ATTENTION-BASED LSTM NETWORK FOR ACTION RECOGNITION IN SPORTS

Understanding human action from the visual data is an important computer vision application for video surveillance, sports player performance analysis, and many IoT applications. The traditional approaches for action recognition used hand-crafted visual and temporal features for classifying specific...

Full description

Saved in:
Bibliographic Details
Published inElectronic Imaging Vol. 33; no. 6; pp. 302-1 - 302-6
Main Authors Ullah, Mohib, Mudassar Yamin, Muhammad, Mohammed, Ahmed, Daud Khan, Sultan, Ullah, Habib, Alaya Cheikh, Faouzi
Format Journal Article
LanguageEnglish
Published IS&T 7003 Kilworth Lane Springfield, VA 22151 USA Society for Imaging Science and Technology 18.01.2021
Subjects
Online AccessGet full text
ISSN2470-1173
2470-1173
DOI10.2352/ISSN.2470-1173.2021.6.IRIACV-302

Cover

Abstract Understanding human action from the visual data is an important computer vision application for video surveillance, sports player performance analysis, and many IoT applications. The traditional approaches for action recognition used hand-crafted visual and temporal features for classifying specific actions. In this paper, we followed the standard deep learning framework for action recognition but introduced channel and spatial attention module sequentially in the network. In a nutshell, our network consists of four main components. First, the input frames are given to a pre-trained CNN for extracting the visual features and the visual features are passed through the attention module. The transformed features maps are given to the bi-directional LSTM network that exploits the temporal dependency among the frames for the underlying action in the scene. The output of bi-direction LSTM is given to a fully connected layer with a softmax classifier that assigns the probabilities to the actions of the subject in the scene. In addition to cross-entropy loss, the marginal loss function is used that penalizes the network for the inter action classes and complimenting the network for the intra action variations. The network is trained and validated on a tennis dataset and in total six tennis players' actions are focused. The network is evaluated on standard performance metrics (precision, recall) promising results are achieved.
AbstractList Understanding human action from the visual data is an important computer vision application for video surveillance, sports player performance analysis, and many IoT applications. The traditional approaches for action recognition used hand-crafted visual and temporal features for classifying specific actions. In this paper, we followed the standard deep learning framework for action recognition but introduced channel and spatial attention module sequentially in the network. In a nutshell, our network consists of four main components. First, the input frames are given to a pre-trained CNN for extracting the visual features and the visual features are passed through the attention module. The transformed features maps are given to the bi-directional LSTM network that exploits the temporal dependency among the frames for the underlying action in the scene. The output of bi-direction LSTM is given to a fully connected layer with a softmax classifier that assigns the probabilities to the actions of the subject in the scene. In addition to cross-entropy loss, the marginal loss function is used that penalizes the network for the inter action classes and complimenting the network for the intra action variations. The network is trained and validated on a tennis dataset and in total six tennis players' actions are focused. The network is evaluated on standard performance metrics (precision, recall) promising results are achieved.
Author Mudassar Yamin, Muhammad
Alaya Cheikh, Faouzi
Ullah, Mohib
Daud Khan, Sultan
Ullah, Habib
Mohammed, Ahmed
Author_xml – sequence: 1
  givenname: Mohib
  surname: Ullah
  fullname: Ullah, Mohib
– sequence: 2
  givenname: Muhammad
  surname: Mudassar Yamin
  fullname: Mudassar Yamin, Muhammad
– sequence: 3
  givenname: Ahmed
  surname: Mohammed
  fullname: Mohammed, Ahmed
– sequence: 4
  givenname: Sultan
  surname: Daud Khan
  fullname: Daud Khan, Sultan
– sequence: 5
  givenname: Habib
  surname: Ullah
  fullname: Ullah, Habib
– sequence: 6
  givenname: Faouzi
  surname: Alaya Cheikh
  fullname: Alaya Cheikh, Faouzi
BookMark eNqVkEtLw0AUhQdRsNb-hyzdJM6jecxCMca0BmsiSdTlZfIqIzWVZCror3fSShHBhXczBy7nm3vOCTps122N0BnBFmU2PY-yLLbo1MUmIS6zKKbEcqwojfzgyWSYHqDRfnv4Qx-jSd_LAtOpjV3O-Qhd-HkexnmUxOa1n4U3xiLL7404zJ-T9M6YJanhB8PWSMMgmcfRVkexkT0kaZ6doqNGrPp68v2O0eMszINbc5HMo8BfmCUjrjJZUTCn9Ai2Ga5swSte2mVV2Fxgz_W4IypaFI1DvWlZ6Z3LHMo83riE16yomcfGaLbjlt2677u6gVIqoeS6VZ2QKyAYhl5g6AWGtDCkhaEXcGDXC-heNOjqF-itk6-i-_gPItkhZLusWyXgZb3pWp0eZAmyV1vz1vs-mFtny8CcMiBUf1DVjdisFCjRwfITeqaJl38RNa6WuyOwnr3Q44Do1CAY-wJokpXP
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3203416
crossref_primary_10_1016_j_csl_2024_101694
crossref_primary_10_3389_fnbot_2024_1284175
crossref_primary_10_4218_etrij_2023_0222
crossref_primary_10_1016_j_aej_2023_04_062
crossref_primary_10_1016_j_slast_2024_100181
crossref_primary_10_32604_cmc_2024_050435
crossref_primary_10_1109_ACCESS_2022_3195035
crossref_primary_10_32604_csse_2023_034805
crossref_primary_10_3390_s23052422
crossref_primary_10_32604_cmc_2023_039752
crossref_primary_10_3390_math10091555
crossref_primary_10_32604_csse_2023_045981
crossref_primary_10_1155_2021_3772358
crossref_primary_10_1155_2022_8424303
crossref_primary_10_1142_S0219843622400114
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.2352/ISSN.2470-1173.2021.6.IRIACV-302
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2470-1173
EndPage 302-6
ExternalDocumentID 10_2352_ISSN_2470_1173_2021_6_IRIACV_302
ist/ei/2021/00002021/00000006/art00003
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
M~E
AAYXX
CITATION
ID FETCH-LOGICAL-c317t-3bb36c810530d5a9d9c5cdb59a087896ad2bbf6284cdd9c7362389f719e3be383
ISSN 2470-1173
IngestDate Thu Apr 24 22:55:58 EDT 2025
Tue Jul 01 01:54:28 EDT 2025
Mon Aug 14 07:26:35 EDT 2023
Thu Jan 27 13:08:36 EST 2022
IsPeerReviewed false
IsScholarly false
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-3bb36c810530d5a9d9c5cdb59a087896ad2bbf6284cdd9c7362389f719e3be383
Notes 2470-1173(20210118)2021:6L.3021;1-
ParticipantIDs ingenta_journals_ic_ist_24701173_v2021n6_20210923_1252_default_tar_gz_s3
ingenta_journals_ist_ei_2021_00002021_00000006_art00003
crossref_citationtrail_10_2352_ISSN_2470_1173_2021_6_IRIACV_302
crossref_primary_10_2352_ISSN_2470_1173_2021_6_IRIACV_302
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210118
PublicationDateYYYYMMDD 2021-01-18
PublicationDate_xml – month: 01
  year: 2021
  text: 20210118
  day: 18
PublicationDecade 2020
PublicationPlace IS&T 7003 Kilworth Lane Springfield, VA 22151 USA
PublicationPlace_xml – name: IS&T 7003 Kilworth Lane Springfield, VA 22151 USA
PublicationTitle Electronic Imaging
PublicationYear 2021
Publisher Society for Imaging Science and Technology
Publisher_xml – name: Society for Imaging Science and Technology
SSID ssib024507999
ssib044742186
Score 1.9077376
Snippet Understanding human action from the visual data is an important computer vision application for video surveillance, sports player performance analysis, and...
SourceID crossref
ingenta
SourceType Enrichment Source
Index Database
Publisher
StartPage 302-1
SubjectTerms Bidirectional Lstm
Channel Attention
Marginal Loss
Spatial Attention
Title ATTENTION-BASED LSTM NETWORK FOR ACTION RECOGNITION IN SPORTS
URI https://www.ingentaconnect.com/content/ist/ei/2021/00002021/00000006/art00003
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5FRUJcEAgQ5SUfOCBZaxyvnycUUkNMiYNiF8pptQ-bRGoSlDoceuBn8HuZtTeOWyLRwsVa29nxbubz-JvxegahlxFYQ-ExH5eMM-wGDsO8CBkWpbQl8O2wX6drGqf-6MT9cOqd9nq_OquWNhW3xMXe70r-RatwDPSqvpK9gWZboXAA2qBf2IKGYXstHQ_yPE5VjAm_HWTxkfkxy8dmGudfJtNjE9w7s1kiYk7j4eR9mtTtJDWzT5Npnl2Kye-K4SSLum7RVhEnAJM68jJezeZ8px4JpJutza9s0SQhGG9mbLFgsv3FSu03kdTBbFG0J47YRprHMx133ZxVGp468uCosAPuGkvHDWzc7zelSKxizzFtYZtUFxpJXXNJbKfz5IU97O8z6w6wRNBFkmWp1V7AUkOyfCuZJoPhZ9yK6mbUvvKka9cfguejZFIlkSqJKuc5oUoi9WkjkRKVo_SWEwT16__xz3hrpxwXSHS0c-NcN3BVaS9Vx3A7utvolR74678N-xIj2n5S1yE5-T10V3snxqCB2n3UK5YP0FWYGQpmhoaZATAzGpgZHZgZSWo0MHuITt7F-XCEddUNLIBLVphwTnwRAu8mtvRYJCPhCcm9iNlhEEY-kw7npQ-0Rkg4FwADAtJbBv2oILwgIXmEDparZfEYGa6MIleGLik9x2Wl4FKo9ENe6fsSPG1yiN5sZ06FTkmvKqOc0esq6BBFrYTvTXqWG_Qd6T-b6nv6nM4FBeta96o7_VC9ln7d2QZfiII_4FBZlAzuD1qxNf12Qc9hIsGfokBOMW8ua9dv_HVDMUQKNkM1yJP_mMBTdGd3Wz5DB9V6UzwHilzxFzVefwPHVKCk
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ATTENTION-BASED+LSTM+NETWORK+FOR+ACTION+RECOGNITION+IN+SPORTS&rft.jtitle=Electronic+Imaging&rft.au=Ullah%2C+Mohib&rft.au=Mudassar+Yamin%2C+Muhammad&rft.au=Mohammed%2C+Ahmed&rft.au=Daud+Khan%2C+Sultan&rft.date=2021-01-18&rft.issn=2470-1173&rft.eissn=2470-1173&rft.volume=33&rft.issue=6&rft.spage=302&rft.epage=302-6&rft_id=info:doi/10.2352%2FISSN.2470-1173.2021.6.IRIACV-302&rft.externalDBID=n%2Fa&rft.externalDocID=10_2352_ISSN_2470_1173_2021_6_IRIACV_302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1173&client=summon