Automatic façade recovery from single nighttime image

Nighttime images are difficult to process due to insufficient brightness, lots of noise, and lack of details. Therefore, they are always removed from time-lapsed image analysis. It is interesting that nighttime images have a unique and wonderful building features that have robust and salient lightin...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of Computer Science Vol. 14; no. 1; pp. 95 - 104
Main Authors ZHOU, Yi, GENG, Qichuan, ZHOU, Zhong, WU, Wei
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nighttime images are difficult to process due to insufficient brightness, lots of noise, and lack of details. Therefore, they are always removed from time-lapsed image analysis. It is interesting that nighttime images have a unique and wonderful building features that have robust and salient lighting cues from human activities. Lighting variation depicts both the statistical and individual habitation, and it has an inherent man-made repetitive structure from architectural theory. Inspired by this, we propose an automatic nighttime façade recovery method that exploits the lattice structures of window lighting. First, a simple but efficient classification method is employed to determine the salient bright regions, which may be lit windows. Then we groupwindows into multiple lattice proposals with respect to façades by patch matching, followed by greedily removing overlapping lattices. Using the horizon constraint, we solve the ambiguous proposals problem and obtain the correct orientation. Finally, we complete the generated façades by filling in the missing windows. This method is well suited for use in urban environments, and the results can be used as a good single-view compensation method for daytime images. The method also acts as a semantic input to other learning-based 3D image reconstruction techniques. The experiment demonstrates that our method works well in nighttime image datasets, and we obtain a high lattice detection rate of 82.1% of 82 challenging images with a low mean orientation error of 12.1±4.5 degrees.
AbstractList Nighttime images are difficult to process due to insufficient brightness, lots of noise, and lack of details. Therefore, they are always removed from time-lapsed image analysis. It is interesting that nighttime images have a unique and wonderful building features that have robust and salient lighting cues from human activities. Lighting variation depicts both the statistical and individual habitation, and it has an inherent man-made repetitive structure from architectural theory. Inspired by this, we propose an automatic nighttime façade recovery method that exploits the lattice structures of window lighting. First, a simple but efficient classification method is employed to determine the salient bright regions, which may be lit windows. Then we group windows into multiple lattice proposals with respect to façades by patch matching, followed by greedily removing overlapping lattices. Using the horizon constraint, we solve the ambiguous proposals problem and obtain the correct orientation. Finally, we complete the generated façades by filling in the missing windows. This method is well suited for use in urban environments, and the results can be used as a good single-view compensation method for daytime images. The method also acts as a semantic input to other learning-based 3D image reconstruction techniques. The experiment demonstrates that our method works well in nighttime image datasets, and we obtain a high lattice detection rate of 82.1% of 82 challenging images with a low mean orientation error of 12.1 ± 4.5 degrees.
Nighttime images are difficult to process due to insufficient brightness, lots of noise, and lack of details. Therefore, they are always removed from time-lapsed image analysis. It is interesting that nighttime images have a unique and wonderful building features that have robust and salient lighting cues from human activities. Lighting variation depicts both the statistical and individual habitation, and it has an inherent man-made repetitive structure from architectural theory. Inspired by this, we propose an automatic nighttime façade recovery method that exploits the lattice structures of window lighting. First, a simple but efficient classification method is employed to determine the salient bright regions, which may be lit windows. Then we groupwindows into multiple lattice proposals with respect to façades by patch matching, followed by greedily removing overlapping lattices. Using the horizon constraint, we solve the ambiguous proposals problem and obtain the correct orientation. Finally, we complete the generated façades by filling in the missing windows. This method is well suited for use in urban environments, and the results can be used as a good single-view compensation method for daytime images. The method also acts as a semantic input to other learning-based 3D image reconstruction techniques. The experiment demonstrates that our method works well in nighttime image datasets, and we obtain a high lattice detection rate of 82.1% of 82 challenging images with a low mean orientation error of 12.1±4.5 degrees.
Author ZHOU, Zhong
ZHOU, Yi
WU, Wei
GENG, Qichuan
Author_xml – sequence: 1
  givenname: Yi
  surname: ZHOU
  fullname: ZHOU, Yi
  organization: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100083, China
– sequence: 2
  givenname: Qichuan
  surname: GENG
  fullname: GENG, Qichuan
  email: Qichuan GENG
  organization: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100083, China
– sequence: 3
  givenname: Zhong
  surname: ZHOU
  fullname: ZHOU, Zhong
  email: {zhaokefirst, zz}@buaa.edu.cn
  organization: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100083, China
– sequence: 4
  givenname: Wei
  surname: WU
  fullname: WU, Wei
  organization: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100083, China
BookMark eNp9kE1OwzAQRi1UJErpAdhFYm3wOHHsLKuKP6kSG1hbqT1OUzVxsVOknoiDcDGMgmDX1czie9-M3iWZ9L5HQq6B3QJj8i4CSFZQBpKWhZCUn5EpZ5WgnOfl5G_n6oLMY9wyxjjjQnA-JeXiMPiuHlqTufrrs7aYBTT-A8Mxc8F3WWz7ZodZ3zabYWg7zNqubvCKnLt6F3H-O2fk7eH-dflEVy-Pz8vFipoc5EC5UhalsEJIBLXOnaqcxBycWVtkqpbKgFAgoLBSQYm2qpzFUllmSlaAzWfkZuzdB_9-wDjorT-EPp3UvAIlOUglUgrGlAk-xoBO70N6Mxw1MP1jSI-GdDKkfwxpnhg-MjFl-wbDf_MpSI3QJunAgHYfMEadRPVDi-EU-g3EfnwW
Cites_doi 10.1109/TPAMI.2009.73
10.1007/s11263-012-0515-x
10.1109/TPAMI.2007.1116
10.1007/PL00013394
10.1109/TBC.2015.2419824
10.1016/j.imavis.2004.02.006
10.1145/987657.987671
ContentType Journal Article
Copyright Copyright reserved, 2018, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018.
Copyright_xml – notice: Copyright reserved, 2018, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
– notice: Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s11704-017-6457-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2095-2236
EndPage 104
ExternalDocumentID 10_1007_s11704_017_6457_2
10.1007/s11704-017-6457-2
GroupedDBID -EM
.VR
06D
0VY
1-T
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
406
408
40E
5VS
95-
95.
96X
AABHQ
AAFGU
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATLR
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
B-.
BDATZ
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
K7-
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9J
P4S
PF0
PT4
R89
ROL
RSV
S16
S3B
SAP
SCL
SCO
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VFIZW
W48
YLTOR
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
0R~
AACDK
AAJBT
AASML
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AFBBN
AGRTI
AIGIU
BSONS
H13
SJYHP
-SI
-S~
AAPKM
AAXDM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEI
CITATION
PHGZM
PHGZT
Q--
U1G
U5S
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c317t-288de75d557e18b3f89f7e31fcbde08a78c1581514d7816ed99fde68d0c6041d3
IEDL.DBID AGYKE
ISSN 2095-2228
IngestDate Fri Jul 25 23:38:34 EDT 2025
Tue Jul 01 02:22:07 EDT 2025
Fri Feb 21 02:33:36 EST 2025
Tue Feb 27 04:43:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords lattice detection
nighttime images
façade recovery
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-288de75d557e18b3f89f7e31fcbde08a78c1581514d7816ed99fde68d0c6041d3
Notes lattice detection
façade recovery
Document received on :2016-09-19
Document accepted on :2017-01-13
nighttime images
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918721785
PQPubID 2044369
PageCount 10
ParticipantIDs proquest_journals_2918721785
crossref_primary_10_1007_s11704_017_6457_2
springer_journals_10_1007_s11704_017_6457_2
higheredpress_frontiers_10_1007_s11704_017_6457_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Frontiers of Computer Science
PublicationTitleAbbrev Front. Comput. Sci
PublicationYear 2020
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References Durand, Dorsey (CR3) 2002
Dong, Wang, Pang, Li, Wen, Meng, Lu (CR7) 2011
Wu, Frahm, Pollefeys (CR11) 2010
Liu, Liu (CR19) 2014
Hays, Leordeanu, Efros, Liu (CR13) 2006
Forssen, Lowe (CR21) 2007
Cai, Huang, Tan, Wang (CR6) 2006
Matas, Chum, Urban, Pajdla (CR20) 2004; 22
Micusik, Wildenauer, Kosecka (CR8) 2008
Kosecka, Zhang (CR9) 2003
Gonzalez, Woods (CR2) 2008
Guillou, Meneveaux, Maisel, Bouatouch (CR22) 2000; 16
Park, Brocklehurst, Collins, Liu (CR14) 2009; 31
Liu, Ng, Sunkavalli, Do, Shechtman, Carr (CR16) 2015
David, Martial, Takeo (CR10) 2009
Zhang, Ganesh, Liang, Ma (CR18) 2012; 99
Hoiem, Efros, Hebert (CR23) 2005
Raskar, llie, Yu (CR5) 2004
Rao, Chen (CR4) 2012; 3
Park, Brocklehurst, Collins, Liu (CR15) 2010
Mobahi, Zhou, Yang, Ma (CR17) 2011
Yang, Stewart, Sofka, Tsai (CR24) 2007; 29
Pan, Zhang, Kwong (CR1) 2015; 61
Schindler, Krishnamurthy, Lublinerman, Liu, Dellaert (CR12) 2008
R C Gonzalez (6457_CR2) 2008
S Liu (6457_CR16) 2015
H Mobahi (6457_CR17) 2011
J Matas (6457_CR20) 2004; 22
R Raskar (6457_CR5) 2004
C Wu (6457_CR11) 2010
G Schindler (6457_CR12) 2008
D Hoiem (6457_CR23) 2005
B Micusik (6457_CR8) 2008
G Yang (6457_CR24) 2007; 29
J Kosecka (6457_CR9) 2003
F Durand (6457_CR3) 2002
Z Pan (6457_CR1) 2015; 61
X Dong (6457_CR7) 2011
J Liu (6457_CR19) 2014
Y Rao (6457_CR4) 2012; 3
L David (6457_CR10) 2009
M Park (6457_CR15) 2010
M Park (6457_CR14) 2009; 31
Z Zhang (6457_CR18) 2012; 99
Y Cai (6457_CR6) 2006
J Hays (6457_CR13) 2006
P E Forssen (6457_CR21) 2007
E Guillou (6457_CR22) 2000; 16
References_xml – start-page: 1
  year: 2011
  end-page: 6
  ident: CR7
  article-title: Fast efficient algorithm for enhancement of low lighting video
  publication-title: Proceedings of International Conference on Multimedia and Expo
– volume: 31
  start-page: 1804
  issue: 10
  year: 2009
  end-page: 1816
  ident: CR14
  article-title: Deformed Lattice Detection in Real-World Images Using Mean-Shift Belief Propagation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2009.73
– start-page: 181
  year: 2015
  end-page: 189
  ident: CR16
  article-title: PatchMatch-based automatic lattice detection for near-regular textures
  publication-title: Proceedings of IEEE International Conference on Computer Vision
– start-page: 522
  year: 2006
  end-page: 535
  ident: CR13
  article-title: Discovering texture regularity as a higher-order correspondence problem
  publication-title: Proceedings of European Conference on Computer Vision
– start-page: 593
  year: 2011
  end-page: 600
  ident: CR17
  article-title: Holistic 3d reconstruction of urban structures from low-rank textures
  publication-title: Proceedings of IEEE International Conference on Computer Vision Workshops
– volume: 3
  start-page: 71
  issue: 1
  year: 2012
  end-page: 99
  ident: CR4
  article-title: A survey of video enhancement techniques
  publication-title: Journal of Information Hiding and Multimedia Signal Processing
– start-page: 142
  year: 2010
  end-page: 155
  ident: CR11
  article-title: Detecting large repetitive structures with salient boundaries
  publication-title: Proceedings of European Conference on Computer Vision
– start-page: 1
  year: 2008
  end-page: 7
  ident: CR12
  article-title: Detecting and matching repeated patterns for automatic geo-tagging in urban environments
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2136
  year: 2009
  end-page: 2143
  ident: CR10
  article-title: Geometric reasoning for single image structure recovery
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– volume: 99
  start-page: 1
  issue: 1
  year: 2012
  end-page: 24
  ident: CR18
  article-title: TILT: transform invariant lowrank textures
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-012-0515-x
– volume: 29
  start-page: 1973
  issue: 11
  year: 2007
  end-page: 1989
  ident: CR24
  article-title: Registration of challenging image pairs: initialization, estimation, and decision
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.1116
– year: 2003
  ident: CR9
  article-title: Extraction, matching, and pose recovery based on dominant rectangular structures
  publication-title: Proceedings of International Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis
– start-page: 257
  year: 2002
  end-page: 266
  ident: CR3
  article-title: Fast bilateral filtering for the display of high dynamic range images
  publication-title: Proceedings of the 29th International Conference and Exhibition on Computer Graphics and Interactive Techniques
– start-page: 85
  year: 2004
  end-page: 152
  ident: CR5
  article-title: Image fusion for context enhancement and video surrealism
  publication-title: Proceedings of the 3rd international symposium on Non-photorealistic animation and rendering
– start-page: 654
  year: 2005
  end-page: 661
  ident: CR23
  article-title: Geometric context from a single image
  publication-title: Proceedings of IEEE International Conference on Computer Vision
– year: 2008
  ident: CR2
  publication-title: Digital Image Processing
– start-page: 980
  year: 2006
  end-page: 983
  ident: CR6
  publication-title: Proceedings of the 13rd International Conference on Pattern Recognition
– volume: 16
  start-page: 396
  issue: 7
  year: 2000
  end-page: 410
  ident: CR22
  article-title: Using vanishing points for camera calibration and coarse 3D reconstruction from a single image
  publication-title: The Visual Computer
  doi: 10.1007/PL00013394
– volume: 61
  start-page: 166
  issue: 2
  year: 2015
  end-page: 176
  ident: CR1
  article-title: Efficient motion and disparity estimation optimization for low complexity multiview video coding
  publication-title: IEEE Transactions on Broadcasting
  doi: 10.1109/TBC.2015.2419824
– start-page: 3778
  year: 2014
  end-page: 3785
  ident: CR19
  article-title: Local regularity-driven city-scale facade detection from aerial images
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– volume: 22
  start-page: 761
  issue: 10
  year: 2004
  end-page: 767
  ident: CR20
  article-title: Robust wide baseline stereo from maximally stable extremal regions
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2004.02.006
– start-page: 1
  year: 2008
  end-page: 7
  ident: CR8
  article-title: Detection and matching of rectilinear structures
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2007
  end-page: 8
  ident: CR21
  article-title: Shape descriptors for maximally stable extremal regions
  publication-title: Proceedings of IEEE International Conference on Computer Vision
– start-page: 329
  year: 2010
  end-page: 342
  ident: CR15
  article-title: Translation-Symmetry-Based Perceptual Grouping with Applications to Urban Scenes
  publication-title: Proceedings of Asian Conference on Computer Vision
– start-page: 85
  volume-title: Proceedings of the 3rd international symposium on Non-photorealistic animation and rendering
  year: 2004
  ident: 6457_CR5
  doi: 10.1145/987657.987671
– start-page: 1
  volume-title: Proceedings of IEEE International Conference on Computer Vision
  year: 2007
  ident: 6457_CR21
– start-page: 654
  volume-title: Proceedings of IEEE International Conference on Computer Vision
  year: 2005
  ident: 6457_CR23
– start-page: 329
  volume-title: Proceedings of Asian Conference on Computer Vision
  year: 2010
  ident: 6457_CR15
– start-page: 522
  volume-title: Proceedings of European Conference on Computer Vision
  year: 2006
  ident: 6457_CR13
– volume-title: Digital Image Processing
  year: 2008
  ident: 6457_CR2
– volume-title: Proceedings of International Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis
  year: 2003
  ident: 6457_CR9
– start-page: 142
  volume-title: Proceedings of European Conference on Computer Vision
  year: 2010
  ident: 6457_CR11
– start-page: 1
  volume-title: Proceedings of International Conference on Multimedia and Expo
  year: 2011
  ident: 6457_CR7
– volume: 16
  start-page: 396
  issue: 7
  year: 2000
  ident: 6457_CR22
  publication-title: The Visual Computer
  doi: 10.1007/PL00013394
– volume: 22
  start-page: 761
  issue: 10
  year: 2004
  ident: 6457_CR20
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2004.02.006
– volume: 99
  start-page: 1
  issue: 1
  year: 2012
  ident: 6457_CR18
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-012-0515-x
– start-page: 257
  volume-title: Proceedings of the 29th International Conference and Exhibition on Computer Graphics and Interactive Techniques
  year: 2002
  ident: 6457_CR3
– start-page: 980
  volume-title: Proceedings of the 13rd International Conference on Pattern Recognition
  year: 2006
  ident: 6457_CR6
– volume: 31
  start-page: 1804
  issue: 10
  year: 2009
  ident: 6457_CR14
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2009.73
– start-page: 181
  volume-title: Proceedings of IEEE International Conference on Computer Vision
  year: 2015
  ident: 6457_CR16
– volume: 61
  start-page: 166
  issue: 2
  year: 2015
  ident: 6457_CR1
  publication-title: IEEE Transactions on Broadcasting
  doi: 10.1109/TBC.2015.2419824
– start-page: 593
  volume-title: Proceedings of IEEE International Conference on Computer Vision Workshops
  year: 2011
  ident: 6457_CR17
– start-page: 2136
  volume-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
  year: 2009
  ident: 6457_CR10
– start-page: 1
  volume-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
  year: 2008
  ident: 6457_CR12
– volume: 29
  start-page: 1973
  issue: 11
  year: 2007
  ident: 6457_CR24
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.1116
– start-page: 1
  volume-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
  year: 2008
  ident: 6457_CR8
– volume: 3
  start-page: 71
  issue: 1
  year: 2012
  ident: 6457_CR4
  publication-title: Journal of Information Hiding and Multimedia Signal Processing
– start-page: 3778
  volume-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
  year: 2014
  ident: 6457_CR19
SSID ssj0002025522
Score 2.1556013
Snippet Nighttime images are difficult to process due to insufficient brightness, lots of noise, and lack of details. Therefore, they are always removed from...
SourceID proquest
crossref
springer
higheredpress
SourceType Aggregation Database
Index Database
Publisher
StartPage 95
SubjectTerms Computer Science
Facades
façade recovery
Human influences
Image analysis
Image reconstruction
lattice detection
Lattices
Light
Lighting
Methods
Night
nighttime images
Proposals
Recovery
Repetitive structures
Research Article
Urban environments
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSgMxFA3abgTxLVarZOFKCU4yk0lmJVVaiosiYqG7MJPcoKBttdOFX-SH-GMm6Yylgq6HyeIkuffcR-5B6ByMu2ZAYxLnUpPEckryjGnCDM0gZ8BsHrotBml_mNyN-KhKuM2qtsraJgZDbSba58ivWEali1aE5NfTN-JVo3x1tZLQWEdNZ4KlC76aN93B_cNPloV5yhxKCcxxCeLTHXVpM7yfoyI0YQiSJlwQtuKcNp9CpwWY0JG6wkB_FU2DL-rtoK2KROLOYtd30RqM99B2LdCAq_u6j9LOvJyEmazY5l-fuQHsA2B3ej-wf1eCfaLgBXCYJuJV5vHzq7MvB2jY6z7e9kkllEC0c_8lYVIaENxwLoDKIrYyswJianVhIJK5kJpy6Xx7YoSkKZgsswZSaSKdRgk18SFqjCdjOEI4sVlUaOe0tWcmALJIfS3OREYnQqZRC13UCKnpYh6GWk4-9nAqB6fycCrWQnQFQ2X9UAYv8f3fP-0aZ1Vdp5labn4LXdbYLz__udjx_4udoA3mw-fQhN1GjfJ9DqeOY5TFWXWQvgE-_cxl
  priority: 102
  providerName: ProQuest
Title Automatic façade recovery from single nighttime image
URI https://journal.hep.com.cn/fcs/EN/10.1007/s11704-017-6457-2
https://link.springer.com/article/10.1007/s11704-017-6457-2
https://www.proquest.com/docview/2918721785
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB509yKIb3F9LDl4UrI06SPpcZXdFQURUdBTaZMJirqKdg_6h_wh_jGTbMuyiwqeemgb2klm8s3MlxmAfdRWzZCFNMylopGJGc1TrijXLMWcIze5Z1ucJyfX0elNfFOd436r2e51StJb6slhNyY8Y0LQJIoFtXa3aeFHEDWg2R3cnk1CK9zhZJ8_4BZAUBfjqPOZP40ztSMt3nl6BWpPQ52CnTOZUr8B9Zfhqv70Me_koTMqi476mKnq-M9_W4GlCpCS7ngFrcIcDtdguW72QCrdX4ekOyqffX1XYvKvz1wjcc601YR34s6oEBd0eETiK5O4jvXk_snaqg247veujk9o1XSBKgslSsql1ChiHccCmSxCI1MjMGRGFRoDmQupWCwtToi0kCxBnaZGYyJ1oJIgYjrchMbweYhbQCKTBoWyAEA5lIMoi8Tl9XSgVSRkErTgoBZ89jKurZFNqig7iWRWIpmTSMZbwKamJjOuwINrF_7XO7v19GWVar5lPGXSur1Cxi04rGdjcvvXwbb_9fQOLHDnmXt-9y40ytcR7ln4UhZtmJf9QbtatPZ61Du_uPwGxKDmwA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JThwxEC2xHECKkrApk5DgQ7iALNruxe4DQihhGNYTSNxMt11WIsEMyyDEF3HLT_BjuDzTGQ0S3Di32ofnWl4trgL4iS6oGYqUp5W2PPO54FUpLZdOlFhJlL6K3RbHRec02z_LzybgX_MWhtoqG5sYDbXrWcqRb8hS6BCtKJ1vXV1z2hpF1dVmhcZALA7w4T6EbLebe7_D_a5K2d45-dXhw60C3AZf2edSa4cqd3muUOg69br0ClPhbe0w0ZXSVuQ6OMLMKS0KdGXpHRbaJbZIMuHScO4kTGdpWpJG6fbu_5yOJIIeCxcyMBdOyZWmkBpf6wkVWz4UL7JccTnmCj_8iX0d6GL_6xjffVGijZ6v_Rk-Dikr2x7I2BxMYHcePjXrINjQOixAsX3X78UJsMxXT4-VQ0bhdtCVB0avWBilJS6QxdkltNOe_b0M1mwRTt8FwCWY6va6-AVY5suktoEiWOJBiLouqPLnEmczpYukBWsNQuZqMH3DjOYsE5wmwGkITiNbIMYwNJ5GQNBC8bf-WW5wNkPlvTUjUWvBeoP96POrh319-7AVmOmcHB2aw73jg28wKylwj-3fyzDVv7nD74Hd9OsfUaQYnL-3DD8D3rEIBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxEB1ViVRVqgjQVgQC-NATldO198PeYwSEtKkiDkQKJ7Nrj1UEJBHZHOAP8UP4Y9jOrqJEBQn1vF5LnvHH88zzG4BzNG6ZIYtpXEhNE5syWuRcU25YjgVHbovAtphko2lyPUtndZ3TVcN2b1KSmzcNXqVpXl0ujb3cPnxjIrAnBM2SVFC3B7cTL23Xgvbg3cfxNszCPWYOuQTuwAT18Y4mt3lXPzun0_FtoFqgCZTUHQi6lzUNh9GwA5-aYWw4KF_666rs6597Co_3GOdDeFADVTLYzKxHcIDzx9BpikCQek84gWywrhZB95XY4vevwiDxl2y3Qn4Q_3aF-GDEVyRBscRXsiefv7k97BSmw7cfXo9oXYyBagcxKsqlNChSk6YCmSxjK3MrMGZWlwYjWQipWSodfkiMkCxDk-fWYCZNpLMoYSY-g9Z8MccnQBKbR6V2wEB79IMoy8zn-0xkdCJkFnXhVeMEtdxobqiturK3iHIWUd4iineB7bhJWS_84MuI_-ufXuNKVS_ZleI5k-46LGTahYvGM9vPf-3s6X-1fgmH798M1c3VZPwMjri_vAcKeA9a1fc1PncIpypf1LP4Dzct8BM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+fa%C3%A7ade+recovery+from+single+nighttime+image&rft.jtitle=Frontiers+of+Computer+Science&rft.au=ZHOU%2C+Yi&rft.au=GENG%2C+Qichuan&rft.au=ZHOU%2C+Zhong&rft.au=WU%2C+Wei&rft.date=2020-02-01&rft.pub=Higher+Education+Press&rft.issn=2095-2228&rft.eissn=2095-2236&rft.volume=14&rft.issue=1&rft.spage=95&rft.epage=104&rft_id=info:doi/10.1007%2Fs11704-017-6457-2&rft.externalDBID=n%2Fa&rft.externalDocID=10.1007%2Fs11704-017-6457-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2228&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2228&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2228&client=summon