Nonholonomic mobile robots' trajectory tracking model predictive control: a survey

Model predictive control (MPC) theory has gained attention with the recent increase in the processing power of computers that are now able to perform the needed calculations for this technique. This kind of control algorithms can achieve better results in trajectory tracking control of mobile robots...

Full description

Saved in:
Bibliographic Details
Published inRobotica Vol. 36; no. 5; pp. 676 - 696
Main Authors Nascimento, Tiago P., Dórea, Carlos E. T., Gonçalves, Luiz Marcos G.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Model predictive control (MPC) theory has gained attention with the recent increase in the processing power of computers that are now able to perform the needed calculations for this technique. This kind of control algorithms can achieve better results in trajectory tracking control of mobile robots than classical control approaches. In this paper, we present a review of recent developments in trajectory tracking control of mobile robot systems using model predictive control theory, especially when nonholonomicity is present. Furthermore, we point out the growth of the related research starting with the boom of mobile robotics in the 90s and discuss reported field applications of the described control problem. The objective of this paper is to provide a unified and accessible presentation, placing the classical model, problem formulations and approaches into a proper context and to become a starting point for researchers who are initiating their endeavors in linear/nonlinear MPC applied to nonholonomic mobile robots. Finally, this work aims to present a comprehensive review of the recent breakthroughs in the field, providing links to the most interesting and successful works, including our contributions to state-of-the-art.
AbstractList SUMMARYModel predictive control (MPC) theory has gained attention with the recent increase in the processing power of computers that are now able to perform the needed calculations for this technique. This kind of control algorithms can achieve better results in trajectory tracking control of mobile robots than classical control approaches. In this paper, we present a review of recent developments in trajectory tracking control of mobile robot systems using model predictive control theory, especially when nonholonomicity is present. Furthermore, we point out the growth of the related research starting with the boom of mobile robotics in the 90s and discuss reported field applications of the described control problem. The objective of this paper is to provide a unified and accessible presentation, placing the classical model, problem formulations and approaches into a proper context and to become a starting point for researchers who are initiating their endeavors in linear/nonlinear MPC applied to nonholonomic mobile robots. Finally, this work aims to present a comprehensive review of the recent breakthroughs in the field, providing links to the most interesting and successful works, including our contributions to state-of-the-art.
Model predictive control (MPC) theory has gained attention with the recent increase in the processing power of computers that are now able to perform the needed calculations for this technique. This kind of control algorithms can achieve better results in trajectory tracking control of mobile robots than classical control approaches. In this paper, we present a review of recent developments in trajectory tracking control of mobile robot systems using model predictive control theory, especially when nonholonomicity is present. Furthermore, we point out the growth of the related research starting with the boom of mobile robotics in the 90s and discuss reported field applications of the described control problem. The objective of this paper is to provide a unified and accessible presentation, placing the classical model, problem formulations and approaches into a proper context and to become a starting point for researchers who are initiating their endeavors in linear/nonlinear MPC applied to nonholonomic mobile robots. Finally, this work aims to present a comprehensive review of the recent breakthroughs in the field, providing links to the most interesting and successful works, including our contributions to state-of-the-art.
Author Dórea, Carlos E. T.
Nascimento, Tiago P.
Gonçalves, Luiz Marcos G.
Author_xml – sequence: 1
  givenname: Tiago P.
  orcidid: 0000-0002-9319-2114
  surname: Nascimento
  fullname: Nascimento, Tiago P.
  email: tiagopn@ci.ufpb.br
  organization: †Embedded Systems and Robotics Lab (LaSER), Computer Systems Department, Federal University of Paraíba (UFPB), Brazil
– sequence: 2
  givenname: Carlos E. T.
  surname: Dórea
  fullname: Dórea, Carlos E. T.
  email: cetdorea@dca.ufrn.br
  organization: ‡Computer and Automation Engineering Department, Federal University of Rio Grande do Norte (UFRN), Brazil. E-mails: cetdorea@dca.ufrn.br, lmarcos@dca.ufrn.br
– sequence: 3
  givenname: Luiz Marcos G.
  surname: Gonçalves
  fullname: Gonçalves, Luiz Marcos G.
  email: cetdorea@dca.ufrn.br
  organization: ‡Computer and Automation Engineering Department, Federal University of Rio Grande do Norte (UFRN), Brazil. E-mails: cetdorea@dca.ufrn.br, lmarcos@dca.ufrn.br
BookMark eNp9kN1LwzAUxYNMcJv-Ab4VfPCpmjRpk_omwy8YCn48l5uPzsy2mUk22H9vywaCok_3wjm_ew9ngkad6wxCpwRfEEz45QvOCppzxgnHGBeUH6AxYUWZiqIQIzQe5HTQj9AkhCXGhBLGx-j50XXvrnGda61KWidtYxLvpIvhPIkelkZF57fDqj5st-gt2jTJyhttVbQbkyjXRe-aqwSSsPYbsz1GhzU0wZzs5xS93d68zu7T-dPdw-x6nipKeEyJBi0l4zmwzGAAARqYFoWSEqDOFdSKAmWl5nkmlFGlYIKbjEkthdSU0Ck6291defe5NiFWS7f2Xf-yynBGe7QsRO_iO5fyLgRv6krZCNEOqcE2FcHVUGD1q8CeJD_Ilbct-O2_DN0z0Epv9cJ8h_qb-gLme4V2
CitedBy_id crossref_primary_10_3390_s21217216
crossref_primary_10_1049_csy2_12086
crossref_primary_10_5937_fme2302192H
crossref_primary_10_1007_s10846_021_01373_7
crossref_primary_10_1109_ACCESS_2019_2903934
crossref_primary_10_1177_09596518231188497
crossref_primary_10_1109_LRA_2022_3203224
crossref_primary_10_1177_1729881419877316
crossref_primary_10_1109_TIE_2019_2962424
crossref_primary_10_1109_TMECH_2020_3014967
crossref_primary_10_1049_cth2_12659
crossref_primary_10_1017_S0263574723001054
crossref_primary_10_1017_S0263574724001140
crossref_primary_10_1016_j_ifacol_2022_11_017
crossref_primary_10_1007_s42835_020_00453_2
crossref_primary_10_1177_0036850420952219
crossref_primary_10_1007_s12555_019_0814_x
crossref_primary_10_3390_electronics8101077
crossref_primary_10_1017_S0263574723000127
crossref_primary_10_3390_electronics11111754
crossref_primary_10_1109_ACCESS_2020_3003285
crossref_primary_10_1007_s10846_019_01064_4
crossref_primary_10_1007_s10846_019_01083_1
crossref_primary_10_3390_app15010485
crossref_primary_10_1016_j_ins_2022_05_069
crossref_primary_10_3390_app14062414
crossref_primary_10_1016_j_jfranklin_2024_106660
crossref_primary_10_3390_act12040169
crossref_primary_10_1016_j_jfranklin_2021_11_009
crossref_primary_10_1109_ACCESS_2022_3220240
crossref_primary_10_1017_S0263574718001443
crossref_primary_10_1002_asjc_2980
crossref_primary_10_1016_j_mechatronics_2021_102693
crossref_primary_10_1080_17452759_2024_2433588
crossref_primary_10_1016_j_dibe_2024_100484
crossref_primary_10_1080_00207721_2024_2367711
crossref_primary_10_1109_LRA_2023_3284354
crossref_primary_10_1109_TII_2018_2875048
crossref_primary_10_1016_j_robot_2021_103903
crossref_primary_10_1109_ACCESS_2021_3098524
crossref_primary_10_1016_j_robot_2020_103468
crossref_primary_10_3390_robotics8030064
crossref_primary_10_1049_el_2019_4019
crossref_primary_10_1177_00202940211043070
crossref_primary_10_23919_JSEE_2023_000051
crossref_primary_10_1109_TCST_2022_3219298
crossref_primary_10_1002_acs_3239
crossref_primary_10_1007_s40430_022_03969_y
crossref_primary_10_1177_09544062231216189
crossref_primary_10_1108_IR_04_2022_0102
crossref_primary_10_1007_s10846_024_02202_3
crossref_primary_10_1109_TAES_2022_3211252
crossref_primary_10_1007_s10846_021_01522_y
crossref_primary_10_1016_j_robot_2023_104364
Cites_doi 10.1016/j.ifacol.2015.09.682
10.1016/j.robot.2011.07.006
10.1109/ACC.2012.6315090
10.1109/RVSP.2011.21
10.1109/ROBOT.2009.5152217
10.1016/0736-5845(95)00003-8
10.1016/S0005-1098(99)00214-9
10.1016/j.jfranklin.2015.03.021
10.1109/TCYB.2015.2478857
10.23919/ACC.2004.1383790
10.3724/SP.J.1004.2008.00588
10.1109/AMC.2010.5464088
10.1109/TCST.2015.2488589
10.1109/ICSMC.2010.5642367
10.1109/ACC.2016.7525212
10.3182/20080706-5-KR-1001.01905
10.1109/ICRA.2015.7139805
10.1002/rnc.813
10.1109/ICMA.2016.7558545
10.1109/ICRA.2016.7487274
10.1007/s10846-015-0183-5
10.1017/S0263574715000892
10.1109/TCST.2016.2558479
10.1016/j.compchemeng.2006.05.011
10.1109/CICSyN.2015.49
10.3182/20101206-3-JP-3009.00023
10.1016/S0921-8890(00)00095-6
10.3182/20140824-6-ZA-1003.01881
10.1177/1077546316646906
10.1016/S0921-8890(02)00172-0
10.3182/20080706-5-KR-1001.01615
10.1109/WCICA.2014.7052738
10.1016/j.bspc.2012.10.007
10.1109/ACC.2013.6580446
10.3182/20110828-6-IT-1002.03696
10.3182/20130828-2-SF-3019.00004
10.1109/CGNCC.2016.7829176
10.1109/ChiCC.2014.6896401
10.3182/20120823-5-NL-3013.00003
10.1109/ICInfA.2016.7832087
10.1109/TCST.2016.2569468
10.23919/ECC.2001.7076072
10.1109/TSMC.2015.2465352
10.1016/j.compag.2011.12.009
10.1109/ICRA.2013.6630821
10.1109/ROBIO.2015.7418803
10.1109/MERCon.2015.7112333
10.1109/LARS-SBR.2016.23
10.1109/ROBOT.2009.5152468
10.1109/TITS.2008.2011697
10.1109/TCST.2006.872512
10.23919/ECC.2007.7068422
10.1109/MFI.2014.6997679
10.1109/MESA.2008.4735699
10.1109/CDC.2016.7799190
10.1109/ICRoM.2013.6510097
10.1109/TCSI.2006.875166
10.1109/ACC.2012.6315199
10.3182/20060912-3-DE-2911.00166
10.1109/TMECH.2013.2243161
10.1002/oca.827
10.3182/20110828-6-IT-1002.01786
10.1109/TRO.2005.851357
10.3724/SP.J.1004.2013.01238
10.1016/j.ifacol.2015.12.006
10.1109/CJECE.2014.2328973
10.1016/j.ifacol.2016.07.597
10.1109/ICAR.2013.6766536
10.1109/CJECE.2016.2609803
10.1016/S0167-6911(00)00084-0
10.1016/j.conengprac.2008.03.004
10.1016/j.mechatronics.2016.01.006
10.1109/AQTR.2008.4588858
10.1007/s12206-008-0746-5
10.1016/j.ifacol.2015.09.022
10.1109/ICRA.2014.6907444
10.1109/37.476384
10.1109/RoMoCo.2015.7219720
10.1109/TCST.2012.2227964
10.1109/ROBOT.1999.770473
10.1016/j.robot.2013.07.005
10.1109/CCDC.2013.6561493
10.1109/ROBOT.2007.363939
10.1007/s12541-014-0406-x
10.1109/IROS.2008.4650752
10.1109/ICMA.2015.7237892
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2018
Copyright_xml – notice: Copyright © Cambridge University Press 2018
DBID AAYXX
CITATION
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S0263574717000637
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Nonholonomic mobile robots' trajectory tracking NMPC
EISSN 1469-8668
EndPage 696
ExternalDocumentID 10_1017_S0263574717000637
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.DC
.FH
09C
09E
0E1
0R~
123
29P
3V.
4.4
5VS
6~7
74X
74Y
7~V
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABZCX
ACBMC
ACDLN
ACETC
ACGFS
ACIMK
ACIWK
ACMRT
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
F5P
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M7S
M7~
M8.
MVM
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S6-
S6U
SAAAG
T9M
TN5
UT1
VOH
WFFJZ
WH7
WQ3
WXU
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AAYXX
ABGDZ
ABHFL
ABXHF
ACEJA
ACOZI
ADMLS
AKMAY
ANOYL
CITATION
PHGZM
PHGZT
7SC
7SP
7TB
7XB
8AL
8FD
8FK
F28
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c317t-1dadbb475a42e0aa8ada4d86cbbaaf5cafc3a349d7528cec98487e24bdb8bd313
IEDL.DBID BENPR
ISSN 0263-5747
IngestDate Sat Aug 23 15:08:22 EDT 2025
Tue Jul 01 00:58:52 EDT 2025
Thu Apr 24 22:52:23 EDT 2025
Tue Jan 21 06:20:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Control of robotic systems
Model predictive control
Trajectory tracking
Navigation
Mobile robots
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c317t-1dadbb475a42e0aa8ada4d86cbbaaf5cafc3a349d7528cec98487e24bdb8bd313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9319-2114
PQID 2023349968
PQPubID 37292
PageCount 21
ParticipantIDs proquest_journals_2023349968
crossref_citationtrail_10_1017_S0263574717000637
crossref_primary_10_1017_S0263574717000637
cambridge_journals_10_1017_S0263574717000637
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180500
2018-05-00
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 20180500
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Robotica
PublicationTitleAlternate Robotica
PublicationYear 2018
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0263574717000637_ref51
S0263574717000637_ref50
S0263574717000637_ref59
S0263574717000637_ref58
ao (S0263574717000637_ref72) 2013; 61
S0263574717000637_ref57
S0263574717000637_ref56
S0263574717000637_ref54
S0263574717000637_ref53
S0263574717000637_ref52
S0263574717000637_ref49
S0263574717000637_ref40
S0263574717000637_ref48
S0263574717000637_ref47
S0263574717000637_ref46
S0263574717000637_ref45
S0263574717000637_ref44
S0263574717000637_ref43
S0263574717000637_ref42
S0263574717000637_ref41
ao (S0263574717000637_ref73) 2014; 34
S0263574717000637_ref1
S0263574717000637_ref4
S0263574717000637_ref3
S0263574717000637_ref6
S0263574717000637_ref5
Ostafew (S0263574717000637_ref77) 2016; 1
S0263574717000637_ref8
S0263574717000637_ref9
S. (S0263574717000637_ref88) 2014; 19
S0263574717000637_ref37
S0263574717000637_ref36
S0263574717000637_ref35
Thrun (S0263574717000637_ref94) 2005
S0263574717000637_ref34
S0263574717000637_ref33
S0263574717000637_ref32
S0263574717000637_ref31
S0263574717000637_ref30
S0263574717000637_ref29
S0263574717000637_ref28
S0263574717000637_ref27
Yoo (S0263574717000637_ref100) 2006; 53
Gu (S0263574717000637_ref38) 2005; 21
S0263574717000637_ref26
S0263574717000637_ref25
S0263574717000637_ref24
S0263574717000637_ref23
S0263574717000637_ref22
S0263574717000637_ref21
S0263574717000637_ref20
Gu (S0263574717000637_ref39) 2006; 14
S0263574717000637_ref19
S0263574717000637_ref18
S0263574717000637_ref17
S0263574717000637_ref95
S0263574717000637_ref93
S0263574717000637_ref92
Li (S0263574717000637_ref55) 2016; 24
S0263574717000637_ref90
S0263574717000637_ref14
S0263574717000637_ref13
S0263574717000637_ref12
S0263574717000637_ref99
S0263574717000637_ref11
S0263574717000637_ref98
S0263574717000637_ref10
S0263574717000637_ref97
S0263574717000637_ref96
S0263574717000637_ref84
S0263574717000637_ref83
S0263574717000637_ref81
S0263574717000637_ref80
Camacho (S0263574717000637_ref16) 2004
S0263574717000637_ref89
S0263574717000637_ref87
S0263574717000637_ref86
S0263574717000637_ref85
Siegwart (S0263574717000637_ref91) 2004
Yoon (S0263574717000637_ref101) 2008; 41
ao (S0263574717000637_ref7) 2011; 44
S0263574717000637_ref71
S0263574717000637_ref70
Biegler (S0263574717000637_ref15) 2000
S0263574717000637_ref79
S0263574717000637_ref78
S0263574717000637_ref76
S0263574717000637_ref75
S0263574717000637_ref74
Abbas (S0263574717000637_ref2) 2017; 40
S0263574717000637_ref62
S0263574717000637_ref61
S0263574717000637_ref60
S0263574717000637_ref69
Yue (S0263574717000637_ref103) 2017; PP
S0263574717000637_ref68
ao (S0263574717000637_ref82) 2015; 48
S0263574717000637_ref67
S0263574717000637_ref66
S0263574717000637_ref65
S0263574717000637_ref64
S0263574717000637_ref63
S0263574717000637_ref104
S0263574717000637_ref105
S0263574717000637_ref102
S0263574717000637_ref106
References_xml – ident: S0263574717000637_ref45
  doi: 10.1016/j.ifacol.2015.09.682
– ident: S0263574717000637_ref92
  doi: 10.1016/j.robot.2011.07.006
– ident: S0263574717000637_ref41
– ident: S0263574717000637_ref80
  doi: 10.1109/ACC.2012.6315090
– ident: S0263574717000637_ref40
  doi: 10.1109/RVSP.2011.21
– start-page: 219
  volume-title: Efficient Solution of Dynamic Optimization and NMPC Problems
  year: 2000
  ident: S0263574717000637_ref15
– ident: S0263574717000637_ref47
  doi: 10.1109/ROBOT.2009.5152217
– ident: S0263574717000637_ref34
  doi: 10.1016/0736-5845(95)00003-8
– ident: S0263574717000637_ref67
  doi: 10.1016/S0005-1098(99)00214-9
– ident: S0263574717000637_ref31
  doi: 10.1016/j.jfranklin.2015.03.021
– ident: S0263574717000637_ref56
  doi: 10.1109/TCYB.2015.2478857
– ident: S0263574717000637_ref49
  doi: 10.23919/ACC.2004.1383790
– volume: PP
  start-page: 1
  year: 2017
  ident: S0263574717000637_ref103
  article-title: Constrained adaptive robust trajectory tracking for wip vehicles using model predictive control and extended state observer
  publication-title: IEEE Trans. Syst., Man Cybern.: Syst.
– ident: S0263574717000637_ref50
– ident: S0263574717000637_ref99
  doi: 10.3724/SP.J.1004.2008.00588
– ident: S0263574717000637_ref5
  doi: 10.1109/AMC.2010.5464088
– ident: S0263574717000637_ref98
  doi: 10.1109/TCST.2015.2488589
– ident: S0263574717000637_ref79
  doi: 10.1109/ICSMC.2010.5642367
– ident: S0263574717000637_ref43
  doi: 10.1109/ACC.2016.7525212
– ident: S0263574717000637_ref6
  doi: 10.3182/20080706-5-KR-1001.01905
– ident: S0263574717000637_ref23
  doi: 10.1109/ICRA.2015.7139805
– ident: S0263574717000637_ref1
  doi: 10.1002/rnc.813
– ident: S0263574717000637_ref105
  doi: 10.1109/ICMA.2016.7558545
– ident: S0263574717000637_ref75
  doi: 10.1109/ICRA.2016.7487274
– ident: S0263574717000637_ref20
– ident: S0263574717000637_ref74
  doi: 10.1007/s10846-015-0183-5
– ident: S0263574717000637_ref71
  doi: 10.1017/S0263574715000892
– ident: S0263574717000637_ref89
  doi: 10.1109/TCST.2016.2558479
– ident: S0263574717000637_ref28
– ident: S0263574717000637_ref62
– ident: S0263574717000637_ref57
  doi: 10.1016/j.compchemeng.2006.05.011
– ident: S0263574717000637_ref64
  doi: 10.1109/CICSyN.2015.49
– ident: S0263574717000637_ref9
  doi: 10.3182/20101206-3-JP-3009.00023
– ident: S0263574717000637_ref25
  doi: 10.1016/S0921-8890(00)00095-6
– ident: S0263574717000637_ref12
  doi: 10.3182/20140824-6-ZA-1003.01881
– ident: S0263574717000637_ref24
  doi: 10.1177/1077546316646906
– ident: S0263574717000637_ref37
  doi: 10.1016/S0921-8890(02)00172-0
– ident: S0263574717000637_ref106
  doi: 10.3182/20080706-5-KR-1001.01615
– ident: S0263574717000637_ref21
  doi: 10.1109/WCICA.2014.7052738
– ident: S0263574717000637_ref61
  doi: 10.1016/j.bspc.2012.10.007
– ident: S0263574717000637_ref63
  doi: 10.1109/ACC.2013.6580446
– volume: 44
  start-page: 8171
  year: 2011
  ident: S0263574717000637_ref7
  article-title: Model Predictive control based on LMIs applied to an omni-directional mobile robot
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20110828-6-IT-1002.03696
– volume-title: Efficient Solution of Dynamic Optimization and NMPC Problems
  year: 2005
  ident: S0263574717000637_ref94
– ident: S0263574717000637_ref11
  doi: 10.3182/20130828-2-SF-3019.00004
– ident: S0263574717000637_ref3
– ident: S0263574717000637_ref42
  doi: 10.1109/CGNCC.2016.7829176
– ident: S0263574717000637_ref36
– ident: S0263574717000637_ref22
  doi: 10.1109/ChiCC.2014.6896401
– ident: S0263574717000637_ref102
  doi: 10.3182/20120823-5-NL-3013.00003
– ident: S0263574717000637_ref70
  doi: 10.1109/ICInfA.2016.7832087
– ident: S0263574717000637_ref87
  doi: 10.1109/TCST.2016.2569468
– ident: S0263574717000637_ref26
  doi: 10.23919/ECC.2001.7076072
– ident: S0263574717000637_ref54
  doi: 10.1109/TSMC.2015.2465352
– ident: S0263574717000637_ref10
  doi: 10.1016/j.compag.2011.12.009
– ident: S0263574717000637_ref4
  doi: 10.1109/ICRA.2013.6630821
– ident: S0263574717000637_ref96
  doi: 10.1109/ROBIO.2015.7418803
– volume-title: Intelligent Robotics and Autonomous Agents
  year: 2004
  ident: S0263574717000637_ref91
– ident: S0263574717000637_ref69
  doi: 10.1109/MERCon.2015.7112333
– ident: S0263574717000637_ref86
  doi: 10.1109/LARS-SBR.2016.23
– ident: S0263574717000637_ref81
  doi: 10.1109/ROBOT.2009.5152468
– ident: S0263574717000637_ref84
  doi: 10.1109/TITS.2008.2011697
– volume: 14
  start-page: 743
  year: 2006
  ident: S0263574717000637_ref39
  article-title: Receding horizon tracking control of wheeled mobile robots
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2006.872512
– ident: S0263574717000637_ref35
  doi: 10.23919/ECC.2007.7068422
– volume-title: Model Predictive Control
  year: 2004
  ident: S0263574717000637_ref16
– ident: S0263574717000637_ref53
  doi: 10.1109/MFI.2014.6997679
– volume: 41
  start-page: 6792
  year: 2008
  ident: S0263574717000637_ref101
  article-title: Obstacle Avoidance for Wheeled Robots in Unknown Environments Using Model Predictive Control
  publication-title: Proceedings of the 17th World Congress the International Federation of Automatic Control
– ident: S0263574717000637_ref59
  doi: 10.1109/MESA.2008.4735699
– ident: S0263574717000637_ref90
  doi: 10.1109/CDC.2016.7799190
– ident: S0263574717000637_ref8
  doi: 10.1109/ICRoM.2013.6510097
– volume: 53
  start-page: 1381
  year: 2006
  ident: S0263574717000637_ref100
  article-title: Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: Adaptive learning rates approach
  publication-title: IEEE Trans. Circuits Syst. I: Regul. Pap.
  doi: 10.1109/TCSI.2006.875166
– ident: S0263574717000637_ref32
  doi: 10.1109/ACC.2012.6315199
– ident: S0263574717000637_ref27
– ident: S0263574717000637_ref48
– ident: S0263574717000637_ref52
  doi: 10.3182/20060912-3-DE-2911.00166
– volume: 19
  start-page: 467
  year: 2014
  ident: S0263574717000637_ref88
  article-title: Design and implementation of model-predictive control with friction compensation on an omnidirectional mobile robot
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2013.2243161
– ident: S0263574717000637_ref19
  doi: 10.1002/oca.827
– ident: S0263574717000637_ref13
  doi: 10.3182/20110828-6-IT-1002.01786
– volume: 21
  start-page: 1022
  year: 2005
  ident: S0263574717000637_ref38
  article-title: A stabilizing receding horizon regulator for nonholonomic mobile robots
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2005.851357
– volume: 1
  start-page: 1
  year: 2016
  ident: S0263574717000637_ref77
  article-title: Robust constrained learning-based NMPC enabling reliable mobile robot path tracking
  publication-title: The Int. J. Robot. Res.
– ident: S0263574717000637_ref17
  doi: 10.3724/SP.J.1004.2013.01238
– volume: 48
  start-page: 33
  year: 2015
  ident: S0263574717000637_ref82
  article-title: Stable model-based predictive control for wheeled mobile robots using linear matrix inequalities
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.12.006
– volume: 34
  start-page: 549
  year: 2014
  ident: S0263574717000637_ref73
  article-title: Multi-robot nonlinear model predictive formation control: The obstacle avoidance problem
  publication-title: Robotica
– ident: S0263574717000637_ref93
  doi: 10.1109/CJECE.2014.2328973
– ident: S0263574717000637_ref14
  doi: 10.1016/j.ifacol.2016.07.597
– ident: S0263574717000637_ref18
– ident: S0263574717000637_ref68
  doi: 10.1109/ICAR.2013.6766536
– volume: 40
  start-page: 12
  year: 2017
  ident: S0263574717000637_ref2
  article-title: Obstacle avoidance in real time with nonlinear model predictive control of autonomous vehicles
  publication-title: Can. J. Electr. Comput. Eng.
  doi: 10.1109/CJECE.2016.2609803
– ident: S0263574717000637_ref29
  doi: 10.1016/S0167-6911(00)00084-0
– ident: S0263574717000637_ref65
  doi: 10.1016/j.conengprac.2008.03.004
– ident: S0263574717000637_ref66
– ident: S0263574717000637_ref44
  doi: 10.1016/j.mechatronics.2016.01.006
– ident: S0263574717000637_ref78
  doi: 10.1109/AQTR.2008.4588858
– ident: S0263574717000637_ref33
  doi: 10.1007/s12206-008-0746-5
– ident: S0263574717000637_ref30
  doi: 10.1016/j.ifacol.2015.09.022
– ident: S0263574717000637_ref76
  doi: 10.1109/ICRA.2014.6907444
– volume: 24
  start-page: 553
  year: 2016
  ident: S0263574717000637_ref55
  article-title: Vision-based model predictive control for steering of a nonholonomic mobile robot
  publication-title: IEEE Trans. Control Syst. Technol.
– ident: S0263574717000637_ref51
  doi: 10.1109/37.476384
– ident: S0263574717000637_ref83
  doi: 10.1109/RoMoCo.2015.7219720
– ident: S0263574717000637_ref97
  doi: 10.1109/TCST.2012.2227964
– ident: S0263574717000637_ref85
  doi: 10.1109/ROBOT.1999.770473
– volume: 61
  start-page: 1502
  year: 2013
  ident: S0263574717000637_ref72
  article-title: Multi-robot nonlinear model predictive formation control: Moving target and target absence
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2013.07.005
– ident: S0263574717000637_ref104
  doi: 10.1109/CCDC.2013.6561493
– ident: S0263574717000637_ref95
  doi: 10.1109/ROBOT.2007.363939
– ident: S0263574717000637_ref58
  doi: 10.1007/s12541-014-0406-x
– ident: S0263574717000637_ref46
  doi: 10.1109/IROS.2008.4650752
– ident: S0263574717000637_ref60
  doi: 10.1109/ICMA.2015.7237892
SSID ssj0013147
Score 2.4370327
Snippet Model predictive control (MPC) theory has gained attention with the recent increase in the processing power of computers that are now able to perform the...
SUMMARYModel predictive control (MPC) theory has gained attention with the recent increase in the processing power of computers that are now able to perform...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 676
SubjectTerms Computer simulation
Control algorithms
Control theory
Formulations
Mathematical models
Predictive control
Robot control
Robots
Tracking control
Trajectory control
Title Nonholonomic mobile robots' trajectory tracking model predictive control: a survey
URI https://www.cambridge.org/core/product/identifier/S0263574717000637/type/journal_article
https://www.proquest.com/docview/2023349968
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5se9GD-MRqLXsQBDHQJJvsxotUbS1ii1QLvYV99SCa1DQV-u_dTbcvhN4C2YUwO5n55rHfAFz5jBPtVbgT4ahhslXEiSISOVh5oZQcj7gwF4W7vbAzwC_DYGgTbhPbVrmwiYWhlqkwOXITpPu-huchvR__OGZqlKmu2hEaJahoE0xpGSoPrd5bf1VHcIsRYzrQ8J1AI-dFXbMgjTY8LCYmI4WjJuvsCpteatNIF56nfQD7FjKi5vyMD2FHJUewt0YkeAz9XpoYM1bcMUbfKdf_OspSnuaTa5Rn7LPIzc_MozC5cVQMwEHjzJRpjMFDtmX9DjE0mWa_anYCg3br47Hj2GkJjtAYIHdcySTnmAQMe6rBGGWSYUlDwTljo0CwkfCZlqAkgUeFEhHVsYryMJeccum7_imUkzRRZ4CU0MuURzhlrnbwEQ21Jw0a3FDja0SoqnC7lFRsdX4Sz_vFSPxPsFVoLIQZC8s8bgZgfG3bcrPcMp7TbmxbXFuc0OprVvpyvv31BexqEETnTYw1KOfZVF1qoJHzOpRo-7kOleZT9_W9bnXrDyTU0Oo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOEAPFY8iaIHuAYSEaimx1951JYQQNIRXDggkbmZfOSAap45plT_V38jM2iYgpNy4WfKubc2OZ755A-xESgvUKjpIedoib5UI0lSkAXdhYq3mfW2oUPiql3Rv-fldfDcD_5taGEqrbGSiF9Q2N-QjJyM9ihCeJ_Jw-CegqVEUXW1GaFRsceHG_9BkGx2cneD57oZh59fNcTeopwoEBnVlGbStslpzESseupZSUlnFrUyM1kr1Y6P6JlL4JiviUBpnUomY3oVcWy21jdoRPncW5nmEmpwq0zunk6hF2w80Q7MmCmLE6U0U1beopq4vZAEKDwvE614Ob3XiW5Xg9VxnCT7XAJUdVRy1DDNusAKfXrUtXIXrXj4goekrmtnvXKNkYUWu83K0x8pCPfhIwJguDXnimR-3w4YFBYVIvLI6Qf4nU2z0VPx14y9w-yFUXIO5QT5w68CcwWUuFFqqNsKJVCaot-OWpkb8iD_dBvx4oVRW_2GjrMpOE9k7wm5AqyFmZuo-5zRu43Halv2XLcOqyce0xZvNCU2-ZsKdX6ff_g4L3Zury-zyrHfxDRYRfskqfXIT5sriyW0hxCn1tucrBvcfzcjP5TQNXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonholonomic+mobile+robots%27+trajectory+tracking+model+predictive+control%3A+a+survey&rft.jtitle=Robotica&rft.au=Nascimento%2C+Tiago+P.&rft.au=D%C3%B3rea%2C+Carlos+E.+T.&rft.au=Gon%C3%A7alves%2C+Luiz+Marcos+G.&rft.date=2018-05-01&rft.issn=0263-5747&rft.eissn=1469-8668&rft.volume=36&rft.issue=5&rft.spage=676&rft.epage=696&rft_id=info:doi/10.1017%2FS0263574717000637&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0263574717000637
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-5747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-5747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-5747&client=summon