ATTENTION-BASED LSTM NETWORK FOR ACTION RECOGNITION IN SPORTS
Understanding human action from the visual data is an important computer vision application for video surveillance, sports player performance analysis, and many IoT applications. The traditional approaches for action recognition used hand-crafted visual and temporal features for classifying specific...
Saved in:
Published in | Electronic Imaging Vol. 33; no. 6; pp. 302-1 - 302-6 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IS&T 7003 Kilworth Lane Springfield, VA 22151 USA
Society for Imaging Science and Technology
18.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2470-1173 2470-1173 |
DOI | 10.2352/ISSN.2470-1173.2021.6.IRIACV-302 |
Cover
Abstract | Understanding human action from the visual data is an important computer vision application for video surveillance, sports player performance analysis, and many IoT applications. The traditional approaches for action recognition used hand-crafted visual and temporal features for classifying
specific actions. In this paper, we followed the standard deep learning framework for action recognition but introduced channel and spatial attention module sequentially in the network. In a nutshell, our network consists of four main components. First, the input frames are given to a pre-trained
CNN for extracting the visual features and the visual features are passed through the attention module. The transformed features maps are given to the bi-directional LSTM network that exploits the temporal dependency among the frames for the underlying action in the scene. The output of bi-direction
LSTM is given to a fully connected layer with a softmax classifier that assigns the probabilities to the actions of the subject in the scene. In addition to cross-entropy loss, the marginal loss function is used that penalizes the network for the inter action classes and complimenting the
network for the intra action variations. The network is trained and validated on a tennis dataset and in total six tennis players' actions are focused. The network is evaluated on standard performance metrics (precision, recall) promising results are achieved. |
---|---|
AbstractList | Understanding human action from the visual data is an important computer vision application for video surveillance, sports player performance analysis, and many IoT applications. The traditional approaches for action recognition used hand-crafted visual and temporal features for classifying
specific actions. In this paper, we followed the standard deep learning framework for action recognition but introduced channel and spatial attention module sequentially in the network. In a nutshell, our network consists of four main components. First, the input frames are given to a pre-trained
CNN for extracting the visual features and the visual features are passed through the attention module. The transformed features maps are given to the bi-directional LSTM network that exploits the temporal dependency among the frames for the underlying action in the scene. The output of bi-direction
LSTM is given to a fully connected layer with a softmax classifier that assigns the probabilities to the actions of the subject in the scene. In addition to cross-entropy loss, the marginal loss function is used that penalizes the network for the inter action classes and complimenting the
network for the intra action variations. The network is trained and validated on a tennis dataset and in total six tennis players' actions are focused. The network is evaluated on standard performance metrics (precision, recall) promising results are achieved. |
Author | Mudassar Yamin, Muhammad Alaya Cheikh, Faouzi Ullah, Mohib Daud Khan, Sultan Ullah, Habib Mohammed, Ahmed |
Author_xml | – sequence: 1 givenname: Mohib surname: Ullah fullname: Ullah, Mohib – sequence: 2 givenname: Muhammad surname: Mudassar Yamin fullname: Mudassar Yamin, Muhammad – sequence: 3 givenname: Ahmed surname: Mohammed fullname: Mohammed, Ahmed – sequence: 4 givenname: Sultan surname: Daud Khan fullname: Daud Khan, Sultan – sequence: 5 givenname: Habib surname: Ullah fullname: Ullah, Habib – sequence: 6 givenname: Faouzi surname: Alaya Cheikh fullname: Alaya Cheikh, Faouzi |
BookMark | eNqVkEtLw0AUhQdRsNb-hyzdJM6jecxCMca0BmsiSdTlZfIqIzWVZCror3fSShHBhXczBy7nm3vOCTps122N0BnBFmU2PY-yLLbo1MUmIS6zKKbEcqwojfzgyWSYHqDRfnv4Qx-jSd_LAtOpjV3O-Qhd-HkexnmUxOa1n4U3xiLL7404zJ-T9M6YJanhB8PWSMMgmcfRVkexkT0kaZ6doqNGrPp68v2O0eMszINbc5HMo8BfmCUjrjJZUTCn9Ai2Ga5swSte2mVV2Fxgz_W4IypaFI1DvWlZ6Z3LHMo83riE16yomcfGaLbjlt2677u6gVIqoeS6VZ2QKyAYhl5g6AWGtDCkhaEXcGDXC-heNOjqF-itk6-i-_gPItkhZLusWyXgZb3pWp0eZAmyV1vz1vs-mFtny8CcMiBUf1DVjdisFCjRwfITeqaJl38RNa6WuyOwnr3Q44Do1CAY-wJokpXP |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3203416 crossref_primary_10_1016_j_csl_2024_101694 crossref_primary_10_3389_fnbot_2024_1284175 crossref_primary_10_4218_etrij_2023_0222 crossref_primary_10_1016_j_aej_2023_04_062 crossref_primary_10_1016_j_slast_2024_100181 crossref_primary_10_32604_cmc_2024_050435 crossref_primary_10_1109_ACCESS_2022_3195035 crossref_primary_10_32604_csse_2023_034805 crossref_primary_10_3390_s23052422 crossref_primary_10_32604_cmc_2023_039752 crossref_primary_10_3390_math10091555 crossref_primary_10_32604_csse_2023_045981 crossref_primary_10_1155_2021_3772358 crossref_primary_10_1155_2022_8424303 crossref_primary_10_1142_S0219843622400114 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.2352/ISSN.2470-1173.2021.6.IRIACV-302 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2470-1173 |
EndPage | 302-6 |
ExternalDocumentID | 10_2352_ISSN_2470_1173_2021_6_IRIACV_302 ist/ei/2021/00002021/00000006/art00003 |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS M~E AAYXX CITATION |
ID | FETCH-LOGICAL-c317t-3bb36c810530d5a9d9c5cdb59a087896ad2bbf6284cdd9c7362389f719e3be383 |
ISSN | 2470-1173 |
IngestDate | Thu Apr 24 22:55:58 EDT 2025 Tue Jul 01 01:54:28 EDT 2025 Mon Aug 14 07:26:35 EDT 2023 Thu Jan 27 13:08:36 EST 2022 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c317t-3bb36c810530d5a9d9c5cdb59a087896ad2bbf6284cdd9c7362389f719e3be383 |
Notes | 2470-1173(20210118)2021:6L.3021;1- |
ParticipantIDs | ingenta_journals_ic_ist_24701173_v2021n6_20210923_1252_default_tar_gz_s3 ingenta_journals_ist_ei_2021_00002021_00000006_art00003 crossref_citationtrail_10_2352_ISSN_2470_1173_2021_6_IRIACV_302 crossref_primary_10_2352_ISSN_2470_1173_2021_6_IRIACV_302 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210118 |
PublicationDateYYYYMMDD | 2021-01-18 |
PublicationDate_xml | – month: 01 year: 2021 text: 20210118 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | IS&T 7003 Kilworth Lane Springfield, VA 22151 USA |
PublicationPlace_xml | – name: IS&T 7003 Kilworth Lane Springfield, VA 22151 USA |
PublicationTitle | Electronic Imaging |
PublicationYear | 2021 |
Publisher | Society for Imaging Science and Technology |
Publisher_xml | – name: Society for Imaging Science and Technology |
SSID | ssib024507999 ssib044742186 |
Score | 1.9077376 |
Snippet | Understanding human action from the visual data is an important computer vision application for video surveillance, sports player performance analysis, and... |
SourceID | crossref ingenta |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 302-1 |
SubjectTerms | Bidirectional Lstm Channel Attention Marginal Loss Spatial Attention |
Title | ATTENTION-BASED LSTM NETWORK FOR ACTION RECOGNITION IN SPORTS |
URI | https://www.ingentaconnect.com/content/ist/ei/2021/00002021/00000006/art00003 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5FRUJcEAgQ5SUfOCBZaxyvnycUUkNMiYNiF8pptQ-bRGoSlDoceuBn8HuZtTeOWyLRwsVa29nxbubz-JvxegahlxFYQ-ExH5eMM-wGDsO8CBkWpbQl8O2wX6drGqf-6MT9cOqd9nq_OquWNhW3xMXe70r-RatwDPSqvpK9gWZboXAA2qBf2IKGYXstHQ_yPE5VjAm_HWTxkfkxy8dmGudfJtNjE9w7s1kiYk7j4eR9mtTtJDWzT5Npnl2Kye-K4SSLum7RVhEnAJM68jJezeZ8px4JpJutza9s0SQhGG9mbLFgsv3FSu03kdTBbFG0J47YRprHMx133ZxVGp468uCosAPuGkvHDWzc7zelSKxizzFtYZtUFxpJXXNJbKfz5IU97O8z6w6wRNBFkmWp1V7AUkOyfCuZJoPhZ9yK6mbUvvKka9cfguejZFIlkSqJKuc5oUoi9WkjkRKVo_SWEwT16__xz3hrpxwXSHS0c-NcN3BVaS9Vx3A7utvolR74678N-xIj2n5S1yE5-T10V3snxqCB2n3UK5YP0FWYGQpmhoaZATAzGpgZHZgZSWo0MHuITt7F-XCEddUNLIBLVphwTnwRAu8mtvRYJCPhCcm9iNlhEEY-kw7npQ-0Rkg4FwADAtJbBv2oILwgIXmEDparZfEYGa6MIleGLik9x2Wl4FKo9ENe6fsSPG1yiN5sZ06FTkmvKqOc0esq6BBFrYTvTXqWG_Qd6T-b6nv6nM4FBeta96o7_VC9ln7d2QZfiII_4FBZlAzuD1qxNf12Qc9hIsGfokBOMW8ua9dv_HVDMUQKNkM1yJP_mMBTdGd3Wz5DB9V6UzwHilzxFzVefwPHVKCk |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ATTENTION-BASED+LSTM+NETWORK+FOR+ACTION+RECOGNITION+IN+SPORTS&rft.jtitle=Electronic+Imaging&rft.au=Ullah%2C+Mohib&rft.au=Mudassar+Yamin%2C+Muhammad&rft.au=Mohammed%2C+Ahmed&rft.au=Daud+Khan%2C+Sultan&rft.date=2021-01-18&rft.issn=2470-1173&rft.eissn=2470-1173&rft.volume=33&rft.issue=6&rft.spage=302&rft.epage=302-6&rft_id=info:doi/10.2352%2FISSN.2470-1173.2021.6.IRIACV-302&rft.externalDBID=n%2Fa&rft.externalDocID=10_2352_ISSN_2470_1173_2021_6_IRIACV_302 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1173&client=summon |