REPETITIVE CLUSTER-TILTED ALGEBRAS
Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1. We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras. Moreover, we generalize Theorem 4....
Saved in:
Published in | Acta mathematica scientia Vol. 32; no. 4; pp. 1449 - 1454 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2012
School of Mathematics, Shandong University, Jinan 250100, China%Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China |
Subjects | |
Online Access | Get full text |
ISSN | 0252-9602 1572-9087 |
DOI | 10.1016/S0252-9602(12)60114-3 |
Cover
Abstract | Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1. We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras. Moreover, we generalize Theorem 4.2 in [12] (Buan A, Marsh R, Reiten I. Cluster-tilted algebra, Trans. Amer. Math. Soc. 359(1)(2007), 323-332.) to the situation of C Fm, and prove that the tilting graph KCFm of CFm is connected. |
---|---|
AbstractList | O411.1; Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1.We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras.Moreover,we generalize Theorem 4.2 in [12](Buan A,Marsh R,Reiten I.Cluster-tilted algebra,Trans.Amer.Math.Soc.,359(1)(2007),323-332.) to the situation of CFm,and prove that the tilting graph KCFm of CFm is connected. Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1. We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras. Moreover, we generalize Theorem 4.2 in [12] (Buan A, Marsh R, Reiten I. Cluster-tilted algebra, Trans. Amer. Math. Soc. 359(1)(2007), 323-332.) to the situation of C Fm, and prove that the tilting graph KCFm of CFm is connected. Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1. We investigate the properties of cluster tilting objects in CFm and the structure of repetitive cluster-tilted algebras. Moreover, we generalize Theorem 4.2 in [12] (Buan A, Marsh R, Reiten I. Cluster-tilted algebra, Trans. Amer. Math. Soc., 359(1)(2007), 323-332.) to the situation of CFm, and prove that the tilting graph KCFm of CFm is connected. |
Author | 张顺华 张跃辉 |
AuthorAffiliation | School of Mathematics, Shandong University, Jinan 250100, China Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China |
AuthorAffiliation_xml | – name: School of Mathematics, Shandong University, Jinan 250100, China%Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China |
Author_xml | – sequence: 1 fullname: 张顺华 张跃辉 |
BookMark | eNqFUMtOwkAUnRhMBPQTTNCVLKrzaDvtyiCO2KSJBorbyTyxBKfaouDfOwV06-omJ-dxz-mBjqucAeAcwWsEUXwzgzjCQRpDfIXwMIYIhQE5Al0UUQ_DhHZA949yAnpNs4Reh-OwCy6n7JkVWZG9sME4n88KNg2KLC_Y_WCUT9jddDQ7BcdWrBpzdrh9MH9gxfgxyJ8m2XiUB4ogug5wpFOiU0QSCQ0WygoMhbQWS0ilopQoRW2SSiK1xrGBHqI0pXFIhUpjTUgfDPe-G-GscAu-rD5r5xN5s92stpIbDBGGoX_dc6M9V9VV09TG8ve6fBP1N0eQt6Pw3Si8bcwR5rtReJtxu9cZX-SrNDVvVGmcMrqsjVpzXZX_Olwckl8rt_go_Z-_0SFOECJhRH4A9wxxcg |
Cites_doi | 10.1016/j.aim.2006.06.002 10.1016/j.aim.2005.06.003 10.1016/j.jalgebra.2004.11.007 10.1090/S0894-0347-01-00385-X 10.1080/00927872.2010.489082 10.1016/j.aim.2006.07.013 10.1016/j.ansens.2006.09.003 10.1007/s00222-008-0111-4 10.1090/S0002-9947-06-03879-7 10.1007/s00209-007-0165-9 10.4171/dm/199 10.1016/j.aim.2006.06.003 |
ClassificationCodes | O411.1 |
ContentType | Journal Article |
Copyright | 2012 Wuhan Institute of Physics and Mathematics Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2012 Wuhan Institute of Physics and Mathematics – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/S0252-9602(12)60114-3 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Physics |
DocumentTitleAlternate | REPETITIVE CLUSTER-TILTED ALGEBRAS |
EISSN | 1572-9087 |
EndPage | 1454 |
ExternalDocumentID | sxwlxb_e201204016 10_1016_S0252_9602_12_60114_3 S0252960212601143 42811345 |
GrantInformation_xml | – fundername: NSF of China grantid: 11171183 – fundername: Supported by the NSF of China funderid: (11171183) |
GroupedDBID | --K --M -01 -0A -EM -SA -S~ .~1 0R~ 1B1 1~. 1~5 23M 2B. 2C. 2RA 4.4 406 457 4G. 5GY 5VR 5VS 5XA 5XB 5XL 7-5 71M 8P~ 92E 92I 92L 92M 92Q 93N 9D9 9DA AACTN AAEDT AAEDW AAFGU AAHNG AAIKJ AAKOC AALRI AAOAW AAQFI AATNV AAUYE AAXUO AAYFA ABAOU ABECU ABFGW ABFNM ABFTV ABKAS ABKCH ABMAC ABMQK ABTEG ABTKH ABTMW ABXDB ABXPI ABYKQ ACAOD ACAZW ACBMV ACBRV ACBYP ACDAQ ACGFS ACHSB ACIGE ACIPQ ACMLO ACOKC ACRLP ACTTH ACVWB ACWMK ACZOJ ADBBV ADEZE ADKNI ADMDM ADMUD ADOXG ADTPH ADURQ ADYFF AEBSH AEFTE AEJRE AEKER AENEX AESKC AESTI AEVTX AFKWA AFNRJ AFQWF AFUIB AGDGC AGGBP AGHFR AGJBK AGMZJ AGUBO AGYEJ AIAKS AIEXJ AIGVJ AIKHN AILAN AIMYW AITGF AITUG AJBFU AJDOV AJOXV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF ARUGR AXJTR AXYYD BGNMA BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP CS3 CSCUP CW9 DPUIP EBLON EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FEDTE FIRID FNLPD FNPLU FYGXN GBLVA GJIRD HVGLF HZ~ IKXTQ IWAJR J1W JUIAU JZLTJ KOM KOV LLZTM M41 M4Y MHUIS MO0 N9A NPVJJ NQJWS NU0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. PT4 Q-- Q-0 Q38 R-A REI RIG ROL RSV RT1 S.. SDC SDF SDG SDH SES SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SSW SSZ T5K T8Q TCJ TGP TSG U1F U1G U5A U5K UOJIU UTJUX VEKWB VFIZW ZMTXR ~G- ~L9 ~WA AGQEE FIGPU AACDK AAJBT AASML AATTM AAXKI AAYWO AAYXX ABAKF ABBRH ABDBE ABFSG ABJNI ABWVN ACDTI ACPIV ACRPL ACSTC ACVFH ADCNI ADNMO AEFQL AEIPS AEMSY AEUPX AEZWR AFBBN AFDZB AFHIU AFOHR AFPUW AFXIZ AGCQF AGRNS AHPBZ AHWEU AIGII AIGIU AIIUN AIXLP AKBMS AKRWK AKYEP ANKPU ATHPR AYFIA CITATION HG6 SJYHP SSH 4A8 PSX |
ID | FETCH-LOGICAL-c317t-25d93d9138b0e2acfa20abff2b07bc773cc7f89b3bdd26e0c777797647ac96d33 |
IEDL.DBID | AIKHN |
ISSN | 0252-9602 |
IngestDate | Thu May 29 04:00:08 EDT 2025 Tue Jul 01 02:27:31 EDT 2025 Fri Feb 23 02:25:04 EST 2024 Wed Feb 14 10:46:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | repetitive cluster-tilted algebra cluster tilting object 16G20 repetitive cluster category 16G70 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c317t-25d93d9138b0e2acfa20abff2b07bc773cc7f89b3bdd26e0c777797647ac96d33 |
Notes | repetitive cluster category; cluster tilting object; repetitive cluster-tiltedalgebra Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1. We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras. Moreover, we generalize Theorem 4.2 in [12] (Buan A, Marsh R, Reiten I. Cluster-tilted algebra, Trans. Amer. Math. Soc. 359(1)(2007), 323-332.) to the situation of C Fm, and prove that the tilting graph KCFm of CFm is connected. 42-1227/O |
PageCount | 6 |
ParticipantIDs | wanfang_journals_sxwlxb_e201204016 crossref_primary_10_1016_S0252_9602_12_60114_3 elsevier_sciencedirect_doi_10_1016_S0252_9602_12_60114_3 chongqing_primary_42811345 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-01 |
PublicationDateYYYYMMDD | 2012-07-01 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Acta mathematica scientia |
PublicationTitleAlternate | Acta Mathematica Scientia |
PublicationTitle_FL | Acta Mathematica Scientia |
PublicationYear | 2012 |
Publisher | Elsevier Ltd School of Mathematics, Shandong University, Jinan 250100, China%Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China |
Publisher_xml | – name: Elsevier Ltd – name: School of Mathematics, Shandong University, Jinan 250100, China%Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China |
References | Caldero, Keller (bib6) 2008; 172 Happel, Unger (bib17) 2005; 284 Ringel (bib16) 1984 Buan, Marsh, Reiten (bib12) 2007; 359 Iyama (bib4) 2007; 210 Buan, Marsh, Reineke, Reiten, Todorov (bib1) 2006; 204 Auslander, Reiten, Smalϕ (bib13) 1995 Iyama (bib5) 2007; 210 Caldero, Keller (bib7) 2006; 39 Zhang, Zhang (bib18) 2011; 31B Keller (bib2) 2005; 10 Ringel (bib10) 2007 Assem, Simson, Skowronski (bib14) 2006; Vol 1 Koenig, Zhu (bib9) 2008; 258 Keller, Reiten (bib8) 2007; 211 Zhu (bib11) 2011; 39 Happel (bib15) 1988 Fomin, Zelevinsky (bib3) 2002; 15 Zhang (10.1016/S0252-9602(12)60114-3_bib18) 2011; 31B Ringel (10.1016/S0252-9602(12)60114-3_bib10) 2007 Iyama (10.1016/S0252-9602(12)60114-3_bib4) 2007; 210 Auslander (10.1016/S0252-9602(12)60114-3_bib13) 1995 Happel (10.1016/S0252-9602(12)60114-3_bib17) 2005; 284 Caldero (10.1016/S0252-9602(12)60114-3_bib7) 2006; 39 Buan (10.1016/S0252-9602(12)60114-3_bib12) 2007; 359 Assem (10.1016/S0252-9602(12)60114-3_bib14) 2006; Vol 1 Ringel (10.1016/S0252-9602(12)60114-3_bib16) 1984 Keller (10.1016/S0252-9602(12)60114-3_bib8) 2007; 211 Keller (10.1016/S0252-9602(12)60114-3_bib2) 2005; 10 Happel (10.1016/S0252-9602(12)60114-3_bib15) 1988 Caldero (10.1016/S0252-9602(12)60114-3_bib6) 2008; 172 Zhu (10.1016/S0252-9602(12)60114-3_bib11) 2011; 39 Koenig (10.1016/S0252-9602(12)60114-3_bib9) 2008; 258 Fomin (10.1016/S0252-9602(12)60114-3_bib3) 2002; 15 Buan (10.1016/S0252-9602(12)60114-3_bib1) 2006; 204 Iyama (10.1016/S0252-9602(12)60114-3_bib5) 2007; 210 |
References_xml | – volume: 10 start-page: 551 year: 2005 end-page: 581 ident: bib2 article-title: Triangulated orbit categories publication-title: Document Math – volume: 284 start-page: 857 year: 2005 end-page: 868 ident: bib17 article-title: On the quiver of tilting modules publication-title: J Algebra – year: 1988 ident: bib15 publication-title: Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. Lecture Notes Series 119 – volume: 211 start-page: 123 year: 2007 end-page: 151 ident: bib8 article-title: Cluster-tilted algebras are Gorenstein and stably Calabi-Yau publication-title: Adv Math – volume: 258 start-page: 143 year: 2008 end-page: 160 ident: bib9 article-title: From triangulated categories to abelian categories: cluster tilting in a general frame work publication-title: Math Z – year: 2007 ident: bib10 article-title: Some remarks concerning tilting modules and tilted algebras. An appendix to the Handbook of tilting theory publication-title: Lecture Notes Series 332 – volume: 39 start-page: 983 year: 2006 end-page: 1009 ident: bib7 article-title: From triangulated categories to cluster algebras II publication-title: Ann Sci Ecole Norm Sup – year: 1984 ident: bib16 publication-title: Tame Algebras and Integral Quadratic Forms. Lecture Notes in Math, 1099 – volume: 31B start-page: 2033 year: 2011 end-page: 2040 ident: bib18 article-title: Subcategories and finitistic dimensions of Artin algebras publication-title: Acta Math Sci – volume: 210 start-page: 22 year: 2007 end-page: 50 ident: bib4 article-title: Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories publication-title: Adv Math – volume: 172 start-page: 169 year: 2008 end-page: 211 ident: bib6 article-title: From triangulated categories to cluster algebras publication-title: Invent Math – year: 1995 ident: bib13 publication-title: Representation Theory of Artin Algebras – volume: 204 start-page: 572 year: 2006 end-page: 618 ident: bib1 article-title: Tilting theory and cluster combinatorices publication-title: Adv Math – volume: 210 start-page: 51 year: 2007 end-page: 82 ident: bib5 article-title: Auslander correspondence publication-title: Adv Math – volume: 15 start-page: 497 year: 2002 end-page: 529 ident: bib3 article-title: Cluster algebra I: Foundation publication-title: J Amer Math Soc – volume: 39 start-page: 2437 year: 2011 end-page: 2448 ident: bib11 article-title: Cluster-tilted algebras and their intermediate coverings publication-title: Comm Algebra – volume: Vol 1 year: 2006 ident: bib14 publication-title: Elements of the Representation Theory of Associative Algebras – volume: 359 start-page: 323 year: 2007 end-page: 332 ident: bib12 article-title: Cluster-tilted algebra publication-title: Trans Amer Math Soc – volume: 210 start-page: 22 year: 2007 ident: 10.1016/S0252-9602(12)60114-3_bib4 article-title: Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories publication-title: Adv Math doi: 10.1016/j.aim.2006.06.002 – volume: 204 start-page: 572 year: 2006 ident: 10.1016/S0252-9602(12)60114-3_bib1 article-title: Tilting theory and cluster combinatorices publication-title: Adv Math doi: 10.1016/j.aim.2005.06.003 – volume: 284 start-page: 857 year: 2005 ident: 10.1016/S0252-9602(12)60114-3_bib17 article-title: On the quiver of tilting modules publication-title: J Algebra doi: 10.1016/j.jalgebra.2004.11.007 – volume: 15 start-page: 497 year: 2002 ident: 10.1016/S0252-9602(12)60114-3_bib3 article-title: Cluster algebra I: Foundation publication-title: J Amer Math Soc doi: 10.1090/S0894-0347-01-00385-X – volume: 39 start-page: 2437 year: 2011 ident: 10.1016/S0252-9602(12)60114-3_bib11 article-title: Cluster-tilted algebras and their intermediate coverings publication-title: Comm Algebra doi: 10.1080/00927872.2010.489082 – volume: 31B start-page: 2033 issue: 5 year: 2011 ident: 10.1016/S0252-9602(12)60114-3_bib18 article-title: Subcategories and finitistic dimensions of Artin algebras publication-title: Acta Math Sci – volume: 211 start-page: 123 year: 2007 ident: 10.1016/S0252-9602(12)60114-3_bib8 article-title: Cluster-tilted algebras are Gorenstein and stably Calabi-Yau publication-title: Adv Math doi: 10.1016/j.aim.2006.07.013 – volume: 39 start-page: 983 year: 2006 ident: 10.1016/S0252-9602(12)60114-3_bib7 article-title: From triangulated categories to cluster algebras II publication-title: Ann Sci Ecole Norm Sup doi: 10.1016/j.ansens.2006.09.003 – volume: 172 start-page: 169 year: 2008 ident: 10.1016/S0252-9602(12)60114-3_bib6 article-title: From triangulated categories to cluster algebras publication-title: Invent Math doi: 10.1007/s00222-008-0111-4 – year: 2007 ident: 10.1016/S0252-9602(12)60114-3_bib10 article-title: Some remarks concerning tilting modules and tilted algebras. An appendix to the Handbook of tilting theory – volume: 359 start-page: 323 issue: 1 year: 2007 ident: 10.1016/S0252-9602(12)60114-3_bib12 article-title: Cluster-tilted algebra publication-title: Trans Amer Math Soc doi: 10.1090/S0002-9947-06-03879-7 – year: 1988 ident: 10.1016/S0252-9602(12)60114-3_bib15 – volume: 258 start-page: 143 year: 2008 ident: 10.1016/S0252-9602(12)60114-3_bib9 article-title: From triangulated categories to abelian categories: cluster tilting in a general frame work publication-title: Math Z doi: 10.1007/s00209-007-0165-9 – year: 1995 ident: 10.1016/S0252-9602(12)60114-3_bib13 – volume: 10 start-page: 551 year: 2005 ident: 10.1016/S0252-9602(12)60114-3_bib2 article-title: Triangulated orbit categories publication-title: Document Math doi: 10.4171/dm/199 – volume: 210 start-page: 51 year: 2007 ident: 10.1016/S0252-9602(12)60114-3_bib5 article-title: Auslander correspondence publication-title: Adv Math doi: 10.1016/j.aim.2006.06.003 – year: 1984 ident: 10.1016/S0252-9602(12)60114-3_bib16 – volume: Vol 1 year: 2006 ident: 10.1016/S0252-9602(12)60114-3_bib14 |
SSID | ssj0016264 |
Score | 1.8595806 |
Snippet | Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1. We... O411.1; Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1.We... |
SourceID | wanfang crossref elsevier chongqing |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1449 |
SubjectTerms | 16G20 16G70 CFM cluster tilting object repetitive cluster category repetitive cluster-tilted algebra 代数簇 代数闭域 倾斜代数 归纳定理 有限维 遗传代数 集群 |
Title | REPETITIVE CLUSTER-TILTED ALGEBRAS |
URI | http://lib.cqvip.com/qk/86464X/201204/42811345.html https://dx.doi.org/10.1016/S0252-9602(12)60114-3 https://d.wanfangdata.com.cn/periodical/sxwlxb-e201204016 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BIqRyoC0tYqFFEeqhPZiN7cROjgiBtq3KBZC4WX7CSqvwyCI48dsZJ96FHiqkHjOxR9HneOYbeWYM8C2IMuiyckQjFycFNY5UociJlt45wbVGjhSzLU7E-Lz4dVFeLMHhvBYmplUm29_b9M5aJ8kooTm6mUxGp-itGfJvtL0isnq-DCuM16IcwMrBz9_jk8VhAnL2rosUjidxwkshT6-kE36n7Eenh_DYZuHqurm8RefxL3e1-qCboJvLV87o-AOsJxaZHfQf-hGWfLMB7xOjzNJ-bTdg7c-iKys-rXbpnrb9BHvIu2N5GZq6zE7vY7MEMptMkX1m8d4PjKDbz3B-fHR2OCbptgRikQPMCCtdzV1NeWVyz7QNmuXahMBMLo2VklsrQ1UbbpxjwucokhLJSCG1rYXjfBMGzXXjtyCjde1yaYNDBUXuqeE4GHV6mYtQWDOE7QVA6qbviqEwjqGUF-UQ9ueILd69pJIh3CrCrShTHdyKD6Ga46r-WnqFVv2tqXtpHVTaeq1qHx-mj0Z5FsuCMXoU2_-vfwfeRTV9eu4XGMzu7v1XJCEzswvL-090N_1qz59i1QY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKlQ4UB6tWEpphHooB-_GdhInR4SKthS4ABI3y09YaRUeWQQnfnvHiXeBA0LqMRNnFH22Zz5L34wBfvoi9yovLVHIxUlGtSWlz1KihLO24EohRwpqi5NieJ4dXuQXc7A_rYUJssoY-7uY3kbraBlENAc3o9HgFLM1Q_6NsbcIrJ5_gI9ZzkXQ9fWfZjoPioy97SGFo0kY_lzG07lojb8o2229EB6aLFxd15e3mDreSlYLD6r2qr58kYoOVmA5cshkr_vNVZhz9Rp8jnwyibu1WYOl41lPVnxaaMWeplmHHWTdobgMA11ixvehVQKZjMbIPZNw6ween5svcH7w-2x_SOJdCcQgA5gQltuK24ryUqeOKeMVS5X2nulUaCMEN0b4stJcW8sKl6JJCKQimVCmKiznX2G-vq7dBiS0qmwqjLfoIEsd1RwHo08n0sJnRvdgcwaQvOl6Ykg8xVDKs7wH_Slis3fPQjKEWwa4JWWyhVvyHpRTXOWriZcY09_7dCfOg4wbr5HN48P4UUvHQlEwnh2Lzf_3_wM-Dc-Oj-TRn5O_32AxuOyEulswP7m7d9-Rjkz0drvc_gFcPNXR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repetitive+cluster-tilted+algebras&rft.jtitle=Acta+mathematica+scientia&rft.au=Shunhua%2C+Zhang&rft.au=Yuehui%2C+Zhang&rft.date=2012-07-01&rft.issn=0252-9602&rft.volume=32&rft.issue=4&rft.spage=1449&rft.epage=1454&rft_id=info:doi/10.1016%2FS0252-9602%2812%2960114-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0252_9602_12_60114_3 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg |