Tuning the dissolution kinetics of wollastonite via chelating agents for CO2 sequestration with integrated synthesis of precipitated calcium carbonates
Carbon mineralization has recently received much attention as one of the most promising options for CO2 sequestration. The engineered weathering of silicate minerals as a means of permanent carbon storage has unique advantages such as the abundance of naturally occurring calcium and magnesium-bearin...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 15; no. 36; pp. 15185 - 15192 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
28.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon mineralization has recently received much attention as one of the most promising options for CO2 sequestration. The engineered weathering of silicate minerals as a means of permanent carbon storage has unique advantages such as the abundance of naturally occurring calcium and magnesium-bearing minerals and the formation of environmentally-benign and geologically stable solids via a thermodynamically favored carbonation reaction. However, several challenges need to be overcome to successfully deploy carbon mineralization on a large scale. In particular, the acceleration of the rate-limiting mineral dissolution step along with process optimization is essential to ensure the economic feasibility of the proposed carbon storage technology. In this study, the effect of various types of chelating agents on the dissolution rate of calcium-bearing silicate mineral, wollastonite, was explored to accelerate its weathering rate. It was found that chelating agents such as acetic acid and gluconic acid significantly improved the dissolution kinetics of wollastonite even at a much diluted concentration of 0.006 M by complexing with calcium in the mineral matrix. Calcium extracted from wollastonite was then reacted with a carbonate solution to form precipitated calcium carbonate (PCC), while tuning the particle size and the morphological structure of PCC to mimic commercially available PCC-based filler materials. |
---|---|
AbstractList | Carbon mineralization has recently received much attention as one of the most promising options for CO2 sequestration. The engineered weathering of silicate minerals as a means of permanent carbon storage has unique advantages such as the abundance of naturally occurring calcium and magnesium-bearing minerals and the formation of environmentally-benign and geologically stable solids via a thermodynamically favored carbonation reaction. However, several challenges need to be overcome to successfully deploy carbon mineralization on a large scale. In particular, the acceleration of the rate-limiting mineral dissolution step along with process optimization is essential to ensure the economic feasibility of the proposed carbon storage technology. In this study, the effect of various types of chelating agents on the dissolution rate of calcium-bearing silicate mineral, wollastonite, was explored to accelerate its weathering rate. It was found that chelating agents such as acetic acid and gluconic acid significantly improved the dissolution kinetics of wollastonite even at a much diluted concentration of 0.006 M by complexing with calcium in the mineral matrix. Calcium extracted from wollastonite was then reacted with a carbonate solution to form precipitated calcium carbonate (PCC), while tuning the particle size and the morphological structure of PCC to mimic commercially available PCC-based filler materials.Carbon mineralization has recently received much attention as one of the most promising options for CO2 sequestration. The engineered weathering of silicate minerals as a means of permanent carbon storage has unique advantages such as the abundance of naturally occurring calcium and magnesium-bearing minerals and the formation of environmentally-benign and geologically stable solids via a thermodynamically favored carbonation reaction. However, several challenges need to be overcome to successfully deploy carbon mineralization on a large scale. In particular, the acceleration of the rate-limiting mineral dissolution step along with process optimization is essential to ensure the economic feasibility of the proposed carbon storage technology. In this study, the effect of various types of chelating agents on the dissolution rate of calcium-bearing silicate mineral, wollastonite, was explored to accelerate its weathering rate. It was found that chelating agents such as acetic acid and gluconic acid significantly improved the dissolution kinetics of wollastonite even at a much diluted concentration of 0.006 M by complexing with calcium in the mineral matrix. Calcium extracted from wollastonite was then reacted with a carbonate solution to form precipitated calcium carbonate (PCC), while tuning the particle size and the morphological structure of PCC to mimic commercially available PCC-based filler materials. Carbon mineralization has recently received much attention as one of the most promising options for CO2 sequestration. The engineered weathering of silicate minerals as a means of permanent carbon storage has unique advantages such as the abundance of naturally occurring calcium and magnesium-bearing minerals and the formation of environmentally-benign and geologically stable solids via a thermodynamically favored carbonation reaction. However, several challenges need to be overcome to successfully deploy carbon mineralization on a large scale. In particular, the acceleration of the rate-limiting mineral dissolution step along with process optimization is essential to ensure the economic feasibility of the proposed carbon storage technology. In this study, the effect of various types of chelating agents on the dissolution rate of calcium-bearing silicate mineral, wollastonite, was explored to accelerate its weathering rate. It was found that chelating agents such as acetic acid and gluconic acid significantly improved the dissolution kinetics of wollastonite even at a much diluted concentration of 0.006 M by complexing with calcium in the mineral matrix. Calcium extracted from wollastonite was then reacted with a carbonate solution to form precipitated calcium carbonate (PCC), while tuning the particle size and the morphological structure of PCC to mimic commercially available PCC-based filler materials. |
Author | Zhao, Huangjing Park, Ah-Hyung Alissa Lee, Dong Hyun Park, Youngjune |
Author_xml | – sequence: 1 givenname: Huangjing surname: Zhao fullname: Zhao, Huangjing – sequence: 2 givenname: Youngjune surname: Park fullname: Park, Youngjune – sequence: 3 givenname: Dong Hyun surname: Lee fullname: Lee, Dong Hyun – sequence: 4 givenname: Ah-Hyung Alissa surname: Park fullname: Park, Ah-Hyung Alissa |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27680581$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23925694$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctqXDEMhk1JaS7tpg9QvCmUwjS25XNblqE3CGSTrA8-HnnGzRn71PJJyJP0deuZTBMIWUlIn35bv07ZUYgBGXsvxRcpoDu3YKdK6aq7ecVOpK5h0YlWHz3mTX3MTol-CyFkJeENO1bQqaru9An7ezUHH9Y8b5CvPFEc5-xj4Dc-YPaWeHT8Lo6joRyDz8hvveF2g6PJuzGzxpCJu5j48lJxwj8zUk5mr3Hn84b7kHFdCrjidB_KM-T3olNC6yef9x1rRuvnbYlpiKGU6C177cxI-O4Qz9j1929Xy5-Li8sfv5ZfLxYWZJMXAEZ0BoYBtGqkcXbo0KFyBlQLgNK0whmNdQ1gnTCdAjOopgXddhJqDXDGPj3oTinu_95vPVksCweMM_Wy6BbftGgK-uGAzsMWV_2U_Nak-_6_mQX4eAAMlY1cMsF6euKauhVVKwv3-YGzKRIldI-IFP3uov3TRQssnsF2Z1rxt9jsx5dG_gEVj6bE |
CitedBy_id | crossref_primary_10_1016_j_gerr_2024_100087 crossref_primary_10_1016_j_matdes_2022_110644 crossref_primary_10_1016_j_conbuildmat_2023_130816 crossref_primary_10_3389_fenrg_2016_00021 crossref_primary_10_1016_j_fuel_2024_133865 crossref_primary_10_1039_C6RA13908F crossref_primary_10_1016_j_seppur_2024_126809 crossref_primary_10_1080_21650373_2025_2471820 crossref_primary_10_1016_j_jcrysgro_2021_126282 crossref_primary_10_1007_s11356_020_08403_1 crossref_primary_10_1007_s11814_021_0874_5 crossref_primary_10_1016_j_cej_2019_123014 crossref_primary_10_1021_acs_estlett_8b00386 crossref_primary_10_1016_j_fuel_2020_117887 crossref_primary_10_1016_j_jece_2024_114785 crossref_primary_10_1016_j_jcou_2022_101999 crossref_primary_10_1016_j_wasman_2023_12_047 crossref_primary_10_1021_acs_iecr_6b00378 crossref_primary_10_1016_j_fuel_2014_01_015 crossref_primary_10_1016_j_jclepro_2018_10_275 crossref_primary_10_1186_s42834_022_00155_6 crossref_primary_10_1038_s41570_019_0158_3 crossref_primary_10_1021_acssuschemeng_2c04241 crossref_primary_10_1038_s41598_025_87249_4 crossref_primary_10_1016_j_jece_2022_108269 crossref_primary_10_1038_s42004_021_00461_x crossref_primary_10_1039_C4EE04103H crossref_primary_10_1007_s10163_023_01622_x crossref_primary_10_1038_s41467_020_17627_1 crossref_primary_10_1039_C6CP08434F crossref_primary_10_1016_j_cej_2018_07_014 crossref_primary_10_1016_j_cej_2021_133118 crossref_primary_10_1021_acsomega_1c05264 crossref_primary_10_1039_C9SE00316A crossref_primary_10_1039_D1FD00022E crossref_primary_10_1080_09593330_2022_2103458 crossref_primary_10_1021_acs_energyfuels_8b02803 crossref_primary_10_3390_min8050209 crossref_primary_10_1016_j_jcou_2020_101202 crossref_primary_10_1016_j_jcou_2020_101241 crossref_primary_10_1016_j_jece_2024_114331 crossref_primary_10_1016_j_jcou_2018_07_015 crossref_primary_10_1021_acs_est_8b07055 crossref_primary_10_1016_j_cemconcomp_2024_105744 crossref_primary_10_1021_acs_energyfuels_0c04346 crossref_primary_10_1016_j_msec_2020_111019 crossref_primary_10_1016_j_jiec_2024_12_057 crossref_primary_10_1016_j_energy_2021_122524 crossref_primary_10_1016_j_jngse_2021_103804 crossref_primary_10_3390_min7090169 crossref_primary_10_1016_j_wasman_2021_07_029 crossref_primary_10_1016_j_cej_2014_03_045 crossref_primary_10_1089_ees_2020_0369 crossref_primary_10_1021_acssuschemeng_6b02411 crossref_primary_10_1021_ie500393h crossref_primary_10_1016_j_clet_2022_100491 crossref_primary_10_1016_j_hydromet_2019_01_004 crossref_primary_10_1007_s11356_016_6512_9 crossref_primary_10_1016_j_fuel_2020_117900 crossref_primary_10_1039_C8RE00167G crossref_primary_10_1021_acs_energyfuels_8b01584 crossref_primary_10_1021_acsomega_4c03393 crossref_primary_10_1039_D1RE00035G crossref_primary_10_1016_j_cej_2018_04_052 crossref_primary_10_3389_fenrg_2022_999307 crossref_primary_10_1016_j_jechem_2017_07_013 crossref_primary_10_1016_j_cej_2015_09_043 crossref_primary_10_1016_j_jece_2021_107055 crossref_primary_10_1016_j_jcou_2020_101306 crossref_primary_10_1016_j_cej_2015_05_064 crossref_primary_10_29105_qh13_1_375 |
Cites_doi | 10.1126/science.1172246 10.1146/annurev.energy.26.1.145 10.1002/ghg3.7 10.2113/gselements.4.5.333 10.1016/S0196-8904(96)00311-1 10.2475/08.2009.05 10.1063/1.364220 10.1126/science.1175677 10.1021/ie9900521 10.1016/j.ces.2007.07.065 10.1021/ac00264a064 10.1016/S0196-8904(96)00279-8 10.1016/j.energy.2006.06.023 10.1016/j.gca.2006.06.1560 10.1139/V09-093 10.1016/j.ijggc.2011.01.006 10.1021/es802910z 10.1126/science.1079033 10.1016/S0360-5442(01)00005-6 10.1046/j.1526-0984.1998.08014.x 10.1038/345486b0 10.1021/es8033507 10.1021/ie0496176 10.1016/0196-8904(93)90040-H 10.1016/j.egypro.2009.02.318 10.1021/es0619253 10.1016/j.ces.2004.09.008 10.1016/j.apt.2008.10.003 10.1016/j.egypro.2009.02.315 10.1021/es050795f 10.1126/science.284.5416.943 10.1016/j.fuproc.2005.01.017 10.1038/371123a0 10.1016/j.enconman.2005.02.009 10.1016/j.jcrysgro.2008.01.023 |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS |
Copyright_xml | – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7X8 |
DOI | 10.1039/c3cp52459k |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 15192 |
ExternalDocumentID | 23925694 27680581 10_1039_c3cp52459k |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG IQODW NPM 7X8 |
ID | FETCH-LOGICAL-c317t-33a09a3bb34271afcb9efe2fa32833e1a80fa4e6633cf0a923ab2783489136433 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 02:50:43 EDT 2025 Mon Jul 21 05:49:38 EDT 2025 Wed Apr 02 07:24:34 EDT 2025 Tue Jul 01 02:53:58 EDT 2025 Thu Apr 24 22:52:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Keywords | Gluconic acid Particle size Calcium Carbon Dissolution Optimization Solid Calcium silicate Storage Synthesis Carboxylic acid Mineralization Technology Calcium carbonate Chelating agent Weathering Kinetics Magnesium Acetic acid Structure Solution |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c317t-33a09a3bb34271afcb9efe2fa32833e1a80fa4e6633cf0a923ab2783489136433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23925694 |
PQID | 1427000407 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1427000407 pubmed_primary_23925694 pascalfrancis_primary_27680581 crossref_primary_10_1039_c3cp52459k crossref_citationtrail_10_1039_c3cp52459k |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-28 |
PublicationDateYYYYMMDD | 2013-09-28 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2013 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Maroto-Valer (c3cp52459k-(cit27)/*[position()=1]) 2005; 86 Seifritz (c3cp52459k-(cit10)/*[position()=1]) 1990; 345 Pokrovsky (c3cp52459k-(cit31)/*[position()=1]) 2009; 309 Agnihotri (c3cp52459k-(cit45)/*[position()=1]) 1999; 38 Oelkers (c3cp52459k-(cit34)/*[position()=1]) 2008; 4 Holloway (c3cp52459k-(cit6)/*[position()=1]) 2001; 26 Park (c3cp52459k-(cit26)/*[position()=1]) 2004; 59 Kakizawa (c3cp52459k-(cit25)/*[position()=1]) 2001; 26 Krevor (c3cp52459k-(cit30)/*[position()=1]) 2011; 5 Gajewski (c3cp52459k-(cit44)/*[position()=1]) 2009; 87 Fuchigami (c3cp52459k-(cit47)/*[position()=1]) 2009; 20 Kojima (c3cp52459k-(cit14)/*[position()=1]) 1997; 34 Martin (c3cp52459k-(cit9)/*[position()=1]) 1994; 371 Goff (c3cp52459k-(cit33)/*[position()=1]) 1998; 5 Park (c3cp52459k-(cit46)/*[position()=1]) 2008; 310 Haszeldine (c3cp52459k-(cit5)/*[position()=1]) 2009; 325 Orr Jr. (c3cp52459k-(cit7)/*[position()=1]) 2009; 325 Feldman (c3cp52459k-(cit43)/*[position()=1]) 1983; 55 Hanchen (c3cp52459k-(cit24)/*[position()=1]) 2007; 62 Teir (c3cp52459k-(cit35)/*[position()=1]) 2007; 32 Zevenhoven (c3cp52459k-(cit19)/*[position()=1]) 2011; 1 Brewer (c3cp52459k-(cit8)/*[position()=1]) 1999; 284 Gunter (c3cp52459k-(cit15)/*[position()=1]) 1993; 34 Iizuka (c3cp52459k-(cit39)/*[position()=1]) 2004; 43 Lackner (c3cp52459k-(cit17)/*[position()=1]) 1997; 38 Lutterotti (c3cp52459k-(cit42)/*[position()=1]) 1997; 81 Gerdemann (c3cp52459k-(cit22)/*[position()=1]) 2007; 41 Krevor (c3cp52459k-(cit29)/*[position()=1]) 2009; 1 Prigiobbe (c3cp52459k-(cit32)/*[position()=1]) 2009; 1 Lackner (c3cp52459k-(cit4)/*[position()=1]) 2003; 300 Huijgen (c3cp52459k-(cit38)/*[position()=1]) 2005; 39 Huntzinger (c3cp52459k-(cit40)/*[position()=1]) 2009; 43 Teir (c3cp52459k-(cit41)/*[position()=1]) 2005; 46 Hanchen (c3cp52459k-(cit23)/*[position()=1]) 2006; 70 Jarvis (c3cp52459k-(cit28)/*[position()=1]) 2009; 43 |
References_xml | – volume: 325 start-page: 1647 year: 2009 ident: c3cp52459k-(cit5)/*[position()=1] publication-title: Science doi: 10.1126/science.1172246 – volume: 26 start-page: 145 year: 2001 ident: c3cp52459k-(cit6)/*[position()=1] publication-title: Annu. Rev. Energy doi: 10.1146/annurev.energy.26.1.145 – volume: 1 start-page: 48 year: 2011 ident: c3cp52459k-(cit19)/*[position()=1] publication-title: Greenhouse Gases: Sci. Technol. doi: 10.1002/ghg3.7 – volume: 4 start-page: 333 year: 2008 ident: c3cp52459k-(cit34)/*[position()=1] publication-title: Elements doi: 10.2113/gselements.4.5.333 – volume: 34 start-page: 461 year: 1997 ident: c3cp52459k-(cit14)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/S0196-8904(96)00311-1 – volume: 309 start-page: 731 year: 2009 ident: c3cp52459k-(cit31)/*[position()=1] publication-title: Am. J. Sci. doi: 10.2475/08.2009.05 – volume: 81 start-page: 594 year: 1997 ident: c3cp52459k-(cit42)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.364220 – volume: 325 start-page: 1656 year: 2009 ident: c3cp52459k-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.1175677 – volume: 38 start-page: 2283 year: 1999 ident: c3cp52459k-(cit45)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9900521 – volume: 62 start-page: 6412 year: 2007 ident: c3cp52459k-(cit24)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2007.07.065 – volume: 55 start-page: 2451 issue: 14 year: 1983 ident: c3cp52459k-(cit43)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac00264a064 – volume: 38 start-page: 259 year: 1997 ident: c3cp52459k-(cit17)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/S0196-8904(96)00279-8 – volume: 32 start-page: 528 year: 2007 ident: c3cp52459k-(cit35)/*[position()=1] publication-title: Energy doi: 10.1016/j.energy.2006.06.023 – volume: 70 start-page: 4403 year: 2006 ident: c3cp52459k-(cit23)/*[position()=1] publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2006.06.1560 – volume: 87 start-page: 1492 year: 2009 ident: c3cp52459k-(cit44)/*[position()=1] publication-title: Can. J. Chem. doi: 10.1139/V09-093 – volume: 5 start-page: 1073 year: 2011 ident: c3cp52459k-(cit30)/*[position()=1] publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2011.01.006 – volume: 43 start-page: 1986 year: 2009 ident: c3cp52459k-(cit40)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es802910z – volume: 300 start-page: 1677 year: 2003 ident: c3cp52459k-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.1079033 – volume: 26 start-page: 341 year: 2001 ident: c3cp52459k-(cit25)/*[position()=1] publication-title: Energy doi: 10.1016/S0360-5442(01)00005-6 – volume: 5 start-page: 89 year: 1998 ident: c3cp52459k-(cit33)/*[position()=1] publication-title: Environ. Geosci. doi: 10.1046/j.1526-0984.1998.08014.x – volume: 345 start-page: 486 year: 1990 ident: c3cp52459k-(cit10)/*[position()=1] publication-title: Nature doi: 10.1038/345486b0 – volume: 43 start-page: 6314 year: 2009 ident: c3cp52459k-(cit28)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es8033507 – volume: 43 start-page: 7880 year: 2004 ident: c3cp52459k-(cit39)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0496176 – volume: 34 start-page: 941 year: 1993 ident: c3cp52459k-(cit15)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/0196-8904(93)90040-H – volume: 1 start-page: 4885 year: 2009 ident: c3cp52459k-(cit32)/*[position()=1] publication-title: Energy Procedia doi: 10.1016/j.egypro.2009.02.318 – volume: 41 start-page: 2587 year: 2007 ident: c3cp52459k-(cit22)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es0619253 – volume: 59 start-page: 5241 year: 2004 ident: c3cp52459k-(cit26)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.09.008 – volume: 20 start-page: 74 year: 2009 ident: c3cp52459k-(cit47)/*[position()=1] publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2008.10.003 – volume: 1 start-page: 4867 year: 2009 ident: c3cp52459k-(cit29)/*[position()=1] publication-title: Energy Procedia doi: 10.1016/j.egypro.2009.02.315 – volume: 39 start-page: 9676 year: 2005 ident: c3cp52459k-(cit38)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es050795f – volume: 284 start-page: 943 year: 1999 ident: c3cp52459k-(cit8)/*[position()=1] publication-title: Science doi: 10.1126/science.284.5416.943 – volume: 86 start-page: 1627 year: 2005 ident: c3cp52459k-(cit27)/*[position()=1] publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2005.01.017 – volume: 371 start-page: 123 year: 1994 ident: c3cp52459k-(cit9)/*[position()=1] publication-title: Nature doi: 10.1038/371123a0 – volume: 46 start-page: 2954 year: 2005 ident: c3cp52459k-(cit41)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2005.02.009 – volume: 310 start-page: 2593 year: 2008 ident: c3cp52459k-(cit46)/*[position()=1] publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2008.01.023 |
SSID | ssj0001513 |
Score | 2.3981564 |
Snippet | Carbon mineralization has recently received much attention as one of the most promising options for CO2 sequestration. The engineered weathering of silicate... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 15185 |
SubjectTerms | Chemistry Exact sciences and technology General and physical chemistry |
Title | Tuning the dissolution kinetics of wollastonite via chelating agents for CO2 sequestration with integrated synthesis of precipitated calcium carbonates |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23925694 https://www.proquest.com/docview/1427000407 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELXK7gNICHGnXFZG8IKqsEmcNMljVRYVhGAfutKKl2qcON1rWtEGBD_Cr_B5zPiSpMuuBLxEkePEis-JfcYZzzD2slQy9ROJH5IqYi8qAuFlIQgPChUnOcJeKB3t8-NwchC9P4wPe71fHa-lei1f5z8u3VfyP6hiGeJKu2T_AdnmoViA54gvHhFhPP4dxnXldjvRf3Xb1uAUlaOOvoxC8BvhTAIPpeXg6zEMyPMTtK8zzPXuNvIzHH8KB9qp2kXRNeuzTSyJgiIbYDM2esmSQmJQuhG6giDnx_U5xbiWtBRvnRKt4N13PMhdZjlzRkVmVWWlVyX2x-Nmp9nnI9ALuJMaqvmJm1vtFm09Z9AQdVK3HgHWnegNJU6afK-rizeMjjwqng9GZ9hP0F3qoLQTmds6rszwHA2RS75JKteM33GHp6I7GqOaMfmA_pgnfEFhVnORL-MwirPTbiV86eW5ZkyI4jEemiTMF6Jyu0vX2HaIBgqOsNujvem7D40KwLaFC4crst22KQo_bW_e0EI3l7DCvi9NPpWrDR4tfKa32S1rsfCRod8d1lPVXXZ97OC8x34aGnLkB-_QkDsa8kXJuzTkSEPe0JAbGnKkIUca8g0acqIhb2nIGxrSQ7s05JaGvKXhfXbwdm86nng234eXo4pde0KAn4GQUkRhEkCZy0yVKixBoAYWKoDULyFSqJFFXvqApglInSiGfrWjshYP2Fa1qNQjxiEpQJD_NvZ7VMgYIplCUERoDsiiTGWfvXI9P8ttMHzKyXI2004ZIpu1gPXZi6bu0oSAubTWzgaATdUQDXo_ToM-e-4QnSFA9F8OKrWoV2h9k_cHzqZJnz00ULd3W6o8vvLKE3aj_Vaesq31l1o9Q6G8ljuWk78BrfzKlw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+dissolution+kinetics+of+wollastonite+via+chelating+agents+for+CO2+sequestration+with+integrated+synthesis+of+precipitated+calcium+carbonates&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhao%2C+Huangjing&rft.au=Park%2C+Youngjune&rft.au=Lee%2C+Dong+Hyun&rft.au=Park%2C+Ah-Hyung+Alissa&rft.date=2013-09-28&rft.eissn=1463-9084&rft.volume=15&rft.issue=36&rft.spage=15185&rft_id=info:doi/10.1039%2Fc3cp52459k&rft_id=info%3Apmid%2F23925694&rft.externalDocID=23925694 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |