REPETITIVE CLUSTER-TILTED ALGEBRAS

Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1. We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras. Moreover, we generalize Theorem 4....

Full description

Saved in:
Bibliographic Details
Published inActa mathematica scientia Vol. 32; no. 4; pp. 1449 - 1454
Main Author 张顺华 张跃辉
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2012
School of Mathematics, Shandong University, Jinan 250100, China%Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China
Subjects
Online AccessGet full text
ISSN0252-9602
1572-9087
DOI10.1016/S0252-9602(12)60114-3

Cover

Abstract Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1. We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras. Moreover, we generalize Theorem 4.2 in [12] (Buan A, Marsh R, Reiten I. Cluster-tilted algebra, Trans. Amer. Math. Soc. 359(1)(2007), 323-332.) to the situation of C Fm, and prove that the tilting graph KCFm of CFm is connected.
AbstractList O411.1; Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1.We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras.Moreover,we generalize Theorem 4.2 in [12](Buan A,Marsh R,Reiten I.Cluster-tilted algebra,Trans.Amer.Math.Soc.,359(1)(2007),323-332.) to the situation of CFm,and prove that the tilting graph KCFm of CFm is connected.
Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1. We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras. Moreover, we generalize Theorem 4.2 in [12] (Buan A, Marsh R, Reiten I. Cluster-tilted algebra, Trans. Amer. Math. Soc. 359(1)(2007), 323-332.) to the situation of C Fm, and prove that the tilting graph KCFm of CFm is connected.
Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1. We investigate the properties of cluster tilting objects in CFm and the structure of repetitive cluster-tilted algebras. Moreover, we generalize Theorem 4.2 in [12] (Buan A, Marsh R, Reiten I. Cluster-tilted algebra, Trans. Amer. Math. Soc., 359(1)(2007), 323-332.) to the situation of CFm, and prove that the tilting graph KCFm of CFm is connected.
Author 张顺华 张跃辉
AuthorAffiliation School of Mathematics, Shandong University, Jinan 250100, China Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China
AuthorAffiliation_xml – name: School of Mathematics, Shandong University, Jinan 250100, China%Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China
Author_xml – sequence: 1
  fullname: 张顺华 张跃辉
BookMark eNqFUMtOwkAUnRhMBPQTTNCVLKrzaDvtyiCO2KSJBorbyTyxBKfaouDfOwV06-omJ-dxz-mBjqucAeAcwWsEUXwzgzjCQRpDfIXwMIYIhQE5Al0UUQ_DhHZA949yAnpNs4Reh-OwCy6n7JkVWZG9sME4n88KNg2KLC_Y_WCUT9jddDQ7BcdWrBpzdrh9MH9gxfgxyJ8m2XiUB4ogug5wpFOiU0QSCQ0WygoMhbQWS0ilopQoRW2SSiK1xrGBHqI0pXFIhUpjTUgfDPe-G-GscAu-rD5r5xN5s92stpIbDBGGoX_dc6M9V9VV09TG8ve6fBP1N0eQt6Pw3Si8bcwR5rtReJtxu9cZX-SrNDVvVGmcMrqsjVpzXZX_Olwckl8rt_go_Z-_0SFOECJhRH4A9wxxcg
Cites_doi 10.1016/j.aim.2006.06.002
10.1016/j.aim.2005.06.003
10.1016/j.jalgebra.2004.11.007
10.1090/S0894-0347-01-00385-X
10.1080/00927872.2010.489082
10.1016/j.aim.2006.07.013
10.1016/j.ansens.2006.09.003
10.1007/s00222-008-0111-4
10.1090/S0002-9947-06-03879-7
10.1007/s00209-007-0165-9
10.4171/dm/199
10.1016/j.aim.2006.06.003
ClassificationCodes O411.1
ContentType Journal Article
Copyright 2012 Wuhan Institute of Physics and Mathematics
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2012 Wuhan Institute of Physics and Mathematics
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S0252-9602(12)60114-3
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
DocumentTitleAlternate REPETITIVE CLUSTER-TILTED ALGEBRAS
EISSN 1572-9087
EndPage 1454
ExternalDocumentID sxwlxb_e201204016
10_1016_S0252_9602_12_60114_3
S0252960212601143
42811345
GrantInformation_xml – fundername: NSF of China
  grantid: 11171183
– fundername: Supported by the NSF of China
  funderid: (11171183)
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
23M
2B.
2C.
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92E
92I
92L
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABAOU
ABECU
ABFGW
ABFNM
ABFTV
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABXDB
ABXPI
ABYKQ
ACAOD
ACAZW
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADEZE
ADKNI
ADMDM
ADMUD
ADOXG
ADTPH
ADURQ
ADYFF
AEBSH
AEFTE
AEJRE
AEKER
AENEX
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AIAKS
AIEXJ
AIGVJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
ARUGR
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CS3
CSCUP
CW9
DPUIP
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNLPD
FNPLU
FYGXN
GBLVA
GJIRD
HVGLF
HZ~
IKXTQ
IWAJR
J1W
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
ROL
RSV
RT1
S..
SDC
SDF
SDG
SDH
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SSW
SSZ
T5K
T8Q
TCJ
TGP
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
~G-
~L9
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AATTM
AAXKI
AAYWO
AAYXX
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABWVN
ACDTI
ACPIV
ACRPL
ACSTC
ACVFH
ADCNI
ADNMO
AEFQL
AEIPS
AEMSY
AEUPX
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIGIU
AIIUN
AIXLP
AKBMS
AKRWK
AKYEP
ANKPU
ATHPR
AYFIA
CITATION
HG6
SJYHP
SSH
4A8
PSX
ID FETCH-LOGICAL-c317t-25d93d9138b0e2acfa20abff2b07bc773cc7f89b3bdd26e0c777797647ac96d33
IEDL.DBID AIKHN
ISSN 0252-9602
IngestDate Thu May 29 04:00:08 EDT 2025
Tue Jul 01 02:27:31 EDT 2025
Fri Feb 23 02:25:04 EST 2024
Wed Feb 14 10:46:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords repetitive cluster-tilted algebra
cluster tilting object
16G20
repetitive cluster category
16G70
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-25d93d9138b0e2acfa20abff2b07bc773cc7f89b3bdd26e0c777797647ac96d33
Notes repetitive cluster category; cluster tilting object; repetitive cluster-tiltedalgebra
Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1. We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras. Moreover, we generalize Theorem 4.2 in [12] (Buan A, Marsh R, Reiten I. Cluster-tilted algebra, Trans. Amer. Math. Soc. 359(1)(2007), 323-332.) to the situation of C Fm, and prove that the tilting graph KCFm of CFm is connected.
42-1227/O
PageCount 6
ParticipantIDs wanfang_journals_sxwlxb_e201204016
crossref_primary_10_1016_S0252_9602_12_60114_3
elsevier_sciencedirect_doi_10_1016_S0252_9602_12_60114_3
chongqing_primary_42811345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-01
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Acta mathematica scientia
PublicationTitleAlternate Acta Mathematica Scientia
PublicationTitle_FL Acta Mathematica Scientia
PublicationYear 2012
Publisher Elsevier Ltd
School of Mathematics, Shandong University, Jinan 250100, China%Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China
Publisher_xml – name: Elsevier Ltd
– name: School of Mathematics, Shandong University, Jinan 250100, China%Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China
References Caldero, Keller (bib6) 2008; 172
Happel, Unger (bib17) 2005; 284
Ringel (bib16) 1984
Buan, Marsh, Reiten (bib12) 2007; 359
Iyama (bib4) 2007; 210
Buan, Marsh, Reineke, Reiten, Todorov (bib1) 2006; 204
Auslander, Reiten, Smalϕ (bib13) 1995
Iyama (bib5) 2007; 210
Caldero, Keller (bib7) 2006; 39
Zhang, Zhang (bib18) 2011; 31B
Keller (bib2) 2005; 10
Ringel (bib10) 2007
Assem, Simson, Skowronski (bib14) 2006; Vol 1
Koenig, Zhu (bib9) 2008; 258
Keller, Reiten (bib8) 2007; 211
Zhu (bib11) 2011; 39
Happel (bib15) 1988
Fomin, Zelevinsky (bib3) 2002; 15
Zhang (10.1016/S0252-9602(12)60114-3_bib18) 2011; 31B
Ringel (10.1016/S0252-9602(12)60114-3_bib10) 2007
Iyama (10.1016/S0252-9602(12)60114-3_bib4) 2007; 210
Auslander (10.1016/S0252-9602(12)60114-3_bib13) 1995
Happel (10.1016/S0252-9602(12)60114-3_bib17) 2005; 284
Caldero (10.1016/S0252-9602(12)60114-3_bib7) 2006; 39
Buan (10.1016/S0252-9602(12)60114-3_bib12) 2007; 359
Assem (10.1016/S0252-9602(12)60114-3_bib14) 2006; Vol 1
Ringel (10.1016/S0252-9602(12)60114-3_bib16) 1984
Keller (10.1016/S0252-9602(12)60114-3_bib8) 2007; 211
Keller (10.1016/S0252-9602(12)60114-3_bib2) 2005; 10
Happel (10.1016/S0252-9602(12)60114-3_bib15) 1988
Caldero (10.1016/S0252-9602(12)60114-3_bib6) 2008; 172
Zhu (10.1016/S0252-9602(12)60114-3_bib11) 2011; 39
Koenig (10.1016/S0252-9602(12)60114-3_bib9) 2008; 258
Fomin (10.1016/S0252-9602(12)60114-3_bib3) 2002; 15
Buan (10.1016/S0252-9602(12)60114-3_bib1) 2006; 204
Iyama (10.1016/S0252-9602(12)60114-3_bib5) 2007; 210
References_xml – volume: 10
  start-page: 551
  year: 2005
  end-page: 581
  ident: bib2
  article-title: Triangulated orbit categories
  publication-title: Document Math
– volume: 284
  start-page: 857
  year: 2005
  end-page: 868
  ident: bib17
  article-title: On the quiver of tilting modules
  publication-title: J Algebra
– year: 1988
  ident: bib15
  publication-title: Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. Lecture Notes Series 119
– volume: 211
  start-page: 123
  year: 2007
  end-page: 151
  ident: bib8
  article-title: Cluster-tilted algebras are Gorenstein and stably Calabi-Yau
  publication-title: Adv Math
– volume: 258
  start-page: 143
  year: 2008
  end-page: 160
  ident: bib9
  article-title: From triangulated categories to abelian categories: cluster tilting in a general frame work
  publication-title: Math Z
– year: 2007
  ident: bib10
  article-title: Some remarks concerning tilting modules and tilted algebras. An appendix to the Handbook of tilting theory
  publication-title: Lecture Notes Series 332
– volume: 39
  start-page: 983
  year: 2006
  end-page: 1009
  ident: bib7
  article-title: From triangulated categories to cluster algebras II
  publication-title: Ann Sci Ecole Norm Sup
– year: 1984
  ident: bib16
  publication-title: Tame Algebras and Integral Quadratic Forms. Lecture Notes in Math, 1099
– volume: 31B
  start-page: 2033
  year: 2011
  end-page: 2040
  ident: bib18
  article-title: Subcategories and finitistic dimensions of Artin algebras
  publication-title: Acta Math Sci
– volume: 210
  start-page: 22
  year: 2007
  end-page: 50
  ident: bib4
  article-title: Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories
  publication-title: Adv Math
– volume: 172
  start-page: 169
  year: 2008
  end-page: 211
  ident: bib6
  article-title: From triangulated categories to cluster algebras
  publication-title: Invent Math
– year: 1995
  ident: bib13
  publication-title: Representation Theory of Artin Algebras
– volume: 204
  start-page: 572
  year: 2006
  end-page: 618
  ident: bib1
  article-title: Tilting theory and cluster combinatorices
  publication-title: Adv Math
– volume: 210
  start-page: 51
  year: 2007
  end-page: 82
  ident: bib5
  article-title: Auslander correspondence
  publication-title: Adv Math
– volume: 15
  start-page: 497
  year: 2002
  end-page: 529
  ident: bib3
  article-title: Cluster algebra I: Foundation
  publication-title: J Amer Math Soc
– volume: 39
  start-page: 2437
  year: 2011
  end-page: 2448
  ident: bib11
  article-title: Cluster-tilted algebras and their intermediate coverings
  publication-title: Comm Algebra
– volume: Vol 1
  year: 2006
  ident: bib14
  publication-title: Elements of the Representation Theory of Associative Algebras
– volume: 359
  start-page: 323
  year: 2007
  end-page: 332
  ident: bib12
  article-title: Cluster-tilted algebra
  publication-title: Trans Amer Math Soc
– volume: 210
  start-page: 22
  year: 2007
  ident: 10.1016/S0252-9602(12)60114-3_bib4
  article-title: Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories
  publication-title: Adv Math
  doi: 10.1016/j.aim.2006.06.002
– volume: 204
  start-page: 572
  year: 2006
  ident: 10.1016/S0252-9602(12)60114-3_bib1
  article-title: Tilting theory and cluster combinatorices
  publication-title: Adv Math
  doi: 10.1016/j.aim.2005.06.003
– volume: 284
  start-page: 857
  year: 2005
  ident: 10.1016/S0252-9602(12)60114-3_bib17
  article-title: On the quiver of tilting modules
  publication-title: J Algebra
  doi: 10.1016/j.jalgebra.2004.11.007
– volume: 15
  start-page: 497
  year: 2002
  ident: 10.1016/S0252-9602(12)60114-3_bib3
  article-title: Cluster algebra I: Foundation
  publication-title: J Amer Math Soc
  doi: 10.1090/S0894-0347-01-00385-X
– volume: 39
  start-page: 2437
  year: 2011
  ident: 10.1016/S0252-9602(12)60114-3_bib11
  article-title: Cluster-tilted algebras and their intermediate coverings
  publication-title: Comm Algebra
  doi: 10.1080/00927872.2010.489082
– volume: 31B
  start-page: 2033
  issue: 5
  year: 2011
  ident: 10.1016/S0252-9602(12)60114-3_bib18
  article-title: Subcategories and finitistic dimensions of Artin algebras
  publication-title: Acta Math Sci
– volume: 211
  start-page: 123
  year: 2007
  ident: 10.1016/S0252-9602(12)60114-3_bib8
  article-title: Cluster-tilted algebras are Gorenstein and stably Calabi-Yau
  publication-title: Adv Math
  doi: 10.1016/j.aim.2006.07.013
– volume: 39
  start-page: 983
  year: 2006
  ident: 10.1016/S0252-9602(12)60114-3_bib7
  article-title: From triangulated categories to cluster algebras II
  publication-title: Ann Sci Ecole Norm Sup
  doi: 10.1016/j.ansens.2006.09.003
– volume: 172
  start-page: 169
  year: 2008
  ident: 10.1016/S0252-9602(12)60114-3_bib6
  article-title: From triangulated categories to cluster algebras
  publication-title: Invent Math
  doi: 10.1007/s00222-008-0111-4
– year: 2007
  ident: 10.1016/S0252-9602(12)60114-3_bib10
  article-title: Some remarks concerning tilting modules and tilted algebras. An appendix to the Handbook of tilting theory
– volume: 359
  start-page: 323
  issue: 1
  year: 2007
  ident: 10.1016/S0252-9602(12)60114-3_bib12
  article-title: Cluster-tilted algebra
  publication-title: Trans Amer Math Soc
  doi: 10.1090/S0002-9947-06-03879-7
– year: 1988
  ident: 10.1016/S0252-9602(12)60114-3_bib15
– volume: 258
  start-page: 143
  year: 2008
  ident: 10.1016/S0252-9602(12)60114-3_bib9
  article-title: From triangulated categories to abelian categories: cluster tilting in a general frame work
  publication-title: Math Z
  doi: 10.1007/s00209-007-0165-9
– year: 1995
  ident: 10.1016/S0252-9602(12)60114-3_bib13
– volume: 10
  start-page: 551
  year: 2005
  ident: 10.1016/S0252-9602(12)60114-3_bib2
  article-title: Triangulated orbit categories
  publication-title: Document Math
  doi: 10.4171/dm/199
– volume: 210
  start-page: 51
  year: 2007
  ident: 10.1016/S0252-9602(12)60114-3_bib5
  article-title: Auslander correspondence
  publication-title: Adv Math
  doi: 10.1016/j.aim.2006.06.003
– year: 1984
  ident: 10.1016/S0252-9602(12)60114-3_bib16
– volume: Vol 1
  year: 2006
  ident: 10.1016/S0252-9602(12)60114-3_bib14
SSID ssj0016264
Score 1.8595806
Snippet Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1. We...
O411.1; Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1.We...
SourceID wanfang
crossref
elsevier
chongqing
SourceType Aggregation Database
Index Database
Publisher
StartPage 1449
SubjectTerms 16G20
16G70
CFM
cluster tilting object
repetitive cluster category
repetitive cluster-tilted algebra
代数簇
代数闭域
倾斜代数
归纳定理
有限维
遗传代数
集群
Title REPETITIVE CLUSTER-TILTED ALGEBRAS
URI http://lib.cqvip.com/qk/86464X/201204/42811345.html
https://dx.doi.org/10.1016/S0252-9602(12)60114-3
https://d.wanfangdata.com.cn/periodical/sxwlxb-e201204016
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BIqRyoC0tYqFFEeqhPZiN7cROjgiBtq3KBZC4WX7CSqvwyCI48dsZJ96FHiqkHjOxR9HneOYbeWYM8C2IMuiyckQjFycFNY5UociJlt45wbVGjhSzLU7E-Lz4dVFeLMHhvBYmplUm29_b9M5aJ8kooTm6mUxGp-itGfJvtL0isnq-DCuM16IcwMrBz9_jk8VhAnL2rosUjidxwkshT6-kE36n7Eenh_DYZuHqurm8RefxL3e1-qCboJvLV87o-AOsJxaZHfQf-hGWfLMB7xOjzNJ-bTdg7c-iKys-rXbpnrb9BHvIu2N5GZq6zE7vY7MEMptMkX1m8d4PjKDbz3B-fHR2OCbptgRikQPMCCtdzV1NeWVyz7QNmuXahMBMLo2VklsrQ1UbbpxjwucokhLJSCG1rYXjfBMGzXXjtyCjde1yaYNDBUXuqeE4GHV6mYtQWDOE7QVA6qbviqEwjqGUF-UQ9ueILd69pJIh3CrCrShTHdyKD6Ga46r-WnqFVv2tqXtpHVTaeq1qHx-mj0Z5FsuCMXoU2_-vfwfeRTV9eu4XGMzu7v1XJCEzswvL-090N_1qz59i1QY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKlQ4UB6tWEpphHooB-_GdhInR4SKthS4ABI3y09YaRUeWQQnfnvHiXeBA0LqMRNnFH22Zz5L34wBfvoi9yovLVHIxUlGtSWlz1KihLO24EohRwpqi5NieJ4dXuQXc7A_rYUJssoY-7uY3kbraBlENAc3o9HgFLM1Q_6NsbcIrJ5_gI9ZzkXQ9fWfZjoPioy97SGFo0kY_lzG07lojb8o2229EB6aLFxd15e3mDreSlYLD6r2qr58kYoOVmA5cshkr_vNVZhz9Rp8jnwyibu1WYOl41lPVnxaaMWeplmHHWTdobgMA11ixvehVQKZjMbIPZNw6ween5svcH7w-2x_SOJdCcQgA5gQltuK24ryUqeOKeMVS5X2nulUaCMEN0b4stJcW8sKl6JJCKQimVCmKiznX2G-vq7dBiS0qmwqjLfoIEsd1RwHo08n0sJnRvdgcwaQvOl6Ykg8xVDKs7wH_Slis3fPQjKEWwa4JWWyhVvyHpRTXOWriZcY09_7dCfOg4wbr5HN48P4UUvHQlEwnh2Lzf_3_wM-Dc-Oj-TRn5O_32AxuOyEulswP7m7d9-Rjkz0drvc_gFcPNXR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repetitive+cluster-tilted+algebras&rft.jtitle=Acta+mathematica+scientia&rft.au=Shunhua%2C+Zhang&rft.au=Yuehui%2C+Zhang&rft.date=2012-07-01&rft.issn=0252-9602&rft.volume=32&rft.issue=4&rft.spage=1449&rft.epage=1454&rft_id=info:doi/10.1016%2FS0252-9602%2812%2960114-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0252_9602_12_60114_3
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg