Red and Near Infrared Emissive Bis‐Tridentate Ir(III) Phosphors for Organic Light Emitting Diodes

Efficient saturated red and near‐infrared (NIR) emissive materials are needed in the development of organic light‐emitting diodes (OLEDs), with applications extending beyond flat panel displays and lighting luminaries. Toward this aim, a series of bis‐tridentate Ir(III) complexes (3a ‒ 3c and 4a ‒ 4...

Full description

Saved in:
Bibliographic Details
Published inAdvanced optical materials Vol. 12; no. 5
Main Authors Yan, Jie, Song, Min, Zhou, Dong‐Ying, Ni, Guowei, Gu, Muhua, Yiu, Shek‐Man, Zhou, Xiuwen, Liao, Liang‐Sheng, Chi, Yun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2024
Subjects
Online AccessGet full text
ISSN2195-1071
2195-1071
DOI10.1002/adom.202301739

Cover

Loading…
Abstract Efficient saturated red and near‐infrared (NIR) emissive materials are needed in the development of organic light‐emitting diodes (OLEDs), with applications extending beyond flat panel displays and lighting luminaries. Toward this aim, a series of bis‐tridentate Ir(III) complexes (3a ‒ 3c and 4a ‒ 4c) are designed and synthesized, showing emission spanning the region of 601‒694 nm in degassed toluene. Their emission tuning is mainly achieved using monoanionic chromophoric chelates, L1H for red and L2H for deep‐red and NIR, where the extended π‐conjugation and electron deficient N atoms are introduced synergistically. Moreover, three ancillary chelates, X1H2, X2H2, and X3H2, delivered a secondary influence via varied donor strength to the central Ir(III) atom. The resulting red and deep‐red OLED devices exhibit maximum (max.) external quantum efficiencies (EQEs) of 21.4% and 18.1% with peak maximum at 620 and 666 nm, respectively. More impressively, the device based on 4b delivers a NIR emission peak maximum at 702 nm with a maximum EQE of 10.0%. Saturated‐red and near‐infrared emissive bis‐tridentate Ir(III) complexes are synthesized. The representative organic light‐emitting diode (OLED) devices exhibit maximum external quantum efficiencies of 21.4% and 10.0% with peak maximums at 620 and 702 nm, confirming their suitability in making phosphorescent OLED devices.
AbstractList Efficient saturated red and near‐infrared (NIR) emissive materials are needed in the development of organic light‐emitting diodes (OLEDs), with applications extending beyond flat panel displays and lighting luminaries. Toward this aim, a series of bis‐tridentate Ir(III) complexes (3a ‒ 3c and 4a ‒ 4c) are designed and synthesized, showing emission spanning the region of 601‒694 nm in degassed toluene. Their emission tuning is mainly achieved using monoanionic chromophoric chelates, L1H for red and L2H for deep‐red and NIR, where the extended π‐conjugation and electron deficient N atoms are introduced synergistically. Moreover, three ancillary chelates, X1H2, X2H2, and X3H2, delivered a secondary influence via varied donor strength to the central Ir(III) atom. The resulting red and deep‐red OLED devices exhibit maximum (max.) external quantum efficiencies (EQEs) of 21.4% and 18.1% with peak maximum at 620 and 666 nm, respectively. More impressively, the device based on 4b delivers a NIR emission peak maximum at 702 nm with a maximum EQE of 10.0%.
Efficient saturated red and near‐infrared (NIR) emissive materials are needed in the development of organic light‐emitting diodes (OLEDs), with applications extending beyond flat panel displays and lighting luminaries. Toward this aim, a series of bis‐tridentate Ir(III) complexes (3a ‒ 3c and 4a ‒ 4c) are designed and synthesized, showing emission spanning the region of 601‒694 nm in degassed toluene. Their emission tuning is mainly achieved using monoanionic chromophoric chelates, L1H for red and L2H for deep‐red and NIR, where the extended π‐conjugation and electron deficient N atoms are introduced synergistically. Moreover, three ancillary chelates, X1H2, X2H2, and X3H2, delivered a secondary influence via varied donor strength to the central Ir(III) atom. The resulting red and deep‐red OLED devices exhibit maximum (max.) external quantum efficiencies (EQEs) of 21.4% and 18.1% with peak maximum at 620 and 666 nm, respectively. More impressively, the device based on 4b delivers a NIR emission peak maximum at 702 nm with a maximum EQE of 10.0%. Saturated‐red and near‐infrared emissive bis‐tridentate Ir(III) complexes are synthesized. The representative organic light‐emitting diode (OLED) devices exhibit maximum external quantum efficiencies of 21.4% and 10.0% with peak maximums at 620 and 702 nm, confirming their suitability in making phosphorescent OLED devices.
Efficient saturated red and near‐infrared (NIR) emissive materials are needed in the development of organic light‐emitting diodes (OLEDs), with applications extending beyond flat panel displays and lighting luminaries. Toward this aim, a series of bis‐tridentate Ir(III) complexes ( 3a ‒ 3c and 4a ‒ 4c ) are designed and synthesized, showing emission spanning the region of 601‒694 nm in degassed toluene. Their emission tuning is mainly achieved using monoanionic chromophoric chelates, L1H for red and L2H for deep‐red and NIR, where the extended π‐conjugation and electron deficient N atoms are introduced synergistically. Moreover, three ancillary chelates, X1H 2 , X2H 2 , and X3H 2 , delivered a secondary influence via varied donor strength to the central Ir(III) atom. The resulting red and deep‐red OLED devices exhibit maximum (max.) external quantum efficiencies (EQEs) of 21.4% and 18.1% with peak maximum at 620 and 666 nm, respectively. More impressively, the device based on 4b delivers a NIR emission peak maximum at 702 nm with a maximum EQE of 10.0%.
Author Ni, Guowei
Liao, Liang‐Sheng
Chi, Yun
Yiu, Shek‐Man
Song, Min
Yan, Jie
Zhou, Dong‐Ying
Zhou, Xiuwen
Gu, Muhua
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0002-8305-5749
  surname: Yan
  fullname: Yan, Jie
  organization: City University of Hong Kong
– sequence: 2
  givenname: Min
  surname: Song
  fullname: Song, Min
  organization: Soochow University
– sequence: 3
  givenname: Dong‐Ying
  surname: Zhou
  fullname: Zhou, Dong‐Ying
  organization: Soochow University
– sequence: 4
  givenname: Guowei
  surname: Ni
  fullname: Ni, Guowei
  organization: City University of Hong Kong
– sequence: 5
  givenname: Muhua
  surname: Gu
  fullname: Gu, Muhua
  organization: City University of Hong Kong
– sequence: 6
  givenname: Shek‐Man
  surname: Yiu
  fullname: Yiu, Shek‐Man
  organization: City University of Hong Kong
– sequence: 7
  givenname: Xiuwen
  surname: Zhou
  fullname: Zhou, Xiuwen
  email: x.zhou6@uq.edu.au
  organization: The University of Queensland
– sequence: 8
  givenname: Liang‐Sheng
  surname: Liao
  fullname: Liao, Liang‐Sheng
  email: lsliao@suda.edu.cn
  organization: Soochow University
– sequence: 9
  givenname: Yun
  orcidid: 0000-0002-8441-3974
  surname: Chi
  fullname: Chi, Yun
  email: yunchi@cityu.edu.hk
  organization: City University of Hong Kong
BookMark eNqFkMtOAjEUhhuDiYhsXTdxo4vBXmZou0RAnQTFGFxPatuBEmixHTTsfASf0SdxCEaNiXF1Ljnf-ZPvEDScdwaAY4w6GCFyLrVfdggiFGFGxR5oEiyyBCOGGz_6A9COcY4QqgcqUtYE6t5oKJ2Gt0YGmLsyyFBvhksbo3028MLG99e3SbDauEpWBubhNM_zM3g383E18yHC0gc4DlPprIIjO51VW7qqrJvCgfXaxCOwX8pFNO3P2gIPl8NJ_zoZja_yfm-UKIqZSMouF0JgRhTrdjXXUmDFuSaqfEQpoqlhPGOUK16mBAlBNMYEZSWnRBqtlKAtcLL7uwr-aW1iVcz9Org6siCCZCwTvMvrq87uSgUfYzBlsQp2KcOmwKjYuiy2LosvlzWQ_gKUrVVY76og7eJvTOywF7swm39Cit5gfPPNfgCgiIpO
CitedBy_id crossref_primary_10_1039_D4TC00038B
crossref_primary_10_1039_D4TC02716G
crossref_primary_10_1021_acs_inorgchem_4c03769
crossref_primary_10_1039_D4DT01996B
crossref_primary_10_1109_LED_2024_3435394
Cites_doi 10.1039/B916237B
10.1039/C9CS00573K
10.1039/D2TC00698G
10.1002/adhm.201900260
10.1039/c3dt51211h
10.1039/D3TC00144J
10.1016/j.cej.2022.138632
10.1002/ejic.202200222
10.1002/adfm.201906738
10.1016/j.isci.2021.102156
10.1039/b716743a
10.1002/anie.202300815
10.3390/molecules24071412
10.1039/D0TC05218C
10.1039/C9TC06813A
10.1039/C3CP53806K
10.1002/adfm.202208082
10.1039/D2QI02449G
10.1016/j.theochem.2009.08.018
10.1021/acs.accounts.2c00827
10.1002/adfm.202211853
10.1016/j.ccr.2018.01.010
10.1002/adma.201603253
10.1039/D0CC02745F
10.1002/adma.200401806
10.1039/C9SC05492H
10.1021/ic0489443
10.1002/adom.202000154
10.1063/1.1558471
10.1021/acsami.9b16576
10.1038/s41566-022-01079-8
10.1002/anie.202113718
10.3390/molecules27010286
10.1002/adma.202005630
10.1021/acs.inorgchem.9b01383
10.1039/C8CS00660A
10.1021/acs.orglett.7b00323
10.1016/j.isci.2021.102545
10.1039/C5TC00163C
10.1021/acs.chemmater.7b00518
10.1038/s41566-020-0653-6
10.1038/s41566-021-00855-2
10.1039/D2QM01163H
10.1002/adom.202201291
10.1039/D2TC01511K
10.1039/c3tc30866a
10.1557/mrs2007.144
10.1248/cpb.33.626
10.1021/acs.accounts.7b00180
10.1002/adom.202200111
10.1039/D2SC05023D
10.1039/D0DT01964J
10.1016/j.ica.2021.120737
10.1039/C9TC03645H
10.1021/accountsmr.2c00078
10.1080/00268977000100171
10.1002/chem.201903707
10.1002/chem.201806148
10.1002/adpr.202100121
10.1021/acs.inorgchem.3c00670
10.1021/acs.chemmater.8b04278
10.1016/j.ccr.2016.11.016
10.1002/anie.201006629
10.1016/j.isci.2021.102858
10.1016/j.ccr.2010.12.013
10.1002/adma.201907539
10.1016/j.cej.2022.138956
10.1021/acsami.1c00238
10.1039/D2QI02058K
10.1002/chem.201601216
10.1002/chem.202103202
10.1039/D0TC04881J
10.1007/s41061-021-00357-3
10.1002/adma.201601861
10.1002/adom.201800512
10.1016/j.ccr.2011.01.042
10.1021/ic202756w
10.1021/ic100740e
10.1002/adma.201003128
10.1039/C6CC06729H
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1002/adom.202301739
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2195-1071
EndPage n/a
ExternalDocumentID 10_1002_adom_202301739
ADOM202301739
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61961160731; 51821002
– fundername: University Grants Council
  funderid: N_CityU102/19
– fundername: Discovery Early Career Researcher Award
  funderid: ARC DECRA DE190100144
GroupedDBID 0R~
1OC
33P
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
D-B
DCZOG
DPXWK
EBS
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
EJD
GODZA
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H8D
L7M
ID FETCH-LOGICAL-c3179-f68999172c766d8da91c88d2cfb04034e785738c8f420992d11205f832aedcc93
ISSN 2195-1071
IngestDate Tue Aug 12 22:22:11 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Tue Jul 01 00:36:03 EDT 2025
Wed Jan 22 16:15:19 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3179-f68999172c766d8da91c88d2cfb04034e785738c8f420992d11205f832aedcc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8305-5749
0000-0002-8441-3974
PQID 2925759868
PQPubID 2034581
PageCount 12
ParticipantIDs proquest_journals_2925759868
crossref_primary_10_1002_adom_202301739
crossref_citationtrail_10_1002_adom_202301739
wiley_primary_10_1002_adom_202301739_ADOM202301739
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced optical materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2005 2017; 17 50
2009; 914
2003; 118
2018; 360
2013; 1
2007 2014 2021; 32 16 33
2022 2022; 10 2022
2020; 14
2023 2023 2023; 7 33 11
2020; 12
2020; 11
2022; 27
2022; 28
2020; 8
2019 2019 2021; 58 25 9
2023; 62
2017 2017 2020 2022; 53 29 49 3
2019 2020; 25 49
2021 2023; 15 56
2022 2023; 16 62
2023; 451
2021 2021 2023; 24 24 33
2011 2011; 255 255
2023; 10
2019; 7
2019 2019; 24 8
2008 2017; 16 346
2015; 3
2021; 2
2019; 31
2013; 42
2021; 380
2020 2021 2022 2022 2023; 56 24 9 10 452
2006
2017; 29
2020; 32
1970; 18
2005; 44
2021; 13
2022 2021 2022; 10 9 13
2010; 49
2020; 30
2010 2011 2017 2018; 39 23 29 6
2022; 61
2011; 50
2017; 19
2022; 10
1985; 33
2012 2020 2022; 51 49 532
2016; 22
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_28_3
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_49_1
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_1_4
Weber A. E. (e_1_2_8_26_1) 2006
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_17_3
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_29_3
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_16_2
e_1_2_8_16_3
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_18_2
e_1_2_8_10_4
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_10_5
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_14_2
e_1_2_8_35_4
e_1_2_8_16_1
e_1_2_8_35_3
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_10_3
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 360
  start-page: 34
  year: 2018
  publication-title: Coord. Chem. Rev.
– volume: 255 255
  start-page: 2622 2653
  year: 2011 2011
  publication-title: Coord. Chem. Rev. Coord. Chem. Rev.
– volume: 10 2022
  year: 2022 2022
  publication-title: Adv. Opt. Mater. Eur. J. Inorg. Chem.
– volume: 118
  start-page: 4775
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 22
  year: 2016
  publication-title: Chem. ‐ Eur. J.
– volume: 42
  year: 2013
  publication-title: Dalton Trans.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 44
  start-page: 1344
  year: 2005
  publication-title: Inorg. Chem.
– volume: 11
  start-page: 2342
  year: 2020
  publication-title: Chem. Sci.
– volume: 18
  start-page: 145
  year: 1970
  publication-title: Mol. Phys.
– volume: 451
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 62
  start-page: 7898
  year: 2023
  publication-title: Inorg. Chem.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 53 29 49 3
  start-page: 807 765 830
  year: 2017 2017 2020 2022
  publication-title: Chem. Commun. Adv. Mater. Chem. Soc. Rev. Acc Mater Res
– volume: 32 16 33
  start-page: 694 1719
  year: 2007 2014 2021
  publication-title: MRS Bull. Phys. Chem. Chem. Phys. Adv. Mater.
– volume: 2
  year: 2021
  publication-title: Adv Photonics Res
– volume: 16 62
  start-page: 843
  year: 2022 2023
  publication-title: Nat. Photonics Angew. Chem., Int. Ed.
– volume: 31
  start-page: 6453
  year: 2019
  publication-title: Chem. Mater.
– volume: 51 49 532
  start-page: 3813
  year: 2012 2020 2022
  publication-title: Inorg. Chem. Dalton Trans. Inorg. Chim. Acta
– volume: 28
  year: 2022
  publication-title: Chem. ‐ Eur. J.
– volume: 3
  start-page: 3460
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 24 8
  start-page: 1412
  year: 2019 2019
  publication-title: Molecules Adv. Healthcare Mater.
– volume: 12
  start-page: 1084
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 914
  start-page: 3
  year: 2009
  publication-title: J. Mol. Struct.
– volume: 49
  year: 2010
  publication-title: Inorg. Chem.
– volume: 33
  start-page: 626
  year: 1985
  publication-title: Chem. Pharm. Bull.
– volume: 17 50
  start-page: 1059 2727
  year: 2005 2017
  publication-title: Adv. Mater. Acc. Chem. Res.
– volume: 16 346
  start-page: 2081 91
  year: 2008 2017
  publication-title: Dalton Trans. Coord. Chem. Rev.
– volume: 25 49
  start-page: 6043 1057
  year: 2019 2020
  publication-title: Chem. ‐ Eur. J. Chem. Soc. Rev.
– volume: 1
  start-page: 6446
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 50
  start-page: 2054
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 19
  start-page: 1236
  year: 2017
  publication-title: Org. Lett.
– volume: 29
  start-page: 4775
  year: 2017
  publication-title: Chem. Mater.
– volume: 24 24 33
  year: 2021 2021 2023
  publication-title: iScience iScience Adv. Funct. Mater.
– volume: 56 24 9 10 452
  start-page: 8754 6544
  year: 2020 2021 2022 2022 2023
  publication-title: Chem. Commun. iScience Inorg. Chem. Front. Adv. Opt. Mater. Chem. Eng. J.
– volume: 27
  start-page: 286
  year: 2022
  publication-title: Molecules
– volume: 380
  start-page: 6
  year: 2021
  publication-title: Top Curr Chem
– volume: 14
  start-page: 570
  year: 2020
  publication-title: Nat. Photonics
– year: 2006
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 15 56
  start-page: 656 689
  year: 2021 2023
  publication-title: Nat. Photonics Acc. Chem. Res.
– volume: 58 25 9
  start-page: 1318
  year: 2019 2019 2021
  publication-title: Inorg. Chem. Chem. ‐ Eur. J. J. Mater. Chem. C
– volume: 7 33 11
  start-page: 873 4017
  year: 2023 2023 2023
  publication-title: Mater. Chem. Front. Adv. Funct. Mater. J. Mater. Chem. C
– volume: 10
  start-page: 1395
  year: 2023
  publication-title: Inorg. Chem. Front.
– volume: 10 9 13
  start-page: 127
  year: 2022 2021 2022
  publication-title: J. Mater. Chem. C J. Mater. Chem. C Chem. Sci.
– volume: 8
  start-page: 4789
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 39 23 29 6
  start-page: 638 926
  year: 2010 2011 2017 2018
  publication-title: Chem. Soc. Rev. Adv. Mater. Adv. Mater. Adv. Opt. Mater.
– volume: 10
  start-page: 6646
  year: 2022
  publication-title: J. Mater. Chem. C
– ident: e_1_2_8_1_1
  doi: 10.1039/B916237B
– ident: e_1_2_8_33_2
  doi: 10.1039/C9CS00573K
– ident: e_1_2_8_46_1
  doi: 10.1039/D2TC00698G
– ident: e_1_2_8_7_2
  doi: 10.1002/adhm.201900260
– ident: e_1_2_8_24_1
  doi: 10.1039/c3dt51211h
– ident: e_1_2_8_16_3
  doi: 10.1039/D3TC00144J
– ident: e_1_2_8_42_1
  doi: 10.1016/j.cej.2022.138632
– ident: e_1_2_8_9_2
  doi: 10.1002/ejic.202200222
– ident: e_1_2_8_34_1
  doi: 10.1002/adfm.201906738
– ident: e_1_2_8_4_1
  doi: 10.1016/j.isci.2021.102156
– ident: e_1_2_8_18_1
  doi: 10.1039/b716743a
– ident: e_1_2_8_11_2
  doi: 10.1002/anie.202300815
– ident: e_1_2_8_7_1
  doi: 10.3390/molecules24071412
– ident: e_1_2_8_29_3
  doi: 10.1039/D0TC05218C
– ident: e_1_2_8_47_1
  doi: 10.1039/C9TC06813A
– ident: e_1_2_8_2_2
  doi: 10.1039/C3CP53806K
– ident: e_1_2_8_4_3
  doi: 10.1002/adfm.202208082
– ident: e_1_2_8_40_1
  doi: 10.1039/D2QI02449G
– ident: e_1_2_8_38_1
  doi: 10.1016/j.theochem.2009.08.018
– ident: e_1_2_8_14_2
  doi: 10.1021/acs.accounts.2c00827
– ident: e_1_2_8_16_2
  doi: 10.1002/adfm.202211853
– ident: e_1_2_8_6_1
  doi: 10.1016/j.ccr.2018.01.010
– ident: e_1_2_8_35_2
  doi: 10.1002/adma.201603253
– ident: e_1_2_8_10_1
  doi: 10.1039/D0CC02745F
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.200401806
– ident: e_1_2_8_41_1
  doi: 10.1039/C9SC05492H
– ident: e_1_2_8_19_1
  doi: 10.1021/ic0489443
– ident: e_1_2_8_45_1
  doi: 10.1002/adom.202000154
– ident: e_1_2_8_39_1
  doi: 10.1063/1.1558471
– ident: e_1_2_8_31_1
  doi: 10.1021/acsami.9b16576
– ident: e_1_2_8_11_1
  doi: 10.1038/s41566-022-01079-8
– ident: e_1_2_8_51_1
  doi: 10.1002/anie.202113718
– ident: e_1_2_8_44_1
  doi: 10.3390/molecules27010286
– ident: e_1_2_8_2_3
  doi: 10.1002/adma.202005630
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.inorgchem.9b01383
– ident: e_1_2_8_35_3
  doi: 10.1039/C8CS00660A
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.orglett.7b00323
– ident: e_1_2_8_4_2
  doi: 10.1016/j.isci.2021.102545
– ident: e_1_2_8_23_1
  doi: 10.1039/C5TC00163C
– ident: e_1_2_8_49_1
  doi: 10.1021/acs.chemmater.7b00518
– ident: e_1_2_8_13_1
  doi: 10.1038/s41566-020-0653-6
– ident: e_1_2_8_14_1
  doi: 10.1038/s41566-021-00855-2
– ident: e_1_2_8_16_1
  doi: 10.1039/D2QM01163H
– ident: e_1_2_8_9_1
  doi: 10.1002/adom.202201291
– ident: e_1_2_8_17_1
  doi: 10.1039/D2TC01511K
– ident: e_1_2_8_50_1
  doi: 10.1039/c3tc30866a
– ident: e_1_2_8_2_1
  doi: 10.1557/mrs2007.144
– ident: e_1_2_8_25_1
  doi: 10.1248/cpb.33.626
– ident: e_1_2_8_8_2
  doi: 10.1021/acs.accounts.7b00180
– ident: e_1_2_8_10_4
  doi: 10.1002/adom.202200111
– ident: e_1_2_8_17_3
  doi: 10.1039/D2SC05023D
– ident: e_1_2_8_28_2
  doi: 10.1039/D0DT01964J
– ident: e_1_2_8_28_3
  doi: 10.1016/j.ica.2021.120737
– ident: e_1_2_8_48_1
  doi: 10.1039/C9TC03645H
– ident: e_1_2_8_35_4
  doi: 10.1021/accountsmr.2c00078
– ident: e_1_2_8_36_1
  doi: 10.1080/00268977000100171
– ident: e_1_2_8_29_2
  doi: 10.1002/chem.201903707
– ident: e_1_2_8_33_1
  doi: 10.1002/chem.201806148
– ident: e_1_2_8_43_1
  doi: 10.1002/adpr.202100121
– start-page: WO2006023750
  volume-title: World Intellectual Property Organization
  year: 2006
  ident: e_1_2_8_26_1
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.inorgchem.3c00670
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.chemmater.8b04278
– ident: e_1_2_8_18_2
  doi: 10.1016/j.ccr.2016.11.016
– ident: e_1_2_8_20_1
  doi: 10.1002/anie.201006629
– ident: e_1_2_8_10_2
  doi: 10.1016/j.isci.2021.102858
– ident: e_1_2_8_12_2
  doi: 10.1016/j.ccr.2010.12.013
– ident: e_1_2_8_3_1
  doi: 10.1002/adma.201907539
– ident: e_1_2_8_10_5
  doi: 10.1016/j.cej.2022.138956
– ident: e_1_2_8_30_1
  doi: 10.1021/acsami.1c00238
– ident: e_1_2_8_10_3
  doi: 10.1039/D2QI02058K
– ident: e_1_2_8_27_1
  doi: 10.1002/chem.201601216
– ident: e_1_2_8_15_1
  doi: 10.1002/chem.202103202
– ident: e_1_2_8_17_2
  doi: 10.1039/D0TC04881J
– ident: e_1_2_8_5_1
  doi: 10.1007/s41061-021-00357-3
– ident: e_1_2_8_1_3
  doi: 10.1002/adma.201601861
– ident: e_1_2_8_1_4
  doi: 10.1002/adom.201800512
– ident: e_1_2_8_12_1
  doi: 10.1016/j.ccr.2011.01.042
– ident: e_1_2_8_28_1
  doi: 10.1021/ic202756w
– ident: e_1_2_8_32_1
  doi: 10.1021/ic100740e
– ident: e_1_2_8_1_2
  doi: 10.1002/adma.201003128
– ident: e_1_2_8_35_1
  doi: 10.1039/C6CC06729H
SSID ssj0001073947
Score 2.3892446
Snippet Efficient saturated red and near‐infrared (NIR) emissive materials are needed in the development of organic light‐emitting diodes (OLEDs), with applications...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Chelates
Conjugation
cyclometalation
Emission
Flat panel displays
iridium
near infrared
Near infrared radiation
Organic light emitting diodes
Phosphors
pyrazine
pyrazolate
pyridine
Quantum efficiency
Toluene
Title Red and Near Infrared Emissive Bis‐Tridentate Ir(III) Phosphors for Organic Light Emitting Diodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202301739
https://www.proquest.com/docview/2925759868
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9sILjJsoDOQHJEAokLhO4jwOOrROFBDrpMFL5NiOGgk1VdpqEk_8BJ74gfwSjq9txbjtJaoc1218Pp-Lc_wdhB5JViVMxlUExk5FVFQy4pSzqKbgLNQxrSpDkjR-mx2d0uOz9KzX-76RtbRaVs_FlwvPlVxGqtAGctWnZP9DsmFQaIDPIF-4goTh-k8y_qAM0SpoKt7BSq87k01-CKIzSekvm0XIZZh0unqo9iyfjTrtVY5GekPg_bRdzKe64I5ON7QHMwUE6hCx63FsUvSwaaVLNfR8tT5zoJ3bvXDwe-0DBy1iN1aPmwCcE5f8O24CHj9N25X14uGW_6cfvTE1b0vMvv2qPVfN5v4EoT6l2asxoqtBQpBpm9QFbV4Pkw28pRsWOdirX9S9pY_lstWcAhBMJbllRtrm1Q490z_3tTTAw3fjcP8K2iUQfoDC3z0Yjt-crHfv9AtOU70uPIpnBI3Ji-0f2fZ41mHMZjBkvJnJHrrmwhB8YDF1A_XU7Ca67kIS7BT-4hYSADEMEMMaYthDDHuIYYDYj6_f1uDCo-4JQOspDsDCACzsgIUNsLAHFrbAuo1OXx9OXh1Fri5HJMDbLKI6YzqsyInIs0wyyYtEMCaJqCswCQOqcpbmAyZYTfXBbCLBp4_TGmwHV1KIYnAH7czambqLcKx4NkiqOi4Up7XKi6SgMVEpl3WeKx73UeTnrhSOtF7XTvlcWrptUuq5LsNc99Hj0H9u6Vp-23Pfi6J0S3pRkoLogrUsY31EjHj-Mkq5BZd7l_nSfXR1vWz20c6yW6kH4Oguq4cOdT8BzjKdZg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Red+and+Near+Infrared+Emissive+Bis%E2%80%90Tridentate+Ir%28III%29+Phosphors+for+Organic+Light+Emitting+Diodes&rft.jtitle=Advanced+optical+materials&rft.au=Yan%2C+Jie&rft.au=Song%2C+Min&rft.au=Zhou%2C+Dong%E2%80%90Ying&rft.au=Ni%2C+Guowei&rft.date=2024-02-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=12&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadom.202301739&rft.externalDBID=10.1002%252Fadom.202301739&rft.externalDocID=ADOM202301739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon