Passive electrochemical hydrogen recombiner for hydrogen safety systems: prospects

This paper presents the concept of a passive electrochemical hydrogen recombiner (PEHR). The reaction energy of the recombination of hydrogen and oxygen is used as a source of electrical energy according to the operating principle for hydrogen fuel cells to establish forced circulation of the hydrog...

Full description

Saved in:
Bibliographic Details
Published inNuclear science and techniques Vol. 34; no. 6; pp. 115 - 124
Main Authors Avdeenkov, A. V., Bessarabov, D. G., Zaryugin, D. G.
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.06.2023
HySA Center,Faculty of Engineering,North-West University,Potchefstroom 2520,South Africa%HySA Center,Faculty of Engineering,North-West University,Potchefstroom 2520,South Africa%State Atomic Energy Corporation Rosatom,24 Bolshaya Ordynka Str.,Moscow,Russia 119017
All Russian Research Institute for Nuclear Power Plants Operation JSC,25 Ferganskaya Str.,Moscow,Russia 109507
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents the concept of a passive electrochemical hydrogen recombiner (PEHR). The reaction energy of the recombination of hydrogen and oxygen is used as a source of electrical energy according to the operating principle for hydrogen fuel cells to establish forced circulation of the hydrogen mixture as an alternative to natural circulation (as is not utilized in conventional passive autocatalytic hydrogen recombiners currently used in nuclear power plants (NPPs)). The proposed concept of applying the physical operation principles of a PEHR based on a fuel cell simultaneously increases both productivity in terms of recombined hydrogen and the concentration threshold of flameless operation (the ‘ignition’ limit). Thus, it is possible to reliably ensure the hydrogen explosion safety of NPPs under all conditions, including beyond-design accidents. An experimental setup was assembled to test a laboratory sample of a membrane electrode assembly (MEA) at various hydrogen concentrations near the catalytic surfaces of the electrodes, and the corresponding current–voltage characteristics were recorded. The simplest MEA based on the Advent P1100W PBI membrane demonstrated stable performance (delivery of electrical power) over a wide range of hydrogen concentrations.
AbstractList This paper presents the concept of a passive electrochemical hydrogen recombiner(PEHR).The reaction energy of the recombination of hydrogen and oxygen is used as a source of electrical energy according to the operating principle for hydrogen fuel cells to establish forced circulation of the hydrogen mixture as an alternative to natural circulation(as is not utilized in conventional passive autocatalytic hydrogen recombiners currently used in nuclear power plants(NPPs)).The proposed concept of applying the physical operation principles of a PEHR based on a fuel cell simultaneously increases both productivity in terms of recombined hydrogen and the concentration threshold of flameless operation(the'ignition'limit).Thus,it is possible to reliably ensure the hydrogen explosion safety of NPPs under all conditions,including beyond-design accidents.An experimental setup was assembled to test a laboratory sample of a membrane electrode assembly(MEA)at various hydrogen concentrations near the catalytic surfaces of the electrodes,and the corresponding current-voltage charac-teristics were recorded.The simplest MEA based on the Advent P1100W PBI membrane demonstrated stable performance(delivery of electrical power)over a wide range of hydrogen concentrations.
This paper presents the concept of a passive electrochemical hydrogen recombiner (PEHR). The reaction energy of the recombination of hydrogen and oxygen is used as a source of electrical energy according to the operating principle for hydrogen fuel cells to establish forced circulation of the hydrogen mixture as an alternative to natural circulation (as is not utilized in conventional passive autocatalytic hydrogen recombiners currently used in nuclear power plants (NPPs)). The proposed concept of applying the physical operation principles of a PEHR based on a fuel cell simultaneously increases both productivity in terms of recombined hydrogen and the concentration threshold of flameless operation (the ‘ignition’ limit). Thus, it is possible to reliably ensure the hydrogen explosion safety of NPPs under all conditions, including beyond-design accidents. An experimental setup was assembled to test a laboratory sample of a membrane electrode assembly (MEA) at various hydrogen concentrations near the catalytic surfaces of the electrodes, and the corresponding current–voltage characteristics were recorded. The simplest MEA based on the Advent P1100W PBI membrane demonstrated stable performance (delivery of electrical power) over a wide range of hydrogen concentrations.
Abstract This paper presents the concept of a passive electrochemical hydrogen recombiner (PEHR). The reaction energy of the recombination of hydrogen and oxygen is used as a source of electrical energy according to the operating principle for hydrogen fuel cells to establish forced circulation of the hydrogen mixture as an alternative to natural circulation (as is not utilized in conventional passive autocatalytic hydrogen recombiners currently used in nuclear power plants (NPPs)). The proposed concept of applying the physical operation principles of a PEHR based on a fuel cell simultaneously increases both productivity in terms of recombined hydrogen and the concentration threshold of flameless operation (the ‘ignition’ limit). Thus, it is possible to reliably ensure the hydrogen explosion safety of NPPs under all conditions, including beyond-design accidents. An experimental setup was assembled to test a laboratory sample of a membrane electrode assembly (MEA) at various hydrogen concentrations near the catalytic surfaces of the electrodes, and the corresponding current–voltage characteristics were recorded. The simplest MEA based on the Advent P1100W PBI membrane demonstrated stable performance (delivery of electrical power) over a wide range of hydrogen concentrations.
ArticleNumber 89
Author Zaryugin, D. G.
Bessarabov, D. G.
Avdeenkov, A. V.
AuthorAffiliation All Russian Research Institute for Nuclear Power Plants Operation JSC,25 Ferganskaya Str.,Moscow,Russia 109507;HySA Center,Faculty of Engineering,North-West University,Potchefstroom 2520,South Africa%HySA Center,Faculty of Engineering,North-West University,Potchefstroom 2520,South Africa%State Atomic Energy Corporation Rosatom,24 Bolshaya Ordynka Str.,Moscow,Russia 119017
AuthorAffiliation_xml – name: All Russian Research Institute for Nuclear Power Plants Operation JSC,25 Ferganskaya Str.,Moscow,Russia 109507;HySA Center,Faculty of Engineering,North-West University,Potchefstroom 2520,South Africa%HySA Center,Faculty of Engineering,North-West University,Potchefstroom 2520,South Africa%State Atomic Energy Corporation Rosatom,24 Bolshaya Ordynka Str.,Moscow,Russia 119017
Author_xml – sequence: 1
  givenname: A. V.
  surname: Avdeenkov
  fullname: Avdeenkov, A. V.
  organization: All Russian Research Institute for Nuclear Power Plants Operation JSC, HySA Center, Faculty of Engineering, North-West University
– sequence: 2
  givenname: D. G.
  surname: Bessarabov
  fullname: Bessarabov, D. G.
  email: Dmitri.Bessarabov@nwu.ac.za
  organization: HySA Center, Faculty of Engineering, North-West University
– sequence: 3
  givenname: D. G.
  surname: Zaryugin
  fullname: Zaryugin, D. G.
  organization: State Atomic Energy Corporation Rosatom
BookMark eNp9kE1LAzEQhoNUsK3-AU978hadJLtN15sUv6CgSO8hm520W9psyazK_ntTV-jN08DwPO8M74SNQhuQsWsBtwJA31Eu1KzgIBUHIfOCl2dsLKUArkSuR2ycKMHnkMsLNiHaAuT5rCjH7OPdEjVfmOEOXRdbt8F94-wu2_R1bNcYsoiu3VdNwJj5Np72ZD12fUY9dbin--wQWzqkDLpk597uCK_-5pStnh5Xixe-fHt-XTwsuVNCd1w572x6tapFBUo7rWxlZS3zugIs0JUlaDkXVe0Lp6QGcFpj4aX1virlXE3ZzRD7bYO3YW227WcM6aDZbMmgTF3ADKBMoBxAlz6kiN4cYrO3sTcCzLE9M7RnkmF-2zNHSQ0SJTisMZ7i_7F-ALT1diU
Cites_doi 10.1007/s41365-020-00767-w
10.1016/0010-2180(82)90043-8
10.1007/s41365-019-0624-0
10.1007/s41365-017-0287-7
10.1016/j.ijhydene.2018.10.212
10.1016/S0010-2180(97)00002-3
10.1016/S0010-2180(01)00363-7
10.1016/j.nucengdes.2013.10.021
10.1016/j.nucengdes.2020.110528
10.1109/TIFS.2015.2462691
10.1016/S0029-5493(02)00330-8
10.1016/j.pnucene.2009.09.010
10.1007/s41365-021-00912-z
10.1016/j.nucengdes.2010.09.032
10.1021/acs.energyfuels.0c01582
10.1002/9781119191766
10.1149/1.2221123
ContentType Journal Article
Copyright The Author(s) 2023
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: The Author(s) 2023
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID C6C
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s41365-023-01245-9
DatabaseName SpringerOpen
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2210-3147
EndPage 124
ExternalDocumentID hjs_e202306009
10_1007_s41365_023_01245_9
GrantInformation_xml – fundername: North-West University
GroupedDBID --K
-EM
0R~
123
1B1
2B.
2C0
4.4
406
5VR
92H
92I
92R
93N
AAAVM
AAEDT
AAFGU
AAHNG
AAIAL
AALRI
AANZL
AAPBV
AARHV
AATNV
AATVU
AAUYE
AAXUO
AAYFA
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ADHHG
ADINQ
ADKNI
ADMDM
ADMUD
ADOXG
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AEVLU
AEVTX
AEXYK
AFNRJ
AFQWF
AFUIB
AFZKB
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AHBYD
AHKAY
AHSBF
AIAKS
AILAN
AIMYW
AITGF
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
AVWKF
AXYYD
BGNMA
C6C
CCEZO
CEKLB
CHBEP
CS3
CW9
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
FA0
FDB
FERAY
FIGPU
FINBP
FNLPD
FRP
FSGXE
GGCAI
GJIRD
HZ~
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M41
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
PT4
RIG
RLLFE
ROL
RSV
SDC
SDG
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TCJ
TGT
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z7R
Z7Y
Z7Z
ZMTXR
-SC
-S~
5XA
5XD
AACDK
AAJBT
AASML
AAXDM
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CAJEC
CITATION
HG6
Q--
SJYHP
U1G
U5M
4A8
PSX
ID FETCH-LOGICAL-c317t-3cfca245bd1b037c73aba2d24db0e5ec9907281bdf5c32700c77e5f2affb9283
IEDL.DBID C6C
ISSN 1001-8042
IngestDate Wed Nov 06 04:27:35 EST 2024
Thu Sep 12 20:15:54 EDT 2024
Sat Dec 16 12:06:05 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Catalytic ignition
Hydrogen fuel cell
Recombiner
Membrane electrode assembly
Hydrogen explosion safety
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-3cfca245bd1b037c73aba2d24db0e5ec9907281bdf5c32700c77e5f2affb9283
OpenAccessLink https://doi.org/10.1007/s41365-023-01245-9
PageCount 10
ParticipantIDs wanfang_journals_hjs_e202306009
crossref_primary_10_1007_s41365_023_01245_9
springer_journals_10_1007_s41365_023_01245_9
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Nuclear science and techniques
PublicationTitleAbbrev NUCL SCI TECH
PublicationTitle_FL Nuclear Science and Techniques
PublicationYear 2023
Publisher Springer Nature Singapore
HySA Center,Faculty of Engineering,North-West University,Potchefstroom 2520,South Africa%HySA Center,Faculty of Engineering,North-West University,Potchefstroom 2520,South Africa%State Atomic Energy Corporation Rosatom,24 Bolshaya Ordynka Str.,Moscow,Russia 119017
All Russian Research Institute for Nuclear Power Plants Operation JSC,25 Ferganskaya Str.,Moscow,Russia 109507
Publisher_xml – name: Springer Nature Singapore
– name: HySA Center,Faculty of Engineering,North-West University,Potchefstroom 2520,South Africa%HySA Center,Faculty of Engineering,North-West University,Potchefstroom 2520,South Africa%State Atomic Energy Corporation Rosatom,24 Bolshaya Ordynka Str.,Moscow,Russia 119017
– name: All Russian Research Institute for Nuclear Power Plants Operation JSC,25 Ferganskaya Str.,Moscow,Russia 109507
References FerroniFCollinsPSchielLContainment protection with hydrogen recombinersAtw Atomwirtschaft, Atomtechnik1994397513514
AppelCMantzarasJSchaerenRAn experimental and numerical investigation of homogeneous ignition in catalytically stabilized combustion of hydrogen/air mixtures over platinumCombust. Flame200228434036810.1016/S0010-2180(01)00363-7
RET(Russkie energeticheskie technologii), https://retech.ru/pkrv (in Russian)
AvdeenkovAVSergeevVStepanovAVMath hydrogen catalytic recombiner: engineering model for dynamic full-scale calculationsInt. J. Hydrog. Energ.20184352235232353710.1016/j.ijhydene.2018.10.212
PrabhudharwadkarDMAghalayamPALyerKNSimulation of hydrogen mitigation in catalytic recombiner. Part-Ι: surface chemistry modellingNucl. Eng. Des.20112411746175710.1016/j.nucengdes.2010.09.032
MalakhovAAdu ToitMHPreezSPTemperature profile mapping over a catalytic unit of a hydrogen passive autocatalytic recombiner: experimental and CFD studyEnerg. Fuel.2020349116371164910.1021/acs.energyfuels.0c01582
International Atomic Energy Agency, Mitigation of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants, IAEA-TECDOC-1661, IAEA, Vienna (2011)
D.G. Zaryugin, Patent RU-2599145-C1, 10 June 2015
BachellerieEArnouldFAuglaireMGeneric approach for designing and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containmentsNucl. Eng. Des.200322115116510.1016/S0029-5493(02)00330-8
YangZWangYZhouNYImprovements to hydrogen depleting and monitoring system for Chinese pressurized reactor 1000Nucl. Sci. Tech.20172813110.1007/s41365-017-0287-7
RinnemoMDeutchmannOBehrendtFExperimental and numerical investigation of the catalytic ignition of mixtures of hydrogen and oxygen on platinumCombust. Flame1997111431232610.1016/S0010-2180(97)00002-3
R.O’Hayre, S.-W.Cha, W.G.Colella, F.G.Prinz, Fuel Cell Fundamentals, 3rd edn. (John Wiley & Sons, 2016)
ScheferRWCatalyzed combustion of H2/air mixtures in a flat plate boundary layer: ΙΙ: numerical modelCombust. Flame19824517119010.1016/0010-2180(82)90043-8
LampinenMJFaminaMAnalysis of free energy and entropy changes for half-cell reactionsJ. Electrochem. Soc.19931402353735461993JElS..140.3537L10.1149/1.2221123
KlauckMReineckeEAKelmSPassive auto-catalytic recombiners operation in the presence of hydrogen and carbon monoxide: experimental study and model developmentNucl. Eng. Des.201426613714710.1016/j.nucengdes.2013.10.021
ReineckeEABentaibAKelmSOpen issues in the applicability of recombiner experiments and modelling to reactor simulationsProg. Nucl. Energ.201052113614710.1016/j.pnucene.2009.09.010
RamanRKIyerKNRavvaSRCFD studies of hydrogen mitigation by recombiner using correlations of reaction rates obtained from detailed mechanismNucl. Eng. Des.202036011052810.1016/j.nucengdes.2020.110528
Framatome, Hydrogen Control System: mixers, igniters, recombiners. https://www.framatome.com/solutions-portfolio/portfolio/product?product=A0640
GuoY-WQinJ-YHuJ-HMolecular rotation-caused autocorrelationJ. Nucl. Sci. Tech.20203165310.1007/s41365-020-00767-w
WangB-EZhangS-CWangZNumerical analysis of supersonic jet flow and dust transport induced by air ingress in a fusion reactorJ. Nucl. Sci. Tech.20213277310.1007/s41365-021-00912-z
Noori-kalkhoranOJafari-oureganiNGeiMSimulation of hydrogen distribution and effect of engineering safety features (ESFs) on its mitigation in a WWER-1000 containmentNucl. Sci. Tech.2019309710.1007/s41365-019-0624-0
Y-W Guo (1245_CR18) 2020; 31
1245_CR1
M Rinnemo (1245_CR5) 1997; 111
B-E Wang (1245_CR17) 2021; 32
F Ferroni (1245_CR2) 1994; 39
AV Avdeenkov (1245_CR4) 2018; 43
AA Malakhov (1245_CR14) 2020; 34
1245_CR8
1245_CR10
1245_CR9
EA Reinecke (1245_CR3) 2010; 52
1245_CR15
C Appel (1245_CR6) 2002; 28
M Klauck (1245_CR11) 2014; 266
DM Prabhudharwadkar (1245_CR13) 2011; 241
MJ Lampinen (1245_CR16) 1993; 140
RK Raman (1245_CR21) 2020; 360
O Noori-kalkhoran (1245_CR19) 2019; 30
Z Yang (1245_CR20) 2017; 28
RW Schefer (1245_CR7) 1982; 45
E Bachellerie (1245_CR12) 2003; 221
References_xml – volume: 31
  start-page: 53
  issue: 6
  year: 2020
  ident: 1245_CR18
  publication-title: J. Nucl. Sci. Tech.
  doi: 10.1007/s41365-020-00767-w
  contributor:
    fullname: Y-W Guo
– ident: 1245_CR1
– volume: 45
  start-page: 171
  year: 1982
  ident: 1245_CR7
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(82)90043-8
  contributor:
    fullname: RW Schefer
– volume: 30
  start-page: 97
  year: 2019
  ident: 1245_CR19
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-019-0624-0
  contributor:
    fullname: O Noori-kalkhoran
– volume: 28
  start-page: 131
  year: 2017
  ident: 1245_CR20
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-017-0287-7
  contributor:
    fullname: Z Yang
– volume: 43
  start-page: 23523
  issue: 52
  year: 2018
  ident: 1245_CR4
  publication-title: Int. J. Hydrog. Energ.
  doi: 10.1016/j.ijhydene.2018.10.212
  contributor:
    fullname: AV Avdeenkov
– volume: 111
  start-page: 312
  issue: 4
  year: 1997
  ident: 1245_CR5
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(97)00002-3
  contributor:
    fullname: M Rinnemo
– volume: 28
  start-page: 340
  issue: 4
  year: 2002
  ident: 1245_CR6
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(01)00363-7
  contributor:
    fullname: C Appel
– volume: 266
  start-page: 137
  year: 2014
  ident: 1245_CR11
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2013.10.021
  contributor:
    fullname: M Klauck
– volume: 360
  start-page: 110528
  year: 2020
  ident: 1245_CR21
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2020.110528
  contributor:
    fullname: RK Raman
– ident: 1245_CR8
– ident: 1245_CR10
  doi: 10.1109/TIFS.2015.2462691
– ident: 1245_CR9
– volume: 221
  start-page: 151
  year: 2003
  ident: 1245_CR12
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/S0029-5493(02)00330-8
  contributor:
    fullname: E Bachellerie
– volume: 39
  start-page: 513
  issue: 7
  year: 1994
  ident: 1245_CR2
  publication-title: Atw Atomwirtschaft, Atomtechnik
  contributor:
    fullname: F Ferroni
– volume: 52
  start-page: 136
  issue: 1
  year: 2010
  ident: 1245_CR3
  publication-title: Prog. Nucl. Energ.
  doi: 10.1016/j.pnucene.2009.09.010
  contributor:
    fullname: EA Reinecke
– volume: 32
  start-page: 73
  issue: 7
  year: 2021
  ident: 1245_CR17
  publication-title: J. Nucl. Sci. Tech.
  doi: 10.1007/s41365-021-00912-z
  contributor:
    fullname: B-E Wang
– volume: 241
  start-page: 1746
  year: 2011
  ident: 1245_CR13
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2010.09.032
  contributor:
    fullname: DM Prabhudharwadkar
– volume: 34
  start-page: 11637
  issue: 9
  year: 2020
  ident: 1245_CR14
  publication-title: Energ. Fuel.
  doi: 10.1021/acs.energyfuels.0c01582
  contributor:
    fullname: AA Malakhov
– ident: 1245_CR15
  doi: 10.1002/9781119191766
– volume: 140
  start-page: 3537
  issue: 2
  year: 1993
  ident: 1245_CR16
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2221123
  contributor:
    fullname: MJ Lampinen
SSID ssj0044659
Score 2.3031318
Snippet This paper presents the concept of a passive electrochemical hydrogen recombiner (PEHR). The reaction energy of the recombination of hydrogen and oxygen is...
Abstract This paper presents the concept of a passive electrochemical hydrogen recombiner (PEHR). The reaction energy of the recombination of hydrogen and...
This paper presents the concept of a passive electrochemical hydrogen recombiner(PEHR).The reaction energy of the recombination of hydrogen and oxygen is used...
SourceID wanfang
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 115
SubjectTerms Beam Physics
Nuclear Energy
Particle Acceleration and Detection
Particle and Nuclear Physics
Physics
Physics and Astronomy
Title Passive electrochemical hydrogen recombiner for hydrogen safety systems: prospects
URI https://link.springer.com/article/10.1007/s41365-023-01245-9
https://d.wanfangdata.com.cn/periodical/hjs-e202306009
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60RdCDaFWsj5qDN11Ms5vHemuLpQgWkQq9hX1aBFNp4qH_3tnt1lYRwUsOYbOQ2cnMN5mZbxC6TKgyhJA2Tgw1mEotMagywQnnJhQZZYmbRfAwTAbP9H4cjz1Nju2F-ZG_vympq8MCzwJBb0RjzDZRHXxwZsu3eklvaXUt7xdzmU0IjzPQRN8g8_se353QMgPq-nYKw4uXNRfT30O7HhsGncVh7qMNXTTQzhpjYANtuYpNWR6gp0eAvWCqAj_IRvrO_2AyV7MpqEVgY903YZv7AkCmq_slN7qaBwsO5_I2ABvq-i3LQzTq3416A-wHJGAJbr_CRBrJ4YWEaouQpDIlXPBIRVSJUMdagqdJI8ClysSS2AyzTFMdm4gbIxjgiiNUK6aFPkYBPJIRHgpqi0ozpRgTTCnBE7gAoGw30dVSYPn7ggYj_yI8duLNQby5E2_Omuh6KdPcfxLln8svvNxXqyevZa4jFyABCjz534anaDtyp21_lpyhWjX70OeAHSrRQvVOv9sdtpzyfALY67xC
link.rule.ids 315,783,787,27936,27937,41132,42201,51588
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60IupBtCrWV_fgTYNpdvNYb1IsVdsiUqG3ZZ8WwVSaeOi_d7JNbBURvOQQNguZncz3TeaF0HlEtSWEtLzIUutRZZQHqky8SAjry4SyyM0i6A-i7jO9H4Wjsk1OUQvzI35_lVGXhwXIAk5vQEOPraI1GgBsFYHZqF1Z3aLvF3ORTXCPE9DEskDm9z2-g1AVAXV1O6kV6csSxHR20HbJDfHN_DB30YpJ62hrqWNgHa27jE2V7aGnR6C9YKpwOchGlZX_eDzT0wmoBS583TdZFPdhYKaL-5mwJp_heQ_n7BqDDXX1ltk-GnZuh-2uVw5I8BTAfu4RZZWAF5K6JX0Sq5gIKQIdUC19ExoFSBMHwEu1DRUpIswqjk1oA2GtZMArDlAtnaTmEGF4JCHCl7RIKk20ZkwyraWI4AKEstVAF5XA-Pu8DQb_anjsxMtBvNyJl7MGuqxkystPIvtzebOU-2L1-DXjJnAOErDAo_9t2EQb3WG_x3t3g4djtBm4ky9-nJygWj79MKfAI3J55hToE7Z4vZ4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60ouhBtCrWV3PwpqFpdvPyJtVSX6VIhd6WfVoE09LEQ_-9s5ukrSCClxzCZklmJzvf7Mw3g9BlSKTGGLfdUBPtEqGEC6qM3ZAx7fGYJKHtRfDSD3tv5HEUjFZY_DbbvQpJFpwGU6UpzVtTqVsL4hux2Vlgb8AV9kngJutog5im6SZcG3aqvdhUA0tsvBOc5hj0s6TN_D7HT9NUvYRl86Sape8rhqe7h3ZLxOjcFku8j9ZUWkc7K3UE62jT5nGK7AC9DgAMwwbmlO1tRFkPwBnP5WwCyuIYD_iTG8qfA3h1eT9jWuVzp6jsnN04sLNaFmZ2iIbd-2Gn55ZtE1wBYCB3sdCCwQdx2eYejkSEGWe-9InkngqUAPsT-YBWpQ4ENnFnEUUq0D7TmieANo5QLZ2k6hg58EiMmceJSTWNpUwSnkjJWQgXgJntBrqqBEanRXEMuiiDbMVLQbzUipcmDXRdyZSWP0r25_BmKffl6PFHRpVv3SbAhif_m7CJtgZ3Xfr80H86Rdu-XXhzmnKGavnsS50DuMj5hdWfb82gxe4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passive+electrochemical+hydrogen+recombiner+for+hydrogen+safety+systems%3A+prospects&rft.jtitle=Nuclear+science+and+techniques&rft.au=Avdeenkov%2C+A.+V.&rft.au=Bessarabov%2C+D.+G.&rft.au=Zaryugin%2C+D.+G.&rft.date=2023-06-01&rft.issn=1001-8042&rft.eissn=2210-3147&rft.volume=34&rft.issue=6&rft_id=info:doi/10.1007%2Fs41365-023-01245-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41365_023_01245_9
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhjs-e%2Fhjs-e.jpg