Design considerations for multi-terawatt scale manufacturing of existing and future photovoltaic technologies: challenges and opportunities related to silver, indium and bismuth consumption

To significantly impact climate change, the annual photovoltaic (PV) module production rate must dramatically increase from ∼135 gigawatts (GW) in 2020 to ∼3 terawatts (TW) around 2030. A key knowledge gap is the sustainable manufacturing capacity of existing and future commercial PV cell technologi...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 14; no. 11; pp. 5587 - 561
Main Authors Zhang, Yuchao, Kim, Moonyong, Wang, Li, Verlinden, Pierre, Hallam, Brett
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 10.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To significantly impact climate change, the annual photovoltaic (PV) module production rate must dramatically increase from ∼135 gigawatts (GW) in 2020 to ∼3 terawatts (TW) around 2030. A key knowledge gap is the sustainable manufacturing capacity of existing and future commercial PV cell technologies imposed by scarce metals, and a suitable pathway towards sustainable manufacturing at the multi-TW scale. Assuming an upper material consumption limit as 20% of 2019 global supply, we show that the present industrial implementations of passivated emitter and rear cell (PERC), tunnel oxide passivated contact (TOPCon), and silicon heterojunction (SHJ) cells have sustainable manufacturing capacities of 377 GW (silver-limited), 227 GW (silver-limited) GW and 37 GW (indium-limited), respectively. We propose material consumption targets of 2 mg W −1 , 0.38 mg W −1 , and 1.8 mg W −1 for silver, indium, and bismuth, respectively, indicating significant material consumption reductions are required to meet the target production rate for sustainable multi-TW scale manufacturing in about ten years from now. The industry needs urgent innovation on screen printing technologies for PERC, TOPCon, and SHJ solar cells to reduce silver consumption beyond expectation in the Industrial Technology Roadmap for PV (ITPRV), or the widespread adoption of existing and proven copper plating technologies. Indium cannot be used in any significant manufacturing capacity for PV production, even for futuristic 30%-efficient tandem devices. The current implementation of low-temperature interconnection schemes using bismuth-based solders will be limited to 330 GW of production. With half the silver-limited sustainable manufacturing capacity as PERC, the limited efficiency gains of SHJ and TOPCon cell technologies do not justify a transition away from industrial PERC, or the introduction of indium- and bismuth limitations for SHJ solar cells. On the other hand, futuristic two-terminal tandems with efficiency potentials over 30% have a unique opportunity to reduce material consumption through substantially reduced series resistance losses. As the photovoltaic (PV) industry heading towards the multi-TW scale, PV technologies need to be carefully evaluated based on material consumption rather than just efficiency or cost to ensure sustainable growth of the industry.
AbstractList To significantly impact climate change, the annual photovoltaic (PV) module production rate must dramatically increase from ∼135 gigawatts (GW) in 2020 to ∼3 terawatts (TW) around 2030. A key knowledge gap is the sustainable manufacturing capacity of existing and future commercial PV cell technologies imposed by scarce metals, and a suitable pathway towards sustainable manufacturing at the multi-TW scale. Assuming an upper material consumption limit as 20% of 2019 global supply, we show that the present industrial implementations of passivated emitter and rear cell (PERC), tunnel oxide passivated contact (TOPCon), and silicon heterojunction (SHJ) cells have sustainable manufacturing capacities of 377 GW (silver-limited), 227 GW (silver-limited) GW and 37 GW (indium-limited), respectively. We propose material consumption targets of 2 mg W −1 , 0.38 mg W −1 , and 1.8 mg W −1 for silver, indium, and bismuth, respectively, indicating significant material consumption reductions are required to meet the target production rate for sustainable multi-TW scale manufacturing in about ten years from now. The industry needs urgent innovation on screen printing technologies for PERC, TOPCon, and SHJ solar cells to reduce silver consumption beyond expectation in the Industrial Technology Roadmap for PV (ITPRV), or the widespread adoption of existing and proven copper plating technologies. Indium cannot be used in any significant manufacturing capacity for PV production, even for futuristic 30%-efficient tandem devices. The current implementation of low-temperature interconnection schemes using bismuth-based solders will be limited to 330 GW of production. With half the silver-limited sustainable manufacturing capacity as PERC, the limited efficiency gains of SHJ and TOPCon cell technologies do not justify a transition away from industrial PERC, or the introduction of indium- and bismuth limitations for SHJ solar cells. On the other hand, futuristic two-terminal tandems with efficiency potentials over 30% have a unique opportunity to reduce material consumption through substantially reduced series resistance losses.
To significantly impact climate change, the annual photovoltaic (PV) module production rate must dramatically increase from ∼135 gigawatts (GW) in 2020 to ∼3 terawatts (TW) around 2030. A key knowledge gap is the sustainable manufacturing capacity of existing and future commercial PV cell technologies imposed by scarce metals, and a suitable pathway towards sustainable manufacturing at the multi-TW scale. Assuming an upper material consumption limit as 20% of 2019 global supply, we show that the present industrial implementations of passivated emitter and rear cell (PERC), tunnel oxide passivated contact (TOPCon), and silicon heterojunction (SHJ) cells have sustainable manufacturing capacities of 377 GW (silver-limited), 227 GW (silver-limited) GW and 37 GW (indium-limited), respectively. We propose material consumption targets of 2 mg W −1 , 0.38 mg W −1 , and 1.8 mg W −1 for silver, indium, and bismuth, respectively, indicating significant material consumption reductions are required to meet the target production rate for sustainable multi-TW scale manufacturing in about ten years from now. The industry needs urgent innovation on screen printing technologies for PERC, TOPCon, and SHJ solar cells to reduce silver consumption beyond expectation in the Industrial Technology Roadmap for PV (ITPRV), or the widespread adoption of existing and proven copper plating technologies. Indium cannot be used in any significant manufacturing capacity for PV production, even for futuristic 30%-efficient tandem devices. The current implementation of low-temperature interconnection schemes using bismuth-based solders will be limited to 330 GW of production. With half the silver-limited sustainable manufacturing capacity as PERC, the limited efficiency gains of SHJ and TOPCon cell technologies do not justify a transition away from industrial PERC, or the introduction of indium- and bismuth limitations for SHJ solar cells. On the other hand, futuristic two-terminal tandems with efficiency potentials over 30% have a unique opportunity to reduce material consumption through substantially reduced series resistance losses. As the photovoltaic (PV) industry heading towards the multi-TW scale, PV technologies need to be carefully evaluated based on material consumption rather than just efficiency or cost to ensure sustainable growth of the industry.
To significantly impact climate change, the annual photovoltaic (PV) module production rate must dramatically increase from ∼135 gigawatts (GW) in 2020 to ∼3 terawatts (TW) around 2030. A key knowledge gap is the sustainable manufacturing capacity of existing and future commercial PV cell technologies imposed by scarce metals, and a suitable pathway towards sustainable manufacturing at the multi-TW scale. Assuming an upper material consumption limit as 20% of 2019 global supply, we show that the present industrial implementations of passivated emitter and rear cell (PERC), tunnel oxide passivated contact (TOPCon), and silicon heterojunction (SHJ) cells have sustainable manufacturing capacities of 377 GW (silver-limited), 227 GW (silver-limited) GW and 37 GW (indium-limited), respectively. We propose material consumption targets of 2 mg W−1, 0.38 mg W−1, and 1.8 mg W−1 for silver, indium, and bismuth, respectively, indicating significant material consumption reductions are required to meet the target production rate for sustainable multi-TW scale manufacturing in about ten years from now. The industry needs urgent innovation on screen printing technologies for PERC, TOPCon, and SHJ solar cells to reduce silver consumption beyond expectation in the Industrial Technology Roadmap for PV (ITPRV), or the widespread adoption of existing and proven copper plating technologies. Indium cannot be used in any significant manufacturing capacity for PV production, even for futuristic 30%-efficient tandem devices. The current implementation of low-temperature interconnection schemes using bismuth-based solders will be limited to 330 GW of production. With half the silver-limited sustainable manufacturing capacity as PERC, the limited efficiency gains of SHJ and TOPCon cell technologies do not justify a transition away from industrial PERC, or the introduction of indium- and bismuth limitations for SHJ solar cells. On the other hand, futuristic two-terminal tandems with efficiency potentials over 30% have a unique opportunity to reduce material consumption through substantially reduced series resistance losses.
Author Wang, Li
Zhang, Yuchao
Kim, Moonyong
Verlinden, Pierre
Hallam, Brett
AuthorAffiliation Trina Solar
State Key Laboratory of PVST
School of Photovoltaic and Renewable Energy Engineering
University of New South Wales
Institute for Solar Energy Systems
AMROCK Australia Pty Ltd
Sun Yat-Sen University
AuthorAffiliation_xml – name: Institute for Solar Energy Systems
– name: University of New South Wales
– name: State Key Laboratory of PVST
– name: Trina Solar
– name: School of Photovoltaic and Renewable Energy Engineering
– name: AMROCK Australia Pty Ltd
– name: Sun Yat-Sen University
Author_xml – sequence: 1
  givenname: Yuchao
  surname: Zhang
  fullname: Zhang, Yuchao
– sequence: 2
  givenname: Moonyong
  surname: Kim
  fullname: Kim, Moonyong
– sequence: 3
  givenname: Li
  surname: Wang
  fullname: Wang, Li
– sequence: 4
  givenname: Pierre
  surname: Verlinden
  fullname: Verlinden, Pierre
– sequence: 5
  givenname: Brett
  surname: Hallam
  fullname: Hallam, Brett
BookMark eNptkUtv1TAQhSPUSvTBhj2SJXaooXZsxwk71F4eaiU2sI4cZ3Kvi2MHe9zSH8d_IzeXh4RYzdHMd8Yjn9PiyAcPRfGc0deM8vZyYACUNUx8fVKcMCVFKRWtj37ruq2eFqcp3VFaV1S1J8WPa0h264kJPtkBoka7KDKGSKbs0Ja49B40IklGOyCT9nnUBnO0fkvCSOC7TbjX2g9kzMsAyLwLGO6DQ20NQTA7H1zYWkhviNlp58BvIa2GMM8hYvYWlymJ4DTCQDCQZN09xAti_WDztLK9TVPG3Xpqnub9oefF8ahdgme_6lnx5d3m89WH8vbT-49Xb29Lw5nCUmopK9UzzYUYKiV4xfqRqbqRlTbQyFYzCrRp-dgIVpleCD1CrQyFivNeSn5WvDzsnWP4liFhdxdy9MuTXSVbJWgrarZQrw6UiSGlCGM3Rzvp-Ngx2u3j6a7ZZrPGc7PA9B_YWFx_H6O27v-WFwdLTObP6r-J858CF6Ov
CitedBy_id crossref_primary_10_1088_2516_1083_ac9a33
crossref_primary_10_1016_j_ijggc_2024_104297
crossref_primary_10_1002_pip_3869
crossref_primary_10_1109_JPHOTOV_2023_3267175
crossref_primary_10_1016_j_solener_2024_112956
crossref_primary_10_1016_j_oneear_2024_01_020
crossref_primary_10_1002_admi_202300923
crossref_primary_10_1021_acsmaterialslett_4c00636
crossref_primary_10_1002_solr_202300290
crossref_primary_10_1021_acsanm_2c04291
crossref_primary_10_1021_acs_est_2c07169
crossref_primary_10_1016_j_jallcom_2024_178163
crossref_primary_10_1016_j_solmat_2024_113191
crossref_primary_10_1016_j_solener_2023_01_048
crossref_primary_10_1016_j_adapen_2024_100199
crossref_primary_10_1002_solr_202300335
crossref_primary_10_1016_j_gloenvcha_2024_102825
crossref_primary_10_1016_j_joule_2023_11_006
crossref_primary_10_1039_D3EE00952A
crossref_primary_10_1016_j_solmat_2023_112517
crossref_primary_10_1016_j_solmat_2024_113109
crossref_primary_10_1016_j_mee_2022_111884
crossref_primary_10_1016_j_solmat_2024_113108
crossref_primary_10_1016_j_solmat_2023_112358
crossref_primary_10_1016_j_solmat_2023_112512
crossref_primary_10_1051_epjpv_2023016
crossref_primary_10_1016_j_scib_2023_08_022
crossref_primary_10_1016_j_solmat_2024_112772
crossref_primary_10_1016_j_ceramint_2023_01_043
crossref_primary_10_1016_j_joule_2024_01_017
crossref_primary_10_1002_aenm_202301235
crossref_primary_10_1039_D4EE00020J
crossref_primary_10_3390_app142310845
crossref_primary_10_1002_admt_202301209
crossref_primary_10_1016_j_device_2023_100013
crossref_primary_10_1002_solr_202100810
crossref_primary_10_1039_D4TA06224H
crossref_primary_10_1002_pip_3528
crossref_primary_10_1002_pip_3803
crossref_primary_10_1016_j_resconrec_2023_107314
crossref_primary_10_1002_solr_202200583
crossref_primary_10_1088_2632_959X_ad0168
crossref_primary_10_1051_epjpv_2024018
crossref_primary_10_1039_D4TA03396E
crossref_primary_10_1002_pip_3808
crossref_primary_10_1016_j_isci_2022_104108
crossref_primary_10_1016_j_solmat_2023_112620
crossref_primary_10_1021_acsaem_2c02649
crossref_primary_10_1051_epjpv_2024015
crossref_primary_10_1016_j_renene_2023_03_035
crossref_primary_10_1002_er_8261
crossref_primary_10_1002_solr_202200458
crossref_primary_10_1002_solr_202400704
crossref_primary_10_3390_en16073174
crossref_primary_10_1016_j_resconrec_2023_107148
crossref_primary_10_1038_s41893_024_01360_4
crossref_primary_10_1088_2515_7655_ad7404
crossref_primary_10_1016_j_nanoen_2024_110206
crossref_primary_10_52825_siliconpv_v2i_1291
crossref_primary_10_1002_pssr_202400404
crossref_primary_10_1016_j_renene_2025_122473
crossref_primary_10_1016_j_solmat_2023_112214
crossref_primary_10_1038_s41528_023_00266_z
crossref_primary_10_1016_j_mtcomm_2024_108648
crossref_primary_10_1002_admt_202201360
crossref_primary_10_1051_epjpv_2023034
crossref_primary_10_1126_science_adh3849
crossref_primary_10_1016_j_jsamd_2024_100698
crossref_primary_10_1021_acsami_4c01864
crossref_primary_10_1002_adem_202300010
crossref_primary_10_1016_j_seppur_2024_128999
crossref_primary_10_1016_j_isci_2024_110669
crossref_primary_10_1002_solr_202100993
crossref_primary_10_1002_pip_3667
crossref_primary_10_1016_j_horiz_2024_100108
crossref_primary_10_3390_met14090963
crossref_primary_10_1016_j_solmat_2022_111912
crossref_primary_10_1051_epjpv_2022010
crossref_primary_10_1016_j_solmat_2023_112601
crossref_primary_10_1039_D4EL00017J
crossref_primary_10_1016_j_joule_2022_02_009
crossref_primary_10_52825_siliconpv_v2i_1323
crossref_primary_10_1002_solr_202200874
crossref_primary_10_1002_solr_202200598
crossref_primary_10_1016_j_solmat_2022_112166
crossref_primary_10_1016_j_solmat_2023_112685
crossref_primary_10_1002_adma_202311501
crossref_primary_10_1016_j_solmat_2022_111871
crossref_primary_10_1007_s10854_025_14272_6
crossref_primary_10_1002_pip_3661
crossref_primary_10_1038_s41586_023_06667_4
crossref_primary_10_1002_pip_3799
crossref_primary_10_1002_solr_202300938
crossref_primary_10_1002_aesr_202400105
crossref_primary_10_1016_j_resconrec_2024_107824
crossref_primary_10_1021_acsami_4c15684
crossref_primary_10_1038_s41563_024_01945_6
crossref_primary_10_1016_j_solmat_2025_113557
crossref_primary_10_3390_en14227684
crossref_primary_10_1016_j_solmat_2022_111804
crossref_primary_10_1002_ente_202300445
crossref_primary_10_1016_j_solmat_2025_113559
crossref_primary_10_1002_pssa_202400674
crossref_primary_10_3390_app12073363
crossref_primary_10_1016_j_joule_2024_02_017
crossref_primary_10_1016_j_solmat_2022_112057
crossref_primary_10_1021_acs_chemmater_4c00719
crossref_primary_10_1016_j_solmat_2023_112393
crossref_primary_10_3390_su16187962
crossref_primary_10_1002_ente_202200702
crossref_primary_10_1038_s41560_023_01388_4
crossref_primary_10_1002_solr_202300381
crossref_primary_10_52825_siliconpv_v2i_1314
crossref_primary_10_1002_pip_3550
crossref_primary_10_1002_pip_3792
crossref_primary_10_1002_solr_202400478
crossref_primary_10_3390_polym15040928
crossref_primary_10_1016_j_xcrp_2024_101967
crossref_primary_10_1002_pip_3687
crossref_primary_10_1016_j_mtcomm_2025_112303
crossref_primary_10_1016_j_colsurfa_2023_132982
crossref_primary_10_1016_j_solmat_2024_112708
crossref_primary_10_1002_aenm_202200015
crossref_primary_10_1002_aenm_202403981
crossref_primary_10_1016_j_apsusc_2022_155082
crossref_primary_10_1051_epjpv_2023009
crossref_primary_10_1038_s41893_021_00838_9
crossref_primary_10_1016_j_joule_2024_01_025
crossref_primary_10_1016_j_joule_2024_01_024
crossref_primary_10_1051_e3sconf_202560801001
crossref_primary_10_1063_5_0185379
crossref_primary_10_1016_j_mtnano_2023_100329
crossref_primary_10_1021_acsenergylett_2c02725
crossref_primary_10_52825_siliconpv_v2i_1303
crossref_primary_10_52825_siliconpv_v2i_1305
crossref_primary_10_1002_pip_3697
crossref_primary_10_1016_j_solmat_2025_113412
crossref_primary_10_1002_pip_3739
crossref_primary_10_51646_jsesd_v13i2_185
crossref_primary_10_1016_j_solmat_2023_112413
crossref_primary_10_1080_10962247_2022_2068878
crossref_primary_10_1002_ciuz_202300016
crossref_primary_10_1016_j_mineng_2023_108282
crossref_primary_10_1016_j_spc_2024_04_023
crossref_primary_10_1016_j_solmat_2023_112251
crossref_primary_10_1021_acsnano_4c12698
crossref_primary_10_1016_j_esr_2022_100928
crossref_primary_10_1002_adom_202401423
crossref_primary_10_1002_smll_202410001
Cites_doi 10.1038/s41560-020-0598-5
10.1016/j.joule.2019.02.010
10.1002/pip.2540
10.1016/j.solmat.2020.110643
10.1016/j.solmat.2013.05.044
10.1007/s40243-014-0041-6
10.1155/2013/739374
10.1016/j.tsf.2005.12.130
10.1002/pip.3303
10.1016/0927-0248(94)90029-9
10.1016/j.solmat.2019.01.047
10.1002/pip.3313
10.1109/JPHOTOV.2019.2926860
10.1016/j.envdev.2016.10.001
10.1063/5.0020380
10.1109/T-ED.1984.21594
10.1016/j.solmat.2018.07.018
10.1038/s41467-020-20314-w
10.1063/1.5139416
10.1126/science.aaw1845
10.1016/j.egypro.2015.07.103
10.1016/j.egypro.2016.10.078
10.1016/j.nanoen.2020.104495
10.3390/ma14040765
10.1016/j.solmat.2018.06.020
10.1155/2007/24521
10.1016/j.solmat.2006.06.002
10.1126/science.aaz5074
10.1002/pip.3062
10.1364/OME.8.001231
10.1038/s41563-020-0720-x
10.1016/j.egypro.2016.10.087
10.1021/acsenergylett.9b01783
10.1016/j.tsf.2011.04.190
10.1002/pip.2885
10.1109/JPHOTOV.2018.2873307
10.1109/JPHOTOV.2014.2364117
10.1016/j.tsf.2013.08.011
10.1016/j.egypro.2015.03.291
10.1016/j.solener.2019.11.095
10.1038/s41598-016-0028-x
10.1515/green-2011-0018
10.1007/BF02868729
10.1016/j.apsusc.2020.148749
10.1016/j.egypro.2014.08.052
10.1016/j.rser.2020.110589
10.1016/j.solmat.2017.06.024
10.1039/C7EE02288C
10.1126/science.abd4016
10.1038/s41563-018-0115-4
10.1016/j.solmat.2015.11.047
10.1016/j.egypro.2017.09.308
10.1016/j.solener.2018.01.074
10.1002/admt.202000654
10.1002/pip.892
10.1088/1361-6463/aaaf08
10.1109/JPHOTOV.2011.2174967
10.1038/s41560-019-0463-6
10.1016/j.solmat.2013.03.024
10.1016/j.solmat.2016.01.028
10.1038/s41560-021-00805-w
10.3390/app9050862
10.1016/j.egypro.2017.09.322
10.1016/j.solmat.2020.110690
10.1038/s41560-018-0190-4
10.1021/acssuschemeng.8b02516
10.1002/pip.3243
10.1016/j.solmat.2016.01.005
10.1016/j.egypro.2012.07.056
10.1038/nenergy.2017.32
10.1002/pip.2178
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d1ee01814k
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 561
ExternalDocumentID 10_1039_D1EE01814K
d1ee01814k
GroupedDBID 0-7
0R
29G
4.4
5GY
70
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
M4U
N9A
O-G
O9-
P2P
RCNCU
RIG
RPMJG
RRC
RSCEA
SKA
SLH
TOV
UCJ
0R~
70~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AHGCF
AKBGW
AKMSF
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c317t-5a5527b1a344d274321bf176852ace859a10e0893f8412cb44afe67c0e233b553
ISSN 1754-5692
IngestDate Mon Jun 30 12:00:31 EDT 2025
Tue Jul 01 01:45:50 EDT 2025
Thu Apr 24 23:00:19 EDT 2025
Mon Apr 11 04:40:47 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-5a5527b1a344d274321bf176852ace859a10e0893f8412cb44afe67c0e233b553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3860-5633
0000-0003-1820-2316
0000-0002-4811-5240
0000-0002-0151-5781
0000-0003-2473-0326
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2021/ee/d1ee01814k
PQID 2597409461
PQPubID 2047494
PageCount 24
ParticipantIDs crossref_primary_10_1039_D1EE01814K
rsc_primary_d1ee01814k
crossref_citationtrail_10_1039_D1EE01814K
proquest_journals_2597409461
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-10
PublicationDateYYYYMMDD 2021-11-10
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-10
  day: 10
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References D1EE01814K/cit23
D1EE01814K/cit24
Bmton (D1EE01814K/cit75)
Zhang (D1EE01814K/cit111) 2013; 117
D1EE01814K/cit21
Holman (D1EE01814K/cit102) 2012; 2
Colville (D1EE01814K/cit99) 2020
D1EE01814K/cit20
García (D1EE01814K/cit121)
Jia (D1EE01814K/cit96) 2021; 12
Kinoshita (D1EE01814K/cit129)
Breyer (D1EE01814K/cit19) 2017; 25
Kirner (D1EE01814K/cit101) 2015; 77
Haegel (D1EE01814K/cit17) 2019; 364
Al-Ashouri (D1EE01814K/cit73) 2020; 370
Wenham (D1EE01814K/cit76) 1994; 34
D1EE01814K/cit16
Wu (D1EE01814K/cit131) 2017; 10
D1EE01814K/cit14
Richter (D1EE01814K/cit53) 2021; 6
D1EE01814K/cit15
D1EE01814K/cit34
Chen (D1EE01814K/cit124) 2020; 206
D1EE01814K/cit35
Gwamuri (D1EE01814K/cit107) 2015; 4
Morales-Vilches (D1EE01814K/cit113) 2019; 9
D1EE01814K/cit32
D1EE01814K/cit33
D1EE01814K/cit30
Wood (D1EE01814K/cit47) 2014; 55
D1EE01814K/cit31
Neuhaus (D1EE01814K/cit83) 2007; 2007
Oh (D1EE01814K/cit90) 2020; 195
Fritz (D1EE01814K/cit44) 2015; 5
Tepner (D1EE01814K/cit67) 2020; 5
Leijtens (D1EE01814K/cit62) 2018; 3
Müller (D1EE01814K/cit123) 2017; 124
D1EE01814K/cit29
D1EE01814K/cit27
D1EE01814K/cit25
Yamaguchi (D1EE01814K/cit71) 2018; 51
D1EE01814K/cit41
Barraud (D1EE01814K/cit105) 2013; 115
D1EE01814K/cit42
D1EE01814K/cit40
Verlinden (D1EE01814K/cit18) 2020; 12
Dréon (D1EE01814K/cit128) 2020; 70
D1EE01814K/cit125
D1EE01814K/cit38
Haschke (D1EE01814K/cit135) 2018; 187
D1EE01814K/cit39
D1EE01814K/cit36
D1EE01814K/cit37
Hüpkes (D1EE01814K/cit120) 2014; 555
D1EE01814K/cit57
D1EE01814K/cit55
Kobayashi (D1EE01814K/cit104) 2016; 149
D1EE01814K/cit50
Lou Senaud (D1EE01814K/cit117) 2019; 9
Gervais (D1EE01814K/cit22) 2021; 137
Schultz-wittmann (D1EE01814K/cit81)
Messmer (D1EE01814K/cit133) 2020
Cleary (D1EE01814K/cit108) 2018; 8
Mittag (D1EE01814K/cit89)
Singh (D1EE01814K/cit28) 2018; 6
Ru (D1EE01814K/cit127) 2020; 215
Descoeudres (D1EE01814K/cit122) 2018; 175
Zhu (D1EE01814K/cit46) 2021; 14
Gwamuri (D1EE01814K/cit106) 2016; 149
D1EE01814K/cit65
Meillaud (D1EE01814K/cit72) 2006; 90
Theunissen (D1EE01814K/cit88)
D1EE01814K/cit64
Sahli (D1EE01814K/cit97) 2018; 17
Nampalli (D1EE01814K/cit77)
Shi (D1EE01814K/cit79)
Tiedje (D1EE01814K/cit60) 1984; 31
Richter (D1EE01814K/cit54)
Murray (D1EE01814K/cit43) 1984; 5
Haase (D1EE01814K/cit52) 2018; 186
Tohsophon (D1EE01814K/cit118) 2006; 511–512
Guo (D1EE01814K/cit87) 2013; 2013
Wu (D1EE01814K/cit116) 2021; 542
Braun (D1EE01814K/cit69) 2012; 27
D1EE01814K/cit59
Liu (D1EE01814K/cit126) 2020; 215
Yang (D1EE01814K/cit5) 2016; 20
Haschke (D1EE01814K/cit112) 2020; 127
Rommel (D1EE01814K/cit48)
Yoshikawa (D1EE01814K/cit56) 2017; 173
Cimiotti (D1EE01814K/cit85) 2015; 67
Lindroos (D1EE01814K/cit45) 2016; 147
Green (D1EE01814K/cit11) 2020; 28
Allen (D1EE01814K/cit51) 2019; 4
Green (D1EE01814K/cit13) 2019; 3
Faes (D1EE01814K/cit66)
Yu (D1EE01814K/cit110)
Green (D1EE01814K/cit7) 2009; 17
Chen (D1EE01814K/cit9) 2020; 28
Yoshikawa (D1EE01814K/cit61) 2017; 2
Chunduri (D1EE01814K/cit100) 2020
D1EE01814K/cit1
D1EE01814K/cit2
D1EE01814K/cit3
D1EE01814K/cit4
Arya (D1EE01814K/cit84) 2020; 217
Meza (D1EE01814K/cit114) 2019; 9
D1EE01814K/cit80
D1EE01814K/cit6
Cruz (D1EE01814K/cit115) 2019; 195
Zheng (D1EE01814K/cit130) 2019; 4
Greiner (D1EE01814K/cit119) 2011; 520
(D1EE01814K/cit26) 2014
Beaucarne (D1EE01814K/cit91) 2016; 98
Xu (D1EE01814K/cit132) 2020; 367
DeWolf (D1EE01814K/cit58) 2012; 2
Fertig (D1EE01814K/cit8) 2017; 124
Yang (D1EE01814K/cit94) 2017; 7
Li (D1EE01814K/cit95) 2020; 19
D1EE01814K/cit12
D1EE01814K/cit10
D1EE01814K/cit98
Boccard (D1EE01814K/cit109)
Tepner (D1EE01814K/cit70) 2020; 28
Geisz (D1EE01814K/cit63) 2020; 5
Chen (D1EE01814K/cit68) 2016; 98
Feldmann (D1EE01814K/cit86)
Papet (D1EE01814K/cit49)
Louwen (D1EE01814K/cit134) 2015; 23
Faes (D1EE01814K/cit92) 2018; 41
Ding (D1EE01814K/cit103) 2018
Lennon (D1EE01814K/cit74) 2019; 27
Wang (D1EE01814K/cit78) 2012; 20
References_xml – doi: Rommel Einsele Guo Ametowobla Manz
– issn: 2018
  publication-title: CSEM Scientific and Technical Report: Development of High Mobility TCOs for Heterojunction Solar Cells
  doi: Ding Leon Christmann Nicolay
– issn: 2014
  publication-title: CRC Handbook of Chemistry and Physics
– doi: Yu Zhou Bian Shi Zhang Meng Liu
– doi: Nampalli Jordan Lennon Evans Wenham Edwards
– doi: Mittag Zech Wiese Blasi Ebert Wirth
– doi: Papet Efinger Sadlik Andrwult Batzner Lachernal Strahm Wahli Wuensch Frammelsberger Stein Rubin Schmutz Buechel Ran
– doi: Richter Benick Feldmann Fell Steinhauser Polzin Tucher Murthy Hermle Glunz
– doi: Faes Curvat Li Levrat Champliaud Thomas Escarré Badel Paviet-Salomon Geissbühler Allebé Barraud Debrot Descoeudres Lachowicz Horzel Lou Senaud Perret-Aebi Ballif Despeisse
– issn: 2020
  publication-title: PV CellTech Online Conference (Oral presentation)
  doi: Colville
– issn: 2020
  publication-title: SHJ workshop (Oral presentation)
  doi: Chunduri
– doi: García Faes Despeisse Levrat Champliaud Badel Kiaee Söderström Yao Grischke Gragert Ufheil Papet Strahm Cattaneo Cattin Baumgartner Hessler-Wyser BallifReyes
– issn: 2003
  doi: Mulligan Cudzinovic Pass Smith Swanson
– doi: Theunissen Willems Burke Tonini Galiazzo Henckens
– doi: Boccard Antognini Cattin Dreon Dupre Fioretti Haschke Monnard Morales-Masis Paratte Rucavado Lou Senaud Zhong Paviet-Salomon Despeisse Ballif
– doi: Shi Wenham Ji
– doi: Schultz-wittmann Turner Eggleston De Ceuster Suwito Van Baker-finch Prajapati
– issn: 2019
  doi: Zhou Zhou
– doi: Bmton Mason Roberts Hartley Gledhill Femandez Russell Warta Glunz Schultz Hermle Willeke
– doi: Kinoshita Fujishima Yano Ogane Tohoda Matsuyama Nakamura Tokuoka Kanno Sakata Taguchi Maruyama
– doi: Feldmann Steinhauser Pernau Nagel Fellmeth Mack Ourinson Lohmüller Polzin Moldovan Bivour Clement Rentsch Hermle Glunz
– ident: D1EE01814K/cit24
– volume: 5
  start-page: 326
  year: 2020
  ident: D1EE01814K/cit63
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0598-5
– volume: 3
  start-page: 631
  year: 2019
  ident: D1EE01814K/cit13
  publication-title: Joule
  doi: 10.1016/j.joule.2019.02.010
– ident: D1EE01814K/cit3
– ident: D1EE01814K/cit81
– volume: 23
  start-page: 1406
  year: 2015
  ident: D1EE01814K/cit134
  publication-title: Prog. Photovoltaics
  doi: 10.1002/pip.2540
– ident: D1EE01814K/cit15
– volume: 215
  start-page: 110643
  year: 2020
  ident: D1EE01814K/cit127
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2020.110643
– volume: 117
  start-page: 132
  year: 2013
  ident: D1EE01814K/cit111
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2013.05.044
– ident: D1EE01814K/cit38
– ident: D1EE01814K/cit30
– volume: 4
  start-page: 1
  year: 2015
  ident: D1EE01814K/cit107
  publication-title: Mater. Renewable Sustainable Energy
  doi: 10.1007/s40243-014-0041-6
– volume: 2013
  start-page: 1
  year: 2013
  ident: D1EE01814K/cit87
  publication-title: Int. J. Photoenergy
  doi: 10.1155/2013/739374
– volume: 511–512
  start-page: 673
  year: 2006
  ident: D1EE01814K/cit118
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.12.130
– volume: 28
  start-page: 629
  year: 2020
  ident: D1EE01814K/cit11
  publication-title: Prog. Photovoltaics
  doi: 10.1002/pip.3303
– volume: 34
  start-page: 101
  year: 1994
  ident: D1EE01814K/cit76
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/0927-0248(94)90029-9
– volume: 195
  start-page: 339
  year: 2019
  ident: D1EE01814K/cit115
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.01.047
– ident: D1EE01814K/cit10
– volume: 28
  start-page: 1054
  year: 2020
  ident: D1EE01814K/cit70
  publication-title: Prog. Photovoltaics
  doi: 10.1002/pip.3313
– volume: 9
  start-page: 1217
  year: 2019
  ident: D1EE01814K/cit117
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2019.2926860
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2014
  ident: D1EE01814K/cit26
– ident: D1EE01814K/cit29
– ident: D1EE01814K/cit41
– volume: 20
  start-page: 83
  year: 2016
  ident: D1EE01814K/cit5
  publication-title: Environ. Dev.
  doi: 10.1016/j.envdev.2016.10.001
– volume: 12
  start-page: 053505
  year: 2020
  ident: D1EE01814K/cit18
  publication-title: J. Renewable Sustainable Energy
  doi: 10.1063/5.0020380
– ident: D1EE01814K/cit21
– volume: 206
  start-page: 1
  year: 2020
  ident: D1EE01814K/cit124
  publication-title: Sol. Energy Mater. Sol. Cells
– ident: D1EE01814K/cit121
– ident: D1EE01814K/cit35
– volume: 31
  start-page: 711
  year: 1984
  ident: D1EE01814K/cit60
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/T-ED.1984.21594
– volume: 217
  start-page: 1
  year: 2020
  ident: D1EE01814K/cit84
  publication-title: Phys. Status Solidi Appl. Mater. Sci.
– ident: D1EE01814K/cit48
– ident: D1EE01814K/cit109
– volume: 187
  start-page: 140
  year: 2018
  ident: D1EE01814K/cit135
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.07.018
– ident: D1EE01814K/cit2
– start-page: 1
  year: 2020
  ident: D1EE01814K/cit133
  publication-title: Prog. Photovoltaics
– ident: D1EE01814K/cit42
– volume: 12
  start-page: 1
  year: 2021
  ident: D1EE01814K/cit96
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20314-w
– volume: 41
  start-page: 65
  year: 2018
  ident: D1EE01814K/cit92
  publication-title: Photovoltaics Bull.
– volume: 127
  start-page: 114501
  year: 2020
  ident: D1EE01814K/cit112
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5139416
– ident: D1EE01814K/cit49
– volume: 364
  start-page: 836
  year: 2019
  ident: D1EE01814K/cit17
  publication-title: Science
  doi: 10.1126/science.aaw1845
– volume: 77
  start-page: 725
  year: 2015
  ident: D1EE01814K/cit101
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.103
– volume-title: CSEM Scientific and Technical Report: Development of High Mobility TCOs for Heterojunction Solar Cells
  year: 2018
  ident: D1EE01814K/cit103
– ident: D1EE01814K/cit55
– ident: D1EE01814K/cit36
– ident: D1EE01814K/cit27
– ident: D1EE01814K/cit64
– volume: 98
  start-page: 30
  year: 2016
  ident: D1EE01814K/cit68
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2016.10.078
– ident: D1EE01814K/cit88
– volume: 70
  start-page: 104495
  year: 2020
  ident: D1EE01814K/cit128
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104495
– volume: 14
  start-page: 765
  year: 2021
  ident: D1EE01814K/cit46
  publication-title: Materials
  doi: 10.3390/ma14040765
– volume: 186
  start-page: 184
  year: 2018
  ident: D1EE01814K/cit52
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.06.020
– volume: 2007
  start-page: 1
  year: 2007
  ident: D1EE01814K/cit83
  publication-title: Adv. OptoElectron.
  doi: 10.1155/2007/24521
– volume: 90
  start-page: 2952
  year: 2006
  ident: D1EE01814K/cit72
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2006.06.002
– volume: 367
  start-page: 1097
  year: 2020
  ident: D1EE01814K/cit132
  publication-title: Science
  doi: 10.1126/science.aaz5074
– volume: 27
  start-page: 67
  year: 2019
  ident: D1EE01814K/cit74
  publication-title: Prog. Photovoltaics
  doi: 10.1002/pip.3062
– volume: 8
  start-page: 1231
  year: 2018
  ident: D1EE01814K/cit108
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.8.001231
– ident: D1EE01814K/cit16
– ident: D1EE01814K/cit33
– ident: D1EE01814K/cit50
– volume: 19
  start-page: 1326
  year: 2020
  ident: D1EE01814K/cit95
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0720-x
– ident: D1EE01814K/cit79
– ident: D1EE01814K/cit57
– volume: 98
  start-page: 115
  year: 2016
  ident: D1EE01814K/cit91
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2016.10.087
– volume: 4
  start-page: 2623
  year: 2019
  ident: D1EE01814K/cit130
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01783
– volume: 520
  start-page: 1285
  year: 2011
  ident: D1EE01814K/cit119
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2011.04.190
– ident: D1EE01814K/cit40
– volume: 25
  start-page: 727
  year: 2017
  ident: D1EE01814K/cit19
  publication-title: Prog. Photovoltaics
  doi: 10.1002/pip.2885
– volume: 9
  start-page: 34
  year: 2019
  ident: D1EE01814K/cit113
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2018.2873307
– ident: D1EE01814K/cit20
– volume: 5
  start-page: 145
  year: 2015
  ident: D1EE01814K/cit44
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2014.2364117
– ident: D1EE01814K/cit66
– volume: 555
  start-page: 48
  year: 2014
  ident: D1EE01814K/cit120
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2013.08.011
– ident: D1EE01814K/cit54
– volume-title: SHJ workshop (Oral presentation)
  year: 2020
  ident: D1EE01814K/cit100
– volume: 67
  start-page: 84
  year: 2015
  ident: D1EE01814K/cit85
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.03.291
– volume: 195
  start-page: 527
  year: 2020
  ident: D1EE01814K/cit90
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.11.095
– ident: D1EE01814K/cit34
– volume: 7
  start-page: 1
  year: 2017
  ident: D1EE01814K/cit94
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-016-0028-x
– volume: 2
  start-page: 7
  year: 2012
  ident: D1EE01814K/cit58
  publication-title: Green
  doi: 10.1515/green-2011-0018
– volume: 5
  start-page: 74
  year: 1984
  ident: D1EE01814K/cit43
  publication-title: Bull. Alloy Phase Diagrams
  doi: 10.1007/BF02868729
– ident: D1EE01814K/cit77
– volume-title: PV CellTech Online Conference (Oral presentation)
  year: 2020
  ident: D1EE01814K/cit99
– volume: 542
  start-page: 148749
  year: 2021
  ident: D1EE01814K/cit116
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148749
– ident: D1EE01814K/cit110
– ident: D1EE01814K/cit1
– volume: 55
  start-page: 724
  year: 2014
  ident: D1EE01814K/cit47
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.08.052
– ident: D1EE01814K/cit25
– volume: 137
  start-page: 110589
  year: 2021
  ident: D1EE01814K/cit22
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2020.110589
– ident: D1EE01814K/cit4
– volume: 173
  start-page: 37
  year: 2017
  ident: D1EE01814K/cit56
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.06.024
– volume: 10
  start-page: 2472
  year: 2017
  ident: D1EE01814K/cit131
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02288C
– ident: D1EE01814K/cit98
– ident: D1EE01814K/cit39
– ident: D1EE01814K/cit31
– ident: D1EE01814K/cit14
– volume: 370
  start-page: 1300
  year: 2020
  ident: D1EE01814K/cit73
  publication-title: Science
  doi: 10.1126/science.abd4016
– ident: D1EE01814K/cit89
– volume: 17
  start-page: 820
  year: 2018
  ident: D1EE01814K/cit97
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0115-4
– volume: 147
  start-page: 115
  year: 2016
  ident: D1EE01814K/cit45
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.11.047
– ident: D1EE01814K/cit59
– volume: 124
  start-page: 338
  year: 2017
  ident: D1EE01814K/cit8
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.09.308
– volume: 175
  start-page: 54
  year: 2018
  ident: D1EE01814K/cit122
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.01.074
– ident: D1EE01814K/cit65
– volume: 5
  start-page: 1
  year: 2020
  ident: D1EE01814K/cit67
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202000654
– ident: D1EE01814K/cit125
– ident: D1EE01814K/cit80
– volume: 17
  start-page: 183
  year: 2009
  ident: D1EE01814K/cit7
  publication-title: Prog. Photovoltaics
  doi: 10.1002/pip.892
– volume: 51
  start-page: 133002
  year: 2018
  ident: D1EE01814K/cit71
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/1361-6463/aaaf08
– volume: 2
  start-page: 7
  year: 2012
  ident: D1EE01814K/cit102
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2011.2174967
– volume: 4
  start-page: 914
  year: 2019
  ident: D1EE01814K/cit51
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0463-6
– volume: 115
  start-page: 151
  year: 2013
  ident: D1EE01814K/cit105
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2013.03.024
– volume: 149
  start-page: 250
  year: 2016
  ident: D1EE01814K/cit106
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.01.028
– volume: 6
  start-page: 429
  year: 2021
  ident: D1EE01814K/cit53
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00805-w
– volume: 9
  start-page: 862
  year: 2019
  ident: D1EE01814K/cit114
  publication-title: Appl. Sci.
  doi: 10.3390/app9050862
– volume: 124
  start-page: 131
  year: 2017
  ident: D1EE01814K/cit123
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.09.322
– volume: 215
  start-page: 110690
  year: 2020
  ident: D1EE01814K/cit126
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2020.110690
– volume: 3
  start-page: 828
  year: 2018
  ident: D1EE01814K/cit62
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0190-4
– ident: D1EE01814K/cit32
– ident: D1EE01814K/cit86
– volume: 6
  start-page: 13016
  year: 2018
  ident: D1EE01814K/cit28
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02516
– volume: 28
  start-page: 1239
  year: 2020
  ident: D1EE01814K/cit9
  publication-title: Prog. Photovoltaics
  doi: 10.1002/pip.3243
– volume: 149
  start-page: 75
  year: 2016
  ident: D1EE01814K/cit104
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.01.005
– ident: D1EE01814K/cit129
– ident: D1EE01814K/cit23
– volume: 27
  start-page: 227
  year: 2012
  ident: D1EE01814K/cit69
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2012.07.056
– ident: D1EE01814K/cit75
– ident: D1EE01814K/cit6
– ident: D1EE01814K/cit12
– ident: D1EE01814K/cit37
– volume: 2
  start-page: 17032
  year: 2017
  ident: D1EE01814K/cit61
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.32
– volume: 20
  start-page: 260
  year: 2012
  ident: D1EE01814K/cit78
  publication-title: Prog. Photovoltaics
  doi: 10.1002/pip.2178
SSID ssj0062079
Score 2.6750655
Snippet To significantly impact climate change, the annual photovoltaic (PV) module production rate must dramatically increase from ∼135 gigawatts (GW) in 2020 to ∼3...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5587
SubjectTerms Bismuth
Climate change
Consumption
Copper plating
Emitters
Environmental impact
Heavy metals
Heterojunctions
Indium
Industrial applications
Low temperature
Manufacturing
Photovoltaic cells
Photovoltaics
Production capacity
Screen printing
Silver
Solar cells
Sustainability
Sustainable development
Sustainable production
Title Design considerations for multi-terawatt scale manufacturing of existing and future photovoltaic technologies: challenges and opportunities related to silver, indium and bismuth consumption
URI https://www.proquest.com/docview/2597409461
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW67QUeEF8ThYEswQsqGbHjJA1vg3VMrAweWhhPke3GomI01ZoIwX_jR_EPuP7Kh1Qh4CWqXCeKek_tY_vccxF6ElKZSqayIFrIMGAqVIFYEB4oSZWCLyQ3xwVvz5PTOXtzEV8MBr86qqW6Eofyx9a8kv-JKrRBXHWW7D9EtnkoNMBniC9cIcJw_asYHxv5hVaOm6KbTtWmhYNGJxjo7OJvvKpGG4iEUarWOpHBZiYCS9Q2mJXPUrTuIqP157IqYcyq-FKOKr_xvrTSOelLr1hn53Kt2Xu9Mq6sNi0G-Cuw2c3y0ilD9ZF4bctwiOXma22F7vAjrRtE-HMBm4WoodjJvvM5my0Amy3uTzW8TtmKCOzmblmuvpduOjYHBbbzdOlbPhiDLzfcvgdW4OS_buuDksDI7xqw2g0Wr2416hVXI68zoKcxC-LE1ts7LDptaZj0ZgHWRTvpjOlx7CiB5QeacG6de8JIW7cuSFFoEzT2pZ1hvarg_F1-Mp9O89nkYraD9iisbGBo3js6e_n6o6cPCQ2NQWTz4t5TN8qet8_us6h2abRz5evWGH40u4luuIUNPrIovYUGxeo2ut6xu7yDflq84j5eMeAV9_GKDV5xD6-4VNjjFQOcsMUr7uIVd_H6ArdoNTf00IodWnFVYovWZ9hi1fR1WMUdrN5F85PJ7NVp4MqHBBJIcRXEXLsLCsIjxhYUmDIlQhFYXseU62K9GSdhEQJfV2NGqBSMcVUkqQwLGkUijqN9tLsqV8U9hIs0YpECKjcWCePjdKxEPJZJuhA040Dxh-ipD0cunbe-LvFymRuNR5Tlx2QyMaE7G6LHTd-1dZTZ2uvARzV3I84mp3r1H2YsIUO0D5Fu7m-Bcf_P9z1A19o_0gHara7q4iGw6ko8cjj8DY9N3ZQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+considerations+for+multi-terawatt+scale+manufacturing+of+existing+and+future+photovoltaic+technologies%3A+challenges+and+opportunities+related+to+silver%2C+indium+and+bismuth+consumption&rft.jtitle=Energy+%26+environmental+science&rft.au=Zhang%2C+Yuchao&rft.au=Kim%2C+Moonyong&rft.au=Wang%2C+Li&rft.au=Verlinden%2C+Pierre&rft.date=2021-11-10&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=14&rft.issue=11&rft.spage=5587&rft.epage=5610&rft_id=info:doi/10.1039%2Fd1ee01814k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon