Tuning the dissolution kinetics of wollastonite via chelating agents for CO2 sequestration with integrated synthesis of precipitated calcium carbonates

Carbon mineralization has recently received much attention as one of the most promising options for CO2 sequestration. The engineered weathering of silicate minerals as a means of permanent carbon storage has unique advantages such as the abundance of naturally occurring calcium and magnesium-bearin...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 15; no. 36; pp. 15185 - 15192
Main Authors Zhao, Huangjing, Park, Youngjune, Lee, Dong Hyun, Park, Ah-Hyung Alissa
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 28.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon mineralization has recently received much attention as one of the most promising options for CO2 sequestration. The engineered weathering of silicate minerals as a means of permanent carbon storage has unique advantages such as the abundance of naturally occurring calcium and magnesium-bearing minerals and the formation of environmentally-benign and geologically stable solids via a thermodynamically favored carbonation reaction. However, several challenges need to be overcome to successfully deploy carbon mineralization on a large scale. In particular, the acceleration of the rate-limiting mineral dissolution step along with process optimization is essential to ensure the economic feasibility of the proposed carbon storage technology. In this study, the effect of various types of chelating agents on the dissolution rate of calcium-bearing silicate mineral, wollastonite, was explored to accelerate its weathering rate. It was found that chelating agents such as acetic acid and gluconic acid significantly improved the dissolution kinetics of wollastonite even at a much diluted concentration of 0.006 M by complexing with calcium in the mineral matrix. Calcium extracted from wollastonite was then reacted with a carbonate solution to form precipitated calcium carbonate (PCC), while tuning the particle size and the morphological structure of PCC to mimic commercially available PCC-based filler materials.
AbstractList Carbon mineralization has recently received much attention as one of the most promising options for CO2 sequestration. The engineered weathering of silicate minerals as a means of permanent carbon storage has unique advantages such as the abundance of naturally occurring calcium and magnesium-bearing minerals and the formation of environmentally-benign and geologically stable solids via a thermodynamically favored carbonation reaction. However, several challenges need to be overcome to successfully deploy carbon mineralization on a large scale. In particular, the acceleration of the rate-limiting mineral dissolution step along with process optimization is essential to ensure the economic feasibility of the proposed carbon storage technology. In this study, the effect of various types of chelating agents on the dissolution rate of calcium-bearing silicate mineral, wollastonite, was explored to accelerate its weathering rate. It was found that chelating agents such as acetic acid and gluconic acid significantly improved the dissolution kinetics of wollastonite even at a much diluted concentration of 0.006 M by complexing with calcium in the mineral matrix. Calcium extracted from wollastonite was then reacted with a carbonate solution to form precipitated calcium carbonate (PCC), while tuning the particle size and the morphological structure of PCC to mimic commercially available PCC-based filler materials.Carbon mineralization has recently received much attention as one of the most promising options for CO2 sequestration. The engineered weathering of silicate minerals as a means of permanent carbon storage has unique advantages such as the abundance of naturally occurring calcium and magnesium-bearing minerals and the formation of environmentally-benign and geologically stable solids via a thermodynamically favored carbonation reaction. However, several challenges need to be overcome to successfully deploy carbon mineralization on a large scale. In particular, the acceleration of the rate-limiting mineral dissolution step along with process optimization is essential to ensure the economic feasibility of the proposed carbon storage technology. In this study, the effect of various types of chelating agents on the dissolution rate of calcium-bearing silicate mineral, wollastonite, was explored to accelerate its weathering rate. It was found that chelating agents such as acetic acid and gluconic acid significantly improved the dissolution kinetics of wollastonite even at a much diluted concentration of 0.006 M by complexing with calcium in the mineral matrix. Calcium extracted from wollastonite was then reacted with a carbonate solution to form precipitated calcium carbonate (PCC), while tuning the particle size and the morphological structure of PCC to mimic commercially available PCC-based filler materials.
Carbon mineralization has recently received much attention as one of the most promising options for CO2 sequestration. The engineered weathering of silicate minerals as a means of permanent carbon storage has unique advantages such as the abundance of naturally occurring calcium and magnesium-bearing minerals and the formation of environmentally-benign and geologically stable solids via a thermodynamically favored carbonation reaction. However, several challenges need to be overcome to successfully deploy carbon mineralization on a large scale. In particular, the acceleration of the rate-limiting mineral dissolution step along with process optimization is essential to ensure the economic feasibility of the proposed carbon storage technology. In this study, the effect of various types of chelating agents on the dissolution rate of calcium-bearing silicate mineral, wollastonite, was explored to accelerate its weathering rate. It was found that chelating agents such as acetic acid and gluconic acid significantly improved the dissolution kinetics of wollastonite even at a much diluted concentration of 0.006 M by complexing with calcium in the mineral matrix. Calcium extracted from wollastonite was then reacted with a carbonate solution to form precipitated calcium carbonate (PCC), while tuning the particle size and the morphological structure of PCC to mimic commercially available PCC-based filler materials.
Author Zhao, Huangjing
Park, Ah-Hyung Alissa
Lee, Dong Hyun
Park, Youngjune
Author_xml – sequence: 1
  givenname: Huangjing
  surname: Zhao
  fullname: Zhao, Huangjing
– sequence: 2
  givenname: Youngjune
  surname: Park
  fullname: Park, Youngjune
– sequence: 3
  givenname: Dong Hyun
  surname: Lee
  fullname: Lee, Dong Hyun
– sequence: 4
  givenname: Ah-Hyung Alissa
  surname: Park
  fullname: Park, Ah-Hyung Alissa
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27680581$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23925694$$D View this record in MEDLINE/PubMed
BookMark eNptkctqXDEMhk1JaS7tpg9QvCmUwjS25XNblqE3CGSTrA8-HnnGzRn71PJJyJP0deuZTBMIWUlIn35bv07ZUYgBGXsvxRcpoDu3YKdK6aq7ecVOpK5h0YlWHz3mTX3MTol-CyFkJeENO1bQqaru9An7ezUHH9Y8b5CvPFEc5-xj4Dc-YPaWeHT8Lo6joRyDz8hvveF2g6PJuzGzxpCJu5j48lJxwj8zUk5mr3Hn84b7kHFdCrjidB_KM-T3olNC6yef9x1rRuvnbYlpiKGU6C177cxI-O4Qz9j1929Xy5-Li8sfv5ZfLxYWZJMXAEZ0BoYBtGqkcXbo0KFyBlQLgNK0whmNdQ1gnTCdAjOopgXddhJqDXDGPj3oTinu_95vPVksCweMM_Wy6BbftGgK-uGAzsMWV_2U_Nak-_6_mQX4eAAMlY1cMsF6euKauhVVKwv3-YGzKRIldI-IFP3uov3TRQssnsF2Z1rxt9jsx5dG_gEVj6bE
CitedBy_id crossref_primary_10_1016_j_gerr_2024_100087
crossref_primary_10_1016_j_matdes_2022_110644
crossref_primary_10_1016_j_conbuildmat_2023_130816
crossref_primary_10_3389_fenrg_2016_00021
crossref_primary_10_1016_j_fuel_2024_133865
crossref_primary_10_1039_C6RA13908F
crossref_primary_10_1016_j_seppur_2024_126809
crossref_primary_10_1080_21650373_2025_2471820
crossref_primary_10_1016_j_jcrysgro_2021_126282
crossref_primary_10_1007_s11356_020_08403_1
crossref_primary_10_1007_s11814_021_0874_5
crossref_primary_10_1016_j_cej_2019_123014
crossref_primary_10_1021_acs_estlett_8b00386
crossref_primary_10_1016_j_fuel_2020_117887
crossref_primary_10_1016_j_jece_2024_114785
crossref_primary_10_1016_j_jcou_2022_101999
crossref_primary_10_1016_j_wasman_2023_12_047
crossref_primary_10_1021_acs_iecr_6b00378
crossref_primary_10_1016_j_fuel_2014_01_015
crossref_primary_10_1016_j_jclepro_2018_10_275
crossref_primary_10_1186_s42834_022_00155_6
crossref_primary_10_1038_s41570_019_0158_3
crossref_primary_10_1021_acssuschemeng_2c04241
crossref_primary_10_1038_s41598_025_87249_4
crossref_primary_10_1016_j_jece_2022_108269
crossref_primary_10_1038_s42004_021_00461_x
crossref_primary_10_1039_C4EE04103H
crossref_primary_10_1007_s10163_023_01622_x
crossref_primary_10_1038_s41467_020_17627_1
crossref_primary_10_1039_C6CP08434F
crossref_primary_10_1016_j_cej_2018_07_014
crossref_primary_10_1016_j_cej_2021_133118
crossref_primary_10_1021_acsomega_1c05264
crossref_primary_10_1039_C9SE00316A
crossref_primary_10_1039_D1FD00022E
crossref_primary_10_1080_09593330_2022_2103458
crossref_primary_10_1021_acs_energyfuels_8b02803
crossref_primary_10_3390_min8050209
crossref_primary_10_1016_j_jcou_2020_101202
crossref_primary_10_1016_j_jcou_2020_101241
crossref_primary_10_1016_j_jece_2024_114331
crossref_primary_10_1016_j_jcou_2018_07_015
crossref_primary_10_1021_acs_est_8b07055
crossref_primary_10_1016_j_cemconcomp_2024_105744
crossref_primary_10_1021_acs_energyfuels_0c04346
crossref_primary_10_1016_j_msec_2020_111019
crossref_primary_10_1016_j_jiec_2024_12_057
crossref_primary_10_1016_j_energy_2021_122524
crossref_primary_10_1016_j_jngse_2021_103804
crossref_primary_10_3390_min7090169
crossref_primary_10_1016_j_wasman_2021_07_029
crossref_primary_10_1016_j_cej_2014_03_045
crossref_primary_10_1089_ees_2020_0369
crossref_primary_10_1021_acssuschemeng_6b02411
crossref_primary_10_1021_ie500393h
crossref_primary_10_1016_j_clet_2022_100491
crossref_primary_10_1016_j_hydromet_2019_01_004
crossref_primary_10_1007_s11356_016_6512_9
crossref_primary_10_1016_j_fuel_2020_117900
crossref_primary_10_1039_C8RE00167G
crossref_primary_10_1021_acs_energyfuels_8b01584
crossref_primary_10_1021_acsomega_4c03393
crossref_primary_10_1039_D1RE00035G
crossref_primary_10_1016_j_cej_2018_04_052
crossref_primary_10_3389_fenrg_2022_999307
crossref_primary_10_1016_j_jechem_2017_07_013
crossref_primary_10_1016_j_cej_2015_09_043
crossref_primary_10_1016_j_jece_2021_107055
crossref_primary_10_1016_j_jcou_2020_101306
crossref_primary_10_1016_j_cej_2015_05_064
crossref_primary_10_29105_qh13_1_375
Cites_doi 10.1126/science.1172246
10.1146/annurev.energy.26.1.145
10.1002/ghg3.7
10.2113/gselements.4.5.333
10.1016/S0196-8904(96)00311-1
10.2475/08.2009.05
10.1063/1.364220
10.1126/science.1175677
10.1021/ie9900521
10.1016/j.ces.2007.07.065
10.1021/ac00264a064
10.1016/S0196-8904(96)00279-8
10.1016/j.energy.2006.06.023
10.1016/j.gca.2006.06.1560
10.1139/V09-093
10.1016/j.ijggc.2011.01.006
10.1021/es802910z
10.1126/science.1079033
10.1016/S0360-5442(01)00005-6
10.1046/j.1526-0984.1998.08014.x
10.1038/345486b0
10.1021/es8033507
10.1021/ie0496176
10.1016/0196-8904(93)90040-H
10.1016/j.egypro.2009.02.318
10.1021/es0619253
10.1016/j.ces.2004.09.008
10.1016/j.apt.2008.10.003
10.1016/j.egypro.2009.02.315
10.1021/es050795f
10.1126/science.284.5416.943
10.1016/j.fuproc.2005.01.017
10.1038/371123a0
10.1016/j.enconman.2005.02.009
10.1016/j.jcrysgro.2008.01.023
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
DOI 10.1039/c3cp52459k
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 15192
ExternalDocumentID 23925694
27680581
10_1039_c3cp52459k
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
IQODW
NPM
7X8
ID FETCH-LOGICAL-c317t-33a09a3bb34271afcb9efe2fa32833e1a80fa4e6633cf0a923ab2783489136433
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 02:50:43 EDT 2025
Mon Jul 21 05:49:38 EDT 2025
Wed Apr 02 07:24:34 EDT 2025
Tue Jul 01 02:53:58 EDT 2025
Thu Apr 24 22:52:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 36
Keywords Gluconic acid
Particle size
Calcium
Carbon
Dissolution
Optimization
Solid
Calcium silicate
Storage
Synthesis
Carboxylic acid
Mineralization
Technology
Calcium carbonate
Chelating agent
Weathering
Kinetics
Magnesium
Acetic acid
Structure
Solution
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c317t-33a09a3bb34271afcb9efe2fa32833e1a80fa4e6633cf0a923ab2783489136433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23925694
PQID 1427000407
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1427000407
pubmed_primary_23925694
pascalfrancis_primary_27680581
crossref_primary_10_1039_c3cp52459k
crossref_citationtrail_10_1039_c3cp52459k
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-28
PublicationDateYYYYMMDD 2013-09-28
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-28
  day: 28
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2013
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Maroto-Valer (c3cp52459k-(cit27)/*[position()=1]) 2005; 86
Seifritz (c3cp52459k-(cit10)/*[position()=1]) 1990; 345
Pokrovsky (c3cp52459k-(cit31)/*[position()=1]) 2009; 309
Agnihotri (c3cp52459k-(cit45)/*[position()=1]) 1999; 38
Oelkers (c3cp52459k-(cit34)/*[position()=1]) 2008; 4
Holloway (c3cp52459k-(cit6)/*[position()=1]) 2001; 26
Park (c3cp52459k-(cit26)/*[position()=1]) 2004; 59
Kakizawa (c3cp52459k-(cit25)/*[position()=1]) 2001; 26
Krevor (c3cp52459k-(cit30)/*[position()=1]) 2011; 5
Gajewski (c3cp52459k-(cit44)/*[position()=1]) 2009; 87
Fuchigami (c3cp52459k-(cit47)/*[position()=1]) 2009; 20
Kojima (c3cp52459k-(cit14)/*[position()=1]) 1997; 34
Martin (c3cp52459k-(cit9)/*[position()=1]) 1994; 371
Goff (c3cp52459k-(cit33)/*[position()=1]) 1998; 5
Park (c3cp52459k-(cit46)/*[position()=1]) 2008; 310
Haszeldine (c3cp52459k-(cit5)/*[position()=1]) 2009; 325
Orr Jr. (c3cp52459k-(cit7)/*[position()=1]) 2009; 325
Feldman (c3cp52459k-(cit43)/*[position()=1]) 1983; 55
Hanchen (c3cp52459k-(cit24)/*[position()=1]) 2007; 62
Teir (c3cp52459k-(cit35)/*[position()=1]) 2007; 32
Zevenhoven (c3cp52459k-(cit19)/*[position()=1]) 2011; 1
Brewer (c3cp52459k-(cit8)/*[position()=1]) 1999; 284
Gunter (c3cp52459k-(cit15)/*[position()=1]) 1993; 34
Iizuka (c3cp52459k-(cit39)/*[position()=1]) 2004; 43
Lackner (c3cp52459k-(cit17)/*[position()=1]) 1997; 38
Lutterotti (c3cp52459k-(cit42)/*[position()=1]) 1997; 81
Gerdemann (c3cp52459k-(cit22)/*[position()=1]) 2007; 41
Krevor (c3cp52459k-(cit29)/*[position()=1]) 2009; 1
Prigiobbe (c3cp52459k-(cit32)/*[position()=1]) 2009; 1
Lackner (c3cp52459k-(cit4)/*[position()=1]) 2003; 300
Huijgen (c3cp52459k-(cit38)/*[position()=1]) 2005; 39
Huntzinger (c3cp52459k-(cit40)/*[position()=1]) 2009; 43
Teir (c3cp52459k-(cit41)/*[position()=1]) 2005; 46
Hanchen (c3cp52459k-(cit23)/*[position()=1]) 2006; 70
Jarvis (c3cp52459k-(cit28)/*[position()=1]) 2009; 43
References_xml – volume: 325
  start-page: 1647
  year: 2009
  ident: c3cp52459k-(cit5)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1172246
– volume: 26
  start-page: 145
  year: 2001
  ident: c3cp52459k-(cit6)/*[position()=1]
  publication-title: Annu. Rev. Energy
  doi: 10.1146/annurev.energy.26.1.145
– volume: 1
  start-page: 48
  year: 2011
  ident: c3cp52459k-(cit19)/*[position()=1]
  publication-title: Greenhouse Gases: Sci. Technol.
  doi: 10.1002/ghg3.7
– volume: 4
  start-page: 333
  year: 2008
  ident: c3cp52459k-(cit34)/*[position()=1]
  publication-title: Elements
  doi: 10.2113/gselements.4.5.333
– volume: 34
  start-page: 461
  year: 1997
  ident: c3cp52459k-(cit14)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/S0196-8904(96)00311-1
– volume: 309
  start-page: 731
  year: 2009
  ident: c3cp52459k-(cit31)/*[position()=1]
  publication-title: Am. J. Sci.
  doi: 10.2475/08.2009.05
– volume: 81
  start-page: 594
  year: 1997
  ident: c3cp52459k-(cit42)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.364220
– volume: 325
  start-page: 1656
  year: 2009
  ident: c3cp52459k-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1175677
– volume: 38
  start-page: 2283
  year: 1999
  ident: c3cp52459k-(cit45)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9900521
– volume: 62
  start-page: 6412
  year: 2007
  ident: c3cp52459k-(cit24)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2007.07.065
– volume: 55
  start-page: 2451
  issue: 14
  year: 1983
  ident: c3cp52459k-(cit43)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac00264a064
– volume: 38
  start-page: 259
  year: 1997
  ident: c3cp52459k-(cit17)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/S0196-8904(96)00279-8
– volume: 32
  start-page: 528
  year: 2007
  ident: c3cp52459k-(cit35)/*[position()=1]
  publication-title: Energy
  doi: 10.1016/j.energy.2006.06.023
– volume: 70
  start-page: 4403
  year: 2006
  ident: c3cp52459k-(cit23)/*[position()=1]
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.06.1560
– volume: 87
  start-page: 1492
  year: 2009
  ident: c3cp52459k-(cit44)/*[position()=1]
  publication-title: Can. J. Chem.
  doi: 10.1139/V09-093
– volume: 5
  start-page: 1073
  year: 2011
  ident: c3cp52459k-(cit30)/*[position()=1]
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2011.01.006
– volume: 43
  start-page: 1986
  year: 2009
  ident: c3cp52459k-(cit40)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802910z
– volume: 300
  start-page: 1677
  year: 2003
  ident: c3cp52459k-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1079033
– volume: 26
  start-page: 341
  year: 2001
  ident: c3cp52459k-(cit25)/*[position()=1]
  publication-title: Energy
  doi: 10.1016/S0360-5442(01)00005-6
– volume: 5
  start-page: 89
  year: 1998
  ident: c3cp52459k-(cit33)/*[position()=1]
  publication-title: Environ. Geosci.
  doi: 10.1046/j.1526-0984.1998.08014.x
– volume: 345
  start-page: 486
  year: 1990
  ident: c3cp52459k-(cit10)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/345486b0
– volume: 43
  start-page: 6314
  year: 2009
  ident: c3cp52459k-(cit28)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8033507
– volume: 43
  start-page: 7880
  year: 2004
  ident: c3cp52459k-(cit39)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0496176
– volume: 34
  start-page: 941
  year: 1993
  ident: c3cp52459k-(cit15)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/0196-8904(93)90040-H
– volume: 1
  start-page: 4885
  year: 2009
  ident: c3cp52459k-(cit32)/*[position()=1]
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2009.02.318
– volume: 41
  start-page: 2587
  year: 2007
  ident: c3cp52459k-(cit22)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0619253
– volume: 59
  start-page: 5241
  year: 2004
  ident: c3cp52459k-(cit26)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.09.008
– volume: 20
  start-page: 74
  year: 2009
  ident: c3cp52459k-(cit47)/*[position()=1]
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2008.10.003
– volume: 1
  start-page: 4867
  year: 2009
  ident: c3cp52459k-(cit29)/*[position()=1]
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2009.02.315
– volume: 39
  start-page: 9676
  year: 2005
  ident: c3cp52459k-(cit38)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050795f
– volume: 284
  start-page: 943
  year: 1999
  ident: c3cp52459k-(cit8)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.284.5416.943
– volume: 86
  start-page: 1627
  year: 2005
  ident: c3cp52459k-(cit27)/*[position()=1]
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2005.01.017
– volume: 371
  start-page: 123
  year: 1994
  ident: c3cp52459k-(cit9)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/371123a0
– volume: 46
  start-page: 2954
  year: 2005
  ident: c3cp52459k-(cit41)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2005.02.009
– volume: 310
  start-page: 2593
  year: 2008
  ident: c3cp52459k-(cit46)/*[position()=1]
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2008.01.023
SSID ssj0001513
Score 2.3981564
Snippet Carbon mineralization has recently received much attention as one of the most promising options for CO2 sequestration. The engineered weathering of silicate...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 15185
SubjectTerms Chemistry
Exact sciences and technology
General and physical chemistry
Title Tuning the dissolution kinetics of wollastonite via chelating agents for CO2 sequestration with integrated synthesis of precipitated calcium carbonates
URI https://www.ncbi.nlm.nih.gov/pubmed/23925694
https://www.proquest.com/docview/1427000407
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELXK7gNICHGnXFZG8IKqsEmcNMljVRYVhGAfutKKl2qcON1rWtEGBD_Cr_B5zPiSpMuuBLxEkePEis-JfcYZzzD2slQy9ROJH5IqYi8qAuFlIQgPChUnOcJeKB3t8-NwchC9P4wPe71fHa-lei1f5z8u3VfyP6hiGeJKu2T_AdnmoViA54gvHhFhPP4dxnXldjvRf3Xb1uAUlaOOvoxC8BvhTAIPpeXg6zEMyPMTtK8zzPXuNvIzHH8KB9qp2kXRNeuzTSyJgiIbYDM2esmSQmJQuhG6giDnx_U5xbiWtBRvnRKt4N13PMhdZjlzRkVmVWWlVyX2x-Nmp9nnI9ALuJMaqvmJm1vtFm09Z9AQdVK3HgHWnegNJU6afK-rizeMjjwqng9GZ9hP0F3qoLQTmds6rszwHA2RS75JKteM33GHp6I7GqOaMfmA_pgnfEFhVnORL-MwirPTbiV86eW5ZkyI4jEemiTMF6Jyu0vX2HaIBgqOsNujvem7D40KwLaFC4crst22KQo_bW_e0EI3l7DCvi9NPpWrDR4tfKa32S1rsfCRod8d1lPVXXZ97OC8x34aGnLkB-_QkDsa8kXJuzTkSEPe0JAbGnKkIUca8g0acqIhb2nIGxrSQ7s05JaGvKXhfXbwdm86nng234eXo4pde0KAn4GQUkRhEkCZy0yVKixBoAYWKoDULyFSqJFFXvqApglInSiGfrWjshYP2Fa1qNQjxiEpQJD_NvZ7VMgYIplCUERoDsiiTGWfvXI9P8ttMHzKyXI2004ZIpu1gPXZi6bu0oSAubTWzgaATdUQDXo_ToM-e-4QnSFA9F8OKrWoV2h9k_cHzqZJnz00ULd3W6o8vvLKE3aj_Vaesq31l1o9Q6G8ljuWk78BrfzKlw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+dissolution+kinetics+of+wollastonite+via+chelating+agents+for+CO2+sequestration+with+integrated+synthesis+of+precipitated+calcium+carbonates&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Zhao%2C+Huangjing&rft.au=Park%2C+Youngjune&rft.au=Lee%2C+Dong+Hyun&rft.au=Park%2C+Ah-Hyung+Alissa&rft.date=2013-09-28&rft.eissn=1463-9084&rft.volume=15&rft.issue=36&rft.spage=15185&rft_id=info:doi/10.1039%2Fc3cp52459k&rft_id=info%3Apmid%2F23925694&rft.externalDocID=23925694
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon