Challenges and opportunities for characterisation of high-temperature polymer electrolyte membrane fuel cells: a review
High-temperature (120-200 °C) polymer electrolyte membrane fuel cells (HT-PEMFCs) are promising energy conversion devices that offer multiple advantages over the established low-temperature (LT) PEMFC technology, namely: faster reaction kinetics, improved impurity tolerance, simpler water and therma...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 12; no. 14; pp. 814 - 864 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
02.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-temperature (120-200 °C) polymer electrolyte membrane fuel cells (HT-PEMFCs) are promising energy conversion devices that offer multiple advantages over the established low-temperature (LT) PEMFC technology, namely: faster reaction kinetics, improved impurity tolerance, simpler water and thermal management, and increased potential to utilise waste heat. Whilst HT- and LT-PEMFCs share several components, important differences in the membrane materials, transport mechanisms and operating conditions provide new challenges and considerations for characterisation. This review focuses on phosphoric acid-doped HT-PEMFCs and provides a detailed discussion of the similarities and differences compared to LT-PEMFCs, as well as state-of-the-art performance and materials. Commonly used characterisation techniques including electrochemical, imaging, and spectroscopic methods are reviewed with a focus on use in HT-PEMFCs, how experimentation or analyses differ from LT-PEMFCs, and new opportunities for research using these techniques. Particular consideration is given to the presence of phosphoric acid and the absence of liquid water. The importance of accelerated stress tests for effective characterisation and durability estimation for HT-PEMFCs is discussed, and existing protocols are comprehensively reviewed focusing on acid loss, catalyst layer degradation, and start-up/shutdown cycling. The lack of standardisation of these testing protocols in HT-PEMFC research is highlighted as is the need to develop such standards.
High-temperature polymer electrolyte membrane fuel cells require advancements to capitalise on their advantages over conventional PEMFCs, the critical roles and opportunities for characterisation and durability testing are discussed in this review. |
---|---|
AbstractList | High-temperature (120–200 °C) polymer electrolyte membrane fuel cells (HT-PEMFCs) are promising energy conversion devices that offer multiple advantages over the established low-temperature (LT) PEMFC technology, namely: faster reaction kinetics, improved impurity tolerance, simpler water and thermal management, and increased potential to utilise waste heat. Whilst HT- and LT-PEMFCs share several components, important differences in the membrane materials, transport mechanisms and operating conditions provide new challenges and considerations for characterisation. This review focuses on phosphoric acid-doped HT-PEMFCs and provides a detailed discussion of the similarities and differences compared to LT-PEMFCs, as well as state-of-the-art performance and materials. Commonly used characterisation techniques including electrochemical, imaging, and spectroscopic methods are reviewed with a focus on use in HT-PEMFCs, how experimentation or analyses differ from LT-PEMFCs, and new opportunities for research using these techniques. Particular consideration is given to the presence of phosphoric acid and the absence of liquid water. The importance of accelerated stress tests for effective characterisation and durability estimation for HT-PEMFCs is discussed, and existing protocols are comprehensively reviewed focusing on acid loss, catalyst layer degradation, and start-up/shutdown cycling. The lack of standardisation of these testing protocols in HT-PEMFC research is highlighted as is the need to develop such standards. High-temperature (120-200 °C) polymer electrolyte membrane fuel cells (HT-PEMFCs) are promising energy conversion devices that offer multiple advantages over the established low-temperature (LT) PEMFC technology, namely: faster reaction kinetics, improved impurity tolerance, simpler water and thermal management, and increased potential to utilise waste heat. Whilst HT- and LT-PEMFCs share several components, important differences in the membrane materials, transport mechanisms and operating conditions provide new challenges and considerations for characterisation. This review focuses on phosphoric acid-doped HT-PEMFCs and provides a detailed discussion of the similarities and differences compared to LT-PEMFCs, as well as state-of-the-art performance and materials. Commonly used characterisation techniques including electrochemical, imaging, and spectroscopic methods are reviewed with a focus on use in HT-PEMFCs, how experimentation or analyses differ from LT-PEMFCs, and new opportunities for research using these techniques. Particular consideration is given to the presence of phosphoric acid and the absence of liquid water. The importance of accelerated stress tests for effective characterisation and durability estimation for HT-PEMFCs is discussed, and existing protocols are comprehensively reviewed focusing on acid loss, catalyst layer degradation, and start-up/shutdown cycling. The lack of standardisation of these testing protocols in HT-PEMFC research is highlighted as is the need to develop such standards. High-temperature polymer electrolyte membrane fuel cells require advancements to capitalise on their advantages over conventional PEMFCs, the critical roles and opportunities for characterisation and durability testing are discussed in this review. |
Author | Rettie, Alexander J. E Zucconi, Adam Suter, Theo A. M Brett, Dan J. L Stocker, Richard Hack, Jennifer |
AuthorAffiliation | HORIBA Instruments Inc HORIBA MIRA Department of Materials Science & Engineering Electrochemical Innovation Lab Department of Chemical Engineering Mobility Innovation Hub University of Sheffield UCL |
AuthorAffiliation_xml | – sequence: 0 name: HORIBA MIRA – sequence: 0 name: UCL – sequence: 0 name: Electrochemical Innovation Lab – sequence: 0 name: Department of Materials Science & Engineering – sequence: 0 name: Mobility Innovation Hub – sequence: 0 name: University of Sheffield – sequence: 0 name: Department of Chemical Engineering – sequence: 0 name: HORIBA Instruments Inc |
Author_xml | – sequence: 1 givenname: Adam surname: Zucconi fullname: Zucconi, Adam – sequence: 2 givenname: Jennifer surname: Hack fullname: Hack, Jennifer – sequence: 3 givenname: Richard surname: Stocker fullname: Stocker, Richard – sequence: 4 givenname: Theo A. M surname: Suter fullname: Suter, Theo A. M – sequence: 5 givenname: Alexander J. E surname: Rettie fullname: Rettie, Alexander J. E – sequence: 6 givenname: Dan J. L surname: Brett fullname: Brett, Dan J. L |
BookMark | eNptkc9rFTEQx4NUsNZevAsBb8Lq5GV_JN4ez59Q8FLPy2x20peS3ayTrKX_vWufVBDnMj_4zAzznefibE4zCfFSwVsF2r4bdUFojW3wiTjfQQNVV9v27DE25pm4zPkWNjMArbXn4u5wxBhpvqEscR5lWpbEZZ1DCVvFJ5buiIyuEIeMJaRZJi-P4eZYFZoWYiwrk1xSvJ-IJUVyhbekkJxoGhhnkn6lKB3FmN9LlEw_A929EE89xkyXf_yF-P7p4_XhS3X17fPXw_6qclp1pWqwq6H1LfnB1jigqn0D5BulOjOOrenAKTe0pIw3A2jtvEUzNmZ0O08GOn0hXp_mLpx-rJRLf5tWnreVvQYN1tq63m0UnCjHKWcm37tQHq4tjCH2CvrfCvcf9PX-QeH91vLmn5aFw4R8_3_41Qnm7B65v-_SvwB7w4qE |
CitedBy_id | crossref_primary_10_1016_j_electacta_2024_145620 crossref_primary_10_59761_RCR5121 crossref_primary_10_1039_D4TA03998J crossref_primary_10_1016_j_fuel_2024_133623 crossref_primary_10_1007_s12209_024_00396_z crossref_primary_10_1016_j_cscee_2024_100920 crossref_primary_10_1016_S1872_2067_24_60162_2 crossref_primary_10_1016_j_ijhydene_2025_02_424 crossref_primary_10_1016_j_apenergy_2025_125493 crossref_primary_10_1016_j_jece_2024_114998 crossref_primary_10_1016_j_paerosci_2024_101052 crossref_primary_10_1016_j_ijhydene_2024_06_324 crossref_primary_10_1016_j_memsci_2024_123483 crossref_primary_10_1016_j_cej_2024_156408 crossref_primary_10_1016_j_jallcom_2024_177546 crossref_primary_10_1149_1945_7111_ad790e crossref_primary_10_3390_ijms25116001 crossref_primary_10_1016_j_ijhydene_2024_10_293 crossref_primary_10_1016_j_mtcomm_2024_110232 crossref_primary_10_1021_acssuschemeng_4c10258 crossref_primary_10_1002_asia_202400662 crossref_primary_10_1016_j_memsci_2024_122997 crossref_primary_10_1016_j_ijhydene_2024_04_028 crossref_primary_10_14579_MEMBRANE_JOURNAL_2024_34_6_348 crossref_primary_10_1016_j_jpowsour_2024_235411 crossref_primary_10_1007_s11581_025_06167_7 |
Cites_doi | 10.1149/2.005208jes 10.1002/fuce.201800047 10.1016/j.ijhydene.2012.02.024 10.3762/bjnano.5.5 10.1016/j.electacta.2022.140121 10.1016/j.ijhydene.2018.05.166 10.1016/j.jpowsour.2013.10.141 10.1016/j.jpowsour.2021.230036 10.1002/adma.200701767 10.1021/acsenergylett.1c00718 10.1016/j.jpowsour.2016.06.119 10.1016/j.jpowsour.2007.03.082 10.1016/j.ijhydene.2016.09.109 10.1063/1.2946664 10.1016/S0378-7753(03)00797-3 10.1002/fuce.200900153 10.1016/j.jelechem.2020.113832 10.1016/j.electacta.2015.06.081 10.1002/fuce.201100006 10.1002/fuce.200800145 10.1016/j.electacta.2015.09.097 10.3390/en14112994 10.1016/j.ijhydene.2012.04.093 10.1016/j.jpowsour.2022.231319 10.1016/j.apcatb.2020.119717 10.1016/j.jpowsour.2016.12.075 10.1016/j.elecom.2008.01.018 10.1021/jp309282n 10.1149/1945-7111/abf77b 10.1016/j.ijhydene.2010.01.005 10.1016/j.electacta.2017.05.028 10.1149/2.0101806jes 10.1016/j.electacta.2006.03.008 10.1016/j.ssi.2013.08.032 10.1007/s12678-017-0427-1 10.1016/j.cscee.2022.100260 10.1016/j.ijhydene.2010.04.082 10.1149/05801.0919ecst 10.1016/j.enconman.2019.112198 10.1002/aenm.202101025 10.1149/1.3569711 10.1016/j.pecs.2020.100842 10.1021/acs.jpclett.6b00216 10.1016/j.apsusc.2020.145444 10.1016/j.ijheatmasstransfer.2006.07.003 10.1016/j.jpowsour.2016.08.092 10.1016/j.memsci.2016.09.009 10.3762/bjnano.6.8 10.1016/j.ijhydene.2011.03.059 10.1149/1.3436652 10.1038/s41560-021-00971-x 10.1016/j.ijhydene.2014.07.017 10.1039/D1TA01002F 10.1039/C8RA07177B 10.1016/j.ijhydene.2015.12.134 10.1016/j.jpowsour.2019.227074 10.3390/nano8100775 10.1021/cm051781b 10.1016/j.electacta.2016.06.121 10.1016/j.ijhydene.2016.04.132 10.1016/j.jpowsour.2022.231000 10.1007/s10800-008-9758-1 10.1016/j.apsusc.2022.152579 10.3390/en13030567 10.1134/S102319351005006X 10.1016/j.ijhydene.2016.10.152 10.1002/fuce.201200139 10.1002/fuce.201500167 10.1016/j.electacta.2017.05.111 10.1016/j.jpowsour.2023.233574 10.1016/j.cej.2015.03.026 10.1016/S0022-0728(83)80542-7 10.1016/j.jpowsour.2009.08.097 10.1016/j.electacta.2013.12.030 10.1016/j.jpowsour.2020.228469 10.1016/j.jpowsour.2020.229179 10.1016/j.compstruct.2014.09.010 10.1002/cnma.202200008 10.1149/1.1803051 10.3390/ma13061474 10.1021/acscatal.0c00779 10.1016/j.jpowsour.2014.05.023 10.1177/09540083211014251 10.1149/1.1739314 10.1016/j.egyai.2020.100014 10.1016/j.jpcs.2004.05.005 10.1007/s11356-019-05550-y 10.1016/j.electacta.2006.03.108 10.1039/c3py00408b 10.3390/membranes9070083 10.1007/978-1-84882-846-9 10.1016/j.jpowsour.2021.230347 10.1016/j.jpowsour.2014.11.115 10.1016/j.memsci.2013.12.004 10.1016/j.ijhydene.2021.01.192 10.1016/j.memsci.2019.117691 10.1016/j.ijhydene.2013.03.012 10.1149/2.045405jes 10.1002/fuce.201000181 10.1016/j.jpowsour.2017.05.021 10.1016/j.ijhydene.2017.02.030 10.1016/j.jpowsour.2019.04.045 10.1016/j.ijhydene.2019.11.069 10.1016/j.progpolymsci.2011.01.003 10.1002/fuce.201300186 10.1149/1.3635675 10.1007/s10450-020-00295-4 10.1149/1.2780958 10.1016/j.ijhydene.2018.01.174 10.1016/j.ijhydene.2012.07.023 10.1016/j.elecom.2013.06.012 10.1016/j.jpowsour.2012.01.074 10.1021/cr050182l 10.1016/j.energy.2016.08.086 10.1149/1.2172559 10.1016/j.ijhydene.2011.09.159 10.1039/c1jm10093a 10.1016/j.ijhydene.2020.02.013 10.1016/j.jpowsour.2012.07.129 10.1016/j.jpowsour.2015.02.107 10.1002/fuce.201300236 10.1016/j.jpowsour.2014.02.016 10.1016/j.electacta.2017.02.011 10.1016/j.electacta.2020.136778 10.1016/j.ijhydene.2014.07.099 10.1149/1.3556103 10.1149/2.0031409jes 10.1021/acs.jpcc.1c10334 10.1002/fuce.201700144 10.1016/j.renene.2023.05.008 10.1016/j.ijhydene.2022.12.344 10.1149/1945-7111/abef87 10.3390/jimaging2010002 10.1016/j.powera.2022.100084 10.1002/pi.4708 10.1016/j.apcatb.2016.11.053 10.1016/j.apenergy.2013.02.067 10.1107/S1600576719008343 10.1016/j.jpowsour.2019.03.097 10.1080/23322039.2016.1170653 10.1002/fuce.201700181 10.21037/qims.2017.11.03 10.1149/2.0011407eel 10.1002/fuce.201200186 10.1016/j.ijhydene.2007.03.013 10.1016/j.ijhydene.2014.08.042 10.1149/1.3486168 10.1016/j.renene.2017.02.015 10.1016/j.apenergy.2009.09.012 10.1007/s10800-013-0597-3 10.1002/celc.201500228 10.1088/1748-9326/ab6658 10.1016/j.memsci.2013.04.014 10.1016/j.memsci.2018.05.006 10.1039/D0CS00296H 10.1016/j.memsci.2013.10.018 10.1016/j.electacta.2015.03.123 10.1002/fuce.201100197 10.1016/j.memsci.2015.12.065 10.1002/adfm.201101525 10.1016/j.memsci.2017.04.067 10.1016/j.jpowsour.2017.01.114 10.1149/1.2781004 10.1016/j.jpowsour.2018.07.085 10.1016/j.pecs.2017.10.002 10.1016/j.econmod.2017.01.006 10.1016/j.jpowsour.2014.01.032 10.1016/j.jpowsour.2021.230951 10.1016/j.progpolymsci.2008.12.003 10.1016/j.apenergy.2021.116481 10.1016/j.ijhydene.2012.07.032 10.4061/2011/261065 10.1016/j.ijhydene.2020.10.116 10.1149/2.0051806jes 10.1016/j.snb.2009.10.058 10.3390/ma10070687 10.1016/j.powera.2020.100042 10.1016/j.memsci.2006.01.028 10.1016/j.jpowsour.2015.08.094 10.1002/fuce.200320239 10.1016/j.jpowsour.2005.10.059 10.3390/en3040770 10.1039/C9TA01756A 10.1016/S0022-0728(00)00492-7 10.1021/acs.jpcc.7b11189 10.1016/j.ijhydene.2009.05.003 10.1016/j.apenergy.2021.117357 10.1016/j.ijhydene.2016.05.091 10.1016/j.jpowsour.2008.10.124 10.1016/j.jpowsour.2019.227279 10.1115/1.1811119 10.1016/j.jpowsour.2003.12.035 10.3866/PKU.WHXB202009049 10.1016/j.memsci.2007.09.037 10.1039/c2ee21834h 10.1016/j.jpowsour.2019.227090 10.1016/j.ijhydene.2017.07.054 10.1016/j.ijhydene.2018.07.192 10.1002/fuce.201800127 10.1016/j.jechem.2021.06.024 10.1016/j.jpowsour.2017.07.109 10.1149/2.0501814jes 10.1016/j.ijhydene.2012.02.148 10.1149/2.0341806jes 10.1039/c1jm10439j 10.1016/j.jclepro.2020.121038 10.1149/2.0591512jes 10.1149/06403.0741ecst 10.1016/j.electacta.2007.11.002 10.3390/ijms22115430 10.1016/j.ijhydene.2011.01.036 10.1149/2.036408jes 10.1246/cl.190017 10.1149/1.3247355 10.1016/j.jpowsour.2021.230059 10.1016/j.memsci.2020.117981 10.1016/j.mattod.2018.03.001 10.1149/1945-7111/abf4eb 10.1016/j.nanoen.2020.105534 10.1149/1.1619984 10.3390/en5082724 10.1016/j.jpowsour.2005.01.075 10.1149/2.072404jes 10.1016/j.jpowsour.2013.04.011 10.1149/1.2929823 10.1016/j.jpowsour.2005.06.027 10.1016/j.memsci.2007.12.025 10.1016/j.jpowsour.2010.12.084 10.1016/S0013-4686(03)00528-0 10.1016/j.jpowsour.2011.08.035 10.1039/c2ee03055a 10.1016/j.ijhydene.2021.05.010 10.1016/j.ijhydene.2016.10.040 10.1016/j.pecs.2019.05.002 10.1016/j.electacta.2022.140133 10.3390/en16124671 10.1149/1.1830355 10.1149/2.0231806jes 10.1016/j.jpowsour.2007.11.081 10.1016/j.ijhydene.2012.09.077 10.1002/fuce.201500160 10.1007/s11244-008-9117-9 10.1016/j.ssi.2004.02.013 10.1007/s11242-022-01833-0 10.3390/en12010152 10.1149/1945-7111/abc10f 10.1149/2.067205jes 10.1016/j.electacta.2019.06.118 10.1038/s41467-022-29313-5 10.1016/j.apsusc.2020.145461 10.1149/1.2981859 10.1039/c0jm04265j 10.1016/j.egypro.2012.09.009 10.1149/2.1051714jes 10.1039/C6TA01562J 10.1016/j.ijhydene.2014.09.018 10.1016/j.ijhydene.2016.10.035 10.1016/j.apenergy.2018.08.125 10.1149/1.2789377 10.1016/j.jpowsour.2013.05.046 10.1016/j.ijhydene.2015.03.148 10.1039/B9NR00140A 10.1016/j.jpowsour.2009.06.059 10.1016/j.jpowsour.2004.11.054 10.1038/srep30568 10.1002/fuce.201000180 10.1016/j.jpowsour.2015.07.011 10.1016/S1388-2481(01)00234-X 10.1021/acsami.0c10527 10.1016/j.jpowsour.2014.09.159 10.1021/acs.jpcb.5b09684 10.1016/j.jpowsour.2012.07.015 10.1016/j.jpowsour.2007.10.065 10.1002/fuce.200800024 10.1016/j.ijhydene.2016.06.149 10.1016/j.ijhydene.2019.01.051 10.1039/C8EE01157E 10.1016/j.jpowsour.2010.10.017 10.1149/2.0961501jes 10.1021/acsami.1c22336 10.1002/fuce.200400050 10.1007/978-3-319-17082-4_19 10.1002/er.5266 10.1016/j.ijhydene.2021.07.052 10.1002/aic.10780 10.1002/cssc.201402015 10.1016/j.ijhydene.2014.12.082 10.1016/j.ijhydene.2013.11.103 10.1016/j.apenergy.2020.115958 10.1016/j.ijhydene.2021.08.197 10.1021/acsami.1c04560 10.1016/j.energy.2021.120168 10.1016/j.ijhydene.2020.03.068 10.1149/1.2006487 10.1016/j.ijhydene.2010.10.076 10.1016/j.memsci.2021.119288 10.1016/j.electacta.2020.136464 10.1016/j.ijhydene.2019.05.210 10.1016/j.jpowsour.2003.11.081 10.1016/j.electacta.2018.09.021 10.1149/1.1895225 10.1103/PhysRevLett.112.248301 10.1063/5.0031447 10.1021/acsomega.1c01535 10.2109/jcersj2.16267 10.1002/fuce.201900086 10.1002/cphc.201000487 10.1016/bs.arnmr.2015.11.003 10.1016/j.ijhydene.2019.05.114 10.1016/j.jpowsour.2013.08.112 10.1016/0167-2738(87)90050-6 10.1002/fuce.201300008 10.1016/j.jmr.2013.06.015 10.1016/j.ijhydene.2013.04.152 10.1016/j.rser.2013.08.013 10.1016/j.ijhydene.2019.08.219 10.1016/j.ijhydene.2018.07.070 10.1016/j.memsci.2017.07.020 10.1016/j.jpowsour.2015.07.069 10.1016/j.jpowsour.2014.01.106 10.1007/s12678-014-0202-5 10.1016/j.ijhydene.2013.05.072 10.1149/2.0681503jes 10.1016/0013-4686(92)87026-V 10.1016/j.ijhydene.2008.01.053 10.1016/j.ijhydene.2014.08.010 10.1016/j.ijhydene.2014.09.095 10.1002/fuce.201000101 10.1021/jp803589w 10.1016/j.ijhydene.2014.02.023 10.3934/energy.2018.4.607 10.1149/1.2266163 10.1149/1.3560163 10.1016/j.jpowsour.2006.07.008 10.1038/s41598-021-04711-9 10.1016/j.memsci.2019.117354 10.1007/s10800-012-0446-9 10.1016/j.ces.2018.08.029 10.1016/j.ijhydene.2018.09.103 10.1016/j.energy.2021.122356 10.1016/j.powera.2020.100036 10.1016/j.jpowsour.2014.06.146 10.1021/acscatal.2c02630 10.1016/j.electacta.2011.08.039 10.1596/978-1-4648-1728-1 10.1016/j.jpowsour.2014.08.136 10.1016/j.ijhydene.2016.07.009 10.3390/en11092214 10.1038/s41560-021-00956-w 10.1016/j.electacta.2007.04.106 10.1016/j.ijhydene.2019.10.186 10.1016/j.jpowsour.2019.226922 10.1016/j.jpowsour.2007.05.071 10.1021/acsomega.9b01763 10.1016/0010-4655(92)90132-I 10.1016/j.elecom.2008.06.016 10.1016/j.scitotenv.2020.140326 10.1016/j.apcatb.2011.05.043 10.1016/j.jpowsour.2010.03.060 10.1016/j.memsci.2019.117218 10.1149/1.2100333 10.1149/1.2400204 10.3390/polym12030515 10.1016/j.coelec.2017.08.010 10.1016/B978-0-444-53688-4.00006-1 10.1016/j.ijhydene.2020.12.001 10.5370/JICEE.2012.2.4.391 10.1021/acs.jpcc.0c00347 10.1149/2.0061806jes 10.1007/978-3-319-17082-4_14 10.1016/j.ijhydene.2012.04.095 10.1016/j.jpowsour.2020.228285 10.1021/jp203016u 10.1038/s43586-021-00039-w 10.1038/pj.2015.36 10.1149/1.3468615 10.1080/02670844.2019.1597426 10.1016/j.ijhydene.2016.06.211 10.1021/jp311924q 10.1016/j.jpowsour.2011.06.098 10.1016/j.compstruct.2015.03.063 10.1016/j.energy.2015.07.026 10.1016/j.ijhydene.2015.09.056 10.1016/j.pecs.2020.100859 10.1016/j.jpowsour.2015.02.037 10.1016/j.ijhydene.2014.06.045 10.1016/j.electacta.2016.12.148 10.1002/fuce.201500141 10.1002/er.7782 10.1002/app.45954 10.1016/j.electacta.2006.09.008 10.1016/j.ijhydene.2018.07.181 10.1038/s41598-018-37186-2 10.1016/j.jpowsour.2005.09.062 10.1016/j.pmatsci.2010.11.001 10.1038/s41563-020-00841-z 10.1007/978-3-319-17082-4_17 10.1016/j.jpowsour.2009.04.021 10.1039/C7EE03595K 10.1016/j.nanoen.2021.106829 10.1016/j.jpowsour.2006.05.034 10.1016/j.ijhydene.2008.02.049 10.1007/s10800-012-0448-7 10.1016/j.electacta.2020.136764 10.1016/j.ijhydene.2022.04.067 10.1016/j.polymdegradstab.2009.04.026 10.1016/j.mattod.2019.06.005 10.1149/2.0801608jes 10.1149/2.0751503jes 10.1016/j.ijhydene.2007.05.036 10.1016/j.jpowsour.2016.07.045 10.1149/1.2050347 10.1016/j.electacta.2011.01.088 10.1016/j.jpowsour.2011.01.044 10.1063/1.5018717 10.1149/1.3504255 10.1016/j.memsci.2009.11.061 10.1016/j.jpowsour.2009.08.095 10.1021/acs.jpcc.1c06014 10.1149/2.0361506jes 10.1021/acsami.0c22358 10.1016/j.ijhydene.2015.08.054 10.1016/j.jpowsour.2017.08.042 10.1016/j.ijhydene.2008.01.020 10.1016/j.ijhydene.2019.01.111 10.1016/j.energy.2019.07.166 10.1149/08613.0221ecst 10.1016/j.electacta.2016.06.068 10.1016/j.ijhydene.2018.05.059 10.1016/S0376-7388(02)00503-3 10.1021/cr020708r 10.1149/1.1854781 10.1016/j.ijhydene.2016.02.156 10.1016/j.memsci.2019.117722 10.1002/tcr.201800193 10.1016/j.electacta.2017.10.054 10.1002/er.7418 10.1016/j.ijhydene.2020.04.124 10.1149/1.1859814 10.1016/j.jpowsour.2014.09.122 10.1021/acsaem.9b00982 10.1021/cs500116h 10.1149/2.0881807jes 10.3390/ijerph15010016 10.1016/j.jpowsour.2007.07.047 10.1149/2.036309jes 10.1021/acsami.6b08844 10.1002/jrs.4192 10.1016/j.ijhydene.2016.09.024 10.1016/j.jpowsour.2006.02.086 10.1149/2.023403jes 10.1016/j.jpowsour.2006.01.047 10.1016/j.apenergy.2020.115588 10.1149/1945-7111/acb3ff 10.1016/j.pnsc.2020.08.014 10.1016/j.ijhydene.2020.03.179 10.1016/j.jpowsour.2018.09.004 10.1149/2.0691414jes 10.1021/acs.jpcc.5b11871 10.1016/j.ijhydene.2012.02.190 10.1016/j.jpowsour.2013.03.194 10.1016/j.ijhydene.2012.09.101 10.1149/06917.0147ecst 10.1016/j.ijhydene.2021.10.196 10.1149/06917.0323ecst 10.1007/s41918-020-00080-5 10.1016/j.compstruct.2017.01.080 10.1002/fuce.201900212 10.1016/j.ijhydene.2009.11.091 10.1016/j.ijhydene.2011.04.120 10.2139/ssrn.3451335 10.1016/j.ijhydene.2020.05.053 10.1021/ie0491286 10.1016/j.jpowsour.2016.12.029 10.1073/pnas.1114672109 10.1016/j.ijhydene.2021.07.211 10.1002/ente.202100809 10.1016/S1452-3981(23)17074-X 10.2478/rtuect-2020-0033 10.1016/j.ijhydene.2018.03.047 10.3390/en13092255 10.1039/C6CP04855B 10.1016/j.energy.2016.10.061 10.1016/j.electacta.2014.02.088 10.1016/j.jpowsour.2021.230851 10.1039/C6CP05331A 10.1016/j.jpowsour.2012.11.126 10.1039/c0cp00433b 10.1107/S1600577514016348 10.1149/1.1584440 10.1016/j.jpowsour.2015.03.109 10.1149/2.0161806jes 10.1016/j.ijhydene.2012.09.016 10.1016/j.apenergy.2019.113659 10.1149/08008.0019ecst 10.3390/catal7010016 10.1016/j.ijhydene.2017.09.018 10.1149/1945-7111/ab7d91 10.1016/j.memsci.2021.119868 10.1016/j.phpro.2017.06.037 10.1039/D0CP01356K 10.1016/j.ijhydene.2010.03.137 10.1002/ente.202000085 10.1115/1.4001353 10.1016/j.jpowsour.2007.06.072 10.1149/2.1201810jes 10.1016/j.jpowsour.2017.03.058 10.1002/fuce.200800134 10.1002/fuce.201700033 10.1039/C7CE00599G 10.1016/j.ijhydene.2021.12.241 10.1016/j.ijhydene.2010.01.036 10.1016/j.jpowsour.2008.12.115 10.1149/2.0081707jes 10.1016/j.jpowsour.2014.06.171 10.1016/j.mattod.2019.05.019 10.1149/05801.0519ecst 10.1016/j.memsci.2015.06.010 10.1088/2515-7655/abb783 10.1016/j.jpowsour.2007.08.055 10.1149/1945-7111/ac154e 10.1007/s10008-008-0678-0 10.1002/tcr.201000010 10.1016/j.ijhydene.2016.02.043 10.1002/fuce.201700220 10.1016/j.elecom.2005.09.017 10.1016/j.energy.2019.01.011 10.1002/adma.201901900 10.1016/j.compchemeng.2022.107768 10.1016/j.ijhydene.2020.02.215 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d3ta06895a |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 864 |
ExternalDocumentID | 10_1039_D3TA06895A d3ta06895a |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c317t-5a7406f6efb94aba14f50ef51178dd6870c1cb6e18f8b033cf9a8d58dc2fe8073 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 11:58:42 EDT 2025 Tue Jul 01 03:28:13 EDT 2025 Thu Apr 24 23:00:20 EDT 2025 Tue Dec 17 20:58:10 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c317t-5a7406f6efb94aba14f50ef51178dd6870c1cb6e18f8b033cf9a8d58dc2fe8073 |
Notes | Dan Brett specialises in electrochemical power systems. He holds the Royal Academy of Engineering Research Chair in Metrology for Electrochemical Propulsion and is the Director of the UCL Advanced Propulsion Lab. He has co-founded companies including Bramble Energy, Oort Energy, Sention, Element 30, Gaussian and Prosemino. He has been recognised through awards including the De Nora Prize for Applied Electrochemistry (ISE), Baker Medal (ICE) and the Princess Royal Silver Medal (RAEng). He is listed in the Stanford top 2% of scientists in the world and in 2023 the Royal Academy of Engineering and TFL recognised him as an 'Engineering Icon'. Dr. Richard Stocker is a Principle Engineer at HORIBA Instruments Inc. In his 10 years at HORIBA he has focused on Li-ion battery pack projects, including BMS development, cell characterization testing, and simulation modelling. Graduating from the University of Nottingham with a MEng in Mechanical Engineering (2013), they furthered their specialization with a PhD from Coventry University (2020), investigating Li-ion battery cell ageing and developing algorithms to decode ageing mechanisms from electrical cycling data. He has investigated the use of Electrochemical Impedance Spectroscopy (EIS) and Distribution of Relaxation Times (DRT) as applied to batteries and fuel cells. Adam Zucconi is a research scientist at HORIBA, and part-time PhD researcher in the Department of Chemical Engineering at UCL. His main research focuses on operando in situ Theo A. M. Suter is a postdoctoral researcher in the electrochemical innovation laboratory at UCL focusing on fuel cell fabrication, testing, and characterization. He completed his PhD in nanomaterial chemistry at UCL in 2018 and now specializes in nanoengineering of the fuel cell catalyst layer, particularly via Dr Hack is a Royal Academy of Engineering Research Fellow in the Department of Materials Science and Engineering at the University of Sheffield, UK. She completed her PhD at University College London in 2021 working on fuel cell characterisation. After undertaking an EPSRC Doctoral Prize Fellowship studying zinc-air batteries, followed by a Project Lead role on the Faraday Institution's LiSTAR project, Jennifer joined the University of Sheffield in 2023. Her research focuses on the study of morphology evolution in electrochemical devices, in particular electrolysers and fuel cells, using the use of nanomaterials and heterogeneous catalyst layer fabrication. His interests focus on how the fuel cell catalyst layer morphology and microstructure impacts the performance of fuel cells, and how different fabrication techniques can be used as a tool to improve device durability. Alex Rettie is an Associate Professor in Electrochemical Conversion and Storage in the Department of Chemical Engineering, UCL (UK). His interests are in the experimental discovery and characterisation of electrochemical energy materials and their incorporation into devices, with a focus on electronic and ionic charge transport. He leads a national hydrogen network based at UCL and is the UK's alternate delegate to the IEA's technology collaboration programme on hydrogen. and operando X-ray and neutron CT. and characterisation of fuel cells and electrolysers, principally low- and high-temperature polymer electrolyte membrane technologies. He has particular interest in electrochemical and exhaust liquid and gas characterisation. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0007-4414-3088 0000-0002-8545-3126 0000-0003-1094-3822 0000-0002-2482-9732 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2024/ta/d3ta06895a |
PQID | 3030999442 |
PQPubID | 2047523 |
PageCount | 51 |
ParticipantIDs | proquest_journals_3030999442 crossref_citationtrail_10_1039_D3TA06895A crossref_primary_10_1039_D3TA06895A rsc_primary_d3ta06895a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-02 |
PublicationDateYYYYMMDD | 2024-04-02 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Xiao (D3TA06895A/cit48/1) 2013; 442 Üregen (D3TA06895A/cit378/1) 2017; 42 Borup (D3TA06895A/cit27/1) 2007; 107 Chang (D3TA06895A/cit80/1) 2018; 230 Sur (D3TA06895A/cit39/1) 2010; 157 Owejan (D3TA06895A/cit40/1) 2010; 157 Wu (D3TA06895A/cit456/1) 2010; 144 Stassi (D3TA06895A/cit191/1) 2011; 196 Brown (D3TA06895A/cit520/1) 2016; 6 Jensen (D3TA06895A/cit26/1) 2016 Trabold (D3TA06895A/cit388/1) 2006; 49 Rasoulinezhad (D3TA06895A/cit6/1) 2020; 13 Becker (D3TA06895A/cit207/1) 2018; 165 Athanasaki (D3TA06895A/cit532/1) 2021; 46 Delis (D3TA06895A/cit12/1) 2019 Batet (D3TA06895A/cit380/1) 2020; 277 Xiao (D3TA06895A/cit499/1) 2020; 8 Hopfenmüller (D3TA06895A/cit408/1) 2018; 148 Ibrahim (D3TA06895A/cit81/1) 2020; 45 Zhang (D3TA06895A/cit54/1) 2020; 2020 Li (D3TA06895A/cit24/1) 2020 Chevalier (D3TA06895A/cit354/1) 2017; 352 Pokhrel (D3TA06895A/cit349/1) 2016; 329 Nishiyama (D3TA06895A/cit430/1) 2020; 124 Zhang (D3TA06895A/cit125/1) 2021; 505 Schulenburg (D3TA06895A/cit540/1) 2011; 115 Özdemir (D3TA06895A/cit150/1) 2017; 42 Kongkanand (D3TA06895A/cit226/1) 2016; 7 World Bank (D3TA06895A/cit13/1) 2021 Chikhaliya (D3TA06895A/cit60/1) 2021; 33 Rosli (D3TA06895A/cit22/1) 2017; 42 Meier (D3TA06895A/cit542/1) 2014; 5 Arlt (D3TA06895A/cit399/1) 2015; 299 Galbiati (D3TA06895A/cit172/1) 2012; 37 Pilinski (D3TA06895A/cit549/1) 2015; 69 Neophytides (D3TA06895A/cit440/1) 2013; 34 Myles (D3TA06895A/cit25/1) 2017; 7 Quartarone (D3TA06895A/cit148/1) 2012; 5 Tiss (D3TA06895A/cit278/1) 2013; 38 Harada (D3TA06895A/cit415/1) 2021; 6 Bevilacqua (D3TA06895A/cit69/1) 2017; 257 Bevilacqua (D3TA06895A/cit117/1) 2018; 86 Meyer (D3TA06895A/cit543/1) 2019; 437 Trtik (D3TA06895A/cit385/1) 2016; 746 Inaba (D3TA06895A/cit527/1) 2006; 51 Ghosh (D3TA06895A/cit136/1) 2014; 14 Yang (D3TA06895A/cit89/1) 2013; 4 Cleghorn (D3TA06895A/cit234/1) 2006; 158 Xu (D3TA06895A/cit301/1) 2023; 211 Sekizawa (D3TA06895A/cit346/1) 2017; 849 Antoine (D3TA06895A/cit284/1) 2001; 499 Bergmann (D3TA06895A/cit334/1) 2010 Lee (D3TA06895A/cit455/1) 2017; 108 Perera (D3TA06895A/cit8/1) 2017; 15 Yli-Rantala (D3TA06895A/cit441/1) 2011; 11 Prokop (D3TA06895A/cit491/1) 2022; 413 Amjadi (D3TA06895A/cit84/1) 2010; 35 Zhou (D3TA06895A/cit199/1) 2015; 40 Liu (D3TA06895A/cit186/1) 2019; 439 Yao (D3TA06895A/cit281/1) 2018; 43 Elumalai (D3TA06895A/cit228/1) 2018; 135 Liu (D3TA06895A/cit480/1) 2021; 46 Simari (D3TA06895A/cit511/1) 2016; 120 Ivers-Tiffée (D3TA06895A/cit304/1) 2017; 125 Schonvogel (D3TA06895A/cit481/1) 2021; 46 Turconi (D3TA06895A/cit1/1) 2013; 28 Komini Babu (D3TA06895A/cit250/1) 2019; 254 Wu (D3TA06895A/cit389/1) 2018; 399 Wiezell (D3TA06895A/cit288/1) 2006; 153 Hack (D3TA06895A/cit340/1) 2018; 165 Boillat (D3TA06895A/cit393/1) 2008; 10 Schneider (D3TA06895A/cit45/1) 2005; 7 Kuhn (D3TA06895A/cit286/1) 2007; 52 Rosli (D3TA06895A/cit448/1) 2010; 7 Wang (D3TA06895A/cit46/1) 2008; 176 Ogawa (D3TA06895A/cit517/1) 2013; 234 Rahimi-Esbo (D3TA06895A/cit447/1) 2017; 42 Boillat (D3TA06895A/cit397/1) 2008; 10 Lee (D3TA06895A/cit132/1) 2017; 167 Pollastri (D3TA06895A/cit364/1) 2022; 47 Jamel (D3TA06895A/cit5/1) 2016; 4 Lu (D3TA06895A/cit202/1) 2008; 51 Zhang (D3TA06895A/cit302/1) 2015; 283 Kulkarni (D3TA06895A/cit357/1) 2020; 2 Wang (D3TA06895A/cit3/1) 2020; 741 Rigal (D3TA06895A/cit253/1) 2020; 20 Pinar (D3TA06895A/cit239/1) 2015; 274 Brightman (D3TA06895A/cit305/1) 2013; 242 Holber (D3TA06895A/cit427/1) 2011; 11 Xing (D3TA06895A/cit74/1) 2018; 192 Hsu (D3TA06895A/cit449/1) 2011 Kardjilov (D3TA06895A/cit387/1) 2018; 21 Martens (D3TA06895A/cit382/1) 2019; 2 Park (D3TA06895A/cit370/1) 2015 Noack (D3TA06895A/cit475/1) 2012; 42 Alrwashdeh (D3TA06895A/cit405/1) 2018; 6 Cleemann (D3TA06895A/cit158/1) 2013 Reshetenko (D3TA06895A/cit299/1) 2020; 167 Al-Qahtani (D3TA06895A/cit204/1) 2021; 281 Lim (D3TA06895A/cit536/1) 2014; 257 Lee (D3TA06895A/cit137/1) 2016; 327 Araya (D3TA06895A/cit47/1) 2016; 41 Schneider (D3TA06895A/cit290/1) 2008; 155 Martens (D3TA06895A/cit383/1) 2022; 521 Koizumi (D3TA06895A/cit412/1) 2019; 52 Quartarone (D3TA06895A/cit101/1) 2009; 9 Luo (D3TA06895A/cit484/1) 2020; 44 David (D3TA06895A/cit450/1) 2010; 157 Kannan (D3TA06895A/cit107/1) 2011; 21 Yan (D3TA06895A/cit507/1) 2016; 88 David (D3TA06895A/cit451/1) 2014; 39 Li (D3TA06895A/cit194/1) 2021; 46 Melchior (D3TA06895A/cit93/1) 2017; 19 Komini Babu (D3TA06895A/cit348/1) 2016; 8 Shabani (D3TA06895A/cit31/1) 2019; 427 Aili (D3TA06895A/cit53/1) 2020; 3 Kannan (D3TA06895A/cit100/1) 2020; 45 Chalkova (D3TA06895A/cit85/1) 2005; 152 Frisk (D3TA06895A/cit528/1) 2004 Yezerska (D3TA06895A/cit335/1) 2019; 44 Galbiati (D3TA06895A/cit144/1) 2012; 37 Bailey (D3TA06895A/cit344/1) 2021; 509 Jeppesen (D3TA06895A/cit243/1) 2017; 359 Giffin (D3TA06895A/cit436/1) 2014; 39 Ossiander (D3TA06895A/cit381/1) 2014; 454 Grosse (D3TA06895A/cit386/1) 2017; 88 Pérez (D3TA06895A/cit466/1) 2014; 258 Moçotéguy (D3TA06895A/cit567/1) 2010; 10 Schenk (D3TA06895A/cit119/1) 2014; 266 Brett (D3TA06895A/cit422/1) 2010; 11 Zhang (D3TA06895A/cit328/1) 2016; 115 Macauley (D3TA06895A/cit541/1) 2018; 165 Das (D3TA06895A/cit34/1) 2009; 193 Ciucci (D3TA06895A/cit297/1) 2015; 167 Tang (D3TA06895A/cit345/1) 2022; 161 D3TA06895A/cit225/1 Rahim (D3TA06895A/cit200/1) 2017; 42 Zhigalina (D3TA06895A/cit431/1) 2017; 19 Tjønnås (D3TA06895A/cit28/1) 2016; 49 Xie (D3TA06895A/cit310/1) 2005; 152 Ozden (D3TA06895A/cit76/1) 2019; 74 Atanasov (D3TA06895A/cit113/1) 2021; 20 Jo (D3TA06895A/cit245/1) 2011; 196 Zhou (D3TA06895A/cit476/1) 2015; 40 Dierickx (D3TA06895A/cit275/1) 2020; 355 Pivac (D3TA06895A/cit269/1) 2016; 326 Jie (D3TA06895A/cit82/1) 2008; 312 Oono (D3TA06895A/cit188/1) 2010; 195 Jung (D3TA06895A/cit534/1) 2017; 523 Rosli (D3TA06895A/cit184/1) 2019; 44 Patil (D3TA06895A/cit452/1) 2005; 44 Yu (D3TA06895A/cit149/1) 2008; 8 Yuan (D3TA06895A/cit483/1) 2012; 205 Meyer (D3TA06895A/cit338/1) 2019; 19 Di (D3TA06895A/cit221/1) 2015; 273 Bedet (D3TA06895A/cit516/1) 2008; 33 Berber (D3TA06895A/cit227/1) 2019; 591 Putra (D3TA06895A/cit411/1) 2010; 247 Hengge (D3TA06895A/cit489/1) 2017; 364 Su (D3TA06895A/cit495/1) 2014; 5 Sun (D3TA06895A/cit57/1) 2019; 9 Tingelöf (D3TA06895A/cit170/1) 2009; 34 Lin (D3TA06895A/cit163/1) 2009; 39 Wang (D3TA06895A/cit260/1) 2021; 1 Verma (D3TA06895A/cit105/1) 2010; 14 Parrondo (D3TA06895A/cit311/1) 2011; 2011 Bethapudi (D3TA06895A/cit337/1) 2019; 202 Yu (D3TA06895A/cit320/1) 2012; 37 Sepe (D3TA06895A/cit351/1) 2021; 168 Wikander (D3TA06895A/cit506/1) 2007; 52 Mench (D3TA06895A/cit469/1) 2003; 150 Stanic (D3TA06895A/cit533/1) 2004; 21 Russell (D3TA06895A/cit64/1) 2004; 104 Yang (D3TA06895A/cit445/1) 2004; 7 Stariha (D3TA06895A/cit552/1) 2018; 165 Agarwal (D3TA06895A/cit332/1) 2022; 532 Meyer (D3TA06895A/cit66/1) 2019; 31 Zagoraiou (D3TA06895A/cit313/1) 2020; 356 Gomes (D3TA06895A/cit371/1) 2022; 12 Wu (D3TA06895A/cit110/1) 2021; 630 Eom (D3TA06895A/cit247/1) 2012; 37 Dupuis (D3TA06895A/cit59/1) 2011; 56 Hoppe (D3TA06895A/cit342/1) 2021; 501 Ji (D3TA06895A/cit367/1) 2017; 204 Úbeda (D3TA06895A/cit153/1) 2014; 39 Endoh (D3TA06895A/cit472/1) 2004; 7 Yusof (D3TA06895A/cit438/1) 2019; 44 Kaserer (D3TA06895A/cit152/1) 2013; 117 Diedrichs (D3TA06895A/cit271/1) 2013; 43 Schiefer (D3TA06895A/cit285/1) 2020; 20 Harzer (D3TA06895A/cit554/1) 2018; 165 Robert (D3TA06895A/cit509/1) 2018; 165 Martens (D3TA06895A/cit384/1) 2021; 6 Chandan (D3TA06895A/cit50/1) 2013; 231 Lin (D3TA06895A/cit535/1) 2011; 158 Ross (D3TA06895A/cit312/1) 1983; 154 Eberhardt (D3TA06895A/cit363/1) 2014; 21 Choi (D3TA06895A/cit316/1) 2022; 5 Choi (D3TA06895A/cit166/1) 2005; 152 Boaventura (D3TA06895A/cit171/1) 2010; 35 Kulikovsky (D3TA06895A/cit298/1) 2022; 126 Zhiani (D3TA06895A/cit176/1) 2013; 38 Niu (D3TA06895A/cit309/1) 2022; 47 Bevilacqua (D3TA06895A/cit300/1) 2020; 471 Tang (D3TA06895A/cit403/1) 2010; 195 Kumar (D3TA06895A/cit546/1) 2014; 4 Bhadra (D3TA06895A/cit99/1) 2010; 349 Zhou (D3TA06895A/cit190/1) 2015; 40 Galbiati (D3TA06895A/cit187/1) 2013; 38 Uruga (D3TA06895A/cit376/1) 2019; 19 Kusoglu (D3TA06895A/cit537/1) 2014; 161 Boaventura (D3TA06895A/cit30/1) 2011; 56 U.S. Department of Energy (D3TA06895A/cit521/1) 2016 Baudy (D3TA06895A/cit254/1) 2023; 48 Sasiwimonrit (D3TA06895A/cit493/1) 2020; 45 Lim (D3TA06895A/cit114/1) 2022; 7 Zhang (D3TA06895A/cit37/1) 2007; 172 Gerling (D3TA06895A/cit291/1) 2023; 170 Deabate (D3TA06895A/cit44/1) 2012; 5 Özdemir (D3TA06895A/cit501/1) 2017; 245 Mukundan (D3TA06895A/cit531/1) 2013; 58 Chevalier (D3TA06895A/cit68/1) 2016; 212 Liang (D3TA06895A/cit468/1) 2009; 194 White (D3TA06895A/cit359/1) 2019; 9 Teranishi (D3TA06895A/cit473/1) 2006; 9 Manzi-Orezzoli (D3TA06895A/cit404/1) 2019; 4 Chang (D3TA06895A/cit195/1) 2009; 94 Liu (D3TA06895A/cit471/1) 2003; 212 He (D3TA06895A/cit213/1) 2010; 12 Peng (D3TA06895A/cit428/1) 2013; 44 Garland (D3TA06895A/cit560/1) 2007; 11 Holderer (D3TA06895A/cit420/1) 2014; 39 Matsui (D3TA06895A/cit375/1) 2022; 14 Giner-Sanz (D3TA06895A/cit263/1) 2016; 16 Kiros (D3TA06895A/cit505/1) 2007; 2 Meyer (D3TA06895A/cit392/1) 2016; 211 Zucconi (D3TA06895A/cit165/1) 2023; 584 Bevilacqua (D3TA06895A/cit127/1) 2021; 7 Marocco (D3TA06895A/cit486/1) 2021; 483 Guo (D3TA06895A/cit548/1) 2022; 641 IEA (D3TA06895A/cit11/1) 2022 Ramani (D3TA06895A/cit361/1) 2020; 45 Jeong (D3TA06895A/cit147/1) 2017; 363 Chen (D3TA06895A/cit201/1) 2012; 29 Epting (D3TA06895A/cit347/1) 2012; 22 Gerteisen (D3TA06895A/cit319/1) 2012; 37 Siegel (D3TA06895A/cit330/1) 2011; 11 Yao (D3TA06895A/cit497/1) 2019; 426 Jo (D3TA06895A/cit478/1) 2017; 42 Úbeda (D3TA06895A/cit333/1) 2016; 41 Mustarelli (D3TA06895A/cit102/1) 2008; 20 Hack (D3TA06895A/cit360/1) 2020; 352 Engl (D3TA06895A/cit116/1) 2016 Leader (D3TA06895A/cit555/1) 2022; 47 Cheng (D3TA06895A/cit366/1) 2021; 284 Simon Araya (D3TA06895A/cit272/1) 2021; 14 Biesdorf (D3TA06895A/cit395/1) 2014; 112 Zagudaeva (D3TA06895A/cit118/1) 2010; 46 Ziesche (D3TA06895A/cit406/1) 2022; 13 Guo (D3TA06895A/cit462/1) 2015; 273 Zeis (D3TA06895A/cit38/1) 2015; 6 Wu (D3TA06895A/cit42/1) 2020; 45 Zhang (D3TA06895A/cit15/1) 2020; 15 Zhang (D3TA06895A/cit52/1) 2006; 160 Bandlamudi (D3TA06895A/cit551/1) 2019; 19 Zhang (D3TA06895A/cit183/1) 2021; 46 Park (D3TA06895A/cit557/1) 2014; 120 Kundler (D3TA06895A/cit138/1) 2016 Xu (D3TA06895A/cit512/1) 2017; 536 Oono (D3TA06895A/cit91/1) 2009; 189 Lee (D3TA06895A/cit21 |
References_xml | – issn: 2011 end-page: p 87-100 publication-title: PEM Fuel Cell Diagnostic Tools doi: Zhang Yuan Wang – issn: 2010 issue: vol. 35 publication-title: Review of the Proton Exchange Membranes for Fuel Cell Applications doi: Peighambardoust Rowshanzamir Amjadi – issn: 2019 publication-title: EBRD Working Paper No. 231 doi: Delis de Greiff Ongena – issn: 2011 end-page: p 209-227 publication-title: PEM Fuel Cell Diagnostic Tools doi: Hsu Weng – issn: 2016 publication-title: 3.4 Fuel Cells - Multi-Year Research, Development, and Demonstration Plan doi: U.S. Department of Energy – issn: 2013 end-page: p 19-20 publication-title: EFC 2013 - Proc. 5th Eur. Fuel Cell Piero Lunghi Conf. doi: Pinar Rastedt Bruns Wagner – issn: 2013 publication-title: 4th PEFC and H2 Forum B1108 doi: Pilinski Wagner – issn: 2011 end-page: p 229-254 publication-title: PEM Fuel Cell Diagnostic Tools doi: Zhang Balcom – issn: 2010 publication-title: Electrochemical Impedance Spectroscopy in PEM Fuel Cells doi: Yuan Song Wang Zhang – issn: 2020 end-page: 2161 publication-title: ECS Meet. Abstr. doi: Schmies Schonvogel Büsselmann Wagner Dyck – issn: 2016 end-page: p 297-313 publication-title: High Temperature Polymer Electrolyte Membrane Fuel Cells doi: Engl Gubler Schmidt – issn: 2011 end-page: p 389-400 publication-title: PEM Fuel Cell Diagnostic Tools doi: Haug Renate Schulze Schiller Friedrich – issn: 2013 end-page: p 171-185s publication-title: Pem Fuel Cell Test Diagnosis doi: Zhang Zhang Wu Zhang – issn: 2015 end-page: 1855 publication-title: ECS Meet. Abstr. doi: Park Cha Chung Cho Yoo Kim Henkensmeier Kim Nam Jang – issn: 2010 publication-title: 18th World Hydrogen Energy Conference 2010 - WHEC 2010 Parallel Sessions Book 1 doi: Bergmann Kurz Gerteisen Hebling – issn: 2024 publication-title: The Fuel Cell Industry Review 2022 doi: ERM – issn: 2016 end-page: p 1-4 publication-title: High Temperature Polymer Electrolyte Membrane Fuel Cells doi: Jensen Hjuler Aili Li – issn: 2015 publication-title: EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell Configuration for Automotive Applications doi: Tsotridis Pilenga De Marco Malkow – issn: 2004 publication-title: 2004 Fuel Cell Seminar doi: Frisk Hicks Atanasoski Boand Schmoeckel Kurkowski – issn: 2016 end-page: p 425-440 publication-title: High Temperature Polymer Electrolyte Membrane Fuel Cells doi: Kundler Hickmann – issn: 2021 doi: The European Commission – issn: 2022 publication-title: World Energy Outlook 2022 doi: IEA – issn: 2016 issue: vol. 49 end-page: p 302-307 publication-title: IFAC-PapersOnLine doi: Tjønnås Zenith Halvorsen Klages Scholta – issn: 2021 publication-title: State and Trends of Carbon Pricing 2021 doi: World Bank – issn: 2023 doi: IEA – issn: 2016 end-page: p 353-386 publication-title: High Temperature Polymer Electrolyte Membrane Fuel Cells doi: Pinar Rastedt Pilinski Wagner – volume: 159 start-page: F369 year: 2012 ident: D3TA06895A/cit289/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.005208jes – volume: 19 start-page: 35 year: 2019 ident: D3TA06895A/cit338/1 publication-title: Fuel Cells doi: 10.1002/fuce.201800047 – volume: 37 start-page: 7736 year: 2012 ident: D3TA06895A/cit319/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.02.024 – volume: 5 start-page: 44 year: 2014 ident: D3TA06895A/cit542/1 publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.5.5 – volume: 413 start-page: 140121 year: 2022 ident: D3TA06895A/cit491/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.140121 – volume: 43 start-page: 14691 year: 2018 ident: D3TA06895A/cit169/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.05.166 – volume: 250 start-page: 68 year: 2014 ident: D3TA06895A/cit325/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.10.141 – volume: 501 start-page: 230036 year: 2021 ident: D3TA06895A/cit342/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230036 – start-page: 1855 volume-title: ECS Meet. Abstr. year: 2015 ident: D3TA06895A/cit370/1 – volume: 20 start-page: 1339 year: 2008 ident: D3TA06895A/cit102/1 publication-title: Adv. Mater. doi: 10.1002/adma.200701767 – volume-title: EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell Configuration for Automotive Applications year: 2015 ident: D3TA06895A/cit178/1 – volume: 6 start-page: 2742 year: 2021 ident: D3TA06895A/cit384/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00718 – volume: 326 start-page: 112 year: 2016 ident: D3TA06895A/cit269/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.119 – volume: 170 start-page: 275 year: 2007 ident: D3TA06895A/cit131/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.03.082 – volume: 41 start-page: 20294 year: 2016 ident: D3TA06895A/cit333/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.09.109 – volume: 92 start-page: 244101 year: 2008 ident: D3TA06895A/cit398/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2946664 – volume: 124 start-page: 403 year: 2003 ident: D3TA06895A/cit443/1 publication-title: J. Power Sources doi: 10.1016/S0378-7753(03)00797-3 – volume: 10 start-page: 299 year: 2010 ident: D3TA06895A/cit567/1 publication-title: Fuel Cells doi: 10.1002/fuce.200900153 – start-page: 1 year: 2022 ident: D3TA06895A/cit55/1 publication-title: Polym. Rev. – volume: 859 start-page: 113832 year: 2020 ident: D3TA06895A/cit126/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2020.113832 – volume: 174 start-page: 1253 year: 2015 ident: D3TA06895A/cit326/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.06.081 – volume: 11 start-page: 459 year: 2011 ident: D3TA06895A/cit427/1 publication-title: Fuel Cells doi: 10.1002/fuce.201100006 – volume: 9 start-page: 231 year: 2009 ident: D3TA06895A/cit101/1 publication-title: Fuel Cells doi: 10.1002/fuce.200800145 – volume: 184 start-page: 483 year: 2015 ident: D3TA06895A/cit296/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.09.097 – volume: 14 start-page: 2994 year: 2021 ident: D3TA06895A/cit272/1 publication-title: Energies doi: 10.3390/en14112994 – volume: 37 start-page: 10836 year: 2012 ident: D3TA06895A/cit402/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.04.093 – volume: 532 start-page: 231319 year: 2022 ident: D3TA06895A/cit332/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231319 – volume: 284 start-page: 119717 year: 2021 ident: D3TA06895A/cit366/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119717 – volume: 342 start-page: 570 year: 2017 ident: D3TA06895A/cit241/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.12.075 – volume: 10 start-page: 546 year: 2008 ident: D3TA06895A/cit393/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2008.01.018 – volume: 117 start-page: 4877 year: 2013 ident: D3TA06895A/cit372/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp309282n – volume: 168 start-page: 054501 year: 2021 ident: D3TA06895A/cit523/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abf77b – volume: 35 start-page: 9252 year: 2010 ident: D3TA06895A/cit84/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.01.005 – volume: 242 start-page: 125 year: 2017 ident: D3TA06895A/cit164/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.05.028 – volume: 165 start-page: F3085 year: 2018 ident: D3TA06895A/cit561/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0101806jes – volume: 51 start-page: 5746 year: 2006 ident: D3TA06895A/cit527/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.03.008 – volume: 252 start-page: 26 year: 2013 ident: D3TA06895A/cit421/1 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2013.08.032 – volume: 9 start-page: 302 year: 2018 ident: D3TA06895A/cit156/1 publication-title: Electrocatalysis doi: 10.1007/s12678-017-0427-1 – volume: 6 start-page: 100260 year: 2022 ident: D3TA06895A/cit355/1 publication-title: Case Stud. Chem. Environ. Eng. doi: 10.1016/j.cscee.2022.100260 – ident: D3TA06895A/cit217/1 – volume: 35 start-page: 13104 year: 2010 ident: D3TA06895A/cit308/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.04.082 – volume: 58 start-page: 919 year: 2013 ident: D3TA06895A/cit531/1 publication-title: ECS Trans. doi: 10.1149/05801.0919ecst – volume: 202 start-page: 112198 year: 2019 ident: D3TA06895A/cit337/1 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2019.112198 – volume: 2101025 start-page: 2101025 year: 2021 ident: D3TA06895A/cit124/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101025 – volume: 158 start-page: B639 year: 2011 ident: D3TA06895A/cit72/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3569711 – volume: 79 start-page: 100842 year: 2020 ident: D3TA06895A/cit203/1 publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2020.100842 – volume: 7 start-page: 1127 year: 2016 ident: D3TA06895A/cit226/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00216 – volume: 510 start-page: 145444 year: 2020 ident: D3TA06895A/cit377/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145444 – volume: 49 start-page: 4712 year: 2006 ident: D3TA06895A/cit388/1 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2006.07.003 – volume: 329 start-page: 330 year: 2016 ident: D3TA06895A/cit349/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.08.092 – volume: 523 start-page: 138 year: 2017 ident: D3TA06895A/cit534/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.09.009 – volume: 6 start-page: 68 year: 2015 ident: D3TA06895A/cit38/1 publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.6.8 – volume: 36 start-page: 7199 year: 2011 ident: D3TA06895A/cit216/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.03.059 – start-page: 209 volume-title: PEM Fuel Cell Diagnostic Tools year: 2011 ident: D3TA06895A/cit449/1 – start-page: 1 volume-title: High Temperature Polymer Electrolyte Membrane Fuel Cells year: 2016 ident: D3TA06895A/cit26/1 – volume: 11 start-page: 1 year: 2014 ident: D3TA06895A/cit255/1 publication-title: J. Fuel Cell Sci. Technol. – volume: 157 start-page: B1173 year: 2010 ident: D3TA06895A/cit450/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3436652 – volume: 7 start-page: 248 year: 2022 ident: D3TA06895A/cit114/1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00971-x – volume: 39 start-page: 14959 year: 2014 ident: D3TA06895A/cit173/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.07.017 – volume: 9 start-page: 11347 year: 2021 ident: D3TA06895A/cit295/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA01002F – volume: 9 start-page: 257 year: 2019 ident: D3TA06895A/cit379/1 publication-title: RSC Adv. doi: 10.1039/C8RA07177B – volume: 41 start-page: 3113 year: 2016 ident: D3TA06895A/cit181/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.12.134 – volume: 439 start-page: 227074 year: 2019 ident: D3TA06895A/cit391/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227074 – volume: 8 start-page: 775 year: 2018 ident: D3TA06895A/cit109/1 publication-title: Nanomaterials doi: 10.3390/nano8100775 – volume: 18 start-page: 2238 year: 2006 ident: D3TA06895A/cit88/1 publication-title: Chem. Mater. doi: 10.1021/cm051781b – volume: 212 start-page: 187 year: 2016 ident: D3TA06895A/cit68/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.06.121 – volume: 42 start-page: 2648 year: 2017 ident: D3TA06895A/cit150/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.04.132 – volume: 523 start-page: 231000 year: 2022 ident: D3TA06895A/cit267/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231000 – volume: 39 start-page: 1067 year: 2009 ident: D3TA06895A/cit163/1 publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-008-9758-1 – volume: 585 start-page: 152579 year: 2022 ident: D3TA06895A/cit185/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.152579 – volume: 13 start-page: 567 year: 2020 ident: D3TA06895A/cit198/1 publication-title: Energies doi: 10.3390/en13030567 – volume: 46 start-page: 530 year: 2010 ident: D3TA06895A/cit118/1 publication-title: Russ. J. Electrochem. doi: 10.1134/S102319351005006X – volume: 42 start-page: 1698 year: 2017 ident: D3TA06895A/cit478/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.10.152 – volume: 13 start-page: 946 issue: 5 year: 2013 ident: D3TA06895A/cit175/1 publication-title: Fuel Cells doi: 10.1002/fuce.201200139 – volume: 16 start-page: 406 year: 2016 ident: D3TA06895A/cit419/1 publication-title: Fuel Cells doi: 10.1002/fuce.201500167 – volume: 245 start-page: 1 year: 2017 ident: D3TA06895A/cit501/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.05.111 – volume: 584 start-page: 233574 year: 2023 ident: D3TA06895A/cit165/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2023.233574 – volume: 272 start-page: 119 year: 2015 ident: D3TA06895A/cit224/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.026 – volume: 154 start-page: 205 year: 1983 ident: D3TA06895A/cit312/1 publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/S0022-0728(83)80542-7 – volume: 195 start-page: 1007 year: 2010 ident: D3TA06895A/cit188/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.08.097 – volume: 120 start-page: 30 year: 2014 ident: D3TA06895A/cit557/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.12.030 – volume: 471 start-page: 228469 year: 2020 ident: D3TA06895A/cit300/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228469 – volume: 483 start-page: 1 year: 2021 ident: D3TA06895A/cit486/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229179 – start-page: 87 year: 2020 ident: D3TA06895A/cit24/1 publication-title: Rev. Chem. Eng. – volume: 119 start-page: 630 year: 2015 ident: D3TA06895A/cit135/1 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2014.09.010 – volume: 8 start-page: e202200008 issue: 4 year: 2022 ident: D3TA06895A/cit374/1 publication-title: ChemNanoMat doi: 10.1002/cnma.202200008 – volume: 7 start-page: A408 year: 2004 ident: D3TA06895A/cit445/1 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1803051 – volume: 13 start-page: 1474 year: 2020 ident: D3TA06895A/cit416/1 publication-title: Materials doi: 10.3390/ma13061474 – volume: 10 start-page: 6281 year: 2020 ident: D3TA06895A/cit544/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c00779 – ident: D3TA06895A/cit225/1 – volume: 266 start-page: 313 year: 2014 ident: D3TA06895A/cit119/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.05.023 – volume: 35 volume-title: Review of the Proton Exchange Membranes for Fuel Cell Applications year: 2010 ident: D3TA06895A/cit18/1 – volume: 33 start-page: 998 year: 2021 ident: D3TA06895A/cit60/1 publication-title: High Perform. Polym. doi: 10.1177/09540083211014251 – volume: 7 start-page: A209 year: 2004 ident: D3TA06895A/cit472/1 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1739314 – volume: 1 start-page: 100014 year: 2020 ident: D3TA06895A/cit79/1 publication-title: Energy AI doi: 10.1016/j.egyai.2020.100014 – volume: 65 start-page: 1751 year: 2004 ident: D3TA06895A/cit457/1 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2004.05.005 – volume: 26 start-page: 21760 year: 2019 ident: D3TA06895A/cit7/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-05550-y – volume: 52 start-page: 2322 year: 2007 ident: D3TA06895A/cit286/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.03.108 – volume-title: 18th World Hydrogen Energy Conference 2010 - WHEC 2010 Parallel Sessions Book 1 year: 2010 ident: D3TA06895A/cit334/1 – volume: 4 start-page: 4768 year: 2013 ident: D3TA06895A/cit89/1 publication-title: Polym. Chem. doi: 10.1039/c3py00408b – volume: 9 start-page: 83 year: 2019 ident: D3TA06895A/cit57/1 publication-title: Membranes doi: 10.3390/membranes9070083 – volume-title: Electrochemical Impedance Spectroscopy in PEM Fuel Cells year: 2010 ident: D3TA06895A/cit270/1 doi: 10.1007/978-1-84882-846-9 – volume: 509 start-page: 230347 year: 2021 ident: D3TA06895A/cit344/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230347 – volume: 277 start-page: 312 year: 2015 ident: D3TA06895A/cit238/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.11.115 – volume: 454 start-page: 12 year: 2014 ident: D3TA06895A/cit381/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.12.004 – volume: 46 start-page: 14687 year: 2021 ident: D3TA06895A/cit480/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.01.192 – volume: 596 start-page: 117691 year: 2020 ident: D3TA06895A/cit513/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117691 – volume: 38 start-page: 6469 year: 2013 ident: D3TA06895A/cit187/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.03.012 – volume: 161 start-page: F622 year: 2014 ident: D3TA06895A/cit487/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.045405jes – volume: 11 start-page: 339 year: 2011 ident: D3TA06895A/cit327/1 publication-title: Fuel Cells doi: 10.1002/fuce.201000181 – volume: 359 start-page: 37 year: 2017 ident: D3TA06895A/cit243/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.021 – volume: 42 start-page: 11673 year: 2017 ident: D3TA06895A/cit447/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.02.030 – volume: 426 start-page: 124 year: 2019 ident: D3TA06895A/cit497/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.04.045 – volume: 45 start-page: 2195 year: 2020 ident: D3TA06895A/cit42/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.11.069 – volume: 36 start-page: 813 year: 2011 ident: D3TA06895A/cit62/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2011.01.003 – volume: 14 start-page: 259 year: 2014 ident: D3TA06895A/cit136/1 publication-title: Fuel Cells doi: 10.1002/fuce.201300186 – volume: 41 start-page: 1441 year: 2011 ident: D3TA06895A/cit174/1 publication-title: ECS Trans. doi: 10.1149/1.3635675 – volume: 27 start-page: 875 year: 2021 ident: D3TA06895A/cit410/1 publication-title: Adsorption doi: 10.1007/s10450-020-00295-4 – volume: 11 start-page: 445 year: 2007 ident: D3TA06895A/cit515/1 publication-title: ECS Trans. doi: 10.1149/1.2780958 – volume: 44 start-page: 30763 year: 2019 ident: D3TA06895A/cit184/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.01.174 – volume: 37 start-page: 15288 year: 2012 ident: D3TA06895A/cit320/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.07.023 – volume: 34 start-page: 200 year: 2013 ident: D3TA06895A/cit440/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2013.06.012 – volume: 205 start-page: 324 year: 2012 ident: D3TA06895A/cit483/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.01.074 – volume: 107 start-page: 3904 year: 2007 ident: D3TA06895A/cit27/1 publication-title: Chem. Rev. doi: 10.1021/cr050182l – volume: 115 start-page: 550 year: 2016 ident: D3TA06895A/cit328/1 publication-title: Energy doi: 10.1016/j.energy.2016.08.086 – volume: 153 start-page: A749 year: 2006 ident: D3TA06895A/cit288/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2172559 – volume: 37 start-page: 2462 year: 2012 ident: D3TA06895A/cit144/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.09.159 – volume: 21 start-page: 6014 year: 2011 ident: D3TA06895A/cit106/1 publication-title: J. Mater. Chem. doi: 10.1039/c1jm10093a – volume: 45 start-page: 10089 year: 2020 ident: D3TA06895A/cit361/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.02.013 – volume: 220 start-page: 54 year: 2012 ident: D3TA06895A/cit240/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.07.129 – volume: 283 start-page: 464 year: 2015 ident: D3TA06895A/cit302/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.107 – volume: 14 start-page: 677 year: 2014 ident: D3TA06895A/cit429/1 publication-title: Fuel Cells doi: 10.1002/fuce.201300236 – volume: 258 start-page: 122 year: 2014 ident: D3TA06895A/cit466/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.02.016 – volume: 230 start-page: 391 year: 2017 ident: D3TA06895A/cit265/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.02.011 – volume: 356 start-page: 136778 year: 2020 ident: D3TA06895A/cit313/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136778 – volume: 39 start-page: 21902 year: 2014 ident: D3TA06895A/cit459/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.07.099 – volume: 158 start-page: B430 year: 2011 ident: D3TA06895A/cit524/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3556103 – volume: 161 start-page: F823 year: 2014 ident: D3TA06895A/cit526/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0031409jes – volume: 126 start-page: 2424 year: 2022 ident: D3TA06895A/cit298/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c10334 – volume: 849 start-page: 012022 year: 2017 ident: D3TA06895A/cit346/1 publication-title: J. Phys.: Conf. Ser. – volume: 19 start-page: 2 year: 2019 ident: D3TA06895A/cit145/1 publication-title: Fuel Cells doi: 10.1002/fuce.201700144 – volume: 211 start-page: 669 year: 2023 ident: D3TA06895A/cit301/1 publication-title: Renewable Energy doi: 10.1016/j.renene.2023.05.008 – volume: 48 start-page: 20945 year: 2023 ident: D3TA06895A/cit254/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.12.344 – volume: 168 start-page: 034521 year: 2021 ident: D3TA06895A/cit362/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abef87 – volume: 2 start-page: 2 year: 2016 ident: D3TA06895A/cit458/1 publication-title: J. Imaging doi: 10.3390/jimaging2010002 – volume: 14 start-page: 100084 year: 2022 ident: D3TA06895A/cit492/1 publication-title: J. Power Sources Adv. doi: 10.1016/j.powera.2022.100084 – volume: 63 start-page: 1134 year: 2014 ident: D3TA06895A/cit61/1 publication-title: Polym. Int. doi: 10.1002/pi.4708 – volume: 204 start-page: 421 year: 2017 ident: D3TA06895A/cit367/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.11.053 – volume: 108 start-page: 82 year: 2013 ident: D3TA06895A/cit477/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.02.067 – volume: 52 start-page: 791 year: 2019 ident: D3TA06895A/cit412/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576719008343 – volume: 427 start-page: 21 year: 2019 ident: D3TA06895A/cit31/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.03.097 – volume: 4 start-page: 1170653 year: 2016 ident: D3TA06895A/cit5/1 publication-title: Cogent Econ. Finance doi: 10.1080/23322039.2016.1170653 – volume: 18 start-page: 103 year: 2018 ident: D3TA06895A/cit168/1 publication-title: Fuel Cells doi: 10.1002/fuce.201700181 – volume: 7 start-page: 707 year: 2017 ident: D3TA06895A/cit519/1 publication-title: Quant. Imaging Med. Surg. doi: 10.21037/qims.2017.11.03 – volume: 3 start-page: F47 year: 2014 ident: D3TA06895A/cit205/1 publication-title: ECS Electrochem. Lett. doi: 10.1149/2.0011407eel – start-page: 822 year: 2013 ident: D3TA06895A/cit158/1 publication-title: Fuel Cells doi: 10.1002/fuce.201200186 – volume: 32 start-page: 4523 year: 2007 ident: D3TA06895A/cit233/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2007.03.013 – volume: 39 start-page: 17240 year: 2014 ident: D3TA06895A/cit390/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.08.042 – volume: 157 start-page: B1814 year: 2010 ident: D3TA06895A/cit514/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3486168 – volume: 108 start-page: 126 year: 2017 ident: D3TA06895A/cit455/1 publication-title: Renewable Energy doi: 10.1016/j.renene.2017.02.015 – volume: 87 start-page: 988 year: 2010 ident: D3TA06895A/cit9/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.09.012 – volume: 43 start-page: 1079 year: 2013 ident: D3TA06895A/cit271/1 publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-013-0597-3 – start-page: 229 volume-title: PEM Fuel Cell Diagnostic Tools year: 2011 ident: D3TA06895A/cit518/1 – volume: 2 start-page: 1502 year: 2015 ident: D3TA06895A/cit214/1 publication-title: ChemElectroChem doi: 10.1002/celc.201500228 – volume: 15 start-page: 034019 year: 2020 ident: D3TA06895A/cit15/1 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab6658 – volume: 5 start-page: 263 year: 2002 ident: D3TA06895A/cit235/1 publication-title: J. New Mater. Electrochem. Syst. – volume: 442 start-page: 65 year: 2013 ident: D3TA06895A/cit48/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.04.014 – volume: 560 start-page: 11 year: 2018 ident: D3TA06895A/cit98/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.05.006 – volume: 50 start-page: 1138 year: 2021 ident: D3TA06895A/cit67/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00296H – volume: 452 start-page: 20 year: 2014 ident: D3TA06895A/cit83/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.10.018 – volume: 167 start-page: 439 year: 2015 ident: D3TA06895A/cit297/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.03.123 – volume: 12 start-page: 566 year: 2012 ident: D3TA06895A/cit331/1 publication-title: Fuel Cells doi: 10.1002/fuce.201100197 – volume: 504 start-page: 1 year: 2016 ident: D3TA06895A/cit43/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.12.065 – start-page: 19 volume-title: EFC 2013 - Proc. 5th Eur. Fuel Cell Piero Lunghi Conf. year: 2013 ident: D3TA06895A/cit550/1 – volume: 22 start-page: 555 year: 2012 ident: D3TA06895A/cit347/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101525 – volume: 536 start-page: 116 year: 2017 ident: D3TA06895A/cit512/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.04.067 – volume: 352 start-page: 281 year: 2017 ident: D3TA06895A/cit354/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.01.114 – volume: 11 start-page: 923 year: 2007 ident: D3TA06895A/cit560/1 publication-title: ECS Trans. doi: 10.1149/1.2781004 – volume: 399 start-page: 254 year: 2018 ident: D3TA06895A/cit389/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.07.085 – volume: 64 start-page: 62 year: 2018 ident: D3TA06895A/cit2/1 publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2017.10.002 – volume: 63 start-page: 153 year: 2017 ident: D3TA06895A/cit10/1 publication-title: Econ. Model. doi: 10.1016/j.econmod.2017.01.006 – volume: 255 start-page: 431 year: 2014 ident: D3TA06895A/cit70/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.032 – volume: 521 start-page: 230951 year: 2022 ident: D3TA06895A/cit356/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230951 – volume: 34 start-page: 449 year: 2009 ident: D3TA06895A/cit559/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2008.12.003 – volume: 286 start-page: 116481 year: 2021 ident: D3TA06895A/cit282/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116481 – volume: 37 start-page: 14475 year: 2012 ident: D3TA06895A/cit172/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.07.032 – volume: 2011 start-page: 1 year: 2011 ident: D3TA06895A/cit311/1 publication-title: Int. J. Electrochem. doi: 10.4061/2011/261065 – volume: 46 start-page: 2577 year: 2021 ident: D3TA06895A/cit183/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.10.116 – volume: 165 start-page: F3045 year: 2018 ident: D3TA06895A/cit340/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0051806jes – volume: 144 start-page: 255 year: 2010 ident: D3TA06895A/cit456/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2009.10.058 – volume: 10 start-page: 687 year: 2017 ident: D3TA06895A/cit56/1 publication-title: Materials doi: 10.3390/ma10070687 – volume: 7 start-page: 100042 year: 2021 ident: D3TA06895A/cit127/1 publication-title: J. Power Sources Adv. doi: 10.1016/j.powera.2020.100042 – volume: 280 start-page: 148 year: 2006 ident: D3TA06895A/cit87/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.01.028 – volume: 299 start-page: 125 year: 2015 ident: D3TA06895A/cit399/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.08.094 – volume: 3 start-page: 21 year: 2003 ident: D3TA06895A/cit426/1 publication-title: Fuel Cells doi: 10.1002/fuce.200320239 – volume: 158 start-page: 1306 year: 2006 ident: D3TA06895A/cit538/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.10.059 – volume: 245 start-page: 1 year: 2017 ident: D3TA06895A/cit97/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.05.111 – volume: 3 start-page: 770 year: 2010 ident: D3TA06895A/cit317/1 publication-title: Energies doi: 10.3390/en3040770 – volume: 7 start-page: 9867 year: 2019 ident: D3TA06895A/cit211/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01756A – volume: 499 start-page: 85 year: 2001 ident: D3TA06895A/cit284/1 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(00)00492-7 – volume: 122 start-page: 1103 year: 2018 ident: D3TA06895A/cit407/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b11189 – volume: 34 start-page: 6452 year: 2009 ident: D3TA06895A/cit170/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.05.003 – volume: 300 start-page: 117357 year: 2021 ident: D3TA06895A/cit71/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117357 – volume: 41 start-page: 19463 year: 2016 ident: D3TA06895A/cit343/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.05.091 – volume: 190 start-page: 83 year: 2009 ident: D3TA06895A/cit464/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.10.124 – volume: 444 start-page: 227279 year: 2019 ident: D3TA06895A/cit276/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227279 – volume: 126 start-page: 258 year: 2004 ident: D3TA06895A/cit460/1 publication-title: J. Energy Resour. Technol. doi: 10.1115/1.1811119 – volume: 130 start-page: 42 year: 2004 ident: D3TA06895A/cit504/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2003.12.035 – volume: 37 start-page: 2009049 year: 2020 ident: D3TA06895A/cit564/1 publication-title: Acta Phys.-Chim. Sin. doi: 10.3866/PKU.WHXB202009049 – volume: 316 start-page: 164 year: 2008 ident: D3TA06895A/cit437/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.09.037 – volume: 5 start-page: 8824 year: 2012 ident: D3TA06895A/cit44/1 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21834h – volume: 439 start-page: 227090 year: 2019 ident: D3TA06895A/cit186/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227090 – volume: 42 start-page: 25695 year: 2017 ident: D3TA06895A/cit17/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.07.054 – volume: 44 start-page: 20760 year: 2019 ident: D3TA06895A/cit438/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.07.192 – volume: 19 start-page: 231 year: 2019 ident: D3TA06895A/cit551/1 publication-title: Fuel Cells doi: 10.1002/fuce.201800127 – volume: 63 start-page: 393 year: 2021 ident: D3TA06895A/cit63/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.06.024 – volume: 363 start-page: 365 year: 2017 ident: D3TA06895A/cit147/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.07.109 – volume: 165 start-page: F1176 year: 2018 ident: D3TA06895A/cit157/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0501814jes – volume: 37 start-page: 16748 year: 2012 ident: D3TA06895A/cit222/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.02.148 – volume: 165 start-page: F3316 year: 2018 ident: D3TA06895A/cit251/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0341806jes – volume: 21 start-page: 7480 year: 2011 ident: D3TA06895A/cit108/1 publication-title: J. Mater. Chem. doi: 10.1039/c1jm10439j – volume: 247 start-page: 012044 year: 2010 ident: D3TA06895A/cit411/1 publication-title: J. Phys.: Conf. Ser. – volume: 261 start-page: 121038 year: 2020 ident: D3TA06895A/cit16/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.121038 – volume: 162 start-page: F1367 year: 2015 ident: D3TA06895A/cit212/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0591512jes – volume: 64 start-page: 741 year: 2014 ident: D3TA06895A/cit189/1 publication-title: ECS Trans. doi: 10.1149/06403.0741ecst – volume: 53 start-page: 2925 year: 2008 ident: D3TA06895A/cit425/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.11.002 – volume: 22 start-page: 5430 year: 2021 ident: D3TA06895A/cit58/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22115430 – volume: 36 start-page: 5021 year: 2011 ident: D3TA06895A/cit41/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.01.036 – volume: 161 start-page: E3311 year: 2014 ident: D3TA06895A/cit537/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.036408jes – volume: 48 start-page: 487 year: 2019 ident: D3TA06895A/cit414/1 publication-title: Chem. Lett. doi: 10.1246/cl.190017 – volume: 157 start-page: B45 year: 2010 ident: D3TA06895A/cit39/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3247355 – volume: 505 start-page: 230059 year: 2021 ident: D3TA06895A/cit125/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230059 – volume: 602 start-page: 117981 year: 2020 ident: D3TA06895A/cit230/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.117981 – volume: 21 start-page: 652 year: 2018 ident: D3TA06895A/cit387/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2018.03.001 – volume: 168 start-page: 054508 year: 2021 ident: D3TA06895A/cit556/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abf4eb – volume: 80 start-page: 105534 year: 2021 ident: D3TA06895A/cit365/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105534 – volume: 150 start-page: A1599 year: 2003 ident: D3TA06895A/cit33/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1619984 – volume: 5 start-page: 2724 year: 2012 ident: D3TA06895A/cit277/1 publication-title: Energies doi: 10.3390/en5082724 – volume: 145 start-page: 307 year: 2005 ident: D3TA06895A/cit461/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.01.075 – volume: 161 start-page: F500 year: 2014 ident: D3TA06895A/cit306/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.072404jes – volume: 240 start-page: 281 year: 2013 ident: D3TA06895A/cit261/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.04.011 – volume: 155 start-page: B783 year: 2008 ident: D3TA06895A/cit290/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2929823 – volume: 156 start-page: 267 year: 2006 ident: D3TA06895A/cit446/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.06.027 – volume: 312 start-page: 41 year: 2008 ident: D3TA06895A/cit82/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.12.025 – volume: 196 start-page: 8925 year: 2011 ident: D3TA06895A/cit191/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.12.084 – volume: 48 start-page: 3899 year: 2003 ident: D3TA06895A/cit293/1 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(03)00528-0 – volume: 196 start-page: 9906 year: 2011 ident: D3TA06895A/cit245/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.08.035 – volume: 5 start-page: 6436 year: 2012 ident: D3TA06895A/cit160/1 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03055a – volume: 46 start-page: 24353 year: 2021 ident: D3TA06895A/cit194/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.05.010 – volume: 42 start-page: 1189 year: 2017 ident: D3TA06895A/cit200/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.10.040 – volume: 74 start-page: 50 year: 2019 ident: D3TA06895A/cit76/1 publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2019.05.002 – volume: 413 start-page: 140133 year: 2022 ident: D3TA06895A/cit490/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.140133 – volume: 16 start-page: 4671 year: 2023 ident: D3TA06895A/cit266/1 publication-title: Energies doi: 10.3390/en16124671 – volume: 152 start-page: A104 year: 2005 ident: D3TA06895A/cit310/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1830355 – volume: 165 start-page: F3209 year: 2018 ident: D3TA06895A/cit509/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0231806jes – volume: 177 start-page: 247 year: 2008 ident: D3TA06895A/cit86/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.11.081 – volume: 37 start-page: 18455 year: 2012 ident: D3TA06895A/cit247/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.09.077 – volume: 16 start-page: 480 year: 2016 ident: D3TA06895A/cit146/1 publication-title: Fuel Cells doi: 10.1002/fuce.201500160 – volume: 51 start-page: 89 year: 2008 ident: D3TA06895A/cit202/1 publication-title: Top. Catal. doi: 10.1007/s11244-008-9117-9 – volume: 168 start-page: 177 year: 2004 ident: D3TA06895A/cit210/1 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2004.02.013 – volume: 144 start-page: 715 year: 2022 ident: D3TA06895A/cit352/1 publication-title: Transp. Porous Media doi: 10.1007/s11242-022-01833-0 – volume: 12 start-page: 152 year: 2019 ident: D3TA06895A/cit29/1 publication-title: Energies doi: 10.3390/en12010152 – volume: 167 start-page: 144505 year: 2020 ident: D3TA06895A/cit299/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abc10f – volume: 159 start-page: B524 year: 2012 ident: D3TA06895A/cit485/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.067205jes – volume: 319 start-page: 933 year: 2019 ident: D3TA06895A/cit49/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.06.118 – volume: 13 start-page: 1616 year: 2022 ident: D3TA06895A/cit406/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29313-5 – volume: 510 start-page: 145461 year: 2020 ident: D3TA06895A/cit161/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145461 – start-page: 87 volume-title: PEM Fuel Cell Diagnostic Tools year: 2011 ident: D3TA06895A/cit315/1 – volume: 16 start-page: 235 year: 2008 ident: D3TA06895A/cit525/1 publication-title: ECS Trans. doi: 10.1149/1.2981859 – volume: 21 start-page: 7223 year: 2011 ident: D3TA06895A/cit107/1 publication-title: J. Mater. Chem. doi: 10.1039/c0jm04265j – volume: 29 start-page: 64 year: 2012 ident: D3TA06895A/cit201/1 publication-title: Energy Procedia doi: 10.1016/j.egypro.2012.09.009 – volume: 164 start-page: F1615 year: 2017 ident: D3TA06895A/cit244/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1051714jes – volume: 4 start-page: 4019 year: 2016 ident: D3TA06895A/cit104/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01562J – volume: 39 start-page: 21657 year: 2014 ident: D3TA06895A/cit420/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.09.018 – volume: 42 start-page: 1800 year: 2017 ident: D3TA06895A/cit268/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.10.035 – start-page: 389 volume-title: PEM Fuel Cell Diagnostic Tools year: 2011 ident: D3TA06895A/cit435/1 – volume: 230 start-page: 643 year: 2018 ident: D3TA06895A/cit80/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.08.125 – volume: 154 start-page: B1378 year: 2007 ident: D3TA06895A/cit283/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2789377 – volume: 242 start-page: 244 year: 2013 ident: D3TA06895A/cit305/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.05.046 – volume: 40 start-page: 6672 year: 2015 ident: D3TA06895A/cit190/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.03.148 – volume: 2 start-page: 282 year: 2010 ident: D3TA06895A/cit424/1 publication-title: Nanoscale doi: 10.1039/B9NR00140A – volume: 194 start-page: 847 year: 2009 ident: D3TA06895A/cit468/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.06.059 – volume: 143 start-page: 67 year: 2005 ident: D3TA06895A/cit324/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.11.054 – volume: 6 start-page: 30568 year: 2016 ident: D3TA06895A/cit520/1 publication-title: Sci. Rep. doi: 10.1038/srep30568 – volume: 11 start-page: 715 year: 2011 ident: D3TA06895A/cit441/1 publication-title: Fuel Cells doi: 10.1002/fuce.201000180 – volume: 297 start-page: 329 year: 2015 ident: D3TA06895A/cit75/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.07.011 – volume: 3 start-page: 628 year: 2001 ident: D3TA06895A/cit322/1 publication-title: Electrochem. Commun. doi: 10.1016/S1388-2481(01)00234-X – volume: 12 start-page: 41350 year: 2020 ident: D3TA06895A/cit111/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10527 – volume: 273 start-page: 775 year: 2015 ident: D3TA06895A/cit462/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.09.159 – volume: 119 start-page: 15866 year: 2015 ident: D3TA06895A/cit96/1 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b09684 – volume: 218 start-page: 412 year: 2012 ident: D3TA06895A/cit292/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.07.015 – volume: 176 start-page: 247 year: 2008 ident: D3TA06895A/cit46/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.10.065 – volume: 8 start-page: 165 year: 2008 ident: D3TA06895A/cit149/1 publication-title: Fuel Cells doi: 10.1002/fuce.200800024 – volume: 41 start-page: 16196 year: 2016 ident: D3TA06895A/cit139/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.06.149 – volume: 44 start-page: 18951 year: 2019 ident: D3TA06895A/cit122/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.051 – volume: 12 start-page: 463 year: 2019 ident: D3TA06895A/cit19/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01157E – volume: 196 start-page: 4209 year: 2011 ident: D3TA06895A/cit154/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.10.017 – volume: 162 start-page: F153 year: 2015 ident: D3TA06895A/cit257/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0961501jes – volume: 14 start-page: 6762 year: 2022 ident: D3TA06895A/cit375/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c22336 – volume: 5 start-page: 302 year: 2005 ident: D3TA06895A/cit510/1 publication-title: Fuel Cells doi: 10.1002/fuce.200400050 – start-page: 425 volume-title: High Temperature Polymer Electrolyte Membrane Fuel Cells year: 2016 ident: D3TA06895A/cit138/1 doi: 10.1007/978-3-319-17082-4_19 – volume: 44 start-page: 4784 year: 2020 ident: D3TA06895A/cit484/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.5266 – volume: 46 start-page: 31754 year: 2021 ident: D3TA06895A/cit532/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.07.052 – volume: 52 start-page: 1916 year: 2006 ident: D3TA06895A/cit314/1 publication-title: AIChE J. doi: 10.1002/aic.10780 – volume: 7 start-page: 2335 year: 2014 ident: D3TA06895A/cit498/1 publication-title: ChemSusChem doi: 10.1002/cssc.201402015 – volume: 40 start-page: 2833 year: 2015 ident: D3TA06895A/cit476/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.12.082 – volume: 39 start-page: 2246 year: 2014 ident: D3TA06895A/cit180/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.11.103 – volume: 281 start-page: 115958 year: 2021 ident: D3TA06895A/cit204/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115958 – volume: 46 start-page: 36982 year: 2021 ident: D3TA06895A/cit182/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.08.197 – volume: 13 start-page: 34003 year: 2021 ident: D3TA06895A/cit350/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c04560 – volume: 224 start-page: 120168 year: 2021 ident: D3TA06895A/cit248/1 publication-title: Energy doi: 10.1016/j.energy.2021.120168 – volume: 45 start-page: 28190 year: 2020 ident: D3TA06895A/cit432/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.03.068 – volume: 152 start-page: A1942 year: 2005 ident: D3TA06895A/cit77/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2006487 – volume: 36 start-page: 1628 year: 2011 ident: D3TA06895A/cit482/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.10.076 – volume: 630 start-page: 119288 year: 2021 ident: D3TA06895A/cit110/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119288 – volume: 352 start-page: 136464 year: 2020 ident: D3TA06895A/cit360/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136464 – volume-title: World Energy Outlook 2022 year: 2022 ident: D3TA06895A/cit11/1 – volume: 45 start-page: 5526 year: 2020 ident: D3TA06895A/cit81/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.210 – volume: 1 start-page: 1 year: 2016 ident: D3TA06895A/cit112/1 publication-title: Nat. Energy – volume: 131 start-page: 213 year: 2004 ident: D3TA06895A/cit444/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2003.11.081 – volume: 33 start-page: 314002 year: 2021 ident: D3TA06895A/cit369/1 publication-title: J. Phys.: Condens.Matter – volume: 289 start-page: 354 year: 2018 ident: D3TA06895A/cit488/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.09.021 – volume: 152 start-page: A1035 year: 2005 ident: D3TA06895A/cit85/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1895225 – volume: 112 start-page: 248301 year: 2014 ident: D3TA06895A/cit395/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.248301 – volume: 13 start-page: 022701 year: 2021 ident: D3TA06895A/cit143/1 publication-title: J. Renewable Sustainable Energy doi: 10.1063/5.0031447 – volume: 6 start-page: 15257 year: 2021 ident: D3TA06895A/cit415/1 publication-title: ACS Omega doi: 10.1021/acsomega.1c01535 – volume: 125 start-page: 193 year: 2017 ident: D3TA06895A/cit304/1 publication-title: J. Ceram. Assoc. Jpn. doi: 10.2109/jcersj2.16267 – volume: 20 start-page: 272 year: 2020 ident: D3TA06895A/cit253/1 publication-title: Fuel Cells doi: 10.1002/fuce.201900086 – volume: 11 start-page: 2714 year: 2010 ident: D3TA06895A/cit422/1 publication-title: ChemPhysChem doi: 10.1002/cphc.201000487 – volume: 88 start-page: 149 year: 2016 ident: D3TA06895A/cit507/1 publication-title: Annu. Rep. NMR Spectrosc. doi: 10.1016/bs.arnmr.2015.11.003 – volume: 44 start-page: 18330 year: 2019 ident: D3TA06895A/cit335/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.114 – volume: 247 start-page: 354 year: 2014 ident: D3TA06895A/cit565/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.08.112 – volume: 23 start-page: 189 year: 1987 ident: D3TA06895A/cit409/1 publication-title: Solid State Ionics doi: 10.1016/0167-2738(87)90050-6 – start-page: 935 year: 2013 ident: D3TA06895A/cit336/1 publication-title: Fuel Cells doi: 10.1002/fuce.201300008 – volume: 234 start-page: 147 year: 2013 ident: D3TA06895A/cit517/1 publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2013.06.015 – volume: 39 start-page: 2776 year: 2014 ident: D3TA06895A/cit436/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.04.152 – volume: 28 start-page: 555 year: 2013 ident: D3TA06895A/cit1/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2013.08.013 – volume: 45 start-page: 7968 year: 2020 ident: D3TA06895A/cit73/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.08.219 – volume: 44 start-page: 12748 year: 2019 ident: D3TA06895A/cit142/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.07.070 – volume-title: 3.4 Fuel Cells - Multi-Year Research, Development, and Demonstration Plan year: 2016 ident: D3TA06895A/cit521/1 – volume: 541 start-page: 386 year: 2017 ident: D3TA06895A/cit223/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.07.020 – volume: 297 start-page: 315 year: 2015 ident: D3TA06895A/cit329/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.07.069 – volume: 257 start-page: 102 year: 2014 ident: D3TA06895A/cit536/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.106 – volume: 5 start-page: 361 year: 2014 ident: D3TA06895A/cit495/1 publication-title: Electrocatalysis doi: 10.1007/s12678-014-0202-5 – volume: 38 start-page: 9819 year: 2013 ident: D3TA06895A/cit176/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.05.072 – volume: 162 start-page: F291 year: 2015 ident: D3TA06895A/cit193/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0681503jes – volume: 2020 start-page: 1 year: 2020 ident: D3TA06895A/cit54/1 publication-title: Research – volume: 37 start-page: 385 year: 1992 ident: D3TA06895A/cit439/1 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(92)87026-V – volume: 33 start-page: 3146 year: 2008 ident: D3TA06895A/cit516/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.01.053 – volume: 39 start-page: 17638 year: 2014 ident: D3TA06895A/cit451/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.08.010 – volume: 39 start-page: 19067 year: 2014 ident: D3TA06895A/cit179/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.09.095 – volume: 11 start-page: 489 year: 2011 ident: D3TA06895A/cit330/1 publication-title: Fuel Cells doi: 10.1002/fuce.201000101 – volume: 112 start-page: 14209 year: 2008 ident: D3TA06895A/cit95/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp803589w – volume: 39 start-page: 14441 year: 2014 ident: D3TA06895A/cit307/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.02.023 – volume: 6 start-page: 607 year: 2018 ident: D3TA06895A/cit405/1 publication-title: AIMS Energy doi: 10.3934/energy.2018.4.607 – volume: 9 start-page: A475 year: 2006 ident: D3TA06895A/cit473/1 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.2266163 – volume: 14 start-page: B51 year: 2011 ident: D3TA06895A/cit463/1 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.3560163 – volume: 162 start-page: 547 year: 2006 ident: D3TA06895A/cit162/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.07.008 – volume: 12 start-page: 3810 year: 2022 ident: D3TA06895A/cit129/1 publication-title: Sci. Rep. doi: 10.1038/s41598-021-04711-9 – volume: 591 start-page: 117354 year: 2019 ident: D3TA06895A/cit227/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117354 – volume: 42 start-page: 833 year: 2012 ident: D3TA06895A/cit475/1 publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-012-0446-9 – volume: 192 start-page: 699 year: 2018 ident: D3TA06895A/cit74/1 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.08.029 – volume: 43 start-page: 21006 year: 2018 ident: D3TA06895A/cit281/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.09.103 – volume: 239 start-page: 122356 year: 2022 ident: D3TA06895A/cit249/1 publication-title: Energy doi: 10.1016/j.energy.2021.122356 – volume: 6 start-page: 100036 year: 2020 ident: D3TA06895A/cit465/1 publication-title: J. Power Sources Adv. doi: 10.1016/j.powera.2020.100036 – volume: 269 start-page: 344 year: 2014 ident: D3TA06895A/cit294/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.06.146 – volume: 12 start-page: 11472 year: 2022 ident: D3TA06895A/cit371/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c02630 – volume: 56 start-page: 9467 year: 2011 ident: D3TA06895A/cit30/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.08.039 – volume-title: State and Trends of Carbon Pricing 2021 year: 2021 ident: D3TA06895A/cit13/1 doi: 10.1596/978-1-4648-1728-1 – volume: 274 start-page: 177 year: 2015 ident: D3TA06895A/cit239/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.08.136 – volume: 42 start-page: 2636 year: 2017 ident: D3TA06895A/cit378/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.07.009 – volume: 11 start-page: 2214 year: 2018 ident: D3TA06895A/cit400/1 publication-title: Energies doi: 10.3390/en11092214 – volume: 7 start-page: 153 year: 2022 ident: D3TA06895A/cit115/1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00956-w – volume: 52 start-page: 6848 year: 2007 ident: D3TA06895A/cit506/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.04.106 – volume: 45 start-page: 1008 year: 2020 ident: D3TA06895A/cit100/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.10.186 – volume: 437 start-page: 226922 year: 2019 ident: D3TA06895A/cit543/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226922 – volume: 172 start-page: 2 year: 2007 ident: D3TA06895A/cit321/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.05.071 – volume: 4 start-page: 17236 year: 2019 ident: D3TA06895A/cit404/1 publication-title: ACS Omega doi: 10.1021/acsomega.9b01763 – volume-title: 2004 Fuel Cell Seminar year: 2004 ident: D3TA06895A/cit528/1 – volume: 69 start-page: 99 year: 1992 ident: D3TA06895A/cit303/1 publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(92)90132-I – volume: 10 start-page: 1311 year: 2008 ident: D3TA06895A/cit397/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2008.06.016 – volume: 741 start-page: 140326 year: 2020 ident: D3TA06895A/cit3/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140326 – volume: 106 start-page: 379 year: 2011 ident: D3TA06895A/cit502/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2011.05.043 – volume: 195 start-page: 6774 year: 2010 ident: D3TA06895A/cit403/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.03.060 – volume: 588 start-page: 117218 year: 2019 ident: D3TA06895A/cit231/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117218 – volume: 134 start-page: 3021 year: 1987 ident: D3TA06895A/cit32/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2100333 – volume: 10 start-page: B39 year: 2007 ident: D3TA06895A/cit553/1 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.2400204 – volume: 12 start-page: 515 year: 2020 ident: D3TA06895A/cit229/1 publication-title: Polymers doi: 10.3390/polym12030515 – volume: 5 start-page: 11 year: 2017 ident: D3TA06895A/cit20/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2017.08.010 – start-page: 171 volume-title: Pem Fuel Cell Test Diagnosis year: 2013 ident: D3TA06895A/cit470/1 doi: 10.1016/B978-0-444-53688-4.00006-1 – volume: 46 start-page: 8179 year: 2021 ident: D3TA06895A/cit35/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.12.001 – volume: 2 start-page: 391 year: 2012 ident: D3TA06895A/cit323/1 publication-title: J. Int. Counc. Electr. Eng. doi: 10.5370/JICEE.2012.2.4.391 – volume: 124 start-page: 9703 year: 2020 ident: D3TA06895A/cit430/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c00347 – volume: 165 start-page: F3148 year: 2018 ident: D3TA06895A/cit541/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0061806jes – start-page: 297 volume-title: High Temperature Polymer Electrolyte Membrane Fuel Cells year: 2016 ident: D3TA06895A/cit116/1 doi: 10.1007/978-3-319-17082-4_14 – volume: 37 start-page: 10844 year: 2012 ident: D3TA06895A/cit121/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.04.095 – volume: 470 start-page: 228285 year: 2020 ident: D3TA06895A/cit273/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228285 – volume: 115 start-page: 14236 year: 2011 ident: D3TA06895A/cit540/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp203016u – volume: 1 start-page: 41 year: 2021 ident: D3TA06895A/cit260/1 publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-021-00039-w – volume: 47 start-page: 546 year: 2015 ident: D3TA06895A/cit413/1 publication-title: Polym. J. doi: 10.1038/pj.2015.36 – volume: 157 start-page: B1456 year: 2010 ident: D3TA06895A/cit40/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3468615 – volume: 35 start-page: 1013 year: 2019 ident: D3TA06895A/cit500/1 publication-title: Surf. Eng. doi: 10.1080/02670844.2019.1597426 – volume: 42 start-page: 9293 year: 2017 ident: D3TA06895A/cit22/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.06.211 – volume: 117 start-page: 6210 year: 2013 ident: D3TA06895A/cit152/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp311924q – volume: 196 start-page: 9097 year: 2011 ident: D3TA06895A/cit177/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.06.098 – volume: 128 start-page: 284 year: 2015 ident: D3TA06895A/cit133/1 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2015.03.063 – volume: 90 start-page: 1949 year: 2015 ident: D3TA06895A/cit256/1 publication-title: Energy doi: 10.1016/j.energy.2015.07.026 – volume: 40 start-page: 14932 year: 2015 ident: D3TA06895A/cit199/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.09.056 – volume: 80 start-page: 100859 year: 2020 ident: D3TA06895A/cit558/1 publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2020.100859 – volume: 282 start-page: 489 year: 2015 ident: D3TA06895A/cit220/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.037 – volume: 39 start-page: 21678 year: 2014 ident: D3TA06895A/cit153/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.06.045 – volume: 227 start-page: 110 year: 2017 ident: D3TA06895A/cit280/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.148 – volume: 16 start-page: 469 year: 2016 ident: D3TA06895A/cit263/1 publication-title: Fuel Cells doi: 10.1002/fuce.201500141 – volume: 46 start-page: 9058 year: 2022 ident: D3TA06895A/cit339/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.7782 – volume: 135 start-page: 45954 year: 2018 ident: D3TA06895A/cit228/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.45954 – volume: 52 start-page: 2552 year: 2007 ident: D3TA06895A/cit36/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.09.008 – volume: 4 start-page: 19384 year: 2019 ident: D3TA06895A/cit219/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.07.181 – volume: 9 start-page: 1 year: 2019 ident: D3TA06895A/cit359/1 publication-title: Sci. Rep. doi: 10.1038/s41598-018-37186-2 – volume: 158 start-page: 446 year: 2006 ident: D3TA06895A/cit234/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.09.062 – volume: 56 start-page: 289 year: 2011 ident: D3TA06895A/cit59/1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2010.11.001 – volume: 20 start-page: 370 year: 2021 ident: D3TA06895A/cit113/1 publication-title: Nat. Mater. doi: 10.1038/s41563-020-00841-z – start-page: 353 volume-title: High Temperature Polymer Electrolyte Membrane Fuel Cells year: 2016 ident: D3TA06895A/cit264/1 doi: 10.1007/978-3-319-17082-4_17 – volume: 193 start-page: 691 year: 2009 ident: D3TA06895A/cit34/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.04.021 – volume: 11 start-page: 979 year: 2018 ident: D3TA06895A/cit215/1 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03595K – volume: 93 start-page: 106829 year: 2022 ident: D3TA06895A/cit274/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106829 – year: 2021 ident: D3TA06895A/cit522/1 – volume: 160 start-page: 872 year: 2006 ident: D3TA06895A/cit52/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.05.034 – volume: 33 start-page: 2323 year: 2008 ident: D3TA06895A/cit503/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.02.049 – volume: 42 start-page: 711 year: 2012 ident: D3TA06895A/cit151/1 publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-012-0448-7 – volume: 355 start-page: 136764 year: 2020 ident: D3TA06895A/cit275/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136764 – volume: 47 start-page: 18820 year: 2022 ident: D3TA06895A/cit555/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.04.067 – volume-title: The Fuel Cell Industry Review 2022 year: 2024 ident: D3TA06895A/cit21/1 – volume: 94 start-page: 1206 year: 2009 ident: D3TA06895A/cit195/1 publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2009.04.026 – volume: 32 start-page: 178 year: 2020 ident: D3TA06895A/cit218/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2019.06.005 – volume: 163 start-page: F842 year: 2016 ident: D3TA06895A/cit208/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0801608jes – volume: 162 start-page: F310 year: 2015 ident: D3TA06895A/cit209/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0751503jes – volume: 32 start-page: 4365 year: 2007 ident: D3TA06895A/cit262/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2007.05.036 – volume: 327 start-page: 119 year: 2016 ident: D3TA06895A/cit137/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.07.045 – volume: 152 start-page: A2256 year: 2005 ident: D3TA06895A/cit237/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2050347 – volume: 56 start-page: 4237 year: 2011 ident: D3TA06895A/cit134/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.01.088 – volume: 196 start-page: 5564 year: 2011 ident: D3TA06895A/cit252/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.01.044 – volume: 148 start-page: 204906 issue: 20 year: 2018 ident: D3TA06895A/cit408/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5018717 – volume: 746 start-page: 012004 year: 2016 ident: D3TA06895A/cit385/1 publication-title: J. Phys.: Conf. Ser. – volume: 158 start-page: B11 year: 2011 ident: D3TA06895A/cit535/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3504255 – volume: 349 start-page: 304 year: 2010 ident: D3TA06895A/cit99/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.11.061 – volume: 195 start-page: 1171 year: 2010 ident: D3TA06895A/cit474/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.08.095 – volume: 125 start-page: 21645 year: 2021 ident: D3TA06895A/cit418/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c06014 – volume: 162 start-page: F519 year: 2015 ident: D3TA06895A/cit287/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0361506jes – volume: 13 start-page: 16227 year: 2021 ident: D3TA06895A/cit353/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c22358 – volume: 40 start-page: 14723 year: 2015 ident: D3TA06895A/cit562/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.08.054 – volume: 364 start-page: 437 year: 2017 ident: D3TA06895A/cit489/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.08.042 – volume: 33 start-page: 1747 year: 2008 ident: D3TA06895A/cit65/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.01.020 – volume: 45 start-page: 3609 year: 2020 ident: D3TA06895A/cit123/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.111 – volume: 186 start-page: 115836 year: 2019 ident: D3TA06895A/cit141/1 publication-title: Energy doi: 10.1016/j.energy.2019.07.166 – volume: 86 start-page: 221 year: 2018 ident: D3TA06895A/cit117/1 publication-title: ECS Trans. doi: 10.1149/08613.0221ecst – volume: 211 start-page: 478 year: 2016 ident: D3TA06895A/cit392/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.06.068 – volume: 43 start-page: 13430 year: 2018 ident: D3TA06895A/cit140/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.05.059 – volume: 212 start-page: 213 year: 2003 ident: D3TA06895A/cit471/1 publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(02)00503-3 – volume: 104 start-page: 4613 year: 2004 ident: D3TA06895A/cit64/1 publication-title: Chem. Rev. doi: 10.1021/cr020708r – volume: 8 start-page: A156 year: 2005 ident: D3TA06895A/cit236/1 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1854781 – volume: 41 start-page: 7475 year: 2016 ident: D3TA06895A/cit128/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.02.156 – volume: 596 start-page: 117722 year: 2020 ident: D3TA06895A/cit232/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.117722 – volume: 19 start-page: 1444 year: 2019 ident: D3TA06895A/cit376/1 publication-title: Chem. Rec. doi: 10.1002/tcr.201800193 – volume: 257 start-page: 89 year: 2017 ident: D3TA06895A/cit69/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.054 – volume: 46 start-page: 4174 year: 2022 ident: D3TA06895A/cit159/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.7418 – volume: 45 start-page: 16708 year: 2020 ident: D3TA06895A/cit433/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.04.124 – volume: 152 start-page: E123 year: 2005 ident: D3TA06895A/cit166/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1859814 – volume: 273 start-page: 688 year: 2015 ident: D3TA06895A/cit221/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.09.122 – volume: 2 start-page: 7772 year: 2019 ident: D3TA06895A/cit382/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00982 – volume: 4 start-page: 1516 year: 2014 ident: D3TA06895A/cit546/1 publication-title: ACS Catal. doi: 10.1021/cs500116h – volume: 165 start-page: F492 year: 2018 ident: D3TA06895A/cit552/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0881807jes – volume: 15 start-page: 16 year: 2017 ident: D3TA06895A/cit8/1 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph15010016 – volume: 172 start-page: 163 year: 2007 ident: D3TA06895A/cit37/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.07.047 – volume: 160 start-page: F972 year: 2013 ident: D3TA06895A/cit539/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.036309jes – volume: 8 start-page: 32764 year: 2016 ident: D3TA06895A/cit348/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08844 – volume: 44 start-page: 321 year: 2013 ident: D3TA06895A/cit428/1 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4192 – volume: 41 start-page: 21310 year: 2016 ident: D3TA06895A/cit47/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.09.024 – volume: 160 start-page: 1088 year: 2006 ident: D3TA06895A/cit259/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.02.086 – volume: 161 start-page: F192 year: 2014 ident: D3TA06895A/cit401/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.023403jes – volume: 160 start-page: 27 year: 2006 ident: D3TA06895A/cit494/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.01.047 – volume: 277 start-page: 115588 year: 2020 ident: D3TA06895A/cit380/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115588 – volume: 170 start-page: 014504 year: 2023 ident: D3TA06895A/cit291/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/acb3ff – year: 2023 ident: D3TA06895A/cit14/1 – volume: 30 start-page: 743 year: 2020 ident: D3TA06895A/cit23/1 publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2020.08.014 – volume: 45 start-page: 14491 year: 2020 ident: D3TA06895A/cit493/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.03.179 – volume: 402 start-page: 24 year: 2018 ident: D3TA06895A/cit279/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.09.004 – volume: 161 start-page: F1437 year: 2014 ident: D3TA06895A/cit563/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0691414jes – volume: 120 start-page: 2574 year: 2016 ident: D3TA06895A/cit511/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b11871 – volume: 37 start-page: 9171 year: 2012 ident: D3TA06895A/cit51/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.02.190 – volume: 238 start-page: 516 year: 2013 ident: D3TA06895A/cit196/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.194 – volume: 38 start-page: 8532 year: 2013 ident: D3TA06895A/cit278/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.09.101 – volume: 69 start-page: 147 year: 2015 ident: D3TA06895A/cit368/1 publication-title: ECS Trans. doi: 10.1149/06917.0147ecst – volume: 49 start-page: 302 volume-title: IFAC-PapersOnLine year: 2016 ident: D3TA06895A/cit28/1 – volume: 47 start-page: 2662 year: 2022 ident: D3TA06895A/cit309/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.10.196 – volume: 69 start-page: 323 year: 2015 ident: D3TA06895A/cit549/1 publication-title: ECS Trans. doi: 10.1149/06917.0323ecst – volume: 3 start-page: 793 year: 2020 ident: D3TA06895A/cit53/1 publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-020-00080-5 – volume: 167 start-page: 144 year: 2017 ident: D3TA06895A/cit132/1 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.01.080 – volume: 20 start-page: 499 year: 2020 ident: D3TA06895A/cit285/1 publication-title: Fuel Cells doi: 10.1002/fuce.201900212 – volume: 35 start-page: 1347 year: 2010 ident: D3TA06895A/cit130/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.11.091 – volume: 37 start-page: 1884 year: 2012 ident: D3TA06895A/cit318/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.04.120 – volume-title: EBRD Working Paper No. 231 year: 2019 ident: D3TA06895A/cit12/1 doi: 10.2139/ssrn.3451335 – volume: 42 start-page: 2636 year: 2017 ident: D3TA06895A/cit94/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.07.009 – volume: 45 start-page: 34818 year: 2020 ident: D3TA06895A/cit423/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.05.053 – volume: 44 start-page: 6141 year: 2005 ident: D3TA06895A/cit452/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0491286 – volume: 341 start-page: 302 year: 2017 ident: D3TA06895A/cit496/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.12.029 – volume: 109 start-page: 1029 year: 2012 ident: D3TA06895A/cit453/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1114672109 – volume: 46 start-page: 33934 year: 2021 ident: D3TA06895A/cit481/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.07.211 – volume: 2100809 start-page: 2100809 year: 2022 ident: D3TA06895A/cit155/1 publication-title: Energy Technol. doi: 10.1002/ente.202100809 – volume: 2 start-page: 285 year: 2007 ident: D3TA06895A/cit505/1 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)17074-X – volume: 24 start-page: 529 year: 2020 ident: D3TA06895A/cit566/1 publication-title: Environ. Clim. Technol. doi: 10.2478/rtuect-2020-0033 – volume: 43 start-page: 11820 year: 2018 ident: D3TA06895A/cit120/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.03.047 – volume: 5 start-page: 10602 year: 2018 ident: D3TA06895A/cit442/1 publication-title: Mater. Today: Proc. – volume: 13 start-page: 2255 year: 2020 ident: D3TA06895A/cit6/1 publication-title: Energies doi: 10.3390/en13092255 – volume: 19 start-page: 587 year: 2017 ident: D3TA06895A/cit92/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP04855B – volume: 118 start-page: 502 year: 2017 ident: D3TA06895A/cit530/1 publication-title: Energy doi: 10.1016/j.energy.2016.10.061 – volume: 129 start-page: 416 year: 2014 ident: D3TA06895A/cit454/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.02.088 – volume: 521 start-page: 230851 year: 2022 ident: D3TA06895A/cit383/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230851 – volume: 19 start-page: 601 year: 2017 ident: D3TA06895A/cit93/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP05331A – volume: 231 start-page: 264 year: 2013 ident: D3TA06895A/cit50/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.11.126 – volume: 5 start-page: 66 year: 2022 ident: D3TA06895A/cit316/1 publication-title: Mater. Sci. Energy Technol. – volume: 12 start-page: 12544 year: 2010 ident: D3TA06895A/cit213/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00433b – volume: 21 start-page: 1319 year: 2014 ident: D3TA06895A/cit363/1 publication-title: J. Synchrotron Radiat. doi: 10.1107/S1600577514016348 – volume: 150 start-page: A1052 year: 2003 ident: D3TA06895A/cit469/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1584440 – volume-title: 4th PEFC and H2 Forum B1108 year: 2013 ident: D3TA06895A/cit479/1 – volume: 285 start-page: 499 year: 2015 ident: D3TA06895A/cit167/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.03.109 – volume: 165 start-page: F3118 year: 2018 ident: D3TA06895A/cit554/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0161806jes – volume: 37 start-page: 18272 year: 2012 ident: D3TA06895A/cit192/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.09.016 – volume: 254 start-page: 113659 year: 2019 ident: D3TA06895A/cit250/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113659 – volume: 80 start-page: 19 year: 2017 ident: D3TA06895A/cit417/1 publication-title: ECS Trans. doi: 10.1149/08008.0019ecst – volume: 7 start-page: 16 year: 2017 ident: D3TA06895A/cit25/1 publication-title: Catalysts doi: 10.3390/catal7010016 – volume: 42 start-page: 27230 year: 2017 ident: D3TA06895A/cit547/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.09.018 – volume: 167 start-page: 064510 year: 2020 ident: D3TA06895A/cit394/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab7d91 – volume: 641 start-page: 119868 year: 2022 ident: D3TA06895A/cit548/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119868 – volume: 88 start-page: 266 year: 2017 ident: D3TA06895A/cit386/1 publication-title: Phys. Procedia doi: 10.1016/j.phpro.2017.06.037 – volume: 22 start-page: 18919 year: 2020 ident: D3TA06895A/cit373/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP01356K – volume: 35 start-page: 11649 year: 2010 ident: D3TA06895A/cit171/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.03.137 – volume: 8 start-page: 2000085 year: 2020 ident: D3TA06895A/cit499/1 publication-title: Energy Technol. doi: 10.1002/ente.202000085 – volume: 7 start-page: 1 year: 2010 ident: D3TA06895A/cit448/1 publication-title: J. Fuel Cell Sci. Technol. doi: 10.1115/1.4001353 – volume: 171 start-page: 670 year: 2007 ident: D3TA06895A/cit258/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.06.072 – volume: 165 start-page: F863 year: 2018 ident: D3TA06895A/cit207/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1201810jes – volume: 350 start-page: 94 year: 2017 ident: D3TA06895A/cit358/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.058 – volume: 9 start-page: 325 year: 2009 ident: D3TA06895A/cit242/1 publication-title: Fuel Cells doi: 10.1002/fuce.200800134 – start-page: 2161 volume-title: ECS Meet. Abstr. year: 2020 ident: D3TA06895A/cit197/1 – volume: 17 start-page: 778 year: 2017 ident: D3TA06895A/cit396/1 publication-title: Fuel Cells doi: 10.1002/fuce.201700033 – volume: 19 start-page: 3792 year: 2017 ident: D3TA06895A/cit431/1 publication-title: CrystEngComm doi: 10.1039/C7CE00599G – volume: 47 start-page: 8799 year: 2022 ident: D3TA06895A/cit364/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.12.241 – volume: 36 start-page: 1837 year: 2011 ident: D3TA06895A/cit78/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.01.036 – volume: 189 start-page: 943 year: 2009 ident: D3TA06895A/cit91/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.12.115 – volume: 164 start-page: F704 year: 2017 ident: D3TA06895A/cit529/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0081707jes – volume: 270 start-page: 627 year: 2014 ident: D3TA06895A/cit434/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.06.171 – volume: 31 start-page: 69 year: 2019 ident: D3TA06895A/cit341/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2019.05.019 – volume: 58 start-page: 519 year: 2013 ident: D3TA06895A/cit467/1 publication-title: ECS Trans. doi: 10.1149/05801.0519ecst – volume: 493 start-page: 80 year: 2015 ident: D3TA06895A/cit90/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.06.010 – volume: 2 start-page: 044005 year: 2020 ident: D3TA06895A/cit357/1 publication-title: JPhys Energy doi: 10.1088/2515-7655/abb783 – volume: 176 start-page: 428 year: 2008 ident: D3TA06895A/cit206/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.08.055 – volume: 168 start-page: 074507 year: 2021 ident: D3TA06895A/cit351/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac154e – volume: 14 start-page: 213 year: 2010 ident: D3TA06895A/cit105/1 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-008-0678-0 – volume: 10 start-page: 377 year: 2010 ident: D3TA06895A/cit508/1 publication-title: Chem. Rec. doi: 10.1002/tcr.201000010 – volume: 41 start-page: 10044 year: 2016 ident: D3TA06895A/cit103/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.02.043 – volume: 21 start-page: 391 year: 2004 ident: D3TA06895A/cit533/1 publication-title: ECS Proc – volume: 18 start-page: 586 year: 2018 ident: D3TA06895A/cit545/1 publication-title: Fuel Cells doi: 10.1002/fuce.201700220 – volume: 7 start-page: 1393 year: 2005 ident: D3TA06895A/cit45/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2005.09.017 – volume: 171 start-page: 493 year: 2019 ident: D3TA06895A/cit4/1 publication-title: Energy doi: 10.1016/j.energy.2019.01.011 – volume: 5 start-page: 6436 year: 2012 ident: D3TA06895A/cit148/1 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03055a – volume: 31 start-page: 1 year: 2019 ident: D3TA06895A/cit66/1 publication-title: Adv. Mater. doi: 10.1002/adma.201901900 – volume: 161 start-page: 107768 year: 2022 ident: D3TA06895A/cit345/1 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107768 – volume: 45 start-page: 13045 year: 2020 ident: D3TA06895A/cit246/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.02.215 |
SSID | ssj0000800699 |
Score | 2.5916603 |
Snippet | High-temperature (120-200 °C) polymer electrolyte membrane fuel cells (HT-PEMFCs) are promising energy conversion devices that offer multiple advantages over... High-temperature (120–200 °C) polymer electrolyte membrane fuel cells (HT-PEMFCs) are promising energy conversion devices that offer multiple advantages over... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 814 |
SubjectTerms | Accelerated tests Catalysts Electrochemical analysis Electrochemistry Electrolytes Electrolytic cells Energy conversion Fuel cells Fuel technology High temperature Low temperature Phosphoric acid Polymers Proton exchange membrane fuel cells Reaction kinetics Temperature tolerance Test procedures Thermal management Water |
Title | Challenges and opportunities for characterisation of high-temperature polymer electrolyte membrane fuel cells: a review |
URI | https://www.proquest.com/docview/3030999442 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6l6QUOiK0iUNBIcEGRi-3xMuZmlVQFhXJxpIiLZc9yylKljlD5rfwY3mwedxECLlbkLbHflzfvvfnmewi9axueRJRGAScFCZI0lwFtUhlwSiLehi3LuWZbXGTni-TLMl2ORr8GrKV9156wn_euK_kfq8I-sKtaJfsPlu1vCjvgM9gXtmBh2P6VjU9dJxQjtLy9VMH0fqNFUjV_kHk5Zh8aQjoeKEUqK6es-jRcr8VuajvirK47MV2LNaTREIDKvVhNVXX_yiyL3vm5hLshLUS_5rHhi20fuZNpaZYEuSNaYtwsONQ1e7eAS3F0-_L-9z2DPF0TDUrerL2bNM7bUXL68lC3deyQgVCAmeuyjUeUBgE4wa_DKkdsyDE-Jza1FEdk1UQV-xjeX8ZhGippVOPOxXCfaZrbO_x4COxk4L6VlM4wFAiNwvqdYSYkSqWVk64JM1qkg8HUEQguvtVni_m8rmbL6gAdxpDExGN0WM6qz_O-Bqii9Uy3OO1_u1PQJcUHf_ubMZNPhA52rkuNjoaqx-iRtTkuDSafoJHYPEUPB-KWz9APj04MlsY30IkBBvg2OvFW4tvoxBadeIBO7NCJFTqxRudH3GCDzedocTarTs8D2-YjYBC8dkHa5BBVykzItkiatokSmYZCQiaQU84zGFBYxNpMRFTSNiSEyaKhPKWcxVJQGKKO0Hiz3YgXCLeSKRoAVz0fklDAvfK0zYXkAo5QTibovXuRNbMa-KoVy6rWXAxS1J9IVeqXXk7Q2_7cS6P8cu9Zx84etfUMVzVR85ZFkSTxBB2BjfrrvUlf_vm6V-iB_xcco3G324vXEP127RsLot_3krsn |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+and+opportunities+for+characterisation+of+high-temperature+polymer+electrolyte+membrane+fuel+cells%3A+a+review&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zucconi%2C+Adam&rft.au=Hack%2C+Jennifer&rft.au=Stocker%2C+Richard&rft.au=Suter%2C+Theo+A+M&rft.date=2024-04-02&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=12&rft.issue=14&rft.spage=8014&rft.epage=8064&rft_id=info:doi/10.1039%2Fd3ta06895a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |