Nonholonomic mobile robots' trajectory tracking model predictive control: a survey
Model predictive control (MPC) theory has gained attention with the recent increase in the processing power of computers that are now able to perform the needed calculations for this technique. This kind of control algorithms can achieve better results in trajectory tracking control of mobile robots...
Saved in:
Published in | Robotica Vol. 36; no. 5; pp. 676 - 696 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Model predictive control (MPC) theory has gained attention with the recent increase in the processing power of computers that are now able to perform the needed calculations for this technique. This kind of control algorithms can achieve better results in trajectory tracking control of mobile robots than classical control approaches. In this paper, we present a review of recent developments in trajectory tracking control of mobile robot systems using model predictive control theory, especially when nonholonomicity is present. Furthermore, we point out the growth of the related research starting with the boom of mobile robotics in the 90s and discuss reported field applications of the described control problem. The objective of this paper is to provide a unified and accessible presentation, placing the classical model, problem formulations and approaches into a proper context and to become a starting point for researchers who are initiating their endeavors in linear/nonlinear MPC applied to nonholonomic mobile robots. Finally, this work aims to present a comprehensive review of the recent breakthroughs in the field, providing links to the most interesting and successful works, including our contributions to state-of-the-art. |
---|---|
AbstractList | SUMMARYModel predictive control (MPC) theory has gained attention with the recent increase in the processing power of computers that are now able to perform the needed calculations for this technique. This kind of control algorithms can achieve better results in trajectory tracking control of mobile robots than classical control approaches. In this paper, we present a review of recent developments in trajectory tracking control of mobile robot systems using model predictive control theory, especially when nonholonomicity is present. Furthermore, we point out the growth of the related research starting with the boom of mobile robotics in the 90s and discuss reported field applications of the described control problem. The objective of this paper is to provide a unified and accessible presentation, placing the classical model, problem formulations and approaches into a proper context and to become a starting point for researchers who are initiating their endeavors in linear/nonlinear MPC applied to nonholonomic mobile robots. Finally, this work aims to present a comprehensive review of the recent breakthroughs in the field, providing links to the most interesting and successful works, including our contributions to state-of-the-art. Model predictive control (MPC) theory has gained attention with the recent increase in the processing power of computers that are now able to perform the needed calculations for this technique. This kind of control algorithms can achieve better results in trajectory tracking control of mobile robots than classical control approaches. In this paper, we present a review of recent developments in trajectory tracking control of mobile robot systems using model predictive control theory, especially when nonholonomicity is present. Furthermore, we point out the growth of the related research starting with the boom of mobile robotics in the 90s and discuss reported field applications of the described control problem. The objective of this paper is to provide a unified and accessible presentation, placing the classical model, problem formulations and approaches into a proper context and to become a starting point for researchers who are initiating their endeavors in linear/nonlinear MPC applied to nonholonomic mobile robots. Finally, this work aims to present a comprehensive review of the recent breakthroughs in the field, providing links to the most interesting and successful works, including our contributions to state-of-the-art. |
Author | Dórea, Carlos E. T. Nascimento, Tiago P. Gonçalves, Luiz Marcos G. |
Author_xml | – sequence: 1 givenname: Tiago P. orcidid: 0000-0002-9319-2114 surname: Nascimento fullname: Nascimento, Tiago P. email: tiagopn@ci.ufpb.br organization: †Embedded Systems and Robotics Lab (LaSER), Computer Systems Department, Federal University of Paraíba (UFPB), Brazil – sequence: 2 givenname: Carlos E. T. surname: Dórea fullname: Dórea, Carlos E. T. email: cetdorea@dca.ufrn.br organization: ‡Computer and Automation Engineering Department, Federal University of Rio Grande do Norte (UFRN), Brazil. E-mails: cetdorea@dca.ufrn.br, lmarcos@dca.ufrn.br – sequence: 3 givenname: Luiz Marcos G. surname: Gonçalves fullname: Gonçalves, Luiz Marcos G. email: cetdorea@dca.ufrn.br organization: ‡Computer and Automation Engineering Department, Federal University of Rio Grande do Norte (UFRN), Brazil. E-mails: cetdorea@dca.ufrn.br, lmarcos@dca.ufrn.br |
BookMark | eNp9kN1LwzAUxYNMcJv-Ab4VfPCpmjRpk_omwy8YCn48l5uPzsy2mUk22H9vywaCok_3wjm_ew9ngkad6wxCpwRfEEz45QvOCppzxgnHGBeUH6AxYUWZiqIQIzQe5HTQj9AkhCXGhBLGx-j50XXvrnGda61KWidtYxLvpIvhPIkelkZF57fDqj5st-gt2jTJyhttVbQbkyjXRe-aqwSSsPYbsz1GhzU0wZzs5xS93d68zu7T-dPdw-x6nipKeEyJBi0l4zmwzGAAARqYFoWSEqDOFdSKAmWl5nkmlFGlYIKbjEkthdSU0Ck6291defe5NiFWS7f2Xf-yynBGe7QsRO_iO5fyLgRv6krZCNEOqcE2FcHVUGD1q8CeJD_Ilbct-O2_DN0z0Epv9cJ8h_qb-gLme4V2 |
CitedBy_id | crossref_primary_10_3390_s21217216 crossref_primary_10_1049_csy2_12086 crossref_primary_10_5937_fme2302192H crossref_primary_10_1007_s10846_021_01373_7 crossref_primary_10_1109_ACCESS_2019_2903934 crossref_primary_10_1177_09596518231188497 crossref_primary_10_1109_LRA_2022_3203224 crossref_primary_10_1177_1729881419877316 crossref_primary_10_1109_TIE_2019_2962424 crossref_primary_10_1109_TMECH_2020_3014967 crossref_primary_10_1049_cth2_12659 crossref_primary_10_1017_S0263574723001054 crossref_primary_10_1017_S0263574724001140 crossref_primary_10_1016_j_ifacol_2022_11_017 crossref_primary_10_1007_s42835_020_00453_2 crossref_primary_10_1177_0036850420952219 crossref_primary_10_1007_s12555_019_0814_x crossref_primary_10_3390_electronics8101077 crossref_primary_10_1017_S0263574723000127 crossref_primary_10_3390_electronics11111754 crossref_primary_10_1109_ACCESS_2020_3003285 crossref_primary_10_1007_s10846_019_01064_4 crossref_primary_10_1007_s10846_019_01083_1 crossref_primary_10_3390_app15010485 crossref_primary_10_1016_j_ins_2022_05_069 crossref_primary_10_3390_app14062414 crossref_primary_10_1016_j_jfranklin_2024_106660 crossref_primary_10_3390_act12040169 crossref_primary_10_1016_j_jfranklin_2021_11_009 crossref_primary_10_1109_ACCESS_2022_3220240 crossref_primary_10_1017_S0263574718001443 crossref_primary_10_1002_asjc_2980 crossref_primary_10_1016_j_mechatronics_2021_102693 crossref_primary_10_1080_17452759_2024_2433588 crossref_primary_10_1016_j_dibe_2024_100484 crossref_primary_10_1080_00207721_2024_2367711 crossref_primary_10_1109_LRA_2023_3284354 crossref_primary_10_1109_TII_2018_2875048 crossref_primary_10_1016_j_robot_2021_103903 crossref_primary_10_1109_ACCESS_2021_3098524 crossref_primary_10_1016_j_robot_2020_103468 crossref_primary_10_3390_robotics8030064 crossref_primary_10_1049_el_2019_4019 crossref_primary_10_1177_00202940211043070 crossref_primary_10_23919_JSEE_2023_000051 crossref_primary_10_1109_TCST_2022_3219298 crossref_primary_10_1002_acs_3239 crossref_primary_10_1007_s40430_022_03969_y crossref_primary_10_1177_09544062231216189 crossref_primary_10_1108_IR_04_2022_0102 crossref_primary_10_1007_s10846_024_02202_3 crossref_primary_10_1109_TAES_2022_3211252 crossref_primary_10_1007_s10846_021_01522_y crossref_primary_10_1016_j_robot_2023_104364 |
Cites_doi | 10.1016/j.ifacol.2015.09.682 10.1016/j.robot.2011.07.006 10.1109/ACC.2012.6315090 10.1109/RVSP.2011.21 10.1109/ROBOT.2009.5152217 10.1016/0736-5845(95)00003-8 10.1016/S0005-1098(99)00214-9 10.1016/j.jfranklin.2015.03.021 10.1109/TCYB.2015.2478857 10.23919/ACC.2004.1383790 10.3724/SP.J.1004.2008.00588 10.1109/AMC.2010.5464088 10.1109/TCST.2015.2488589 10.1109/ICSMC.2010.5642367 10.1109/ACC.2016.7525212 10.3182/20080706-5-KR-1001.01905 10.1109/ICRA.2015.7139805 10.1002/rnc.813 10.1109/ICMA.2016.7558545 10.1109/ICRA.2016.7487274 10.1007/s10846-015-0183-5 10.1017/S0263574715000892 10.1109/TCST.2016.2558479 10.1016/j.compchemeng.2006.05.011 10.1109/CICSyN.2015.49 10.3182/20101206-3-JP-3009.00023 10.1016/S0921-8890(00)00095-6 10.3182/20140824-6-ZA-1003.01881 10.1177/1077546316646906 10.1016/S0921-8890(02)00172-0 10.3182/20080706-5-KR-1001.01615 10.1109/WCICA.2014.7052738 10.1016/j.bspc.2012.10.007 10.1109/ACC.2013.6580446 10.3182/20110828-6-IT-1002.03696 10.3182/20130828-2-SF-3019.00004 10.1109/CGNCC.2016.7829176 10.1109/ChiCC.2014.6896401 10.3182/20120823-5-NL-3013.00003 10.1109/ICInfA.2016.7832087 10.1109/TCST.2016.2569468 10.23919/ECC.2001.7076072 10.1109/TSMC.2015.2465352 10.1016/j.compag.2011.12.009 10.1109/ICRA.2013.6630821 10.1109/ROBIO.2015.7418803 10.1109/MERCon.2015.7112333 10.1109/LARS-SBR.2016.23 10.1109/ROBOT.2009.5152468 10.1109/TITS.2008.2011697 10.1109/TCST.2006.872512 10.23919/ECC.2007.7068422 10.1109/MFI.2014.6997679 10.1109/MESA.2008.4735699 10.1109/CDC.2016.7799190 10.1109/ICRoM.2013.6510097 10.1109/TCSI.2006.875166 10.1109/ACC.2012.6315199 10.3182/20060912-3-DE-2911.00166 10.1109/TMECH.2013.2243161 10.1002/oca.827 10.3182/20110828-6-IT-1002.01786 10.1109/TRO.2005.851357 10.3724/SP.J.1004.2013.01238 10.1016/j.ifacol.2015.12.006 10.1109/CJECE.2014.2328973 10.1016/j.ifacol.2016.07.597 10.1109/ICAR.2013.6766536 10.1109/CJECE.2016.2609803 10.1016/S0167-6911(00)00084-0 10.1016/j.conengprac.2008.03.004 10.1016/j.mechatronics.2016.01.006 10.1109/AQTR.2008.4588858 10.1007/s12206-008-0746-5 10.1016/j.ifacol.2015.09.022 10.1109/ICRA.2014.6907444 10.1109/37.476384 10.1109/RoMoCo.2015.7219720 10.1109/TCST.2012.2227964 10.1109/ROBOT.1999.770473 10.1016/j.robot.2013.07.005 10.1109/CCDC.2013.6561493 10.1109/ROBOT.2007.363939 10.1007/s12541-014-0406-x 10.1109/IROS.2008.4650752 10.1109/ICMA.2015.7237892 |
ContentType | Journal Article |
Copyright | Copyright © Cambridge University Press 2018 |
Copyright_xml | – notice: Copyright © Cambridge University Press 2018 |
DBID | AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO F28 FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1017/S0263574717000637 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Nonholonomic mobile robots' trajectory tracking NMPC |
EISSN | 1469-8668 |
EndPage | 696 |
ExternalDocumentID | 10_1017_S0263574717000637 |
GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N -~X .DC .FH 09C 09E 0E1 0R~ 123 29P 3V. 4.4 5VS 6~7 74X 74Y 7~V 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABBZL ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABVKB ABVZP ABXAU ABZCX ACBMC ACDLN ACETC ACGFS ACIMK ACIWK ACMRT ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADKIL ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AEYYC AFFNX AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ C0O CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD F5P GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KCGVB KFECR L6V L98 LHUNA LW7 M-V M0N M7S M7~ M8. MVM NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S6- S6U SAAAG T9M TN5 UT1 VOH WFFJZ WH7 WQ3 WXU WYP ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 AAKNA AAYXX ABGDZ ABHFL ABXHF ACEJA ACOZI ADMLS AKMAY ANOYL CITATION PHGZM PHGZT 7SC 7SP 7TB 7XB 8AL 8FD 8FK F28 FR3 JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c317t-1dadbb475a42e0aa8ada4d86cbbaaf5cafc3a349d7528cec98487e24bdb8bd313 |
IEDL.DBID | BENPR |
ISSN | 0263-5747 |
IngestDate | Sat Aug 23 15:08:22 EDT 2025 Tue Jul 01 00:58:52 EDT 2025 Thu Apr 24 22:52:23 EDT 2025 Tue Jan 21 06:20:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Control of robotic systems Model predictive control Trajectory tracking Navigation Mobile robots |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c317t-1dadbb475a42e0aa8ada4d86cbbaaf5cafc3a349d7528cec98487e24bdb8bd313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9319-2114 |
PQID | 2023349968 |
PQPubID | 37292 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2023349968 crossref_citationtrail_10_1017_S0263574717000637 crossref_primary_10_1017_S0263574717000637 cambridge_journals_10_1017_S0263574717000637 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180500 2018-05-00 20180501 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 20180500 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Robotica |
PublicationTitleAlternate | Robotica |
PublicationYear | 2018 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | S0263574717000637_ref51 S0263574717000637_ref50 S0263574717000637_ref59 S0263574717000637_ref58 ao (S0263574717000637_ref72) 2013; 61 S0263574717000637_ref57 S0263574717000637_ref56 S0263574717000637_ref54 S0263574717000637_ref53 S0263574717000637_ref52 S0263574717000637_ref49 S0263574717000637_ref40 S0263574717000637_ref48 S0263574717000637_ref47 S0263574717000637_ref46 S0263574717000637_ref45 S0263574717000637_ref44 S0263574717000637_ref43 S0263574717000637_ref42 S0263574717000637_ref41 ao (S0263574717000637_ref73) 2014; 34 S0263574717000637_ref1 S0263574717000637_ref4 S0263574717000637_ref3 S0263574717000637_ref6 S0263574717000637_ref5 Ostafew (S0263574717000637_ref77) 2016; 1 S0263574717000637_ref8 S0263574717000637_ref9 S. (S0263574717000637_ref88) 2014; 19 S0263574717000637_ref37 S0263574717000637_ref36 S0263574717000637_ref35 Thrun (S0263574717000637_ref94) 2005 S0263574717000637_ref34 S0263574717000637_ref33 S0263574717000637_ref32 S0263574717000637_ref31 S0263574717000637_ref30 S0263574717000637_ref29 S0263574717000637_ref28 S0263574717000637_ref27 Yoo (S0263574717000637_ref100) 2006; 53 Gu (S0263574717000637_ref38) 2005; 21 S0263574717000637_ref26 S0263574717000637_ref25 S0263574717000637_ref24 S0263574717000637_ref23 S0263574717000637_ref22 S0263574717000637_ref21 S0263574717000637_ref20 Gu (S0263574717000637_ref39) 2006; 14 S0263574717000637_ref19 S0263574717000637_ref18 S0263574717000637_ref17 S0263574717000637_ref95 S0263574717000637_ref93 S0263574717000637_ref92 Li (S0263574717000637_ref55) 2016; 24 S0263574717000637_ref90 S0263574717000637_ref14 S0263574717000637_ref13 S0263574717000637_ref12 S0263574717000637_ref99 S0263574717000637_ref11 S0263574717000637_ref98 S0263574717000637_ref10 S0263574717000637_ref97 S0263574717000637_ref96 S0263574717000637_ref84 S0263574717000637_ref83 S0263574717000637_ref81 S0263574717000637_ref80 Camacho (S0263574717000637_ref16) 2004 S0263574717000637_ref89 S0263574717000637_ref87 S0263574717000637_ref86 S0263574717000637_ref85 Siegwart (S0263574717000637_ref91) 2004 Yoon (S0263574717000637_ref101) 2008; 41 ao (S0263574717000637_ref7) 2011; 44 S0263574717000637_ref71 S0263574717000637_ref70 Biegler (S0263574717000637_ref15) 2000 S0263574717000637_ref79 S0263574717000637_ref78 S0263574717000637_ref76 S0263574717000637_ref75 S0263574717000637_ref74 Abbas (S0263574717000637_ref2) 2017; 40 S0263574717000637_ref62 S0263574717000637_ref61 S0263574717000637_ref60 S0263574717000637_ref69 Yue (S0263574717000637_ref103) 2017; PP S0263574717000637_ref68 ao (S0263574717000637_ref82) 2015; 48 S0263574717000637_ref67 S0263574717000637_ref66 S0263574717000637_ref65 S0263574717000637_ref64 S0263574717000637_ref63 S0263574717000637_ref104 S0263574717000637_ref105 S0263574717000637_ref102 S0263574717000637_ref106 |
References_xml | – ident: S0263574717000637_ref45 doi: 10.1016/j.ifacol.2015.09.682 – ident: S0263574717000637_ref92 doi: 10.1016/j.robot.2011.07.006 – ident: S0263574717000637_ref41 – ident: S0263574717000637_ref80 doi: 10.1109/ACC.2012.6315090 – ident: S0263574717000637_ref40 doi: 10.1109/RVSP.2011.21 – start-page: 219 volume-title: Efficient Solution of Dynamic Optimization and NMPC Problems year: 2000 ident: S0263574717000637_ref15 – ident: S0263574717000637_ref47 doi: 10.1109/ROBOT.2009.5152217 – ident: S0263574717000637_ref34 doi: 10.1016/0736-5845(95)00003-8 – ident: S0263574717000637_ref67 doi: 10.1016/S0005-1098(99)00214-9 – ident: S0263574717000637_ref31 doi: 10.1016/j.jfranklin.2015.03.021 – ident: S0263574717000637_ref56 doi: 10.1109/TCYB.2015.2478857 – ident: S0263574717000637_ref49 doi: 10.23919/ACC.2004.1383790 – volume: PP start-page: 1 year: 2017 ident: S0263574717000637_ref103 article-title: Constrained adaptive robust trajectory tracking for wip vehicles using model predictive control and extended state observer publication-title: IEEE Trans. Syst., Man Cybern.: Syst. – ident: S0263574717000637_ref50 – ident: S0263574717000637_ref99 doi: 10.3724/SP.J.1004.2008.00588 – ident: S0263574717000637_ref5 doi: 10.1109/AMC.2010.5464088 – ident: S0263574717000637_ref98 doi: 10.1109/TCST.2015.2488589 – ident: S0263574717000637_ref79 doi: 10.1109/ICSMC.2010.5642367 – ident: S0263574717000637_ref43 doi: 10.1109/ACC.2016.7525212 – ident: S0263574717000637_ref6 doi: 10.3182/20080706-5-KR-1001.01905 – ident: S0263574717000637_ref23 doi: 10.1109/ICRA.2015.7139805 – ident: S0263574717000637_ref1 doi: 10.1002/rnc.813 – ident: S0263574717000637_ref105 doi: 10.1109/ICMA.2016.7558545 – ident: S0263574717000637_ref75 doi: 10.1109/ICRA.2016.7487274 – ident: S0263574717000637_ref20 – ident: S0263574717000637_ref74 doi: 10.1007/s10846-015-0183-5 – ident: S0263574717000637_ref71 doi: 10.1017/S0263574715000892 – ident: S0263574717000637_ref89 doi: 10.1109/TCST.2016.2558479 – ident: S0263574717000637_ref28 – ident: S0263574717000637_ref62 – ident: S0263574717000637_ref57 doi: 10.1016/j.compchemeng.2006.05.011 – ident: S0263574717000637_ref64 doi: 10.1109/CICSyN.2015.49 – ident: S0263574717000637_ref9 doi: 10.3182/20101206-3-JP-3009.00023 – ident: S0263574717000637_ref25 doi: 10.1016/S0921-8890(00)00095-6 – ident: S0263574717000637_ref12 doi: 10.3182/20140824-6-ZA-1003.01881 – ident: S0263574717000637_ref24 doi: 10.1177/1077546316646906 – ident: S0263574717000637_ref37 doi: 10.1016/S0921-8890(02)00172-0 – ident: S0263574717000637_ref106 doi: 10.3182/20080706-5-KR-1001.01615 – ident: S0263574717000637_ref21 doi: 10.1109/WCICA.2014.7052738 – ident: S0263574717000637_ref61 doi: 10.1016/j.bspc.2012.10.007 – ident: S0263574717000637_ref63 doi: 10.1109/ACC.2013.6580446 – volume: 44 start-page: 8171 year: 2011 ident: S0263574717000637_ref7 article-title: Model Predictive control based on LMIs applied to an omni-directional mobile robot publication-title: IFAC Proc. Vol. doi: 10.3182/20110828-6-IT-1002.03696 – volume-title: Efficient Solution of Dynamic Optimization and NMPC Problems year: 2005 ident: S0263574717000637_ref94 – ident: S0263574717000637_ref11 doi: 10.3182/20130828-2-SF-3019.00004 – ident: S0263574717000637_ref3 – ident: S0263574717000637_ref42 doi: 10.1109/CGNCC.2016.7829176 – ident: S0263574717000637_ref36 – ident: S0263574717000637_ref22 doi: 10.1109/ChiCC.2014.6896401 – ident: S0263574717000637_ref102 doi: 10.3182/20120823-5-NL-3013.00003 – ident: S0263574717000637_ref70 doi: 10.1109/ICInfA.2016.7832087 – ident: S0263574717000637_ref87 doi: 10.1109/TCST.2016.2569468 – ident: S0263574717000637_ref26 doi: 10.23919/ECC.2001.7076072 – ident: S0263574717000637_ref54 doi: 10.1109/TSMC.2015.2465352 – ident: S0263574717000637_ref10 doi: 10.1016/j.compag.2011.12.009 – ident: S0263574717000637_ref4 doi: 10.1109/ICRA.2013.6630821 – ident: S0263574717000637_ref96 doi: 10.1109/ROBIO.2015.7418803 – volume-title: Intelligent Robotics and Autonomous Agents year: 2004 ident: S0263574717000637_ref91 – ident: S0263574717000637_ref69 doi: 10.1109/MERCon.2015.7112333 – ident: S0263574717000637_ref86 doi: 10.1109/LARS-SBR.2016.23 – ident: S0263574717000637_ref81 doi: 10.1109/ROBOT.2009.5152468 – ident: S0263574717000637_ref84 doi: 10.1109/TITS.2008.2011697 – volume: 14 start-page: 743 year: 2006 ident: S0263574717000637_ref39 article-title: Receding horizon tracking control of wheeled mobile robots publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2006.872512 – ident: S0263574717000637_ref35 doi: 10.23919/ECC.2007.7068422 – volume-title: Model Predictive Control year: 2004 ident: S0263574717000637_ref16 – ident: S0263574717000637_ref53 doi: 10.1109/MFI.2014.6997679 – volume: 41 start-page: 6792 year: 2008 ident: S0263574717000637_ref101 article-title: Obstacle Avoidance for Wheeled Robots in Unknown Environments Using Model Predictive Control publication-title: Proceedings of the 17th World Congress the International Federation of Automatic Control – ident: S0263574717000637_ref59 doi: 10.1109/MESA.2008.4735699 – ident: S0263574717000637_ref90 doi: 10.1109/CDC.2016.7799190 – ident: S0263574717000637_ref8 doi: 10.1109/ICRoM.2013.6510097 – volume: 53 start-page: 1381 year: 2006 ident: S0263574717000637_ref100 article-title: Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: Adaptive learning rates approach publication-title: IEEE Trans. Circuits Syst. I: Regul. Pap. doi: 10.1109/TCSI.2006.875166 – ident: S0263574717000637_ref32 doi: 10.1109/ACC.2012.6315199 – ident: S0263574717000637_ref27 – ident: S0263574717000637_ref48 – ident: S0263574717000637_ref52 doi: 10.3182/20060912-3-DE-2911.00166 – volume: 19 start-page: 467 year: 2014 ident: S0263574717000637_ref88 article-title: Design and implementation of model-predictive control with friction compensation on an omnidirectional mobile robot publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2013.2243161 – ident: S0263574717000637_ref19 doi: 10.1002/oca.827 – ident: S0263574717000637_ref13 doi: 10.3182/20110828-6-IT-1002.01786 – volume: 21 start-page: 1022 year: 2005 ident: S0263574717000637_ref38 article-title: A stabilizing receding horizon regulator for nonholonomic mobile robots publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2005.851357 – volume: 1 start-page: 1 year: 2016 ident: S0263574717000637_ref77 article-title: Robust constrained learning-based NMPC enabling reliable mobile robot path tracking publication-title: The Int. J. Robot. Res. – ident: S0263574717000637_ref17 doi: 10.3724/SP.J.1004.2013.01238 – volume: 48 start-page: 33 year: 2015 ident: S0263574717000637_ref82 article-title: Stable model-based predictive control for wheeled mobile robots using linear matrix inequalities publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.12.006 – volume: 34 start-page: 549 year: 2014 ident: S0263574717000637_ref73 article-title: Multi-robot nonlinear model predictive formation control: The obstacle avoidance problem publication-title: Robotica – ident: S0263574717000637_ref93 doi: 10.1109/CJECE.2014.2328973 – ident: S0263574717000637_ref14 doi: 10.1016/j.ifacol.2016.07.597 – ident: S0263574717000637_ref18 – ident: S0263574717000637_ref68 doi: 10.1109/ICAR.2013.6766536 – volume: 40 start-page: 12 year: 2017 ident: S0263574717000637_ref2 article-title: Obstacle avoidance in real time with nonlinear model predictive control of autonomous vehicles publication-title: Can. J. Electr. Comput. Eng. doi: 10.1109/CJECE.2016.2609803 – ident: S0263574717000637_ref29 doi: 10.1016/S0167-6911(00)00084-0 – ident: S0263574717000637_ref65 doi: 10.1016/j.conengprac.2008.03.004 – ident: S0263574717000637_ref66 – ident: S0263574717000637_ref44 doi: 10.1016/j.mechatronics.2016.01.006 – ident: S0263574717000637_ref78 doi: 10.1109/AQTR.2008.4588858 – ident: S0263574717000637_ref33 doi: 10.1007/s12206-008-0746-5 – ident: S0263574717000637_ref30 doi: 10.1016/j.ifacol.2015.09.022 – ident: S0263574717000637_ref76 doi: 10.1109/ICRA.2014.6907444 – volume: 24 start-page: 553 year: 2016 ident: S0263574717000637_ref55 article-title: Vision-based model predictive control for steering of a nonholonomic mobile robot publication-title: IEEE Trans. Control Syst. Technol. – ident: S0263574717000637_ref51 doi: 10.1109/37.476384 – ident: S0263574717000637_ref83 doi: 10.1109/RoMoCo.2015.7219720 – ident: S0263574717000637_ref97 doi: 10.1109/TCST.2012.2227964 – ident: S0263574717000637_ref85 doi: 10.1109/ROBOT.1999.770473 – volume: 61 start-page: 1502 year: 2013 ident: S0263574717000637_ref72 article-title: Multi-robot nonlinear model predictive formation control: Moving target and target absence publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2013.07.005 – ident: S0263574717000637_ref104 doi: 10.1109/CCDC.2013.6561493 – ident: S0263574717000637_ref95 doi: 10.1109/ROBOT.2007.363939 – ident: S0263574717000637_ref58 doi: 10.1007/s12541-014-0406-x – ident: S0263574717000637_ref46 doi: 10.1109/IROS.2008.4650752 – ident: S0263574717000637_ref60 doi: 10.1109/ICMA.2015.7237892 |
SSID | ssj0013147 |
Score | 2.4370327 |
Snippet | Model predictive control (MPC) theory has gained attention with the recent increase in the processing power of computers that are now able to perform the... SUMMARYModel predictive control (MPC) theory has gained attention with the recent increase in the processing power of computers that are now able to perform... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 676 |
SubjectTerms | Computer simulation Control algorithms Control theory Formulations Mathematical models Predictive control Robot control Robots Tracking control Trajectory control |
Title | Nonholonomic mobile robots' trajectory tracking model predictive control: a survey |
URI | https://www.cambridge.org/core/product/identifier/S0263574717000637/type/journal_article https://www.proquest.com/docview/2023349968 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5se9GD-MRqLXsQBDHQJJvsxotUbS1ii1QLvYV99SCa1DQV-u_dTbcvhN4C2YUwO5n55rHfAFz5jBPtVbgT4ahhslXEiSISOVh5oZQcj7gwF4W7vbAzwC_DYGgTbhPbVrmwiYWhlqkwOXITpPu-huchvR__OGZqlKmu2hEaJahoE0xpGSoPrd5bf1VHcIsRYzrQ8J1AI-dFXbMgjTY8LCYmI4WjJuvsCpteatNIF56nfQD7FjKi5vyMD2FHJUewt0YkeAz9XpoYM1bcMUbfKdf_OspSnuaTa5Rn7LPIzc_MozC5cVQMwEHjzJRpjMFDtmX9DjE0mWa_anYCg3br47Hj2GkJjtAYIHdcySTnmAQMe6rBGGWSYUlDwTljo0CwkfCZlqAkgUeFEhHVsYryMJeccum7_imUkzRRZ4CU0MuURzhlrnbwEQ21Jw0a3FDja0SoqnC7lFRsdX4Sz_vFSPxPsFVoLIQZC8s8bgZgfG3bcrPcMp7TbmxbXFuc0OprVvpyvv31BexqEETnTYw1KOfZVF1qoJHzOpRo-7kOleZT9_W9bnXrDyTU0Oo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOEAPFY8iaIHuAYSEaimx1951JYQQNIRXDggkbmZfOSAap45plT_V38jM2iYgpNy4WfKubc2OZ755A-xESgvUKjpIedoib5UI0lSkAXdhYq3mfW2oUPiql3Rv-fldfDcD_5taGEqrbGSiF9Q2N-QjJyM9ihCeJ_Jw-CegqVEUXW1GaFRsceHG_9BkGx2cneD57oZh59fNcTeopwoEBnVlGbStslpzESseupZSUlnFrUyM1kr1Y6P6JlL4JiviUBpnUomY3oVcWy21jdoRPncW5nmEmpwq0zunk6hF2w80Q7MmCmLE6U0U1beopq4vZAEKDwvE614Ob3XiW5Xg9VxnCT7XAJUdVRy1DDNusAKfXrUtXIXrXj4goekrmtnvXKNkYUWu83K0x8pCPfhIwJguDXnimR-3w4YFBYVIvLI6Qf4nU2z0VPx14y9w-yFUXIO5QT5w68CcwWUuFFqqNsKJVCaot-OWpkb8iD_dBvx4oVRW_2GjrMpOE9k7wm5AqyFmZuo-5zRu43Halv2XLcOqyce0xZvNCU2-ZsKdX6ff_g4L3Zury-zyrHfxDRYRfskqfXIT5sriyW0hxCn1tucrBvcfzcjP5TQNXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonholonomic+mobile+robots%27+trajectory+tracking+model+predictive+control%3A+a+survey&rft.jtitle=Robotica&rft.au=Nascimento%2C+Tiago+P.&rft.au=D%C3%B3rea%2C+Carlos+E.+T.&rft.au=Gon%C3%A7alves%2C+Luiz+Marcos+G.&rft.date=2018-05-01&rft.issn=0263-5747&rft.eissn=1469-8668&rft.volume=36&rft.issue=5&rft.spage=676&rft.epage=696&rft_id=info:doi/10.1017%2FS0263574717000637&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0263574717000637 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5747&client=summon |