Design considerations for multi-terawatt scale manufacturing of existing and future photovoltaic technologies: challenges and opportunities related to silver, indium and bismuth consumption
To significantly impact climate change, the annual photovoltaic (PV) module production rate must dramatically increase from ∼135 gigawatts (GW) in 2020 to ∼3 terawatts (TW) around 2030. A key knowledge gap is the sustainable manufacturing capacity of existing and future commercial PV cell technologi...
Saved in:
Published in | Energy & environmental science Vol. 14; no. 11; pp. 5587 - 561 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
10.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To significantly impact climate change, the annual photovoltaic (PV) module production rate must dramatically increase from ∼135 gigawatts (GW) in 2020 to ∼3 terawatts (TW) around 2030. A key knowledge gap is the sustainable manufacturing capacity of existing and future commercial PV cell technologies imposed by scarce metals, and a suitable pathway towards sustainable manufacturing at the multi-TW scale. Assuming an upper material consumption limit as 20% of 2019 global supply, we show that the present industrial implementations of passivated emitter and rear cell (PERC), tunnel oxide passivated contact (TOPCon), and silicon heterojunction (SHJ) cells have sustainable manufacturing capacities of 377 GW (silver-limited), 227 GW (silver-limited) GW and 37 GW (indium-limited), respectively. We propose material consumption targets of 2 mg W
−1
, 0.38 mg W
−1
, and 1.8 mg W
−1
for silver, indium, and bismuth, respectively, indicating significant material consumption reductions are required to meet the target production rate for sustainable multi-TW scale manufacturing in about ten years from now. The industry needs urgent innovation on screen printing technologies for PERC, TOPCon, and SHJ solar cells to reduce silver consumption beyond expectation in the Industrial Technology Roadmap for PV (ITPRV), or the widespread adoption of existing and proven copper plating technologies. Indium cannot be used in any significant manufacturing capacity for PV production, even for futuristic 30%-efficient tandem devices. The current implementation of low-temperature interconnection schemes using bismuth-based solders will be limited to 330 GW of production. With half the silver-limited sustainable manufacturing capacity as PERC, the limited efficiency gains of SHJ and TOPCon cell technologies do not justify a transition away from industrial PERC, or the introduction of indium- and bismuth limitations for SHJ solar cells. On the other hand, futuristic two-terminal tandems with efficiency potentials over 30% have a unique opportunity to reduce material consumption through substantially reduced series resistance losses.
As the photovoltaic (PV) industry heading towards the multi-TW scale, PV technologies need to be carefully evaluated based on material consumption rather than just efficiency or cost to ensure sustainable growth of the industry. |
---|---|
AbstractList | To significantly impact climate change, the annual photovoltaic (PV) module production rate must dramatically increase from ∼135 gigawatts (GW) in 2020 to ∼3 terawatts (TW) around 2030. A key knowledge gap is the sustainable manufacturing capacity of existing and future commercial PV cell technologies imposed by scarce metals, and a suitable pathway towards sustainable manufacturing at the multi-TW scale. Assuming an upper material consumption limit as 20% of 2019 global supply, we show that the present industrial implementations of passivated emitter and rear cell (PERC), tunnel oxide passivated contact (TOPCon), and silicon heterojunction (SHJ) cells have sustainable manufacturing capacities of 377 GW (silver-limited), 227 GW (silver-limited) GW and 37 GW (indium-limited), respectively. We propose material consumption targets of 2 mg W
−1
, 0.38 mg W
−1
, and 1.8 mg W
−1
for silver, indium, and bismuth, respectively, indicating significant material consumption reductions are required to meet the target production rate for sustainable multi-TW scale manufacturing in about ten years from now. The industry needs urgent innovation on screen printing technologies for PERC, TOPCon, and SHJ solar cells to reduce silver consumption beyond expectation in the Industrial Technology Roadmap for PV (ITPRV), or the widespread adoption of existing and proven copper plating technologies. Indium cannot be used in any significant manufacturing capacity for PV production, even for futuristic 30%-efficient tandem devices. The current implementation of low-temperature interconnection schemes using bismuth-based solders will be limited to 330 GW of production. With half the silver-limited sustainable manufacturing capacity as PERC, the limited efficiency gains of SHJ and TOPCon cell technologies do not justify a transition away from industrial PERC, or the introduction of indium- and bismuth limitations for SHJ solar cells. On the other hand, futuristic two-terminal tandems with efficiency potentials over 30% have a unique opportunity to reduce material consumption through substantially reduced series resistance losses. To significantly impact climate change, the annual photovoltaic (PV) module production rate must dramatically increase from ∼135 gigawatts (GW) in 2020 to ∼3 terawatts (TW) around 2030. A key knowledge gap is the sustainable manufacturing capacity of existing and future commercial PV cell technologies imposed by scarce metals, and a suitable pathway towards sustainable manufacturing at the multi-TW scale. Assuming an upper material consumption limit as 20% of 2019 global supply, we show that the present industrial implementations of passivated emitter and rear cell (PERC), tunnel oxide passivated contact (TOPCon), and silicon heterojunction (SHJ) cells have sustainable manufacturing capacities of 377 GW (silver-limited), 227 GW (silver-limited) GW and 37 GW (indium-limited), respectively. We propose material consumption targets of 2 mg W −1 , 0.38 mg W −1 , and 1.8 mg W −1 for silver, indium, and bismuth, respectively, indicating significant material consumption reductions are required to meet the target production rate for sustainable multi-TW scale manufacturing in about ten years from now. The industry needs urgent innovation on screen printing technologies for PERC, TOPCon, and SHJ solar cells to reduce silver consumption beyond expectation in the Industrial Technology Roadmap for PV (ITPRV), or the widespread adoption of existing and proven copper plating technologies. Indium cannot be used in any significant manufacturing capacity for PV production, even for futuristic 30%-efficient tandem devices. The current implementation of low-temperature interconnection schemes using bismuth-based solders will be limited to 330 GW of production. With half the silver-limited sustainable manufacturing capacity as PERC, the limited efficiency gains of SHJ and TOPCon cell technologies do not justify a transition away from industrial PERC, or the introduction of indium- and bismuth limitations for SHJ solar cells. On the other hand, futuristic two-terminal tandems with efficiency potentials over 30% have a unique opportunity to reduce material consumption through substantially reduced series resistance losses. As the photovoltaic (PV) industry heading towards the multi-TW scale, PV technologies need to be carefully evaluated based on material consumption rather than just efficiency or cost to ensure sustainable growth of the industry. To significantly impact climate change, the annual photovoltaic (PV) module production rate must dramatically increase from ∼135 gigawatts (GW) in 2020 to ∼3 terawatts (TW) around 2030. A key knowledge gap is the sustainable manufacturing capacity of existing and future commercial PV cell technologies imposed by scarce metals, and a suitable pathway towards sustainable manufacturing at the multi-TW scale. Assuming an upper material consumption limit as 20% of 2019 global supply, we show that the present industrial implementations of passivated emitter and rear cell (PERC), tunnel oxide passivated contact (TOPCon), and silicon heterojunction (SHJ) cells have sustainable manufacturing capacities of 377 GW (silver-limited), 227 GW (silver-limited) GW and 37 GW (indium-limited), respectively. We propose material consumption targets of 2 mg W−1, 0.38 mg W−1, and 1.8 mg W−1 for silver, indium, and bismuth, respectively, indicating significant material consumption reductions are required to meet the target production rate for sustainable multi-TW scale manufacturing in about ten years from now. The industry needs urgent innovation on screen printing technologies for PERC, TOPCon, and SHJ solar cells to reduce silver consumption beyond expectation in the Industrial Technology Roadmap for PV (ITPRV), or the widespread adoption of existing and proven copper plating technologies. Indium cannot be used in any significant manufacturing capacity for PV production, even for futuristic 30%-efficient tandem devices. The current implementation of low-temperature interconnection schemes using bismuth-based solders will be limited to 330 GW of production. With half the silver-limited sustainable manufacturing capacity as PERC, the limited efficiency gains of SHJ and TOPCon cell technologies do not justify a transition away from industrial PERC, or the introduction of indium- and bismuth limitations for SHJ solar cells. On the other hand, futuristic two-terminal tandems with efficiency potentials over 30% have a unique opportunity to reduce material consumption through substantially reduced series resistance losses. |
Author | Wang, Li Zhang, Yuchao Kim, Moonyong Verlinden, Pierre Hallam, Brett |
AuthorAffiliation | Trina Solar State Key Laboratory of PVST School of Photovoltaic and Renewable Energy Engineering University of New South Wales Institute for Solar Energy Systems AMROCK Australia Pty Ltd Sun Yat-Sen University |
AuthorAffiliation_xml | – name: Institute for Solar Energy Systems – name: University of New South Wales – name: State Key Laboratory of PVST – name: Trina Solar – name: School of Photovoltaic and Renewable Energy Engineering – name: AMROCK Australia Pty Ltd – name: Sun Yat-Sen University |
Author_xml | – sequence: 1 givenname: Yuchao surname: Zhang fullname: Zhang, Yuchao – sequence: 2 givenname: Moonyong surname: Kim fullname: Kim, Moonyong – sequence: 3 givenname: Li surname: Wang fullname: Wang, Li – sequence: 4 givenname: Pierre surname: Verlinden fullname: Verlinden, Pierre – sequence: 5 givenname: Brett surname: Hallam fullname: Hallam, Brett |
BookMark | eNptkUtv1TAQhSPUSvTBhj2SJXaooXZsxwk71F4eaiU2sI4cZ3Kvi2MHe9zSH8d_IzeXh4RYzdHMd8Yjn9PiyAcPRfGc0deM8vZyYACUNUx8fVKcMCVFKRWtj37ruq2eFqcp3VFaV1S1J8WPa0h264kJPtkBoka7KDKGSKbs0Ja49B40IklGOyCT9nnUBnO0fkvCSOC7TbjX2g9kzMsAyLwLGO6DQ20NQTA7H1zYWkhviNlp58BvIa2GMM8hYvYWlymJ4DTCQDCQZN09xAti_WDztLK9TVPG3Xpqnub9oefF8ahdgme_6lnx5d3m89WH8vbT-49Xb29Lw5nCUmopK9UzzYUYKiV4xfqRqbqRlTbQyFYzCrRp-dgIVpleCD1CrQyFivNeSn5WvDzsnWP4liFhdxdy9MuTXSVbJWgrarZQrw6UiSGlCGM3Rzvp-Ngx2u3j6a7ZZrPGc7PA9B_YWFx_H6O27v-WFwdLTObP6r-J858CF6Ov |
CitedBy_id | crossref_primary_10_1088_2516_1083_ac9a33 crossref_primary_10_1016_j_ijggc_2024_104297 crossref_primary_10_1002_pip_3869 crossref_primary_10_1109_JPHOTOV_2023_3267175 crossref_primary_10_1016_j_solener_2024_112956 crossref_primary_10_1016_j_oneear_2024_01_020 crossref_primary_10_1002_admi_202300923 crossref_primary_10_1021_acsmaterialslett_4c00636 crossref_primary_10_1002_solr_202300290 crossref_primary_10_1021_acsanm_2c04291 crossref_primary_10_1021_acs_est_2c07169 crossref_primary_10_1016_j_jallcom_2024_178163 crossref_primary_10_1016_j_solmat_2024_113191 crossref_primary_10_1016_j_solener_2023_01_048 crossref_primary_10_1016_j_adapen_2024_100199 crossref_primary_10_1002_solr_202300335 crossref_primary_10_1016_j_gloenvcha_2024_102825 crossref_primary_10_1016_j_joule_2023_11_006 crossref_primary_10_1039_D3EE00952A crossref_primary_10_1016_j_solmat_2023_112517 crossref_primary_10_1016_j_solmat_2024_113109 crossref_primary_10_1016_j_mee_2022_111884 crossref_primary_10_1016_j_solmat_2024_113108 crossref_primary_10_1016_j_solmat_2023_112358 crossref_primary_10_1016_j_solmat_2023_112512 crossref_primary_10_1051_epjpv_2023016 crossref_primary_10_1016_j_scib_2023_08_022 crossref_primary_10_1016_j_solmat_2024_112772 crossref_primary_10_1016_j_ceramint_2023_01_043 crossref_primary_10_1016_j_joule_2024_01_017 crossref_primary_10_1002_aenm_202301235 crossref_primary_10_1039_D4EE00020J crossref_primary_10_3390_app142310845 crossref_primary_10_1002_admt_202301209 crossref_primary_10_1016_j_device_2023_100013 crossref_primary_10_1002_solr_202100810 crossref_primary_10_1039_D4TA06224H crossref_primary_10_1002_pip_3528 crossref_primary_10_1002_pip_3803 crossref_primary_10_1016_j_resconrec_2023_107314 crossref_primary_10_1002_solr_202200583 crossref_primary_10_1088_2632_959X_ad0168 crossref_primary_10_1051_epjpv_2024018 crossref_primary_10_1039_D4TA03396E crossref_primary_10_1002_pip_3808 crossref_primary_10_1016_j_isci_2022_104108 crossref_primary_10_1016_j_solmat_2023_112620 crossref_primary_10_1021_acsaem_2c02649 crossref_primary_10_1051_epjpv_2024015 crossref_primary_10_1016_j_renene_2023_03_035 crossref_primary_10_1002_er_8261 crossref_primary_10_1002_solr_202200458 crossref_primary_10_1002_solr_202400704 crossref_primary_10_3390_en16073174 crossref_primary_10_1016_j_resconrec_2023_107148 crossref_primary_10_1038_s41893_024_01360_4 crossref_primary_10_1088_2515_7655_ad7404 crossref_primary_10_1016_j_nanoen_2024_110206 crossref_primary_10_52825_siliconpv_v2i_1291 crossref_primary_10_1002_pssr_202400404 crossref_primary_10_1016_j_renene_2025_122473 crossref_primary_10_1016_j_solmat_2023_112214 crossref_primary_10_1038_s41528_023_00266_z crossref_primary_10_1016_j_mtcomm_2024_108648 crossref_primary_10_1002_admt_202201360 crossref_primary_10_1051_epjpv_2023034 crossref_primary_10_1126_science_adh3849 crossref_primary_10_1016_j_jsamd_2024_100698 crossref_primary_10_1021_acsami_4c01864 crossref_primary_10_1002_adem_202300010 crossref_primary_10_1016_j_seppur_2024_128999 crossref_primary_10_1016_j_isci_2024_110669 crossref_primary_10_1002_solr_202100993 crossref_primary_10_1002_pip_3667 crossref_primary_10_1016_j_horiz_2024_100108 crossref_primary_10_3390_met14090963 crossref_primary_10_1016_j_solmat_2022_111912 crossref_primary_10_1051_epjpv_2022010 crossref_primary_10_1016_j_solmat_2023_112601 crossref_primary_10_1039_D4EL00017J crossref_primary_10_1016_j_joule_2022_02_009 crossref_primary_10_52825_siliconpv_v2i_1323 crossref_primary_10_1002_solr_202200874 crossref_primary_10_1002_solr_202200598 crossref_primary_10_1016_j_solmat_2022_112166 crossref_primary_10_1016_j_solmat_2023_112685 crossref_primary_10_1002_adma_202311501 crossref_primary_10_1016_j_solmat_2022_111871 crossref_primary_10_1007_s10854_025_14272_6 crossref_primary_10_1002_pip_3661 crossref_primary_10_1038_s41586_023_06667_4 crossref_primary_10_1002_pip_3799 crossref_primary_10_1002_solr_202300938 crossref_primary_10_1002_aesr_202400105 crossref_primary_10_1016_j_resconrec_2024_107824 crossref_primary_10_1021_acsami_4c15684 crossref_primary_10_1038_s41563_024_01945_6 crossref_primary_10_1016_j_solmat_2025_113557 crossref_primary_10_3390_en14227684 crossref_primary_10_1016_j_solmat_2022_111804 crossref_primary_10_1002_ente_202300445 crossref_primary_10_1016_j_solmat_2025_113559 crossref_primary_10_1002_pssa_202400674 crossref_primary_10_3390_app12073363 crossref_primary_10_1016_j_joule_2024_02_017 crossref_primary_10_1016_j_solmat_2022_112057 crossref_primary_10_1021_acs_chemmater_4c00719 crossref_primary_10_1016_j_solmat_2023_112393 crossref_primary_10_3390_su16187962 crossref_primary_10_1002_ente_202200702 crossref_primary_10_1038_s41560_023_01388_4 crossref_primary_10_1002_solr_202300381 crossref_primary_10_52825_siliconpv_v2i_1314 crossref_primary_10_1002_pip_3550 crossref_primary_10_1002_pip_3792 crossref_primary_10_1002_solr_202400478 crossref_primary_10_3390_polym15040928 crossref_primary_10_1016_j_xcrp_2024_101967 crossref_primary_10_1002_pip_3687 crossref_primary_10_1016_j_mtcomm_2025_112303 crossref_primary_10_1016_j_colsurfa_2023_132982 crossref_primary_10_1016_j_solmat_2024_112708 crossref_primary_10_1002_aenm_202200015 crossref_primary_10_1002_aenm_202403981 crossref_primary_10_1016_j_apsusc_2022_155082 crossref_primary_10_1051_epjpv_2023009 crossref_primary_10_1038_s41893_021_00838_9 crossref_primary_10_1016_j_joule_2024_01_025 crossref_primary_10_1016_j_joule_2024_01_024 crossref_primary_10_1051_e3sconf_202560801001 crossref_primary_10_1063_5_0185379 crossref_primary_10_1016_j_mtnano_2023_100329 crossref_primary_10_1021_acsenergylett_2c02725 crossref_primary_10_52825_siliconpv_v2i_1303 crossref_primary_10_52825_siliconpv_v2i_1305 crossref_primary_10_1002_pip_3697 crossref_primary_10_1016_j_solmat_2025_113412 crossref_primary_10_1002_pip_3739 crossref_primary_10_51646_jsesd_v13i2_185 crossref_primary_10_1016_j_solmat_2023_112413 crossref_primary_10_1080_10962247_2022_2068878 crossref_primary_10_1002_ciuz_202300016 crossref_primary_10_1016_j_mineng_2023_108282 crossref_primary_10_1016_j_spc_2024_04_023 crossref_primary_10_1016_j_solmat_2023_112251 crossref_primary_10_1021_acsnano_4c12698 crossref_primary_10_1016_j_esr_2022_100928 crossref_primary_10_1002_adom_202401423 crossref_primary_10_1002_smll_202410001 |
Cites_doi | 10.1038/s41560-020-0598-5 10.1016/j.joule.2019.02.010 10.1002/pip.2540 10.1016/j.solmat.2020.110643 10.1016/j.solmat.2013.05.044 10.1007/s40243-014-0041-6 10.1155/2013/739374 10.1016/j.tsf.2005.12.130 10.1002/pip.3303 10.1016/0927-0248(94)90029-9 10.1016/j.solmat.2019.01.047 10.1002/pip.3313 10.1109/JPHOTOV.2019.2926860 10.1016/j.envdev.2016.10.001 10.1063/5.0020380 10.1109/T-ED.1984.21594 10.1016/j.solmat.2018.07.018 10.1038/s41467-020-20314-w 10.1063/1.5139416 10.1126/science.aaw1845 10.1016/j.egypro.2015.07.103 10.1016/j.egypro.2016.10.078 10.1016/j.nanoen.2020.104495 10.3390/ma14040765 10.1016/j.solmat.2018.06.020 10.1155/2007/24521 10.1016/j.solmat.2006.06.002 10.1126/science.aaz5074 10.1002/pip.3062 10.1364/OME.8.001231 10.1038/s41563-020-0720-x 10.1016/j.egypro.2016.10.087 10.1021/acsenergylett.9b01783 10.1016/j.tsf.2011.04.190 10.1002/pip.2885 10.1109/JPHOTOV.2018.2873307 10.1109/JPHOTOV.2014.2364117 10.1016/j.tsf.2013.08.011 10.1016/j.egypro.2015.03.291 10.1016/j.solener.2019.11.095 10.1038/s41598-016-0028-x 10.1515/green-2011-0018 10.1007/BF02868729 10.1016/j.apsusc.2020.148749 10.1016/j.egypro.2014.08.052 10.1016/j.rser.2020.110589 10.1016/j.solmat.2017.06.024 10.1039/C7EE02288C 10.1126/science.abd4016 10.1038/s41563-018-0115-4 10.1016/j.solmat.2015.11.047 10.1016/j.egypro.2017.09.308 10.1016/j.solener.2018.01.074 10.1002/admt.202000654 10.1002/pip.892 10.1088/1361-6463/aaaf08 10.1109/JPHOTOV.2011.2174967 10.1038/s41560-019-0463-6 10.1016/j.solmat.2013.03.024 10.1016/j.solmat.2016.01.028 10.1038/s41560-021-00805-w 10.3390/app9050862 10.1016/j.egypro.2017.09.322 10.1016/j.solmat.2020.110690 10.1038/s41560-018-0190-4 10.1021/acssuschemeng.8b02516 10.1002/pip.3243 10.1016/j.solmat.2016.01.005 10.1016/j.egypro.2012.07.056 10.1038/nenergy.2017.32 10.1002/pip.2178 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d1ee01814k |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 561 |
ExternalDocumentID | 10_1039_D1EE01814K d1ee01814k |
GroupedDBID | 0-7 0R 29G 4.4 5GY 70 705 7~J AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 EBS ECGLT EE0 EF- GNO HZ H~N J3I JG M4U N9A O-G O9- P2P RCNCU RIG RPMJG RRC RSCEA SKA SLH TOV UCJ 0R~ 70~ AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKBGW AKMSF APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c317t-5a5527b1a344d274321bf176852ace859a10e0893f8412cb44afe67c0e233b553 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 12:00:31 EDT 2025 Tue Jul 01 01:45:50 EDT 2025 Thu Apr 24 23:00:19 EDT 2025 Mon Apr 11 04:40:47 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c317t-5a5527b1a344d274321bf176852ace859a10e0893f8412cb44afe67c0e233b553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3860-5633 0000-0003-1820-2316 0000-0002-4811-5240 0000-0002-0151-5781 0000-0003-2473-0326 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2021/ee/d1ee01814k |
PQID | 2597409461 |
PQPubID | 2047494 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1039_D1EE01814K rsc_primary_d1ee01814k crossref_citationtrail_10_1039_D1EE01814K proquest_journals_2597409461 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-10 |
PublicationDateYYYYMMDD | 2021-11-10 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | D1EE01814K/cit23 D1EE01814K/cit24 Bmton (D1EE01814K/cit75) Zhang (D1EE01814K/cit111) 2013; 117 D1EE01814K/cit21 Holman (D1EE01814K/cit102) 2012; 2 Colville (D1EE01814K/cit99) 2020 D1EE01814K/cit20 García (D1EE01814K/cit121) Jia (D1EE01814K/cit96) 2021; 12 Kinoshita (D1EE01814K/cit129) Breyer (D1EE01814K/cit19) 2017; 25 Kirner (D1EE01814K/cit101) 2015; 77 Haegel (D1EE01814K/cit17) 2019; 364 Al-Ashouri (D1EE01814K/cit73) 2020; 370 Wenham (D1EE01814K/cit76) 1994; 34 D1EE01814K/cit16 Wu (D1EE01814K/cit131) 2017; 10 D1EE01814K/cit14 Richter (D1EE01814K/cit53) 2021; 6 D1EE01814K/cit15 D1EE01814K/cit34 Chen (D1EE01814K/cit124) 2020; 206 D1EE01814K/cit35 Gwamuri (D1EE01814K/cit107) 2015; 4 Morales-Vilches (D1EE01814K/cit113) 2019; 9 D1EE01814K/cit32 D1EE01814K/cit33 D1EE01814K/cit30 Wood (D1EE01814K/cit47) 2014; 55 D1EE01814K/cit31 Neuhaus (D1EE01814K/cit83) 2007; 2007 Oh (D1EE01814K/cit90) 2020; 195 Fritz (D1EE01814K/cit44) 2015; 5 Tepner (D1EE01814K/cit67) 2020; 5 Leijtens (D1EE01814K/cit62) 2018; 3 Müller (D1EE01814K/cit123) 2017; 124 D1EE01814K/cit29 D1EE01814K/cit27 D1EE01814K/cit25 Yamaguchi (D1EE01814K/cit71) 2018; 51 D1EE01814K/cit41 Barraud (D1EE01814K/cit105) 2013; 115 D1EE01814K/cit42 D1EE01814K/cit40 Verlinden (D1EE01814K/cit18) 2020; 12 Dréon (D1EE01814K/cit128) 2020; 70 D1EE01814K/cit125 D1EE01814K/cit38 Haschke (D1EE01814K/cit135) 2018; 187 D1EE01814K/cit39 D1EE01814K/cit36 D1EE01814K/cit37 Hüpkes (D1EE01814K/cit120) 2014; 555 D1EE01814K/cit57 D1EE01814K/cit55 Kobayashi (D1EE01814K/cit104) 2016; 149 D1EE01814K/cit50 Lou Senaud (D1EE01814K/cit117) 2019; 9 Gervais (D1EE01814K/cit22) 2021; 137 Schultz-wittmann (D1EE01814K/cit81) Messmer (D1EE01814K/cit133) 2020 Cleary (D1EE01814K/cit108) 2018; 8 Mittag (D1EE01814K/cit89) Singh (D1EE01814K/cit28) 2018; 6 Ru (D1EE01814K/cit127) 2020; 215 Descoeudres (D1EE01814K/cit122) 2018; 175 Zhu (D1EE01814K/cit46) 2021; 14 Gwamuri (D1EE01814K/cit106) 2016; 149 D1EE01814K/cit65 Meillaud (D1EE01814K/cit72) 2006; 90 Theunissen (D1EE01814K/cit88) D1EE01814K/cit64 Sahli (D1EE01814K/cit97) 2018; 17 Nampalli (D1EE01814K/cit77) Shi (D1EE01814K/cit79) Tiedje (D1EE01814K/cit60) 1984; 31 Richter (D1EE01814K/cit54) Murray (D1EE01814K/cit43) 1984; 5 Haase (D1EE01814K/cit52) 2018; 186 Tohsophon (D1EE01814K/cit118) 2006; 511–512 Guo (D1EE01814K/cit87) 2013; 2013 Wu (D1EE01814K/cit116) 2021; 542 Braun (D1EE01814K/cit69) 2012; 27 D1EE01814K/cit59 Liu (D1EE01814K/cit126) 2020; 215 Yang (D1EE01814K/cit5) 2016; 20 Haschke (D1EE01814K/cit112) 2020; 127 Rommel (D1EE01814K/cit48) Yoshikawa (D1EE01814K/cit56) 2017; 173 Cimiotti (D1EE01814K/cit85) 2015; 67 Lindroos (D1EE01814K/cit45) 2016; 147 Green (D1EE01814K/cit11) 2020; 28 Allen (D1EE01814K/cit51) 2019; 4 Green (D1EE01814K/cit13) 2019; 3 Faes (D1EE01814K/cit66) Yu (D1EE01814K/cit110) Green (D1EE01814K/cit7) 2009; 17 Chen (D1EE01814K/cit9) 2020; 28 Yoshikawa (D1EE01814K/cit61) 2017; 2 Chunduri (D1EE01814K/cit100) 2020 D1EE01814K/cit1 D1EE01814K/cit2 D1EE01814K/cit3 D1EE01814K/cit4 Arya (D1EE01814K/cit84) 2020; 217 Meza (D1EE01814K/cit114) 2019; 9 D1EE01814K/cit80 D1EE01814K/cit6 Cruz (D1EE01814K/cit115) 2019; 195 Zheng (D1EE01814K/cit130) 2019; 4 Greiner (D1EE01814K/cit119) 2011; 520 (D1EE01814K/cit26) 2014 Beaucarne (D1EE01814K/cit91) 2016; 98 Xu (D1EE01814K/cit132) 2020; 367 DeWolf (D1EE01814K/cit58) 2012; 2 Fertig (D1EE01814K/cit8) 2017; 124 Yang (D1EE01814K/cit94) 2017; 7 Li (D1EE01814K/cit95) 2020; 19 D1EE01814K/cit12 D1EE01814K/cit10 D1EE01814K/cit98 Boccard (D1EE01814K/cit109) Tepner (D1EE01814K/cit70) 2020; 28 Geisz (D1EE01814K/cit63) 2020; 5 Chen (D1EE01814K/cit68) 2016; 98 Feldmann (D1EE01814K/cit86) Papet (D1EE01814K/cit49) Louwen (D1EE01814K/cit134) 2015; 23 Faes (D1EE01814K/cit92) 2018; 41 Ding (D1EE01814K/cit103) 2018 Lennon (D1EE01814K/cit74) 2019; 27 Wang (D1EE01814K/cit78) 2012; 20 |
References_xml | – doi: Rommel Einsele Guo Ametowobla Manz – issn: 2018 publication-title: CSEM Scientific and Technical Report: Development of High Mobility TCOs for Heterojunction Solar Cells doi: Ding Leon Christmann Nicolay – issn: 2014 publication-title: CRC Handbook of Chemistry and Physics – doi: Yu Zhou Bian Shi Zhang Meng Liu – doi: Nampalli Jordan Lennon Evans Wenham Edwards – doi: Mittag Zech Wiese Blasi Ebert Wirth – doi: Papet Efinger Sadlik Andrwult Batzner Lachernal Strahm Wahli Wuensch Frammelsberger Stein Rubin Schmutz Buechel Ran – doi: Richter Benick Feldmann Fell Steinhauser Polzin Tucher Murthy Hermle Glunz – doi: Faes Curvat Li Levrat Champliaud Thomas Escarré Badel Paviet-Salomon Geissbühler Allebé Barraud Debrot Descoeudres Lachowicz Horzel Lou Senaud Perret-Aebi Ballif Despeisse – issn: 2020 publication-title: PV CellTech Online Conference (Oral presentation) doi: Colville – issn: 2020 publication-title: SHJ workshop (Oral presentation) doi: Chunduri – doi: García Faes Despeisse Levrat Champliaud Badel Kiaee Söderström Yao Grischke Gragert Ufheil Papet Strahm Cattaneo Cattin Baumgartner Hessler-Wyser BallifReyes – issn: 2003 doi: Mulligan Cudzinovic Pass Smith Swanson – doi: Theunissen Willems Burke Tonini Galiazzo Henckens – doi: Boccard Antognini Cattin Dreon Dupre Fioretti Haschke Monnard Morales-Masis Paratte Rucavado Lou Senaud Zhong Paviet-Salomon Despeisse Ballif – doi: Shi Wenham Ji – doi: Schultz-wittmann Turner Eggleston De Ceuster Suwito Van Baker-finch Prajapati – issn: 2019 doi: Zhou Zhou – doi: Bmton Mason Roberts Hartley Gledhill Femandez Russell Warta Glunz Schultz Hermle Willeke – doi: Kinoshita Fujishima Yano Ogane Tohoda Matsuyama Nakamura Tokuoka Kanno Sakata Taguchi Maruyama – doi: Feldmann Steinhauser Pernau Nagel Fellmeth Mack Ourinson Lohmüller Polzin Moldovan Bivour Clement Rentsch Hermle Glunz – ident: D1EE01814K/cit24 – volume: 5 start-page: 326 year: 2020 ident: D1EE01814K/cit63 publication-title: Nat. Energy doi: 10.1038/s41560-020-0598-5 – volume: 3 start-page: 631 year: 2019 ident: D1EE01814K/cit13 publication-title: Joule doi: 10.1016/j.joule.2019.02.010 – ident: D1EE01814K/cit3 – ident: D1EE01814K/cit81 – volume: 23 start-page: 1406 year: 2015 ident: D1EE01814K/cit134 publication-title: Prog. Photovoltaics doi: 10.1002/pip.2540 – ident: D1EE01814K/cit15 – volume: 215 start-page: 110643 year: 2020 ident: D1EE01814K/cit127 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2020.110643 – volume: 117 start-page: 132 year: 2013 ident: D1EE01814K/cit111 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2013.05.044 – ident: D1EE01814K/cit38 – ident: D1EE01814K/cit30 – volume: 4 start-page: 1 year: 2015 ident: D1EE01814K/cit107 publication-title: Mater. Renewable Sustainable Energy doi: 10.1007/s40243-014-0041-6 – volume: 2013 start-page: 1 year: 2013 ident: D1EE01814K/cit87 publication-title: Int. J. Photoenergy doi: 10.1155/2013/739374 – volume: 511–512 start-page: 673 year: 2006 ident: D1EE01814K/cit118 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.12.130 – volume: 28 start-page: 629 year: 2020 ident: D1EE01814K/cit11 publication-title: Prog. Photovoltaics doi: 10.1002/pip.3303 – volume: 34 start-page: 101 year: 1994 ident: D1EE01814K/cit76 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/0927-0248(94)90029-9 – volume: 195 start-page: 339 year: 2019 ident: D1EE01814K/cit115 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.01.047 – ident: D1EE01814K/cit10 – volume: 28 start-page: 1054 year: 2020 ident: D1EE01814K/cit70 publication-title: Prog. Photovoltaics doi: 10.1002/pip.3313 – volume: 9 start-page: 1217 year: 2019 ident: D1EE01814K/cit117 publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2019.2926860 – volume-title: CRC Handbook of Chemistry and Physics year: 2014 ident: D1EE01814K/cit26 – ident: D1EE01814K/cit29 – ident: D1EE01814K/cit41 – volume: 20 start-page: 83 year: 2016 ident: D1EE01814K/cit5 publication-title: Environ. Dev. doi: 10.1016/j.envdev.2016.10.001 – volume: 12 start-page: 053505 year: 2020 ident: D1EE01814K/cit18 publication-title: J. Renewable Sustainable Energy doi: 10.1063/5.0020380 – ident: D1EE01814K/cit21 – volume: 206 start-page: 1 year: 2020 ident: D1EE01814K/cit124 publication-title: Sol. Energy Mater. Sol. Cells – ident: D1EE01814K/cit121 – ident: D1EE01814K/cit35 – volume: 31 start-page: 711 year: 1984 ident: D1EE01814K/cit60 publication-title: IEEE Trans. Electron Devices doi: 10.1109/T-ED.1984.21594 – volume: 217 start-page: 1 year: 2020 ident: D1EE01814K/cit84 publication-title: Phys. Status Solidi Appl. Mater. Sci. – ident: D1EE01814K/cit48 – ident: D1EE01814K/cit109 – volume: 187 start-page: 140 year: 2018 ident: D1EE01814K/cit135 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.07.018 – ident: D1EE01814K/cit2 – start-page: 1 year: 2020 ident: D1EE01814K/cit133 publication-title: Prog. Photovoltaics – ident: D1EE01814K/cit42 – volume: 12 start-page: 1 year: 2021 ident: D1EE01814K/cit96 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20314-w – volume: 41 start-page: 65 year: 2018 ident: D1EE01814K/cit92 publication-title: Photovoltaics Bull. – volume: 127 start-page: 114501 year: 2020 ident: D1EE01814K/cit112 publication-title: J. Appl. Phys. doi: 10.1063/1.5139416 – ident: D1EE01814K/cit49 – volume: 364 start-page: 836 year: 2019 ident: D1EE01814K/cit17 publication-title: Science doi: 10.1126/science.aaw1845 – volume: 77 start-page: 725 year: 2015 ident: D1EE01814K/cit101 publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.07.103 – volume-title: CSEM Scientific and Technical Report: Development of High Mobility TCOs for Heterojunction Solar Cells year: 2018 ident: D1EE01814K/cit103 – ident: D1EE01814K/cit55 – ident: D1EE01814K/cit36 – ident: D1EE01814K/cit27 – ident: D1EE01814K/cit64 – volume: 98 start-page: 30 year: 2016 ident: D1EE01814K/cit68 publication-title: Energy Procedia doi: 10.1016/j.egypro.2016.10.078 – ident: D1EE01814K/cit88 – volume: 70 start-page: 104495 year: 2020 ident: D1EE01814K/cit128 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104495 – volume: 14 start-page: 765 year: 2021 ident: D1EE01814K/cit46 publication-title: Materials doi: 10.3390/ma14040765 – volume: 186 start-page: 184 year: 2018 ident: D1EE01814K/cit52 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.06.020 – volume: 2007 start-page: 1 year: 2007 ident: D1EE01814K/cit83 publication-title: Adv. OptoElectron. doi: 10.1155/2007/24521 – volume: 90 start-page: 2952 year: 2006 ident: D1EE01814K/cit72 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2006.06.002 – volume: 367 start-page: 1097 year: 2020 ident: D1EE01814K/cit132 publication-title: Science doi: 10.1126/science.aaz5074 – volume: 27 start-page: 67 year: 2019 ident: D1EE01814K/cit74 publication-title: Prog. Photovoltaics doi: 10.1002/pip.3062 – volume: 8 start-page: 1231 year: 2018 ident: D1EE01814K/cit108 publication-title: Opt. Mater. Express doi: 10.1364/OME.8.001231 – ident: D1EE01814K/cit16 – ident: D1EE01814K/cit33 – ident: D1EE01814K/cit50 – volume: 19 start-page: 1326 year: 2020 ident: D1EE01814K/cit95 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0720-x – ident: D1EE01814K/cit79 – ident: D1EE01814K/cit57 – volume: 98 start-page: 115 year: 2016 ident: D1EE01814K/cit91 publication-title: Energy Procedia doi: 10.1016/j.egypro.2016.10.087 – volume: 4 start-page: 2623 year: 2019 ident: D1EE01814K/cit130 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01783 – volume: 520 start-page: 1285 year: 2011 ident: D1EE01814K/cit119 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.04.190 – ident: D1EE01814K/cit40 – volume: 25 start-page: 727 year: 2017 ident: D1EE01814K/cit19 publication-title: Prog. Photovoltaics doi: 10.1002/pip.2885 – volume: 9 start-page: 34 year: 2019 ident: D1EE01814K/cit113 publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2018.2873307 – ident: D1EE01814K/cit20 – volume: 5 start-page: 145 year: 2015 ident: D1EE01814K/cit44 publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2014.2364117 – ident: D1EE01814K/cit66 – volume: 555 start-page: 48 year: 2014 ident: D1EE01814K/cit120 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.08.011 – ident: D1EE01814K/cit54 – volume-title: SHJ workshop (Oral presentation) year: 2020 ident: D1EE01814K/cit100 – volume: 67 start-page: 84 year: 2015 ident: D1EE01814K/cit85 publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.03.291 – volume: 195 start-page: 527 year: 2020 ident: D1EE01814K/cit90 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.11.095 – ident: D1EE01814K/cit34 – volume: 7 start-page: 1 year: 2017 ident: D1EE01814K/cit94 publication-title: Sci. Rep. doi: 10.1038/s41598-016-0028-x – volume: 2 start-page: 7 year: 2012 ident: D1EE01814K/cit58 publication-title: Green doi: 10.1515/green-2011-0018 – volume: 5 start-page: 74 year: 1984 ident: D1EE01814K/cit43 publication-title: Bull. Alloy Phase Diagrams doi: 10.1007/BF02868729 – ident: D1EE01814K/cit77 – volume-title: PV CellTech Online Conference (Oral presentation) year: 2020 ident: D1EE01814K/cit99 – volume: 542 start-page: 148749 year: 2021 ident: D1EE01814K/cit116 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148749 – ident: D1EE01814K/cit110 – ident: D1EE01814K/cit1 – volume: 55 start-page: 724 year: 2014 ident: D1EE01814K/cit47 publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.08.052 – ident: D1EE01814K/cit25 – volume: 137 start-page: 110589 year: 2021 ident: D1EE01814K/cit22 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2020.110589 – ident: D1EE01814K/cit4 – volume: 173 start-page: 37 year: 2017 ident: D1EE01814K/cit56 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.06.024 – volume: 10 start-page: 2472 year: 2017 ident: D1EE01814K/cit131 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02288C – ident: D1EE01814K/cit98 – ident: D1EE01814K/cit39 – ident: D1EE01814K/cit31 – ident: D1EE01814K/cit14 – volume: 370 start-page: 1300 year: 2020 ident: D1EE01814K/cit73 publication-title: Science doi: 10.1126/science.abd4016 – ident: D1EE01814K/cit89 – volume: 17 start-page: 820 year: 2018 ident: D1EE01814K/cit97 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0115-4 – volume: 147 start-page: 115 year: 2016 ident: D1EE01814K/cit45 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.11.047 – ident: D1EE01814K/cit59 – volume: 124 start-page: 338 year: 2017 ident: D1EE01814K/cit8 publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.09.308 – volume: 175 start-page: 54 year: 2018 ident: D1EE01814K/cit122 publication-title: Sol. Energy doi: 10.1016/j.solener.2018.01.074 – ident: D1EE01814K/cit65 – volume: 5 start-page: 1 year: 2020 ident: D1EE01814K/cit67 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202000654 – ident: D1EE01814K/cit125 – ident: D1EE01814K/cit80 – volume: 17 start-page: 183 year: 2009 ident: D1EE01814K/cit7 publication-title: Prog. Photovoltaics doi: 10.1002/pip.892 – volume: 51 start-page: 133002 year: 2018 ident: D1EE01814K/cit71 publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/1361-6463/aaaf08 – volume: 2 start-page: 7 year: 2012 ident: D1EE01814K/cit102 publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2011.2174967 – volume: 4 start-page: 914 year: 2019 ident: D1EE01814K/cit51 publication-title: Nat. Energy doi: 10.1038/s41560-019-0463-6 – volume: 115 start-page: 151 year: 2013 ident: D1EE01814K/cit105 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2013.03.024 – volume: 149 start-page: 250 year: 2016 ident: D1EE01814K/cit106 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.01.028 – volume: 6 start-page: 429 year: 2021 ident: D1EE01814K/cit53 publication-title: Nat. Energy doi: 10.1038/s41560-021-00805-w – volume: 9 start-page: 862 year: 2019 ident: D1EE01814K/cit114 publication-title: Appl. Sci. doi: 10.3390/app9050862 – volume: 124 start-page: 131 year: 2017 ident: D1EE01814K/cit123 publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.09.322 – volume: 215 start-page: 110690 year: 2020 ident: D1EE01814K/cit126 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2020.110690 – volume: 3 start-page: 828 year: 2018 ident: D1EE01814K/cit62 publication-title: Nat. Energy doi: 10.1038/s41560-018-0190-4 – ident: D1EE01814K/cit32 – ident: D1EE01814K/cit86 – volume: 6 start-page: 13016 year: 2018 ident: D1EE01814K/cit28 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b02516 – volume: 28 start-page: 1239 year: 2020 ident: D1EE01814K/cit9 publication-title: Prog. Photovoltaics doi: 10.1002/pip.3243 – volume: 149 start-page: 75 year: 2016 ident: D1EE01814K/cit104 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.01.005 – ident: D1EE01814K/cit129 – ident: D1EE01814K/cit23 – volume: 27 start-page: 227 year: 2012 ident: D1EE01814K/cit69 publication-title: Energy Procedia doi: 10.1016/j.egypro.2012.07.056 – ident: D1EE01814K/cit75 – ident: D1EE01814K/cit6 – ident: D1EE01814K/cit12 – ident: D1EE01814K/cit37 – volume: 2 start-page: 17032 year: 2017 ident: D1EE01814K/cit61 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.32 – volume: 20 start-page: 260 year: 2012 ident: D1EE01814K/cit78 publication-title: Prog. Photovoltaics doi: 10.1002/pip.2178 |
SSID | ssj0062079 |
Score | 2.6750655 |
Snippet | To significantly impact climate change, the annual photovoltaic (PV) module production rate must dramatically increase from ∼135 gigawatts (GW) in 2020 to ∼3... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5587 |
SubjectTerms | Bismuth Climate change Consumption Copper plating Emitters Environmental impact Heavy metals Heterojunctions Indium Industrial applications Low temperature Manufacturing Photovoltaic cells Photovoltaics Production capacity Screen printing Silver Solar cells Sustainability Sustainable development Sustainable production |
Title | Design considerations for multi-terawatt scale manufacturing of existing and future photovoltaic technologies: challenges and opportunities related to silver, indium and bismuth consumption |
URI | https://www.proquest.com/docview/2597409461 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW67QUeEF8ThYEswQsqGbHjJA1vg3VMrAweWhhPke3GomI01ZoIwX_jR_EPuP7Kh1Qh4CWqXCeKek_tY_vccxF6ElKZSqayIFrIMGAqVIFYEB4oSZWCLyQ3xwVvz5PTOXtzEV8MBr86qqW6Eofyx9a8kv-JKrRBXHWW7D9EtnkoNMBniC9cIcJw_asYHxv5hVaOm6KbTtWmhYNGJxjo7OJvvKpGG4iEUarWOpHBZiYCS9Q2mJXPUrTuIqP157IqYcyq-FKOKr_xvrTSOelLr1hn53Kt2Xu9Mq6sNi0G-Cuw2c3y0ilD9ZF4bctwiOXma22F7vAjrRtE-HMBm4WoodjJvvM5my0Amy3uTzW8TtmKCOzmblmuvpduOjYHBbbzdOlbPhiDLzfcvgdW4OS_buuDksDI7xqw2g0Wr2416hVXI68zoKcxC-LE1ts7LDptaZj0ZgHWRTvpjOlx7CiB5QeacG6de8JIW7cuSFFoEzT2pZ1hvarg_F1-Mp9O89nkYraD9iisbGBo3js6e_n6o6cPCQ2NQWTz4t5TN8qet8_us6h2abRz5evWGH40u4luuIUNPrIovYUGxeo2ut6xu7yDflq84j5eMeAV9_GKDV5xD6-4VNjjFQOcsMUr7uIVd_H6ArdoNTf00IodWnFVYovWZ9hi1fR1WMUdrN5F85PJ7NVp4MqHBBJIcRXEXLsLCsIjxhYUmDIlQhFYXseU62K9GSdhEQJfV2NGqBSMcVUkqQwLGkUijqN9tLsqV8U9hIs0YpECKjcWCePjdKxEPJZJuhA040Dxh-ipD0cunbe-LvFymRuNR5Tlx2QyMaE7G6LHTd-1dZTZ2uvARzV3I84mp3r1H2YsIUO0D5Fu7m-Bcf_P9z1A19o_0gHara7q4iGw6ko8cjj8DY9N3ZQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+considerations+for+multi-terawatt+scale+manufacturing+of+existing+and+future+photovoltaic+technologies%3A+challenges+and+opportunities+related+to+silver%2C+indium+and+bismuth+consumption&rft.jtitle=Energy+%26+environmental+science&rft.au=Zhang%2C+Yuchao&rft.au=Kim%2C+Moonyong&rft.au=Wang%2C+Li&rft.au=Verlinden%2C+Pierre&rft.date=2021-11-10&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=14&rft.issue=11&rft.spage=5587&rft.epage=5610&rft_id=info:doi/10.1039%2Fd1ee01814k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |