb.5b09684
10.1016/j.jpowsour.2012.07.015
10.1016/j.jpowsour.2007.10.065
10.1002/fuce.200800024
10.1016/j.ijhydene.2016.06.149
10.1016/j.ijhydene.2019.01.051
10.1039/C8EE01157E
10.1016/j.jpowsour.2010.10.017
10.1149/2.0961501jes
10.1021/acsami.1c22336
10.1002/fuce.200400050
10.1007/978-3-319-17082-4_19
10.1002/er.5266
10.1016/j.ijhydene.2021.07.052
10.1002/aic.10780
10.1002/cssc.201402015
10.1016/j.ijhydene.2014.12.082
10.1016/j.ijhydene.2013.11.103
10.1016/j.apenergy.2020.115958
10.1016/j.ijhydene.2021.08.197
10.1021/acsami.1c04560
10.1016/j.energy.2021.120168
10.1016/j.ijhydene.2020.03.068
10.1149/1.2006487
10.1016/j.ijhydene.2010.10.076
10.1016/j.memsci.2021.119288
10.1016/j.electacta.2020.136464
10.1016/j.ijhydene.2019.05.210
10.1016/j.jpowsour.2003.11.081
10.1016/j.electacta.2018.09.021
10.1149/1.1895225
10.1103/PhysRevLett.112.248301
10.1063/5.0031447
10.1021/acsomega.1c01535
10.2109/jcersj2.16267
10.1002/fuce.201900086
10.1002/cphc.201000487
10.1016/bs.arnmr.2015.11.003
10.1016/j.ijhydene.2019.05.114
10.1016/j.jpowsour.2013.08.112
10.1016/0167-2738(87)90050-6
10.1002/fuce.201300008
10.1016/j.jmr.2013.06.015
10.1016/j.ijhydene.2013.04.152
10.1016/j.rser.2013.08.013
10.1016/j.ijhydene.2019.08.219
10.1016/j.ijhydene.2018.07.070
10.1016/j.memsci.2017.07.020
10.1016/j.jpowsour.2015.07.069
10.1016/j.jpowsour.2014.01.106
10.1007/s12678-014-0202-5
10.1016/j.ijhydene.2013.05.072
10.1149/2.0681503jes
10.1016/0013-4686(92)87026-V
10.1016/j.ijhydene.2008.01.053
10.1016/j.ijhydene.2014.08.010
10.1016/j.ijhydene.2014.09.095
10.1002/fuce.201000101
10.1021/jp803589w
10.1016/j.ijhydene.2014.02.023
10.3934/energy.2018.4.607
10.1149/1.2266163
10.1149/1.3560163
10.1016/j.jpowsour.2006.07.008
10.1038/s41598-021-04711-9
10.1016/j.memsci.2019.117354
10.1007/s10800-012-0446-9
10.1016/j.ces.2018.08.029
10.1016/j.ijhydene.2018.09.103
10.1016/j.energy.2021.122356
10.1016/j.powera.2020.100036
10.1016/j.jpowsour.2014.06.146
10.1021/acscatal.2c02630
10.1016/j.electacta.2011.08.039
10.1596/978-1-4648-1728-1
10.1016/j.jpowsour.2014.08.136
10.1016/j.ijhydene.2016.07.009
10.3390/en11092214
10.1038/s41560-021-00956-w
10.1016/j.electacta.2007.04.106
10.1016/j.ijhydene.2019.10.186
10.1016/j.jpowsour.2019.226922
10.1016/j.jpowsour.2007.05.071
10.1021/acsomega.9b01763
10.1016/0010-4655(92)90132-I
10.1016/j.elecom.2008.06.016
10.1016/j.scitotenv.2020.140326
10.1016/j.apcatb.2011.05.043
10.1016/j.jpowsour.2010.03.060
10.1016/j.memsci.2019.117218
10.1149/1.2100333
10.1149/1.2400204
10.3390/polym12030515
10.1016/j.coelec.2017.08.010
10.1016/B978-0-444-53688-4.00006-1
10.1016/j.ijhydene.2020.12.001
10.5370/JICEE.2012.2.4.391
10.1021/acs.jpcc.0c00347
10.1149/2.0061806jes
10.1007/978-3-319-17082-4_14
10.1016/j.ijhydene.2012.04.095
10.1016/j.jpowsour.2020.228285
10.1021/jp203016u
10.1038/s43586-021-00039-w
10.1038/pj.2015.36
10.1149/1.3468615
10.1080/02670844.2019.1597426
10.1016/j.ijhydene.2016.06.211
10.1021/jp311924q
10.1016/j.jpowsour.2011.06.098
10.1016/j.compstruct.2015.03.063
10.1016/j.energy.2015.07.026
10.1016/j.ijhydene.2015.09.056
10.1016/j.pecs.2020.100859
10.1016/j.jpowsour.2015.02.037
10.1016/j.ijhydene.2014.06.045
10.1016/j.electacta.2016.12.148
10.1002/fuce.201500141
10.1002/er.7782
10.1002/app.45954
10.1016/j.electacta.2006.09.008
10.1016/j.ijhydene.2018.07.181
10.1038/s41598-018-37186-2
10.1016/j.jpowsour.2005.09.062
10.1016/j.pmatsci.2010.11.001
10.1038/s41563-020-00841-z
10.1007/978-3-319-17082-4_17
10.1016/j.jpowsour.2009.04.021
10.1039/C7EE03595K
10.1016/j.nanoen.2021.106829
10.1016/j.jpowsour.2006.05.034
10.1016/j.ijhydene.2008.02.049
10.1007/s10800-012-0448-7
10.1016/j.electacta.2020.136764
10.1016/j.ijhydene.2022.04.067
10.1016/j.polymdegradstab.2009.04.026
10.1016/j.mattod.2019.06.005
10.1149/2.0801608jes
10.1149/2.0751503jes
10.1016/j.ijhydene.2007.05.036
10.1016/j.jpowsour.2016.07.045
10.1149/1.2050347
10.1016/j.electacta.2011.01.088
10.1016/j.jpowsour.2011.01.044
10.1063/1.5018717
10.1149/1.3504255
10.1016/j.memsci.2009.11.061
10.1016/j.jpowsour.2009.08.095
10.1021/acs.jpcc.1c06014
10.1149/2.0361506jes
10.1021/acsami.0c22358
10.1016/j.ijhydene.2015.08.054
10.1016/j.jpowsour.2017.08.042
10.1016/j.ijhydene.2008.01.020
10.1016/j.ijhydene.2019.01.111
10.1016/j.energy.2019.07.166
10.1149/08613.0221ecst
10.1016/j.electacta.2016.06.068
10.1016/j.ijhydene.2018.05.059
10.1016/S0376-7388(02)00503-3
10.1021/cr020708r
10.1149/1.1854781
10.1016/j.ijhydene.2016.02.156
10.1016/j.memsci.2019.117722
10.1002/tcr.201800193
10.1016/j.electacta.2017.10.054
10.1002/er.7418
10.1016/j.ijhydene.2020.04.124
10.1149/1.1859814
10.1016/j.jpowsour.2014.09.122
10.1021/acsaem.9b00982
10.1021/cs500116h
10.1149/2.0881807jes
10.3390/ijerph15010016
10.1016/j.jpowsour.2007.07.047
10.1149/2.036309jes
10.1021/acsami.6b08844
10.1002/jrs.4192
10.1016/j.ijhydene.2016.09.024
10.1016/j.jpowsour.2006.02.086
10.1149/2.023403jes
10.1016/j.jpowsour.2006.01.047
10.1016/j.apenergy.2020.115588
10.1149/1945-7111/acb3ff
10.1016/j.pnsc.2020.08.014
10.1016/j.ijhydene.2020.03.179
10.1016/j.jpowsour.2018.09.004
10.1149/2.0691414jes
10.1021/acs.jpcc.5b11871
10.1016/j.ijhydene.2012.02.190
10.1016/j.jpowsour.2013.03.194
10.1016/j.ijhydene.2012.09.101
10.1149/06917.0147ecst
10.1016/j.ijhydene.2021.10.196
10.1149/06917.0323ecst
10.1007/s41918-020-00080-5
10.1016/j.compstruct.2017.01.080
10.1002/fuce.201900212
10.1016/j.ijhydene.2009.11.091
10.1016/j.ijhydene.2011.04.120
10.2139/ssrn.3451335
10.1016/j.ijhydene.2020.05.053
10.1021/ie0491286
10.1016/j.jpowsour.2016.12.029
10.1073/pnas.1114672109
10.1016/j.ijhydene.2021.07.211
10.1002/ente.202100809
10.1016/S1452-3981(23)17074-X
10.2478/rtuect-2020-0033
10.1016/j.ijhydene.2018.03.047
10.3390/en13092255
10.1039/C6CP04855B
10.1016/j.energy.2016.10.061
10.1016/j.electacta.2014.02.088
10.1016/j.jpowsour.2021.230851
10.1039/C6CP05331A
10.1016/j.jpowsour.2012.11.126
10.1039/c0cp00433b
10.1107/S1600577514016348
10.1149/1.1584440
10.1016/j.jpowsour.2015.03.109
10.1149/2.0161806jes
10.1016/j.ijhydene.2012.09.016
10.1016/j.apenergy.2019.113659
10.1149/08008.0019ecst
10.3390/catal7010016
10.1016/j.ijhydene.2017.09.018
10.1149/1945-7111/ab7d91
10.1016/j.memsci.2021.119868
10.1016/j.phpro.2017.06.037
10.1039/D0CP01356K
10.1016/j.ijhydene.2010.03.137
10.1002/ente.202000085
10.1115/1.4001353
10.1016/j.jpowsour.2007.06.072
10.1149/2.1201810jes
10.1016/j.jpowsour.2017.03.058
10.1002/fuce.200800134
10.1002/fuce.201700033
10.1039/C7CE00599G
10.1016/j.ijhydene.2021.12.241
10.1016/j.ijhydene.2010.01.036
10.1016/j.jpowsour.2008.12.115
10.1149/2.0081707jes
10.1016/j.jpowsour.2014.06.171
10.1016/j.mattod.2019.05.019
10.1149/05801.0519ecst
10.1016/j.memsci.2015.06.010
10.1088/2515-7655/abb783
10.1016/j.jpowsour.2007.08.055
10.1149/1945-7111/ac154e
10.1007/s10008-008-0678-0
10.1002/tcr.201000010
10.1016/j.ijhydene.2016.02.043
10.1002/fuce.201700220
10.1016/j.elecom.2005.09.017
10.1016/j.energy.2019.01.011
10.1002/adma.201901900
10.1016/j.compchemeng.2022.107768
10.1016/j.ijhydene.2020.02.215
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d3ta06895a
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 864
ExternalDocumentID 10_1039_D3TA06895A
d3ta06895a
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c317t-5a7406f6efb94aba14f50ef51178dd6870c1cb6e18f8b033cf9a8d58dc2fe8073
ISSN 2050-7488
IngestDate Mon Jun 30 11:58:42 EDT 2025
Tue Jul 01 03:28:13 EDT 2025
Thu Apr 24 23:00:20 EDT 2025
Tue Dec 17 20:58:10 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-5a7406f6efb94aba14f50ef51178dd6870c1cb6e18f8b033cf9a8d58dc2fe8073
Notes Dan Brett specialises in electrochemical power systems. He holds the Royal Academy of Engineering Research Chair in Metrology for Electrochemical Propulsion and is the Director of the UCL Advanced Propulsion Lab. He has co-founded companies including Bramble Energy, Oort Energy, Sention, Element 30, Gaussian and Prosemino. He has been recognised through awards including the De Nora Prize for Applied Electrochemistry (ISE), Baker Medal (ICE) and the Princess Royal Silver Medal (RAEng). He is listed in the Stanford top 2% of scientists in the world and in 2023 the Royal Academy of Engineering and TFL recognised him as an 'Engineering Icon'.
Dr. Richard Stocker is a Principle Engineer at HORIBA Instruments Inc. In his 10 years at HORIBA he has focused on Li-ion battery pack projects, including BMS development, cell characterization testing, and simulation modelling. Graduating from the University of Nottingham with a MEng in Mechanical Engineering (2013), they furthered their specialization with a PhD from Coventry University (2020), investigating Li-ion battery cell ageing and developing algorithms to decode ageing mechanisms from electrical cycling data. He has investigated the use of Electrochemical Impedance Spectroscopy (EIS) and Distribution of Relaxation Times (DRT) as applied to batteries and fuel cells.
Adam Zucconi is a research scientist at HORIBA, and part-time PhD researcher in the Department of Chemical Engineering at UCL. His main research focuses on
operando
in situ
Theo A. M. Suter is a postdoctoral researcher in the electrochemical innovation laboratory at UCL focusing on fuel cell fabrication, testing, and characterization. He completed his PhD in nanomaterial chemistry at UCL in 2018 and now specializes in nanoengineering of the fuel cell catalyst layer, particularly
via
Dr Hack is a Royal Academy of Engineering Research Fellow in the Department of Materials Science and Engineering at the University of Sheffield, UK. She completed her PhD at University College London in 2021 working on fuel cell characterisation. After undertaking an EPSRC Doctoral Prize Fellowship studying zinc-air batteries, followed by a Project Lead role on the Faraday Institution's LiSTAR project, Jennifer joined the University of Sheffield in 2023. Her research focuses on the study of morphology evolution in electrochemical devices, in particular electrolysers and fuel cells, using
the use of nanomaterials and heterogeneous catalyst layer fabrication. His interests focus on how the fuel cell catalyst layer morphology and microstructure impacts the performance of fuel cells, and how different fabrication techniques can be used as a tool to improve device durability.
Alex Rettie is an Associate Professor in Electrochemical Conversion and Storage in the Department of Chemical Engineering, UCL (UK). His interests are in the experimental discovery and characterisation of electrochemical energy materials and their incorporation into devices, with a focus on electronic and ionic charge transport. He leads a national hydrogen network based at UCL and is the UK's alternate delegate to the IEA's technology collaboration programme on hydrogen.
and operando X-ray and neutron CT.
and
characterisation of fuel cells and electrolysers, principally low- and high-temperature polymer electrolyte membrane technologies. He has particular interest in electrochemical and exhaust liquid and gas characterisation.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-4414-3088
0000-0002-8545-3126
0000-0003-1094-3822
0000-0002-2482-9732
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2024/ta/d3ta06895a
PQID 3030999442
PQPubID 2047523
PageCount 51
ParticipantIDs proquest_journals_3030999442
crossref_citationtrail_10_1039_D3TA06895A
crossref_primary_10_1039_D3TA06895A
rsc_primary_d3ta06895a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-02
PublicationDateYYYYMMDD 2024-04-02
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-02
  day: 02
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Xiao (D3TA06895A/cit48/1) 2013; 442
Üregen (D3TA06895A/cit378/1) 2017; 42
Borup (D3TA06895A/cit27/1) 2007; 107
Chang (D3TA06895A/cit80/1) 2018; 230
Sur (D3TA06895A/cit39/1) 2010; 157
Owejan (D3TA06895A/cit40/1) 2010; 157
Wu (D3TA06895A/cit456/1) 2010; 144
Stassi (D3TA06895A/cit191/1) 2011; 196
Brown (D3TA06895A/cit520/1) 2016; 6
Jensen (D3TA06895A/cit26/1) 2016
Trabold (D3TA06895A/cit388/1) 2006; 49
Rasoulinezhad (D3TA06895A/cit6/1) 2020; 13
Becker (D3TA06895A/cit207/1) 2018; 165
Athanasaki (D3TA06895A/cit532/1) 2021; 46
Delis (D3TA06895A/cit12/1) 2019
Batet (D3TA06895A/cit380/1) 2020; 277
Xiao (D3TA06895A/cit499/1) 2020; 8
Hopfenmüller (D3TA06895A/cit408/1) 2018; 148
Ibrahim (D3TA06895A/cit81/1) 2020; 45
Zhang (D3TA06895A/cit54/1) 2020; 2020
Li (D3TA06895A/cit24/1) 2020
Chevalier (D3TA06895A/cit354/1) 2017; 352
Pokhrel (D3TA06895A/cit349/1) 2016; 329
Nishiyama (D3TA06895A/cit430/1) 2020; 124
Zhang (D3TA06895A/cit125/1) 2021; 505
Schulenburg (D3TA06895A/cit540/1) 2011; 115
Özdemir (D3TA06895A/cit150/1) 2017; 42
Kongkanand (D3TA06895A/cit226/1) 2016; 7
World Bank (D3TA06895A/cit13/1) 2021
Chikhaliya (D3TA06895A/cit60/1) 2021; 33
Rosli (D3TA06895A/cit22/1) 2017; 42
Meier (D3TA06895A/cit542/1) 2014; 5
Arlt (D3TA06895A/cit399/1) 2015; 299
Galbiati (D3TA06895A/cit172/1) 2012; 37
Pilinski (D3TA06895A/cit549/1) 2015; 69
Neophytides (D3TA06895A/cit440/1) 2013; 34
Myles (D3TA06895A/cit25/1) 2017; 7
Quartarone (D3TA06895A/cit148/1) 2012; 5
Tiss (D3TA06895A/cit278/1) 2013; 38
Harada (D3TA06895A/cit415/1) 2021; 6
Bevilacqua (D3TA06895A/cit69/1) 2017; 257
Bevilacqua (D3TA06895A/cit117/1) 2018; 86
Meyer (D3TA06895A/cit543/1) 2019; 437
Trtik (D3TA06895A/cit385/1) 2016; 746
Inaba (D3TA06895A/cit527/1) 2006; 51
Ghosh (D3TA06895A/cit136/1) 2014; 14
Yang (D3TA06895A/cit89/1) 2013; 4
Cleghorn (D3TA06895A/cit234/1) 2006; 158
Xu (D3TA06895A/cit301/1) 2023; 211
Sekizawa (D3TA06895A/cit346/1) 2017; 849
Antoine (D3TA06895A/cit284/1) 2001; 499
Bergmann (D3TA06895A/cit334/1) 2010
Lee (D3TA06895A/cit455/1) 2017; 108
Perera (D3TA06895A/cit8/1) 2017; 15
Yli-Rantala (D3TA06895A/cit441/1) 2011; 11
Prokop (D3TA06895A/cit491/1) 2022; 413
Amjadi (D3TA06895A/cit84/1) 2010; 35
Zhou (D3TA06895A/cit199/1) 2015; 40
Liu (D3TA06895A/cit186/1) 2019; 439
Yao (D3TA06895A/cit281/1) 2018; 43
Elumalai (D3TA06895A/cit228/1) 2018; 135
Liu (D3TA06895A/cit480/1) 2021; 46
Simari (D3TA06895A/cit511/1) 2016; 120
Ivers-Tiffée (D3TA06895A/cit304/1) 2017; 125
Schonvogel (D3TA06895A/cit481/1) 2021; 46
Turconi (D3TA06895A/cit1/1) 2013; 28
Komini Babu (D3TA06895A/cit250/1) 2019; 254
Wu (D3TA06895A/cit389/1) 2018; 399
Wiezell (D3TA06895A/cit288/1) 2006; 153
Hack (D3TA06895A/cit340/1) 2018; 165
Boillat (D3TA06895A/cit393/1) 2008; 10
Schneider (D3TA06895A/cit45/1) 2005; 7
Kuhn (D3TA06895A/cit286/1) 2007; 52
Rosli (D3TA06895A/cit448/1) 2010; 7
Wang (D3TA06895A/cit46/1) 2008; 176
Ogawa (D3TA06895A/cit517/1) 2013; 234
Rahimi-Esbo (D3TA06895A/cit447/1) 2017; 42
Boillat (D3TA06895A/cit397/1) 2008; 10
Lee (D3TA06895A/cit132/1) 2017; 167
Pollastri (D3TA06895A/cit364/1) 2022; 47
Jamel (D3TA06895A/cit5/1) 2016; 4
Lu (D3TA06895A/cit202/1) 2008; 51
Zhang (D3TA06895A/cit302/1) 2015; 283
Kulkarni (D3TA06895A/cit357/1) 2020; 2
Wang (D3TA06895A/cit3/1) 2020; 741
Rigal (D3TA06895A/cit253/1) 2020; 20
Pinar (D3TA06895A/cit239/1) 2015; 274
Brightman (D3TA06895A/cit305/1) 2013; 242
Holber (D3TA06895A/cit427/1) 2011; 11
Xing (D3TA06895A/cit74/1) 2018; 192
Hsu (D3TA06895A/cit449/1) 2011
Kardjilov (D3TA06895A/cit387/1) 2018; 21
Martens (D3TA06895A/cit382/1) 2019; 2
Park (D3TA06895A/cit370/1) 2015
Noack (D3TA06895A/cit475/1) 2012; 42
Alrwashdeh (D3TA06895A/cit405/1) 2018; 6
Cleemann (D3TA06895A/cit158/1) 2013
Reshetenko (D3TA06895A/cit299/1) 2020; 167
Al-Qahtani (D3TA06895A/cit204/1) 2021; 281
Lim (D3TA06895A/cit536/1) 2014; 257
Lee (D3TA06895A/cit137/1) 2016; 327
Araya (D3TA06895A/cit47/1) 2016; 41
Schneider (D3TA06895A/cit290/1) 2008; 155
Martens (D3TA06895A/cit383/1) 2022; 521
Koizumi (D3TA06895A/cit412/1) 2019; 52
Quartarone (D3TA06895A/cit101/1) 2009; 9
Luo (D3TA06895A/cit484/1) 2020; 44
David (D3TA06895A/cit450/1) 2010; 157
Kannan (D3TA06895A/cit107/1) 2011; 21
Yan (D3TA06895A/cit507/1) 2016; 88
David (D3TA06895A/cit451/1) 2014; 39
Li (D3TA06895A/cit194/1) 2021; 46
Melchior (D3TA06895A/cit93/1) 2017; 19
Komini Babu (D3TA06895A/cit348/1) 2016; 8
Shabani (D3TA06895A/cit31/1) 2019; 427
Aili (D3TA06895A/cit53/1) 2020; 3
Kannan (D3TA06895A/cit100/1) 2020; 45
Chalkova (D3TA06895A/cit85/1) 2005; 152
Frisk (D3TA06895A/cit528/1) 2004
Yezerska (D3TA06895A/cit335/1) 2019; 44
Galbiati (D3TA06895A/cit144/1) 2012; 37
Bailey (D3TA06895A/cit344/1) 2021; 509
Jeppesen (D3TA06895A/cit243/1) 2017; 359
Giffin (D3TA06895A/cit436/1) 2014; 39
Ossiander (D3TA06895A/cit381/1) 2014; 454
Grosse (D3TA06895A/cit386/1) 2017; 88
Pérez (D3TA06895A/cit466/1) 2014; 258
Moçotéguy (D3TA06895A/cit567/1) 2010; 10
Schenk (D3TA06895A/cit119/1) 2014; 266
Brett (D3TA06895A/cit422/1) 2010; 11
Zhang (D3TA06895A/cit328/1) 2016; 115
Macauley (D3TA06895A/cit541/1) 2018; 165
Das (D3TA06895A/cit34/1) 2009; 193
Ciucci (D3TA06895A/cit297/1) 2015; 167
Tang (D3TA06895A/cit345/1) 2022; 161
D3TA06895A/cit225/1
Rahim (D3TA06895A/cit200/1) 2017; 42
Zhigalina (D3TA06895A/cit431/1) 2017; 19
Tjønnås (D3TA06895A/cit28/1) 2016; 49
Xie (D3TA06895A/cit310/1) 2005; 152
Ozden (D3TA06895A/cit76/1) 2019; 74
Atanasov (D3TA06895A/cit113/1) 2021; 20
Jo (D3TA06895A/cit245/1) 2011; 196
Zhou (D3TA06895A/cit476/1) 2015; 40
Dierickx (D3TA06895A/cit275/1) 2020; 355
Pivac (D3TA06895A/cit269/1) 2016; 326
Jie (D3TA06895A/cit82/1) 2008; 312
Oono (D3TA06895A/cit188/1) 2010; 195
Jung (D3TA06895A/cit534/1) 2017; 523
Rosli (D3TA06895A/cit184/1) 2019; 44
Patil (D3TA06895A/cit452/1) 2005; 44
Yu (D3TA06895A/cit149/1) 2008; 8
Yuan (D3TA06895A/cit483/1) 2012; 205
Meyer (D3TA06895A/cit338/1) 2019; 19
Di (D3TA06895A/cit221/1) 2015; 273
Bedet (D3TA06895A/cit516/1) 2008; 33
Berber (D3TA06895A/cit227/1) 2019; 591
Putra (D3TA06895A/cit411/1) 2010; 247
Hengge (D3TA06895A/cit489/1) 2017; 364
Su (D3TA06895A/cit495/1) 2014; 5
Sun (D3TA06895A/cit57/1) 2019; 9
Tingelöf (D3TA06895A/cit170/1) 2009; 34
Lin (D3TA06895A/cit163/1) 2009; 39
Wang (D3TA06895A/cit260/1) 2021; 1
Verma (D3TA06895A/cit105/1) 2010; 14
Parrondo (D3TA06895A/cit311/1) 2011; 2011
Bethapudi (D3TA06895A/cit337/1) 2019; 202
Yu (D3TA06895A/cit320/1) 2012; 37
Sepe (D3TA06895A/cit351/1) 2021; 168
Wikander (D3TA06895A/cit506/1) 2007; 52
Mench (D3TA06895A/cit469/1) 2003; 150
Stanic (D3TA06895A/cit533/1) 2004; 21
Russell (D3TA06895A/cit64/1) 2004; 104
Yang (D3TA06895A/cit445/1) 2004; 7
Stariha (D3TA06895A/cit552/1) 2018; 165
Agarwal (D3TA06895A/cit332/1) 2022; 532
Meyer (D3TA06895A/cit66/1) 2019; 31
Zagoraiou (D3TA06895A/cit313/1) 2020; 356
Gomes (D3TA06895A/cit371/1) 2022; 12
Wu (D3TA06895A/cit110/1) 2021; 630
Eom (D3TA06895A/cit247/1) 2012; 37
Dupuis (D3TA06895A/cit59/1) 2011; 56
Hoppe (D3TA06895A/cit342/1) 2021; 501
Ji (D3TA06895A/cit367/1) 2017; 204
Úbeda (D3TA06895A/cit153/1) 2014; 39
Endoh (D3TA06895A/cit472/1) 2004; 7
Yusof (D3TA06895A/cit438/1) 2019; 44
Kaserer (D3TA06895A/cit152/1) 2013; 117
Diedrichs (D3TA06895A/cit271/1) 2013; 43
Schiefer (D3TA06895A/cit285/1) 2020; 20
Harzer (D3TA06895A/cit554/1) 2018; 165
Robert (D3TA06895A/cit509/1) 2018; 165
Martens (D3TA06895A/cit384/1) 2021; 6
Chandan (D3TA06895A/cit50/1) 2013; 231
Lin (D3TA06895A/cit535/1) 2011; 158
Ross (D3TA06895A/cit312/1) 1983; 154
Eberhardt (D3TA06895A/cit363/1) 2014; 21
Choi (D3TA06895A/cit316/1) 2022; 5
Choi (D3TA06895A/cit166/1) 2005; 152
Boaventura (D3TA06895A/cit171/1) 2010; 35
Kulikovsky (D3TA06895A/cit298/1) 2022; 126
Zhiani (D3TA06895A/cit176/1) 2013; 38
Niu (D3TA06895A/cit309/1) 2022; 47
Bevilacqua (D3TA06895A/cit300/1) 2020; 471
Tang (D3TA06895A/cit403/1) 2010; 195
Kumar (D3TA06895A/cit546/1) 2014; 4
Bhadra (D3TA06895A/cit99/1) 2010; 349
Zhou (D3TA06895A/cit190/1) 2015; 40
Galbiati (D3TA06895A/cit187/1) 2013; 38
Uruga (D3TA06895A/cit376/1) 2019; 19
Kusoglu (D3TA06895A/cit537/1) 2014; 161
Boaventura (D3TA06895A/cit30/1) 2011; 56
U.S. Department of Energy (D3TA06895A/cit521/1) 2016
Baudy (D3TA06895A/cit254/1) 2023; 48
Sasiwimonrit (D3TA06895A/cit493/1) 2020; 45
Lim (D3TA06895A/cit114/1) 2022; 7
Zhang (D3TA06895A/cit37/1) 2007; 172
Gerling (D3TA06895A/cit291/1) 2023; 170
Deabate (D3TA06895A/cit44/1) 2012; 5
Özdemir (D3TA06895A/cit501/1) 2017; 245
Mukundan (D3TA06895A/cit531/1) 2013; 58
Chevalier (D3TA06895A/cit68/1) 2016; 212
Liang (D3TA06895A/cit468/1) 2009; 194
White (D3TA06895A/cit359/1) 2019; 9
Teranishi (D3TA06895A/cit473/1) 2006; 9
Manzi-Orezzoli (D3TA06895A/cit404/1) 2019; 4
Chang (D3TA06895A/cit195/1) 2009; 94
Liu (D3TA06895A/cit471/1) 2003; 212
He (D3TA06895A/cit213/1) 2010; 12
Peng (D3TA06895A/cit428/1) 2013; 44
Garland (D3TA06895A/cit560/1) 2007; 11
Holderer (D3TA06895A/cit420/1) 2014; 39
Matsui (D3TA06895A/cit375/1) 2022; 14
Giner-Sanz (D3TA06895A/cit263/1) 2016; 16
Kiros (D3TA06895A/cit505/1) 2007; 2
Meyer (D3TA06895A/cit392/1) 2016; 211
Zucconi (D3TA06895A/cit165/1) 2023; 584
Bevilacqua (D3TA06895A/cit127/1) 2021; 7
Marocco (D3TA06895A/cit486/1) 2021; 483
Guo (D3TA06895A/cit548/1) 2022; 641
IEA (D3TA06895A/cit11/1) 2022
Ramani (D3TA06895A/cit361/1) 2020; 45
Jeong (D3TA06895A/cit147/1) 2017; 363
Chen (D3TA06895A/cit201/1) 2012; 29
Epting (D3TA06895A/cit347/1) 2012; 22
Gerteisen (D3TA06895A/cit319/1) 2012; 37
Siegel (D3TA06895A/cit330/1) 2011; 11
Yao (D3TA06895A/cit497/1) 2019; 426
Jo (D3TA06895A/cit478/1) 2017; 42
Úbeda (D3TA06895A/cit333/1) 2016; 41
Mustarelli (D3TA06895A/cit102/1) 2008; 20
Hack (D3TA06895A/cit360/1) 2020; 352
Engl (D3TA06895A/cit116/1) 2016
Leader (D3TA06895A/cit555/1) 2022; 47
Cheng (D3TA06895A/cit366/1) 2021; 284
Simon Araya (D3TA06895A/cit272/1) 2021; 14
Biesdorf (D3TA06895A/cit395/1) 2014; 112
Zagudaeva (D3TA06895A/cit118/1) 2010; 46
Ziesche (D3TA06895A/cit406/1) 2022; 13
Guo (D3TA06895A/cit462/1) 2015; 273
Zeis (D3TA06895A/cit38/1) 2015; 6
Wu (D3TA06895A/cit42/1) 2020; 45
Zhang (D3TA06895A/cit15/1) 2020; 15
Zhang (D3TA06895A/cit52/1) 2006; 160
Bandlamudi (D3TA06895A/cit551/1) 2019; 19
Zhang (D3TA06895A/cit183/1) 2021; 46
Park (D3TA06895A/cit557/1) 2014; 120
Kundler (D3TA06895A/cit138/1) 2016
Xu (D3TA06895A/cit512/1) 2017; 536
Oono (D3TA06895A/cit91/1) 2009; 189
Lee (D3TA06895A/cit21
References_xml – issn: 2011
  end-page: p 87-100
  publication-title: PEM Fuel Cell Diagnostic Tools
  doi: Zhang Yuan Wang
– issn: 2010
  issue: vol. 35
  publication-title: Review of the Proton Exchange Membranes for Fuel Cell Applications
  doi: Peighambardoust Rowshanzamir Amjadi
– issn: 2019
  publication-title: EBRD Working Paper No. 231
  doi: Delis de Greiff Ongena
– issn: 2011
  end-page: p 209-227
  publication-title: PEM Fuel Cell Diagnostic Tools
  doi: Hsu Weng
– issn: 2016
  publication-title: 3.4 Fuel Cells - Multi-Year Research, Development, and Demonstration Plan
  doi: U.S. Department of Energy
– issn: 2013
  end-page: p 19-20
  publication-title: EFC 2013 - Proc. 5th Eur. Fuel Cell Piero Lunghi Conf.
  doi: Pinar Rastedt Bruns Wagner
– issn: 2013
  publication-title: 4th PEFC and H2 Forum B1108
  doi: Pilinski Wagner
– issn: 2011
  end-page: p 229-254
  publication-title: PEM Fuel Cell Diagnostic Tools
  doi: Zhang Balcom
– issn: 2010
  publication-title: Electrochemical Impedance Spectroscopy in PEM Fuel Cells
  doi: Yuan Song Wang Zhang
– issn: 2020
  end-page: 2161
  publication-title: ECS Meet. Abstr.
  doi: Schmies Schonvogel Büsselmann Wagner Dyck
– issn: 2016
  end-page: p 297-313
  publication-title: High Temperature Polymer Electrolyte Membrane Fuel Cells
  doi: Engl Gubler Schmidt
– issn: 2011
  end-page: p 389-400
  publication-title: PEM Fuel Cell Diagnostic Tools
  doi: Haug Renate Schulze Schiller Friedrich
– issn: 2013
  end-page: p 171-185s
  publication-title: Pem Fuel Cell Test Diagnosis
  doi: Zhang Zhang Wu Zhang
– issn: 2015
  end-page: 1855
  publication-title: ECS Meet. Abstr.
  doi: Park Cha Chung Cho Yoo Kim Henkensmeier Kim Nam Jang
– issn: 2010
  publication-title: 18th World Hydrogen Energy Conference 2010 - WHEC 2010 Parallel Sessions Book 1
  doi: Bergmann Kurz Gerteisen Hebling
– issn: 2024
  publication-title: The Fuel Cell Industry Review 2022
  doi: ERM
– issn: 2016
  end-page: p 1-4
  publication-title: High Temperature Polymer Electrolyte Membrane Fuel Cells
  doi: Jensen Hjuler Aili Li
– issn: 2015
  publication-title: EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell Configuration for Automotive Applications
  doi: Tsotridis Pilenga De Marco Malkow
– issn: 2004
  publication-title: 2004 Fuel Cell Seminar
  doi: Frisk Hicks Atanasoski Boand Schmoeckel Kurkowski
– issn: 2016
  end-page: p 425-440
  publication-title: High Temperature Polymer Electrolyte Membrane Fuel Cells
  doi: Kundler Hickmann
– issn: 2021
  doi: The European Commission
– issn: 2022
  publication-title: World Energy Outlook 2022
  doi: IEA
– issn: 2016
  issue: vol. 49
  end-page: p 302-307
  publication-title: IFAC-PapersOnLine
  doi: Tjønnås Zenith Halvorsen Klages Scholta
– issn: 2021
  publication-title: State and Trends of Carbon Pricing 2021
  doi: World Bank
– issn: 2023
  doi: IEA
– issn: 2016
  end-page: p 353-386
  publication-title: High Temperature Polymer Electrolyte Membrane Fuel Cells
  doi: Pinar Rastedt Pilinski Wagner
– volume: 159
  start-page: F369
  year: 2012
  ident: D3TA06895A/cit289/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.005208jes
– volume: 19
  start-page: 35
  year: 2019
  ident: D3TA06895A/cit338/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201800047
– volume: 37
  start-page: 7736
  year: 2012
  ident: D3TA06895A/cit319/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.02.024
– volume: 5
  start-page: 44
  year: 2014
  ident: D3TA06895A/cit542/1
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.5.5
– volume: 413
  start-page: 140121
  year: 2022
  ident: D3TA06895A/cit491/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.140121
– volume: 43
  start-page: 14691
  year: 2018
  ident: D3TA06895A/cit169/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.05.166
– volume: 250
  start-page: 68
  year: 2014
  ident: D3TA06895A/cit325/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.10.141
– volume: 501
  start-page: 230036
  year: 2021
  ident: D3TA06895A/cit342/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230036
– start-page: 1855
  volume-title: ECS Meet. Abstr.
  year: 2015
  ident: D3TA06895A/cit370/1
– volume: 20
  start-page: 1339
  year: 2008
  ident: D3TA06895A/cit102/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701767
– volume-title: EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell Configuration for Automotive Applications
  year: 2015
  ident: D3TA06895A/cit178/1
– volume: 6
  start-page: 2742
  year: 2021
  ident: D3TA06895A/cit384/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00718
– volume: 326
  start-page: 112
  year: 2016
  ident: D3TA06895A/cit269/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.119
– volume: 170
  start-page: 275
  year: 2007
  ident: D3TA06895A/cit131/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.03.082
– volume: 41
  start-page: 20294
  year: 2016
  ident: D3TA06895A/cit333/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.09.109
– volume: 92
  start-page: 244101
  year: 2008
  ident: D3TA06895A/cit398/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2946664
– volume: 124
  start-page: 403
  year: 2003
  ident: D3TA06895A/cit443/1
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(03)00797-3
– volume: 10
  start-page: 299
  year: 2010
  ident: D3TA06895A/cit567/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.200900153
– start-page: 1
  year: 2022
  ident: D3TA06895A/cit55/1
  publication-title: Polym. Rev.
– volume: 859
  start-page: 113832
  year: 2020
  ident: D3TA06895A/cit126/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2020.113832
– volume: 174
  start-page: 1253
  year: 2015
  ident: D3TA06895A/cit326/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.06.081
– volume: 11
  start-page: 459
  year: 2011
  ident: D3TA06895A/cit427/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201100006
– volume: 9
  start-page: 231
  year: 2009
  ident: D3TA06895A/cit101/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.200800145
– volume: 184
  start-page: 483
  year: 2015
  ident: D3TA06895A/cit296/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.09.097
– volume: 14
  start-page: 2994
  year: 2021
  ident: D3TA06895A/cit272/1
  publication-title: Energies
  doi: 10.3390/en14112994
– volume: 37
  start-page: 10836
  year: 2012
  ident: D3TA06895A/cit402/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.04.093
– volume: 532
  start-page: 231319
  year: 2022
  ident: D3TA06895A/cit332/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231319
– volume: 284
  start-page: 119717
  year: 2021
  ident: D3TA06895A/cit366/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119717
– volume: 342
  start-page: 570
  year: 2017
  ident: D3TA06895A/cit241/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.075
– volume: 10
  start-page: 546
  year: 2008
  ident: D3TA06895A/cit393/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2008.01.018
– volume: 117
  start-page: 4877
  year: 2013
  ident: D3TA06895A/cit372/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp309282n
– volume: 168
  start-page: 054501
  year: 2021
  ident: D3TA06895A/cit523/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abf77b
– volume: 35
  start-page: 9252
  year: 2010
  ident: D3TA06895A/cit84/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.01.005
– volume: 242
  start-page: 125
  year: 2017
  ident: D3TA06895A/cit164/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.05.028
– volume: 165
  start-page: F3085
  year: 2018
  ident: D3TA06895A/cit561/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0101806jes
– volume: 51
  start-page: 5746
  year: 2006
  ident: D3TA06895A/cit527/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.03.008
– volume: 252
  start-page: 26
  year: 2013
  ident: D3TA06895A/cit421/1
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2013.08.032
– volume: 9
  start-page: 302
  year: 2018
  ident: D3TA06895A/cit156/1
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-017-0427-1
– volume: 6
  start-page: 100260
  year: 2022
  ident: D3TA06895A/cit355/1
  publication-title: Case Stud. Chem. Environ. Eng.
  doi: 10.1016/j.cscee.2022.100260
– ident: D3TA06895A/cit217/1
– volume: 35
  start-page: 13104
  year: 2010
  ident: D3TA06895A/cit308/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.04.082
– volume: 58
  start-page: 919
  year: 2013
  ident: D3TA06895A/cit531/1
  publication-title: ECS Trans.
  doi: 10.1149/05801.0919ecst
– volume: 202
  start-page: 112198
  year: 2019
  ident: D3TA06895A/cit337/1
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.112198
– volume: 2101025
  start-page: 2101025
  year: 2021
  ident: D3TA06895A/cit124/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101025
– volume: 158
  start-page: B639
  year: 2011
  ident: D3TA06895A/cit72/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3569711
– volume: 79
  start-page: 100842
  year: 2020
  ident: D3TA06895A/cit203/1
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2020.100842
– volume: 7
  start-page: 1127
  year: 2016
  ident: D3TA06895A/cit226/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00216
– volume: 510
  start-page: 145444
  year: 2020
  ident: D3TA06895A/cit377/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145444
– volume: 49
  start-page: 4712
  year: 2006
  ident: D3TA06895A/cit388/1
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.07.003
– volume: 329
  start-page: 330
  year: 2016
  ident: D3TA06895A/cit349/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.08.092
– volume: 523
  start-page: 138
  year: 2017
  ident: D3TA06895A/cit534/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.09.009
– volume: 6
  start-page: 68
  year: 2015
  ident: D3TA06895A/cit38/1
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.6.8
– volume: 36
  start-page: 7199
  year: 2011
  ident: D3TA06895A/cit216/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.03.059
– start-page: 209
  volume-title: PEM Fuel Cell Diagnostic Tools
  year: 2011
  ident: D3TA06895A/cit449/1
– start-page: 1
  volume-title: High Temperature Polymer Electrolyte Membrane Fuel Cells
  year: 2016
  ident: D3TA06895A/cit26/1
– volume: 11
  start-page: 1
  year: 2014
  ident: D3TA06895A/cit255/1
  publication-title: J. Fuel Cell Sci. Technol.
– volume: 157
  start-page: B1173
  year: 2010
  ident: D3TA06895A/cit450/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3436652
– volume: 7
  start-page: 248
  year: 2022
  ident: D3TA06895A/cit114/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00971-x
– volume: 39
  start-page: 14959
  year: 2014
  ident: D3TA06895A/cit173/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.07.017
– volume: 9
  start-page: 11347
  year: 2021
  ident: D3TA06895A/cit295/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA01002F
– volume: 9
  start-page: 257
  year: 2019
  ident: D3TA06895A/cit379/1
  publication-title: RSC Adv.
  doi: 10.1039/C8RA07177B
– volume: 41
  start-page: 3113
  year: 2016
  ident: D3TA06895A/cit181/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.12.134
– volume: 439
  start-page: 227074
  year: 2019
  ident: D3TA06895A/cit391/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227074
– volume: 8
  start-page: 775
  year: 2018
  ident: D3TA06895A/cit109/1
  publication-title: Nanomaterials
  doi: 10.3390/nano8100775
– volume: 18
  start-page: 2238
  year: 2006
  ident: D3TA06895A/cit88/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm051781b
– volume: 212
  start-page: 187
  year: 2016
  ident: D3TA06895A/cit68/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.06.121
– volume: 42
  start-page: 2648
  year: 2017
  ident: D3TA06895A/cit150/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.04.132
– volume: 523
  start-page: 231000
  year: 2022
  ident: D3TA06895A/cit267/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231000
– volume: 39
  start-page: 1067
  year: 2009
  ident: D3TA06895A/cit163/1
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-008-9758-1
– volume: 585
  start-page: 152579
  year: 2022
  ident: D3TA06895A/cit185/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.152579
– volume: 13
  start-page: 567
  year: 2020
  ident: D3TA06895A/cit198/1
  publication-title: Energies
  doi: 10.3390/en13030567
– volume: 46
  start-page: 530
  year: 2010
  ident: D3TA06895A/cit118/1
  publication-title: Russ. J. Electrochem.
  doi: 10.1134/S102319351005006X
– volume: 42
  start-page: 1698
  year: 2017
  ident: D3TA06895A/cit478/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.10.152
– volume: 13
  start-page: 946
  issue: 5
  year: 2013
  ident: D3TA06895A/cit175/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201200139
– volume: 16
  start-page: 406
  year: 2016
  ident: D3TA06895A/cit419/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201500167
– volume: 245
  start-page: 1
  year: 2017
  ident: D3TA06895A/cit501/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.05.111
– volume: 584
  start-page: 233574
  year: 2023
  ident: D3TA06895A/cit165/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2023.233574
– volume: 272
  start-page: 119
  year: 2015
  ident: D3TA06895A/cit224/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.03.026
– volume: 154
  start-page: 205
  year: 1983
  ident: D3TA06895A/cit312/1
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/S0022-0728(83)80542-7
– volume: 195
  start-page: 1007
  year: 2010
  ident: D3TA06895A/cit188/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.08.097
– volume: 120
  start-page: 30
  year: 2014
  ident: D3TA06895A/cit557/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.12.030
– volume: 471
  start-page: 228469
  year: 2020
  ident: D3TA06895A/cit300/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228469
– volume: 483
  start-page: 1
  year: 2021
  ident: D3TA06895A/cit486/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229179
– start-page: 87
  year: 2020
  ident: D3TA06895A/cit24/1
  publication-title: Rev. Chem. Eng.
– volume: 119
  start-page: 630
  year: 2015
  ident: D3TA06895A/cit135/1
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2014.09.010
– volume: 8
  start-page: e202200008
  issue: 4
  year: 2022
  ident: D3TA06895A/cit374/1
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.202200008
– volume: 7
  start-page: A408
  year: 2004
  ident: D3TA06895A/cit445/1
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1803051
– volume: 13
  start-page: 1474
  year: 2020
  ident: D3TA06895A/cit416/1
  publication-title: Materials
  doi: 10.3390/ma13061474
– volume: 10
  start-page: 6281
  year: 2020
  ident: D3TA06895A/cit544/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00779
– ident: D3TA06895A/cit225/1
– volume: 266
  start-page: 313
  year: 2014
  ident: D3TA06895A/cit119/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.05.023
– volume: 35
  volume-title: Review of the Proton Exchange Membranes for Fuel Cell Applications
  year: 2010
  ident: D3TA06895A/cit18/1
– volume: 33
  start-page: 998
  year: 2021
  ident: D3TA06895A/cit60/1
  publication-title: High Perform. Polym.
  doi: 10.1177/09540083211014251
– volume: 7
  start-page: A209
  year: 2004
  ident: D3TA06895A/cit472/1
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1739314
– volume: 1
  start-page: 100014
  year: 2020
  ident: D3TA06895A/cit79/1
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2020.100014
– volume: 65
  start-page: 1751
  year: 2004
  ident: D3TA06895A/cit457/1
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2004.05.005
– volume: 26
  start-page: 21760
  year: 2019
  ident: D3TA06895A/cit7/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-05550-y
– volume: 52
  start-page: 2322
  year: 2007
  ident: D3TA06895A/cit286/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.03.108
– volume-title: 18th World Hydrogen Energy Conference 2010 - WHEC 2010 Parallel Sessions Book 1
  year: 2010
  ident: D3TA06895A/cit334/1
– volume: 4
  start-page: 4768
  year: 2013
  ident: D3TA06895A/cit89/1
  publication-title: Polym. Chem.
  doi: 10.1039/c3py00408b
– volume: 9
  start-page: 83
  year: 2019
  ident: D3TA06895A/cit57/1
  publication-title: Membranes
  doi: 10.3390/membranes9070083
– volume-title: Electrochemical Impedance Spectroscopy in PEM Fuel Cells
  year: 2010
  ident: D3TA06895A/cit270/1
  doi: 10.1007/978-1-84882-846-9
– volume: 509
  start-page: 230347
  year: 2021
  ident: D3TA06895A/cit344/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230347
– volume: 277
  start-page: 312
  year: 2015
  ident: D3TA06895A/cit238/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.11.115
– volume: 454
  start-page: 12
  year: 2014
  ident: D3TA06895A/cit381/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.12.004
– volume: 46
  start-page: 14687
  year: 2021
  ident: D3TA06895A/cit480/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.01.192
– volume: 596
  start-page: 117691
  year: 2020
  ident: D3TA06895A/cit513/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117691
– volume: 38
  start-page: 6469
  year: 2013
  ident: D3TA06895A/cit187/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.03.012
– volume: 161
  start-page: F622
  year: 2014
  ident: D3TA06895A/cit487/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.045405jes
– volume: 11
  start-page: 339
  year: 2011
  ident: D3TA06895A/cit327/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201000181
– volume: 359
  start-page: 37
  year: 2017
  ident: D3TA06895A/cit243/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.021
– volume: 42
  start-page: 11673
  year: 2017
  ident: D3TA06895A/cit447/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.02.030
– volume: 426
  start-page: 124
  year: 2019
  ident: D3TA06895A/cit497/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.04.045
– volume: 45
  start-page: 2195
  year: 2020
  ident: D3TA06895A/cit42/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.11.069
– volume: 36
  start-page: 813
  year: 2011
  ident: D3TA06895A/cit62/1
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2011.01.003
– volume: 14
  start-page: 259
  year: 2014
  ident: D3TA06895A/cit136/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201300186
– volume: 41
  start-page: 1441
  year: 2011
  ident: D3TA06895A/cit174/1
  publication-title: ECS Trans.
  doi: 10.1149/1.3635675
– volume: 27
  start-page: 875
  year: 2021
  ident: D3TA06895A/cit410/1
  publication-title: Adsorption
  doi: 10.1007/s10450-020-00295-4
– volume: 11
  start-page: 445
  year: 2007
  ident: D3TA06895A/cit515/1
  publication-title: ECS Trans.
  doi: 10.1149/1.2780958
– volume: 44
  start-page: 30763
  year: 2019
  ident: D3TA06895A/cit184/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.01.174
– volume: 37
  start-page: 15288
  year: 2012
  ident: D3TA06895A/cit320/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.07.023
– volume: 34
  start-page: 200
  year: 2013
  ident: D3TA06895A/cit440/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2013.06.012
– volume: 205
  start-page: 324
  year: 2012
  ident: D3TA06895A/cit483/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.01.074
– volume: 107
  start-page: 3904
  year: 2007
  ident: D3TA06895A/cit27/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr050182l
– volume: 115
  start-page: 550
  year: 2016
  ident: D3TA06895A/cit328/1
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.086
– volume: 153
  start-page: A749
  year: 2006
  ident: D3TA06895A/cit288/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2172559
– volume: 37
  start-page: 2462
  year: 2012
  ident: D3TA06895A/cit144/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.09.159
– volume: 21
  start-page: 6014
  year: 2011
  ident: D3TA06895A/cit106/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm10093a
– volume: 45
  start-page: 10089
  year: 2020
  ident: D3TA06895A/cit361/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.02.013
– volume: 220
  start-page: 54
  year: 2012
  ident: D3TA06895A/cit240/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.07.129
– volume: 283
  start-page: 464
  year: 2015
  ident: D3TA06895A/cit302/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.107
– volume: 14
  start-page: 677
  year: 2014
  ident: D3TA06895A/cit429/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201300236
– volume: 258
  start-page: 122
  year: 2014
  ident: D3TA06895A/cit466/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.02.016
– volume: 230
  start-page: 391
  year: 2017
  ident: D3TA06895A/cit265/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.02.011
– volume: 356
  start-page: 136778
  year: 2020
  ident: D3TA06895A/cit313/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136778
– volume: 39
  start-page: 21902
  year: 2014
  ident: D3TA06895A/cit459/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.07.099
– volume: 158
  start-page: B430
  year: 2011
  ident: D3TA06895A/cit524/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3556103
– volume: 161
  start-page: F823
  year: 2014
  ident: D3TA06895A/cit526/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0031409jes
– volume: 126
  start-page: 2424
  year: 2022
  ident: D3TA06895A/cit298/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c10334
– volume: 849
  start-page: 012022
  year: 2017
  ident: D3TA06895A/cit346/1
  publication-title: J. Phys.: Conf. Ser.
– volume: 19
  start-page: 2
  year: 2019
  ident: D3TA06895A/cit145/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201700144
– volume: 211
  start-page: 669
  year: 2023
  ident: D3TA06895A/cit301/1
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2023.05.008
– volume: 48
  start-page: 20945
  year: 2023
  ident: D3TA06895A/cit254/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.12.344
– volume: 168
  start-page: 034521
  year: 2021
  ident: D3TA06895A/cit362/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abef87
– volume: 2
  start-page: 2
  year: 2016
  ident: D3TA06895A/cit458/1
  publication-title: J. Imaging
  doi: 10.3390/jimaging2010002
– volume: 14
  start-page: 100084
  year: 2022
  ident: D3TA06895A/cit492/1
  publication-title: J. Power Sources Adv.
  doi: 10.1016/j.powera.2022.100084
– volume: 63
  start-page: 1134
  year: 2014
  ident: D3TA06895A/cit61/1
  publication-title: Polym. Int.
  doi: 10.1002/pi.4708
– volume: 204
  start-page: 421
  year: 2017
  ident: D3TA06895A/cit367/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.11.053
– volume: 108
  start-page: 82
  year: 2013
  ident: D3TA06895A/cit477/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.02.067
– volume: 52
  start-page: 791
  year: 2019
  ident: D3TA06895A/cit412/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576719008343
– volume: 427
  start-page: 21
  year: 2019
  ident: D3TA06895A/cit31/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.03.097
– volume: 4
  start-page: 1170653
  year: 2016
  ident: D3TA06895A/cit5/1
  publication-title: Cogent Econ. Finance
  doi: 10.1080/23322039.2016.1170653
– volume: 18
  start-page: 103
  year: 2018
  ident: D3TA06895A/cit168/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201700181
– volume: 7
  start-page: 707
  year: 2017
  ident: D3TA06895A/cit519/1
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.21037/qims.2017.11.03
– volume: 3
  start-page: F47
  year: 2014
  ident: D3TA06895A/cit205/1
  publication-title: ECS Electrochem. Lett.
  doi: 10.1149/2.0011407eel
– start-page: 822
  year: 2013
  ident: D3TA06895A/cit158/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201200186
– volume: 32
  start-page: 4523
  year: 2007
  ident: D3TA06895A/cit233/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.03.013
– volume: 39
  start-page: 17240
  year: 2014
  ident: D3TA06895A/cit390/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.08.042
– volume: 157
  start-page: B1814
  year: 2010
  ident: D3TA06895A/cit514/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3486168
– volume: 108
  start-page: 126
  year: 2017
  ident: D3TA06895A/cit455/1
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.02.015
– volume: 87
  start-page: 988
  year: 2010
  ident: D3TA06895A/cit9/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.09.012
– volume: 43
  start-page: 1079
  year: 2013
  ident: D3TA06895A/cit271/1
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-013-0597-3
– start-page: 229
  volume-title: PEM Fuel Cell Diagnostic Tools
  year: 2011
  ident: D3TA06895A/cit518/1
– volume: 2
  start-page: 1502
  year: 2015
  ident: D3TA06895A/cit214/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201500228
– volume: 15
  start-page: 034019
  year: 2020
  ident: D3TA06895A/cit15/1
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab6658
– volume: 5
  start-page: 263
  year: 2002
  ident: D3TA06895A/cit235/1
  publication-title: J. New Mater. Electrochem. Syst.
– volume: 442
  start-page: 65
  year: 2013
  ident: D3TA06895A/cit48/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.04.014
– volume: 560
  start-page: 11
  year: 2018
  ident: D3TA06895A/cit98/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.05.006
– volume: 50
  start-page: 1138
  year: 2021
  ident: D3TA06895A/cit67/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00296H
– volume: 452
  start-page: 20
  year: 2014
  ident: D3TA06895A/cit83/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.10.018
– volume: 167
  start-page: 439
  year: 2015
  ident: D3TA06895A/cit297/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.03.123
– volume: 12
  start-page: 566
  year: 2012
  ident: D3TA06895A/cit331/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201100197
– volume: 504
  start-page: 1
  year: 2016
  ident: D3TA06895A/cit43/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.12.065
– start-page: 19
  volume-title: EFC 2013 - Proc. 5th Eur. Fuel Cell Piero Lunghi Conf.
  year: 2013
  ident: D3TA06895A/cit550/1
– volume: 22
  start-page: 555
  year: 2012
  ident: D3TA06895A/cit347/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101525
– volume: 536
  start-page: 116
  year: 2017
  ident: D3TA06895A/cit512/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.04.067
– volume: 352
  start-page: 281
  year: 2017
  ident: D3TA06895A/cit354/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.114
– volume: 11
  start-page: 923
  year: 2007
  ident: D3TA06895A/cit560/1
  publication-title: ECS Trans.
  doi: 10.1149/1.2781004
– volume: 399
  start-page: 254
  year: 2018
  ident: D3TA06895A/cit389/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.07.085
– volume: 64
  start-page: 62
  year: 2018
  ident: D3TA06895A/cit2/1
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2017.10.002
– volume: 63
  start-page: 153
  year: 2017
  ident: D3TA06895A/cit10/1
  publication-title: Econ. Model.
  doi: 10.1016/j.econmod.2017.01.006
– volume: 255
  start-page: 431
  year: 2014
  ident: D3TA06895A/cit70/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.032
– volume: 521
  start-page: 230951
  year: 2022
  ident: D3TA06895A/cit356/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230951
– volume: 34
  start-page: 449
  year: 2009
  ident: D3TA06895A/cit559/1
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2008.12.003
– volume: 286
  start-page: 116481
  year: 2021
  ident: D3TA06895A/cit282/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116481
– volume: 37
  start-page: 14475
  year: 2012
  ident: D3TA06895A/cit172/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.07.032
– volume: 2011
  start-page: 1
  year: 2011
  ident: D3TA06895A/cit311/1
  publication-title: Int. J. Electrochem.
  doi: 10.4061/2011/261065
– volume: 46
  start-page: 2577
  year: 2021
  ident: D3TA06895A/cit183/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.10.116
– volume: 165
  start-page: F3045
  year: 2018
  ident: D3TA06895A/cit340/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0051806jes
– volume: 144
  start-page: 255
  year: 2010
  ident: D3TA06895A/cit456/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2009.10.058
– volume: 10
  start-page: 687
  year: 2017
  ident: D3TA06895A/cit56/1
  publication-title: Materials
  doi: 10.3390/ma10070687
– volume: 7
  start-page: 100042
  year: 2021
  ident: D3TA06895A/cit127/1
  publication-title: J. Power Sources Adv.
  doi: 10.1016/j.powera.2020.100042
– volume: 280
  start-page: 148
  year: 2006
  ident: D3TA06895A/cit87/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.01.028
– volume: 299
  start-page: 125
  year: 2015
  ident: D3TA06895A/cit399/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.08.094
– volume: 3
  start-page: 21
  year: 2003
  ident: D3TA06895A/cit426/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.200320239
– volume: 158
  start-page: 1306
  year: 2006
  ident: D3TA06895A/cit538/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.10.059
– volume: 245
  start-page: 1
  year: 2017
  ident: D3TA06895A/cit97/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.05.111
– volume: 3
  start-page: 770
  year: 2010
  ident: D3TA06895A/cit317/1
  publication-title: Energies
  doi: 10.3390/en3040770
– volume: 7
  start-page: 9867
  year: 2019
  ident: D3TA06895A/cit211/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01756A
– volume: 499
  start-page: 85
  year: 2001
  ident: D3TA06895A/cit284/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(00)00492-7
– volume: 122
  start-page: 1103
  year: 2018
  ident: D3TA06895A/cit407/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b11189
– volume: 34
  start-page: 6452
  year: 2009
  ident: D3TA06895A/cit170/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.05.003
– volume: 300
  start-page: 117357
  year: 2021
  ident: D3TA06895A/cit71/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117357
– volume: 41
  start-page: 19463
  year: 2016
  ident: D3TA06895A/cit343/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.05.091
– volume: 190
  start-page: 83
  year: 2009
  ident: D3TA06895A/cit464/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.10.124
– volume: 444
  start-page: 227279
  year: 2019
  ident: D3TA06895A/cit276/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227279
– volume: 126
  start-page: 258
  year: 2004
  ident: D3TA06895A/cit460/1
  publication-title: J. Energy Resour. Technol.
  doi: 10.1115/1.1811119
– volume: 130
  start-page: 42
  year: 2004
  ident: D3TA06895A/cit504/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2003.12.035
– volume: 37
  start-page: 2009049
  year: 2020
  ident: D3TA06895A/cit564/1
  publication-title: Acta Phys.-Chim. Sin.
  doi: 10.3866/PKU.WHXB202009049
– volume: 316
  start-page: 164
  year: 2008
  ident: D3TA06895A/cit437/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.09.037
– volume: 5
  start-page: 8824
  year: 2012
  ident: D3TA06895A/cit44/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21834h
– volume: 439
  start-page: 227090
  year: 2019
  ident: D3TA06895A/cit186/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227090
– volume: 42
  start-page: 25695
  year: 2017
  ident: D3TA06895A/cit17/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.07.054
– volume: 44
  start-page: 20760
  year: 2019
  ident: D3TA06895A/cit438/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.07.192
– volume: 19
  start-page: 231
  year: 2019
  ident: D3TA06895A/cit551/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201800127
– volume: 63
  start-page: 393
  year: 2021
  ident: D3TA06895A/cit63/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.06.024
– volume: 363
  start-page: 365
  year: 2017
  ident: D3TA06895A/cit147/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.07.109
– volume: 165
  start-page: F1176
  year: 2018
  ident: D3TA06895A/cit157/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0501814jes
– volume: 37
  start-page: 16748
  year: 2012
  ident: D3TA06895A/cit222/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.02.148
– volume: 165
  start-page: F3316
  year: 2018
  ident: D3TA06895A/cit251/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0341806jes
– volume: 21
  start-page: 7480
  year: 2011
  ident: D3TA06895A/cit108/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm10439j
– volume: 247
  start-page: 012044
  year: 2010
  ident: D3TA06895A/cit411/1
  publication-title: J. Phys.: Conf. Ser.
– volume: 261
  start-page: 121038
  year: 2020
  ident: D3TA06895A/cit16/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.121038
– volume: 162
  start-page: F1367
  year: 2015
  ident: D3TA06895A/cit212/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0591512jes
– volume: 64
  start-page: 741
  year: 2014
  ident: D3TA06895A/cit189/1
  publication-title: ECS Trans.
  doi: 10.1149/06403.0741ecst
– volume: 53
  start-page: 2925
  year: 2008
  ident: D3TA06895A/cit425/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.11.002
– volume: 22
  start-page: 5430
  year: 2021
  ident: D3TA06895A/cit58/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22115430
– volume: 36
  start-page: 5021
  year: 2011
  ident: D3TA06895A/cit41/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.01.036
– volume: 161
  start-page: E3311
  year: 2014
  ident: D3TA06895A/cit537/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.036408jes
– volume: 48
  start-page: 487
  year: 2019
  ident: D3TA06895A/cit414/1
  publication-title: Chem. Lett.
  doi: 10.1246/cl.190017
– volume: 157
  start-page: B45
  year: 2010
  ident: D3TA06895A/cit39/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3247355
– volume: 505
  start-page: 230059
  year: 2021
  ident: D3TA06895A/cit125/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230059
– volume: 602
  start-page: 117981
  year: 2020
  ident: D3TA06895A/cit230/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.117981
– volume: 21
  start-page: 652
  year: 2018
  ident: D3TA06895A/cit387/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.03.001
– volume: 168
  start-page: 054508
  year: 2021
  ident: D3TA06895A/cit556/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abf4eb
– volume: 80
  start-page: 105534
  year: 2021
  ident: D3TA06895A/cit365/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105534
– volume: 150
  start-page: A1599
  year: 2003
  ident: D3TA06895A/cit33/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1619984
– volume: 5
  start-page: 2724
  year: 2012
  ident: D3TA06895A/cit277/1
  publication-title: Energies
  doi: 10.3390/en5082724
– volume: 145
  start-page: 307
  year: 2005
  ident: D3TA06895A/cit461/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.01.075
– volume: 161
  start-page: F500
  year: 2014
  ident: D3TA06895A/cit306/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.072404jes
– volume: 240
  start-page: 281
  year: 2013
  ident: D3TA06895A/cit261/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.04.011
– volume: 155
  start-page: B783
  year: 2008
  ident: D3TA06895A/cit290/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2929823
– volume: 156
  start-page: 267
  year: 2006
  ident: D3TA06895A/cit446/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.06.027
– volume: 312
  start-page: 41
  year: 2008
  ident: D3TA06895A/cit82/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.12.025
– volume: 196
  start-page: 8925
  year: 2011
  ident: D3TA06895A/cit191/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.12.084
– volume: 48
  start-page: 3899
  year: 2003
  ident: D3TA06895A/cit293/1
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(03)00528-0
– volume: 196
  start-page: 9906
  year: 2011
  ident: D3TA06895A/cit245/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.08.035
– volume: 5
  start-page: 6436
  year: 2012
  ident: D3TA06895A/cit160/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03055a
– volume: 46
  start-page: 24353
  year: 2021
  ident: D3TA06895A/cit194/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.05.010
– volume: 42
  start-page: 1189
  year: 2017
  ident: D3TA06895A/cit200/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.10.040
– volume: 74
  start-page: 50
  year: 2019
  ident: D3TA06895A/cit76/1
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2019.05.002
– volume: 413
  start-page: 140133
  year: 2022
  ident: D3TA06895A/cit490/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.140133
– volume: 16
  start-page: 4671
  year: 2023
  ident: D3TA06895A/cit266/1
  publication-title: Energies
  doi: 10.3390/en16124671
– volume: 152
  start-page: A104
  year: 2005
  ident: D3TA06895A/cit310/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1830355
– volume: 165
  start-page: F3209
  year: 2018
  ident: D3TA06895A/cit509/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0231806jes
– volume: 177
  start-page: 247
  year: 2008
  ident: D3TA06895A/cit86/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.11.081
– volume: 37
  start-page: 18455
  year: 2012
  ident: D3TA06895A/cit247/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.09.077
– volume: 16
  start-page: 480
  year: 2016
  ident: D3TA06895A/cit146/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201500160
– volume: 51
  start-page: 89
  year: 2008
  ident: D3TA06895A/cit202/1
  publication-title: Top. Catal.
  doi: 10.1007/s11244-008-9117-9
– volume: 168
  start-page: 177
  year: 2004
  ident: D3TA06895A/cit210/1
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2004.02.013
– volume: 144
  start-page: 715
  year: 2022
  ident: D3TA06895A/cit352/1
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-022-01833-0
– volume: 12
  start-page: 152
  year: 2019
  ident: D3TA06895A/cit29/1
  publication-title: Energies
  doi: 10.3390/en12010152
– volume: 167
  start-page: 144505
  year: 2020
  ident: D3TA06895A/cit299/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abc10f
– volume: 159
  start-page: B524
  year: 2012
  ident: D3TA06895A/cit485/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.067205jes
– volume: 319
  start-page: 933
  year: 2019
  ident: D3TA06895A/cit49/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.06.118
– volume: 13
  start-page: 1616
  year: 2022
  ident: D3TA06895A/cit406/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29313-5
– volume: 510
  start-page: 145461
  year: 2020
  ident: D3TA06895A/cit161/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145461
– start-page: 87
  volume-title: PEM Fuel Cell Diagnostic Tools
  year: 2011
  ident: D3TA06895A/cit315/1
– volume: 16
  start-page: 235
  year: 2008
  ident: D3TA06895A/cit525/1
  publication-title: ECS Trans.
  doi: 10.1149/1.2981859
– volume: 21
  start-page: 7223
  year: 2011
  ident: D3TA06895A/cit107/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm04265j
– volume: 29
  start-page: 64
  year: 2012
  ident: D3TA06895A/cit201/1
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2012.09.009
– volume: 164
  start-page: F1615
  year: 2017
  ident: D3TA06895A/cit244/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1051714jes
– volume: 4
  start-page: 4019
  year: 2016
  ident: D3TA06895A/cit104/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01562J
– volume: 39
  start-page: 21657
  year: 2014
  ident: D3TA06895A/cit420/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.09.018
– volume: 42
  start-page: 1800
  year: 2017
  ident: D3TA06895A/cit268/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.10.035
– start-page: 389
  volume-title: PEM Fuel Cell Diagnostic Tools
  year: 2011
  ident: D3TA06895A/cit435/1
– volume: 230
  start-page: 643
  year: 2018
  ident: D3TA06895A/cit80/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.08.125
– volume: 154
  start-page: B1378
  year: 2007
  ident: D3TA06895A/cit283/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2789377
– volume: 242
  start-page: 244
  year: 2013
  ident: D3TA06895A/cit305/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.05.046
– volume: 40
  start-page: 6672
  year: 2015
  ident: D3TA06895A/cit190/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.03.148
– volume: 2
  start-page: 282
  year: 2010
  ident: D3TA06895A/cit424/1
  publication-title: Nanoscale
  doi: 10.1039/B9NR00140A
– volume: 194
  start-page: 847
  year: 2009
  ident: D3TA06895A/cit468/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.06.059
– volume: 143
  start-page: 67
  year: 2005
  ident: D3TA06895A/cit324/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.11.054
– volume: 6
  start-page: 30568
  year: 2016
  ident: D3TA06895A/cit520/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep30568
– volume: 11
  start-page: 715
  year: 2011
  ident: D3TA06895A/cit441/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201000180
– volume: 297
  start-page: 329
  year: 2015
  ident: D3TA06895A/cit75/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.07.011
– volume: 3
  start-page: 628
  year: 2001
  ident: D3TA06895A/cit322/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/S1388-2481(01)00234-X
– volume: 12
  start-page: 41350
  year: 2020
  ident: D3TA06895A/cit111/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c10527
– volume: 273
  start-page: 775
  year: 2015
  ident: D3TA06895A/cit462/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.09.159
– volume: 119
  start-page: 15866
  year: 2015
  ident: D3TA06895A/cit96/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b09684
– volume: 218
  start-page: 412
  year: 2012
  ident: D3TA06895A/cit292/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.07.015
– volume: 176
  start-page: 247
  year: 2008
  ident: D3TA06895A/cit46/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.10.065
– volume: 8
  start-page: 165
  year: 2008
  ident: D3TA06895A/cit149/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.200800024
– volume: 41
  start-page: 16196
  year: 2016
  ident: D3TA06895A/cit139/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.06.149
– volume: 44
  start-page: 18951
  year: 2019
  ident: D3TA06895A/cit122/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.01.051
– volume: 12
  start-page: 463
  year: 2019
  ident: D3TA06895A/cit19/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01157E
– volume: 196
  start-page: 4209
  year: 2011
  ident: D3TA06895A/cit154/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.10.017
– volume: 162
  start-page: F153
  year: 2015
  ident: D3TA06895A/cit257/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0961501jes
– volume: 14
  start-page: 6762
  year: 2022
  ident: D3TA06895A/cit375/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c22336
– volume: 5
  start-page: 302
  year: 2005
  ident: D3TA06895A/cit510/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.200400050
– start-page: 425
  volume-title: High Temperature Polymer Electrolyte Membrane Fuel Cells
  year: 2016
  ident: D3TA06895A/cit138/1
  doi: 10.1007/978-3-319-17082-4_19
– volume: 44
  start-page: 4784
  year: 2020
  ident: D3TA06895A/cit484/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5266
– volume: 46
  start-page: 31754
  year: 2021
  ident: D3TA06895A/cit532/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.07.052
– volume: 52
  start-page: 1916
  year: 2006
  ident: D3TA06895A/cit314/1
  publication-title: AIChE J.
  doi: 10.1002/aic.10780
– volume: 7
  start-page: 2335
  year: 2014
  ident: D3TA06895A/cit498/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402015
– volume: 40
  start-page: 2833
  year: 2015
  ident: D3TA06895A/cit476/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.12.082
– volume: 39
  start-page: 2246
  year: 2014
  ident: D3TA06895A/cit180/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.11.103
– volume: 281
  start-page: 115958
  year: 2021
  ident: D3TA06895A/cit204/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115958
– volume: 46
  start-page: 36982
  year: 2021
  ident: D3TA06895A/cit182/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.08.197
– volume: 13
  start-page: 34003
  year: 2021
  ident: D3TA06895A/cit350/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c04560
– volume: 224
  start-page: 120168
  year: 2021
  ident: D3TA06895A/cit248/1
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120168
– volume: 45
  start-page: 28190
  year: 2020
  ident: D3TA06895A/cit432/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.03.068
– volume: 152
  start-page: A1942
  year: 2005
  ident: D3TA06895A/cit77/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2006487
– volume: 36
  start-page: 1628
  year: 2011
  ident: D3TA06895A/cit482/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.10.076
– volume: 630
  start-page: 119288
  year: 2021
  ident: D3TA06895A/cit110/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119288
– volume: 352
  start-page: 136464
  year: 2020
  ident: D3TA06895A/cit360/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136464
– volume-title: World Energy Outlook 2022
  year: 2022
  ident: D3TA06895A/cit11/1
– volume: 45
  start-page: 5526
  year: 2020
  ident: D3TA06895A/cit81/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.210
– volume: 1
  start-page: 1
  year: 2016
  ident: D3TA06895A/cit112/1
  publication-title: Nat. Energy
– volume: 131
  start-page: 213
  year: 2004
  ident: D3TA06895A/cit444/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2003.11.081
– volume: 33
  start-page: 314002
  year: 2021
  ident: D3TA06895A/cit369/1
  publication-title: J. Phys.: Condens.Matter
– volume: 289
  start-page: 354
  year: 2018
  ident: D3TA06895A/cit488/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.09.021
– volume: 152
  start-page: A1035
  year: 2005
  ident: D3TA06895A/cit85/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1895225
– volume: 112
  start-page: 248301
  year: 2014
  ident: D3TA06895A/cit395/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.248301
– volume: 13
  start-page: 022701
  year: 2021
  ident: D3TA06895A/cit143/1
  publication-title: J. Renewable Sustainable Energy
  doi: 10.1063/5.0031447
– volume: 6
  start-page: 15257
  year: 2021
  ident: D3TA06895A/cit415/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c01535
– volume: 125
  start-page: 193
  year: 2017
  ident: D3TA06895A/cit304/1
  publication-title: J. Ceram. Assoc. Jpn.
  doi: 10.2109/jcersj2.16267
– volume: 20
  start-page: 272
  year: 2020
  ident: D3TA06895A/cit253/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201900086
– volume: 11
  start-page: 2714
  year: 2010
  ident: D3TA06895A/cit422/1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201000487
– volume: 88
  start-page: 149
  year: 2016
  ident: D3TA06895A/cit507/1
  publication-title: Annu. Rep. NMR Spectrosc.
  doi: 10.1016/bs.arnmr.2015.11.003
– volume: 44
  start-page: 18330
  year: 2019
  ident: D3TA06895A/cit335/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.114
– volume: 247
  start-page: 354
  year: 2014
  ident: D3TA06895A/cit565/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.08.112
– volume: 23
  start-page: 189
  year: 1987
  ident: D3TA06895A/cit409/1
  publication-title: Solid State Ionics
  doi: 10.1016/0167-2738(87)90050-6
– start-page: 935
  year: 2013
  ident: D3TA06895A/cit336/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201300008
– volume: 234
  start-page: 147
  year: 2013
  ident: D3TA06895A/cit517/1
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2013.06.015
– volume: 39
  start-page: 2776
  year: 2014
  ident: D3TA06895A/cit436/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.04.152
– volume: 28
  start-page: 555
  year: 2013
  ident: D3TA06895A/cit1/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2013.08.013
– volume: 45
  start-page: 7968
  year: 2020
  ident: D3TA06895A/cit73/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.08.219
– volume: 44
  start-page: 12748
  year: 2019
  ident: D3TA06895A/cit142/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.07.070
– volume-title: 3.4 Fuel Cells - Multi-Year Research, Development, and Demonstration Plan
  year: 2016
  ident: D3TA06895A/cit521/1
– volume: 541
  start-page: 386
  year: 2017
  ident: D3TA06895A/cit223/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.07.020
– volume: 297
  start-page: 315
  year: 2015
  ident: D3TA06895A/cit329/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.07.069
– volume: 257
  start-page: 102
  year: 2014
  ident: D3TA06895A/cit536/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.106
– volume: 5
  start-page: 361
  year: 2014
  ident: D3TA06895A/cit495/1
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-014-0202-5
– volume: 38
  start-page: 9819
  year: 2013
  ident: D3TA06895A/cit176/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.05.072
– volume: 162
  start-page: F291
  year: 2015
  ident: D3TA06895A/cit193/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0681503jes
– volume: 2020
  start-page: 1
  year: 2020
  ident: D3TA06895A/cit54/1
  publication-title: Research
– volume: 37
  start-page: 385
  year: 1992
  ident: D3TA06895A/cit439/1
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(92)87026-V
– volume: 33
  start-page: 3146
  year: 2008
  ident: D3TA06895A/cit516/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.01.053
– volume: 39
  start-page: 17638
  year: 2014
  ident: D3TA06895A/cit451/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.08.010
– volume: 39
  start-page: 19067
  year: 2014
  ident: D3TA06895A/cit179/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.09.095
– volume: 11
  start-page: 489
  year: 2011
  ident: D3TA06895A/cit330/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201000101
– volume: 112
  start-page: 14209
  year: 2008
  ident: D3TA06895A/cit95/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp803589w
– volume: 39
  start-page: 14441
  year: 2014
  ident: D3TA06895A/cit307/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.02.023
– volume: 6
  start-page: 607
  year: 2018
  ident: D3TA06895A/cit405/1
  publication-title: AIMS Energy
  doi: 10.3934/energy.2018.4.607
– volume: 9
  start-page: A475
  year: 2006
  ident: D3TA06895A/cit473/1
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.2266163
– volume: 14
  start-page: B51
  year: 2011
  ident: D3TA06895A/cit463/1
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.3560163
– volume: 162
  start-page: 547
  year: 2006
  ident: D3TA06895A/cit162/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.07.008
– volume: 12
  start-page: 3810
  year: 2022
  ident: D3TA06895A/cit129/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-04711-9
– volume: 591
  start-page: 117354
  year: 2019
  ident: D3TA06895A/cit227/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117354
– volume: 42
  start-page: 833
  year: 2012
  ident: D3TA06895A/cit475/1
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-012-0446-9
– volume: 192
  start-page: 699
  year: 2018
  ident: D3TA06895A/cit74/1
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.08.029
– volume: 43
  start-page: 21006
  year: 2018
  ident: D3TA06895A/cit281/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.09.103
– volume: 239
  start-page: 122356
  year: 2022
  ident: D3TA06895A/cit249/1
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122356
– volume: 6
  start-page: 100036
  year: 2020
  ident: D3TA06895A/cit465/1
  publication-title: J. Power Sources Adv.
  doi: 10.1016/j.powera.2020.100036
– volume: 269
  start-page: 344
  year: 2014
  ident: D3TA06895A/cit294/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.06.146
– volume: 12
  start-page: 11472
  year: 2022
  ident: D3TA06895A/cit371/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c02630
– volume: 56
  start-page: 9467
  year: 2011
  ident: D3TA06895A/cit30/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.08.039
– volume-title: State and Trends of Carbon Pricing 2021
  year: 2021
  ident: D3TA06895A/cit13/1
  doi: 10.1596/978-1-4648-1728-1
– volume: 274
  start-page: 177
  year: 2015
  ident: D3TA06895A/cit239/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.08.136
– volume: 42
  start-page: 2636
  year: 2017
  ident: D3TA06895A/cit378/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.07.009
– volume: 11
  start-page: 2214
  year: 2018
  ident: D3TA06895A/cit400/1
  publication-title: Energies
  doi: 10.3390/en11092214
– volume: 7
  start-page: 153
  year: 2022
  ident: D3TA06895A/cit115/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00956-w
– volume: 52
  start-page: 6848
  year: 2007
  ident: D3TA06895A/cit506/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.04.106
– volume: 45
  start-page: 1008
  year: 2020
  ident: D3TA06895A/cit100/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.10.186
– volume: 437
  start-page: 226922
  year: 2019
  ident: D3TA06895A/cit543/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226922
– volume: 172
  start-page: 2
  year: 2007
  ident: D3TA06895A/cit321/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.05.071
– volume: 4
  start-page: 17236
  year: 2019
  ident: D3TA06895A/cit404/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01763
– volume-title: 2004 Fuel Cell Seminar
  year: 2004
  ident: D3TA06895A/cit528/1
– volume: 69
  start-page: 99
  year: 1992
  ident: D3TA06895A/cit303/1
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(92)90132-I
– volume: 10
  start-page: 1311
  year: 2008
  ident: D3TA06895A/cit397/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2008.06.016
– volume: 741
  start-page: 140326
  year: 2020
  ident: D3TA06895A/cit3/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140326
– volume: 106
  start-page: 379
  year: 2011
  ident: D3TA06895A/cit502/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2011.05.043
– volume: 195
  start-page: 6774
  year: 2010
  ident: D3TA06895A/cit403/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.03.060
– volume: 588
  start-page: 117218
  year: 2019
  ident: D3TA06895A/cit231/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117218
– volume: 134
  start-page: 3021
  year: 1987
  ident: D3TA06895A/cit32/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2100333
– volume: 10
  start-page: B39
  year: 2007
  ident: D3TA06895A/cit553/1
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.2400204
– volume: 12
  start-page: 515
  year: 2020
  ident: D3TA06895A/cit229/1
  publication-title: Polymers
  doi: 10.3390/polym12030515
– volume: 5
  start-page: 11
  year: 2017
  ident: D3TA06895A/cit20/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2017.08.010
– start-page: 171
  volume-title: Pem Fuel Cell Test Diagnosis
  year: 2013
  ident: D3TA06895A/cit470/1
  doi: 10.1016/B978-0-444-53688-4.00006-1
– volume: 46
  start-page: 8179
  year: 2021
  ident: D3TA06895A/cit35/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.001
– volume: 2
  start-page: 391
  year: 2012
  ident: D3TA06895A/cit323/1
  publication-title: J. Int. Counc. Electr. Eng.
  doi: 10.5370/JICEE.2012.2.4.391
– volume: 124
  start-page: 9703
  year: 2020
  ident: D3TA06895A/cit430/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c00347
– volume: 165
  start-page: F3148
  year: 2018
  ident: D3TA06895A/cit541/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0061806jes
– start-page: 297
  volume-title: High Temperature Polymer Electrolyte Membrane Fuel Cells
  year: 2016
  ident: D3TA06895A/cit116/1
  doi: 10.1007/978-3-319-17082-4_14
– volume: 37
  start-page: 10844
  year: 2012
  ident: D3TA06895A/cit121/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.04.095
– volume: 470
  start-page: 228285
  year: 2020
  ident: D3TA06895A/cit273/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228285
– volume: 115
  start-page: 14236
  year: 2011
  ident: D3TA06895A/cit540/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp203016u
– volume: 1
  start-page: 41
  year: 2021
  ident: D3TA06895A/cit260/1
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-021-00039-w
– volume: 47
  start-page: 546
  year: 2015
  ident: D3TA06895A/cit413/1
  publication-title: Polym. J.
  doi: 10.1038/pj.2015.36
– volume: 157
  start-page: B1456
  year: 2010
  ident: D3TA06895A/cit40/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3468615
– volume: 35
  start-page: 1013
  year: 2019
  ident: D3TA06895A/cit500/1
  publication-title: Surf. Eng.
  doi: 10.1080/02670844.2019.1597426
– volume: 42
  start-page: 9293
  year: 2017
  ident: D3TA06895A/cit22/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.06.211
– volume: 117
  start-page: 6210
  year: 2013
  ident: D3TA06895A/cit152/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp311924q
– volume: 196
  start-page: 9097
  year: 2011
  ident: D3TA06895A/cit177/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.06.098
– volume: 128
  start-page: 284
  year: 2015
  ident: D3TA06895A/cit133/1
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.03.063
– volume: 90
  start-page: 1949
  year: 2015
  ident: D3TA06895A/cit256/1
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.026
– volume: 40
  start-page: 14932
  year: 2015
  ident: D3TA06895A/cit199/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.09.056
– volume: 80
  start-page: 100859
  year: 2020
  ident: D3TA06895A/cit558/1
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2020.100859
– volume: 282
  start-page: 489
  year: 2015
  ident: D3TA06895A/cit220/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.037
– volume: 39
  start-page: 21678
  year: 2014
  ident: D3TA06895A/cit153/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.06.045
– volume: 227
  start-page: 110
  year: 2017
  ident: D3TA06895A/cit280/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.148
– volume: 16
  start-page: 469
  year: 2016
  ident: D3TA06895A/cit263/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201500141
– volume: 46
  start-page: 9058
  year: 2022
  ident: D3TA06895A/cit339/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7782
– volume: 135
  start-page: 45954
  year: 2018
  ident: D3TA06895A/cit228/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.45954
– volume: 52
  start-page: 2552
  year: 2007
  ident: D3TA06895A/cit36/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.09.008
– volume: 4
  start-page: 19384
  year: 2019
  ident: D3TA06895A/cit219/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.07.181
– volume: 9
  start-page: 1
  year: 2019
  ident: D3TA06895A/cit359/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37186-2
– volume: 158
  start-page: 446
  year: 2006
  ident: D3TA06895A/cit234/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.09.062
– volume: 56
  start-page: 289
  year: 2011
  ident: D3TA06895A/cit59/1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2010.11.001
– volume: 20
  start-page: 370
  year: 2021
  ident: D3TA06895A/cit113/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00841-z
– start-page: 353
  volume-title: High Temperature Polymer Electrolyte Membrane Fuel Cells
  year: 2016
  ident: D3TA06895A/cit264/1
  doi: 10.1007/978-3-319-17082-4_17
– volume: 193
  start-page: 691
  year: 2009
  ident: D3TA06895A/cit34/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.04.021
– volume: 11
  start-page: 979
  year: 2018
  ident: D3TA06895A/cit215/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03595K
– volume: 93
  start-page: 106829
  year: 2022
  ident: D3TA06895A/cit274/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106829
– year: 2021
  ident: D3TA06895A/cit522/1
– volume: 160
  start-page: 872
  year: 2006
  ident: D3TA06895A/cit52/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.05.034
– volume: 33
  start-page: 2323
  year: 2008
  ident: D3TA06895A/cit503/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.02.049
– volume: 42
  start-page: 711
  year: 2012
  ident: D3TA06895A/cit151/1
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-012-0448-7
– volume: 355
  start-page: 136764
  year: 2020
  ident: D3TA06895A/cit275/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136764
– volume: 47
  start-page: 18820
  year: 2022
  ident: D3TA06895A/cit555/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.04.067
– volume-title: The Fuel Cell Industry Review 2022
  year: 2024
  ident: D3TA06895A/cit21/1
– volume: 94
  start-page: 1206
  year: 2009
  ident: D3TA06895A/cit195/1
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2009.04.026
– volume: 32
  start-page: 178
  year: 2020
  ident: D3TA06895A/cit218/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.06.005
– volume: 163
  start-page: F842
  year: 2016
  ident: D3TA06895A/cit208/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0801608jes
– volume: 162
  start-page: F310
  year: 2015
  ident: D3TA06895A/cit209/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0751503jes
– volume: 32
  start-page: 4365
  year: 2007
  ident: D3TA06895A/cit262/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.05.036
– volume: 327
  start-page: 119
  year: 2016
  ident: D3TA06895A/cit137/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.07.045
– volume: 152
  start-page: A2256
  year: 2005
  ident: D3TA06895A/cit237/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2050347
– volume: 56
  start-page: 4237
  year: 2011
  ident: D3TA06895A/cit134/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.01.088
– volume: 196
  start-page: 5564
  year: 2011
  ident: D3TA06895A/cit252/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.01.044
– volume: 148
  start-page: 204906
  issue: 20
  year: 2018
  ident: D3TA06895A/cit408/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5018717
– volume: 746
  start-page: 012004
  year: 2016
  ident: D3TA06895A/cit385/1
  publication-title: J. Phys.: Conf. Ser.
– volume: 158
  start-page: B11
  year: 2011
  ident: D3TA06895A/cit535/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3504255
– volume: 349
  start-page: 304
  year: 2010
  ident: D3TA06895A/cit99/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.11.061
– volume: 195
  start-page: 1171
  year: 2010
  ident: D3TA06895A/cit474/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.08.095
– volume: 125
  start-page: 21645
  year: 2021
  ident: D3TA06895A/cit418/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c06014
– volume: 162
  start-page: F519
  year: 2015
  ident: D3TA06895A/cit287/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0361506jes
– volume: 13
  start-page: 16227
  year: 2021
  ident: D3TA06895A/cit353/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c22358
– volume: 40
  start-page: 14723
  year: 2015
  ident: D3TA06895A/cit562/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.08.054
– volume: 364
  start-page: 437
  year: 2017
  ident: D3TA06895A/cit489/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.08.042
– volume: 33
  start-page: 1747
  year: 2008
  ident: D3TA06895A/cit65/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.01.020
– volume: 45
  start-page: 3609
  year: 2020
  ident: D3TA06895A/cit123/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.01.111
– volume: 186
  start-page: 115836
  year: 2019
  ident: D3TA06895A/cit141/1
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.166
– volume: 86
  start-page: 221
  year: 2018
  ident: D3TA06895A/cit117/1
  publication-title: ECS Trans.
  doi: 10.1149/08613.0221ecst
– volume: 211
  start-page: 478
  year: 2016
  ident: D3TA06895A/cit392/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.06.068
– volume: 43
  start-page: 13430
  year: 2018
  ident: D3TA06895A/cit140/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.05.059
– volume: 212
  start-page: 213
  year: 2003
  ident: D3TA06895A/cit471/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(02)00503-3
– volume: 104
  start-page: 4613
  year: 2004
  ident: D3TA06895A/cit64/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr020708r
– volume: 8
  start-page: A156
  year: 2005
  ident: D3TA06895A/cit236/1
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1854781
– volume: 41
  start-page: 7475
  year: 2016
  ident: D3TA06895A/cit128/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.02.156
– volume: 596
  start-page: 117722
  year: 2020
  ident: D3TA06895A/cit232/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.117722
– volume: 19
  start-page: 1444
  year: 2019
  ident: D3TA06895A/cit376/1
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201800193
– volume: 257
  start-page: 89
  year: 2017
  ident: D3TA06895A/cit69/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.054
– volume: 46
  start-page: 4174
  year: 2022
  ident: D3TA06895A/cit159/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7418
– volume: 45
  start-page: 16708
  year: 2020
  ident: D3TA06895A/cit433/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.04.124
– volume: 152
  start-page: E123
  year: 2005
  ident: D3TA06895A/cit166/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1859814
– volume: 273
  start-page: 688
  year: 2015
  ident: D3TA06895A/cit221/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.09.122
– volume: 2
  start-page: 7772
  year: 2019
  ident: D3TA06895A/cit382/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00982
– volume: 4
  start-page: 1516
  year: 2014
  ident: D3TA06895A/cit546/1
  publication-title: ACS Catal.
  doi: 10.1021/cs500116h
– volume: 165
  start-page: F492
  year: 2018
  ident: D3TA06895A/cit552/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0881807jes
– volume: 15
  start-page: 16
  year: 2017
  ident: D3TA06895A/cit8/1
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph15010016
– volume: 172
  start-page: 163
  year: 2007
  ident: D3TA06895A/cit37/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.07.047
– volume: 160
  start-page: F972
  year: 2013
  ident: D3TA06895A/cit539/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.036309jes
– volume: 8
  start-page: 32764
  year: 2016
  ident: D3TA06895A/cit348/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08844
– volume: 44
  start-page: 321
  year: 2013
  ident: D3TA06895A/cit428/1
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4192
– volume: 41
  start-page: 21310
  year: 2016
  ident: D3TA06895A/cit47/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.09.024
– volume: 160
  start-page: 1088
  year: 2006
  ident: D3TA06895A/cit259/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.02.086
– volume: 161
  start-page: F192
  year: 2014
  ident: D3TA06895A/cit401/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.023403jes
– volume: 160
  start-page: 27
  year: 2006
  ident: D3TA06895A/cit494/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.01.047
– volume: 277
  start-page: 115588
  year: 2020
  ident: D3TA06895A/cit380/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115588
– volume: 170
  start-page: 014504
  year: 2023
  ident: D3TA06895A/cit291/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/acb3ff
– year: 2023
  ident: D3TA06895A/cit14/1
– volume: 30
  start-page: 743
  year: 2020
  ident: D3TA06895A/cit23/1
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2020.08.014
– volume: 45
  start-page: 14491
  year: 2020
  ident: D3TA06895A/cit493/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.03.179
– volume: 402
  start-page: 24
  year: 2018
  ident: D3TA06895A/cit279/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.09.004
– volume: 161
  start-page: F1437
  year: 2014
  ident: D3TA06895A/cit563/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0691414jes
– volume: 120
  start-page: 2574
  year: 2016
  ident: D3TA06895A/cit511/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b11871
– volume: 37
  start-page: 9171
  year: 2012
  ident: D3TA06895A/cit51/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.02.190
– volume: 238
  start-page: 516
  year: 2013
  ident: D3TA06895A/cit196/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.194
– volume: 38
  start-page: 8532
  year: 2013
  ident: D3TA06895A/cit278/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.09.101
– volume: 69
  start-page: 147
  year: 2015
  ident: D3TA06895A/cit368/1
  publication-title: ECS Trans.
  doi: 10.1149/06917.0147ecst
– volume: 49
  start-page: 302
  volume-title: IFAC-PapersOnLine
  year: 2016
  ident: D3TA06895A/cit28/1
– volume: 47
  start-page: 2662
  year: 2022
  ident: D3TA06895A/cit309/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.10.196
– volume: 69
  start-page: 323
  year: 2015
  ident: D3TA06895A/cit549/1
  publication-title: ECS Trans.
  doi: 10.1149/06917.0323ecst
– volume: 3
  start-page: 793
  year: 2020
  ident: D3TA06895A/cit53/1
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-020-00080-5
– volume: 167
  start-page: 144
  year: 2017
  ident: D3TA06895A/cit132/1
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.01.080
– volume: 20
  start-page: 499
  year: 2020
  ident: D3TA06895A/cit285/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201900212
– volume: 35
  start-page: 1347
  year: 2010
  ident: D3TA06895A/cit130/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.11.091
– volume: 37
  start-page: 1884
  year: 2012
  ident: D3TA06895A/cit318/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.04.120
– volume-title: EBRD Working Paper No. 231
  year: 2019
  ident: D3TA06895A/cit12/1
  doi: 10.2139/ssrn.3451335
– volume: 42
  start-page: 2636
  year: 2017
  ident: D3TA06895A/cit94/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.07.009
– volume: 45
  start-page: 34818
  year: 2020
  ident: D3TA06895A/cit423/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.05.053
– volume: 44
  start-page: 6141
  year: 2005
  ident: D3TA06895A/cit452/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0491286
– volume: 341
  start-page: 302
  year: 2017
  ident: D3TA06895A/cit496/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.029
– volume: 109
  start-page: 1029
  year: 2012
  ident: D3TA06895A/cit453/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1114672109
– volume: 46
  start-page: 33934
  year: 2021
  ident: D3TA06895A/cit481/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.07.211
– volume: 2100809
  start-page: 2100809
  year: 2022
  ident: D3TA06895A/cit155/1
  publication-title: Energy Technol.
  doi: 10.1002/ente.202100809
– volume: 2
  start-page: 285
  year: 2007
  ident: D3TA06895A/cit505/1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)17074-X
– volume: 24
  start-page: 529
  year: 2020
  ident: D3TA06895A/cit566/1
  publication-title: Environ. Clim. Technol.
  doi: 10.2478/rtuect-2020-0033
– volume: 43
  start-page: 11820
  year: 2018
  ident: D3TA06895A/cit120/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.03.047
– volume: 5
  start-page: 10602
  year: 2018
  ident: D3TA06895A/cit442/1
  publication-title: Mater. Today: Proc.
– volume: 13
  start-page: 2255
  year: 2020
  ident: D3TA06895A/cit6/1
  publication-title: Energies
  doi: 10.3390/en13092255
– volume: 19
  start-page: 587
  year: 2017
  ident: D3TA06895A/cit92/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP04855B
– volume: 118
  start-page: 502
  year: 2017
  ident: D3TA06895A/cit530/1
  publication-title: Energy
  doi: 10.1016/j.energy.2016.10.061
– volume: 129
  start-page: 416
  year: 2014
  ident: D3TA06895A/cit454/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.02.088
– volume: 521
  start-page: 230851
  year: 2022
  ident: D3TA06895A/cit383/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230851
– volume: 19
  start-page: 601
  year: 2017
  ident: D3TA06895A/cit93/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP05331A
– volume: 231
  start-page: 264
  year: 2013
  ident: D3TA06895A/cit50/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.11.126
– volume: 5
  start-page: 66
  year: 2022
  ident: D3TA06895A/cit316/1
  publication-title: Mater. Sci. Energy Technol.
– volume: 12
  start-page: 12544
  year: 2010
  ident: D3TA06895A/cit213/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp00433b
– volume: 21
  start-page: 1319
  year: 2014
  ident: D3TA06895A/cit363/1
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S1600577514016348
– volume: 150
  start-page: A1052
  year: 2003
  ident: D3TA06895A/cit469/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1584440
– volume-title: 4th PEFC and H2 Forum B1108
  year: 2013
  ident: D3TA06895A/cit479/1
– volume: 285
  start-page: 499
  year: 2015
  ident: D3TA06895A/cit167/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.03.109
– volume: 165
  start-page: F3118
  year: 2018
  ident: D3TA06895A/cit554/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0161806jes
– volume: 37
  start-page: 18272
  year: 2012
  ident: D3TA06895A/cit192/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.09.016
– volume: 254
  start-page: 113659
  year: 2019
  ident: D3TA06895A/cit250/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113659
– volume: 80
  start-page: 19
  year: 2017
  ident: D3TA06895A/cit417/1
  publication-title: ECS Trans.
  doi: 10.1149/08008.0019ecst
– volume: 7
  start-page: 16
  year: 2017
  ident: D3TA06895A/cit25/1
  publication-title: Catalysts
  doi: 10.3390/catal7010016
– volume: 42
  start-page: 27230
  year: 2017
  ident: D3TA06895A/cit547/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.09.018
– volume: 167
  start-page: 064510
  year: 2020
  ident: D3TA06895A/cit394/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab7d91
– volume: 641
  start-page: 119868
  year: 2022
  ident: D3TA06895A/cit548/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119868
– volume: 88
  start-page: 266
  year: 2017
  ident: D3TA06895A/cit386/1
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2017.06.037
– volume: 22
  start-page: 18919
  year: 2020
  ident: D3TA06895A/cit373/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP01356K
– volume: 35
  start-page: 11649
  year: 2010
  ident: D3TA06895A/cit171/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.03.137
– volume: 8
  start-page: 2000085
  year: 2020
  ident: D3TA06895A/cit499/1
  publication-title: Energy Technol.
  doi: 10.1002/ente.202000085
– volume: 7
  start-page: 1
  year: 2010
  ident: D3TA06895A/cit448/1
  publication-title: J. Fuel Cell Sci. Technol.
  doi: 10.1115/1.4001353
– volume: 171
  start-page: 670
  year: 2007
  ident: D3TA06895A/cit258/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.06.072
– volume: 165
  start-page: F863
  year: 2018
  ident: D3TA06895A/cit207/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1201810jes
– volume: 350
  start-page: 94
  year: 2017
  ident: D3TA06895A/cit358/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.058
– volume: 9
  start-page: 325
  year: 2009
  ident: D3TA06895A/cit242/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.200800134
– start-page: 2161
  volume-title: ECS Meet. Abstr.
  year: 2020
  ident: D3TA06895A/cit197/1
– volume: 17
  start-page: 778
  year: 2017
  ident: D3TA06895A/cit396/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201700033
– volume: 19
  start-page: 3792
  year: 2017
  ident: D3TA06895A/cit431/1
  publication-title: CrystEngComm
  doi: 10.1039/C7CE00599G
– volume: 47
  start-page: 8799
  year: 2022
  ident: D3TA06895A/cit364/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.12.241
– volume: 36
  start-page: 1837
  year: 2011
  ident: D3TA06895A/cit78/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.01.036
– volume: 189
  start-page: 943
  year: 2009
  ident: D3TA06895A/cit91/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.12.115
– volume: 164
  start-page: F704
  year: 2017
  ident: D3TA06895A/cit529/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0081707jes
– volume: 270
  start-page: 627
  year: 2014
  ident: D3TA06895A/cit434/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.06.171
– volume: 31
  start-page: 69
  year: 2019
  ident: D3TA06895A/cit341/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.05.019
– volume: 58
  start-page: 519
  year: 2013
  ident: D3TA06895A/cit467/1
  publication-title: ECS Trans.
  doi: 10.1149/05801.0519ecst
– volume: 493
  start-page: 80
  year: 2015
  ident: D3TA06895A/cit90/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.06.010
– volume: 2
  start-page: 044005
  year: 2020
  ident: D3TA06895A/cit357/1
  publication-title: JPhys Energy
  doi: 10.1088/2515-7655/abb783
– volume: 176
  start-page: 428
  year: 2008
  ident: D3TA06895A/cit206/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.08.055
– volume: 168
  start-page: 074507
  year: 2021
  ident: D3TA06895A/cit351/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac154e
– volume: 14
  start-page: 213
  year: 2010
  ident: D3TA06895A/cit105/1
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-008-0678-0
– volume: 10
  start-page: 377
  year: 2010
  ident: D3TA06895A/cit508/1
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201000010
– volume: 41
  start-page: 10044
  year: 2016
  ident: D3TA06895A/cit103/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.02.043
– volume: 21
  start-page: 391
  year: 2004
  ident: D3TA06895A/cit533/1
  publication-title: ECS Proc
– volume: 18
  start-page: 586
  year: 2018
  ident: D3TA06895A/cit545/1
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201700220
– volume: 7
  start-page: 1393
  year: 2005
  ident: D3TA06895A/cit45/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2005.09.017
– volume: 171
  start-page: 493
  year: 2019
  ident: D3TA06895A/cit4/1
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.011
– volume: 5
  start-page: 6436
  year: 2012
  ident: D3TA06895A/cit148/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03055a
– volume: 31
  start-page: 1
  year: 2019
  ident: D3TA06895A/cit66/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901900
– volume: 161
  start-page: 107768
  year: 2022
  ident: D3TA06895A/cit345/1
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107768
– volume: 45
  start-page: 13045
  year: 2020
  ident: D3TA06895A/cit246/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.02.215
SSID ssj0000800699
Score 2.5916603
Snippet High-temperature (120-200 °C) polymer electrolyte membrane fuel cells (HT-PEMFCs) are promising energy conversion devices that offer multiple advantages over...
High-temperature (120–200 °C) polymer electrolyte membrane fuel cells (HT-PEMFCs) are promising energy conversion devices that offer multiple advantages over...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 814
SubjectTerms Accelerated tests
Catalysts
Electrochemical analysis
Electrochemistry
Electrolytes
Electrolytic cells
Energy conversion
Fuel cells
Fuel technology
High temperature
Low temperature
Phosphoric acid
Polymers
Proton exchange membrane fuel cells
Reaction kinetics
Temperature tolerance
Test procedures
Thermal management
Water
Title Challenges and opportunities for characterisation of high-temperature polymer electrolyte membrane fuel cells: a review
URI https://www.proquest.com/docview/3030999442
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6l6QUOiK0iUNBIcEGRi-3xMuZmlVQFhXJxpIiLZc9yylKljlD5rfwY3mwedxECLlbkLbHflzfvvfnmewi9axueRJRGAScFCZI0lwFtUhlwSiLehi3LuWZbXGTni-TLMl2ORr8GrKV9156wn_euK_kfq8I-sKtaJfsPlu1vCjvgM9gXtmBh2P6VjU9dJxQjtLy9VMH0fqNFUjV_kHk5Zh8aQjoeKEUqK6es-jRcr8VuajvirK47MV2LNaTREIDKvVhNVXX_yiyL3vm5hLshLUS_5rHhi20fuZNpaZYEuSNaYtwsONQ1e7eAS3F0-_L-9z2DPF0TDUrerL2bNM7bUXL68lC3deyQgVCAmeuyjUeUBgE4wa_DKkdsyDE-Jza1FEdk1UQV-xjeX8ZhGippVOPOxXCfaZrbO_x4COxk4L6VlM4wFAiNwvqdYSYkSqWVk64JM1qkg8HUEQguvtVni_m8rmbL6gAdxpDExGN0WM6qz_O-Bqii9Uy3OO1_u1PQJcUHf_ubMZNPhA52rkuNjoaqx-iRtTkuDSafoJHYPEUPB-KWz9APj04MlsY30IkBBvg2OvFW4tvoxBadeIBO7NCJFTqxRudH3GCDzedocTarTs8D2-YjYBC8dkHa5BBVykzItkiatokSmYZCQiaQU84zGFBYxNpMRFTSNiSEyaKhPKWcxVJQGKKO0Hiz3YgXCLeSKRoAVz0fklDAvfK0zYXkAo5QTibovXuRNbMa-KoVy6rWXAxS1J9IVeqXXk7Q2_7cS6P8cu9Zx84etfUMVzVR85ZFkSTxBB2BjfrrvUlf_vm6V-iB_xcco3G324vXEP127RsLot_3krsn
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+and+opportunities+for+characterisation+of+high-temperature+polymer+electrolyte+membrane+fuel+cells%3A+a+review&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zucconi%2C+Adam&rft.au=Hack%2C+Jennifer&rft.au=Stocker%2C+Richard&rft.au=Suter%2C+Theo+A+M&rft.date=2024-04-02&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=12&rft.issue=14&rft.spage=8014&rft.epage=8064&rft_id=info:doi/10.1039%2Fd3ta06895a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon