Red and Near Infrared Emissive Bis‐Tridentate Ir(III) Phosphors for Organic Light Emitting Diodes
Efficient saturated red and near‐infrared (NIR) emissive materials are needed in the development of organic light‐emitting diodes (OLEDs), with applications extending beyond flat panel displays and lighting luminaries. Toward this aim, a series of bis‐tridentate Ir(III) complexes (3a ‒ 3c and 4a ‒ 4...
Saved in:
Published in | Advanced optical materials Vol. 12; no. 5 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2195-1071 2195-1071 |
DOI | 10.1002/adom.202301739 |
Cover
Loading…
Abstract | Efficient saturated red and near‐infrared (NIR) emissive materials are needed in the development of organic light‐emitting diodes (OLEDs), with applications extending beyond flat panel displays and lighting luminaries. Toward this aim, a series of bis‐tridentate Ir(III) complexes (3a ‒ 3c and 4a ‒ 4c) are designed and synthesized, showing emission spanning the region of 601‒694 nm in degassed toluene. Their emission tuning is mainly achieved using monoanionic chromophoric chelates, L1H for red and L2H for deep‐red and NIR, where the extended π‐conjugation and electron deficient N atoms are introduced synergistically. Moreover, three ancillary chelates, X1H2, X2H2, and X3H2, delivered a secondary influence via varied donor strength to the central Ir(III) atom. The resulting red and deep‐red OLED devices exhibit maximum (max.) external quantum efficiencies (EQEs) of 21.4% and 18.1% with peak maximum at 620 and 666 nm, respectively. More impressively, the device based on 4b delivers a NIR emission peak maximum at 702 nm with a maximum EQE of 10.0%.
Saturated‐red and near‐infrared emissive bis‐tridentate Ir(III) complexes are synthesized. The representative organic light‐emitting diode (OLED) devices exhibit maximum external quantum efficiencies of 21.4% and 10.0% with peak maximums at 620 and 702 nm, confirming their suitability in making phosphorescent OLED devices. |
---|---|
AbstractList | Efficient saturated red and near‐infrared (NIR) emissive materials are needed in the development of organic light‐emitting diodes (OLEDs), with applications extending beyond flat panel displays and lighting luminaries. Toward this aim, a series of bis‐tridentate Ir(III) complexes (3a ‒ 3c and 4a ‒ 4c) are designed and synthesized, showing emission spanning the region of 601‒694 nm in degassed toluene. Their emission tuning is mainly achieved using monoanionic chromophoric chelates, L1H for red and L2H for deep‐red and NIR, where the extended π‐conjugation and electron deficient N atoms are introduced synergistically. Moreover, three ancillary chelates, X1H2, X2H2, and X3H2, delivered a secondary influence via varied donor strength to the central Ir(III) atom. The resulting red and deep‐red OLED devices exhibit maximum (max.) external quantum efficiencies (EQEs) of 21.4% and 18.1% with peak maximum at 620 and 666 nm, respectively. More impressively, the device based on 4b delivers a NIR emission peak maximum at 702 nm with a maximum EQE of 10.0%. Efficient saturated red and near‐infrared (NIR) emissive materials are needed in the development of organic light‐emitting diodes (OLEDs), with applications extending beyond flat panel displays and lighting luminaries. Toward this aim, a series of bis‐tridentate Ir(III) complexes (3a ‒ 3c and 4a ‒ 4c) are designed and synthesized, showing emission spanning the region of 601‒694 nm in degassed toluene. Their emission tuning is mainly achieved using monoanionic chromophoric chelates, L1H for red and L2H for deep‐red and NIR, where the extended π‐conjugation and electron deficient N atoms are introduced synergistically. Moreover, three ancillary chelates, X1H2, X2H2, and X3H2, delivered a secondary influence via varied donor strength to the central Ir(III) atom. The resulting red and deep‐red OLED devices exhibit maximum (max.) external quantum efficiencies (EQEs) of 21.4% and 18.1% with peak maximum at 620 and 666 nm, respectively. More impressively, the device based on 4b delivers a NIR emission peak maximum at 702 nm with a maximum EQE of 10.0%. Saturated‐red and near‐infrared emissive bis‐tridentate Ir(III) complexes are synthesized. The representative organic light‐emitting diode (OLED) devices exhibit maximum external quantum efficiencies of 21.4% and 10.0% with peak maximums at 620 and 702 nm, confirming their suitability in making phosphorescent OLED devices. Efficient saturated red and near‐infrared (NIR) emissive materials are needed in the development of organic light‐emitting diodes (OLEDs), with applications extending beyond flat panel displays and lighting luminaries. Toward this aim, a series of bis‐tridentate Ir(III) complexes ( 3a ‒ 3c and 4a ‒ 4c ) are designed and synthesized, showing emission spanning the region of 601‒694 nm in degassed toluene. Their emission tuning is mainly achieved using monoanionic chromophoric chelates, L1H for red and L2H for deep‐red and NIR, where the extended π‐conjugation and electron deficient N atoms are introduced synergistically. Moreover, three ancillary chelates, X1H 2 , X2H 2 , and X3H 2 , delivered a secondary influence via varied donor strength to the central Ir(III) atom. The resulting red and deep‐red OLED devices exhibit maximum (max.) external quantum efficiencies (EQEs) of 21.4% and 18.1% with peak maximum at 620 and 666 nm, respectively. More impressively, the device based on 4b delivers a NIR emission peak maximum at 702 nm with a maximum EQE of 10.0%. |
Author | Ni, Guowei Liao, Liang‐Sheng Chi, Yun Yiu, Shek‐Man Song, Min Yan, Jie Zhou, Dong‐Ying Zhou, Xiuwen Gu, Muhua |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0002-8305-5749 surname: Yan fullname: Yan, Jie organization: City University of Hong Kong – sequence: 2 givenname: Min surname: Song fullname: Song, Min organization: Soochow University – sequence: 3 givenname: Dong‐Ying surname: Zhou fullname: Zhou, Dong‐Ying organization: Soochow University – sequence: 4 givenname: Guowei surname: Ni fullname: Ni, Guowei organization: City University of Hong Kong – sequence: 5 givenname: Muhua surname: Gu fullname: Gu, Muhua organization: City University of Hong Kong – sequence: 6 givenname: Shek‐Man surname: Yiu fullname: Yiu, Shek‐Man organization: City University of Hong Kong – sequence: 7 givenname: Xiuwen surname: Zhou fullname: Zhou, Xiuwen email: x.zhou6@uq.edu.au organization: The University of Queensland – sequence: 8 givenname: Liang‐Sheng surname: Liao fullname: Liao, Liang‐Sheng email: lsliao@suda.edu.cn organization: Soochow University – sequence: 9 givenname: Yun orcidid: 0000-0002-8441-3974 surname: Chi fullname: Chi, Yun email: yunchi@cityu.edu.hk organization: City University of Hong Kong |
BookMark | eNqFkMtOAjEUhhuDiYhsXTdxo4vBXmZou0RAnQTFGFxPatuBEmixHTTsfASf0SdxCEaNiXF1Ljnf-ZPvEDScdwaAY4w6GCFyLrVfdggiFGFGxR5oEiyyBCOGGz_6A9COcY4QqgcqUtYE6t5oKJ2Gt0YGmLsyyFBvhksbo3028MLG99e3SbDauEpWBubhNM_zM3g383E18yHC0gc4DlPprIIjO51VW7qqrJvCgfXaxCOwX8pFNO3P2gIPl8NJ_zoZja_yfm-UKIqZSMouF0JgRhTrdjXXUmDFuSaqfEQpoqlhPGOUK16mBAlBNMYEZSWnRBqtlKAtcLL7uwr-aW1iVcz9Org6siCCZCwTvMvrq87uSgUfYzBlsQp2KcOmwKjYuiy2LosvlzWQ_gKUrVVY76og7eJvTOywF7swm39Cit5gfPPNfgCgiIpO |
CitedBy_id | crossref_primary_10_1039_D4TC00038B crossref_primary_10_1039_D4TC02716G crossref_primary_10_1021_acs_inorgchem_4c03769 crossref_primary_10_1039_D4DT01996B crossref_primary_10_1109_LED_2024_3435394 |
Cites_doi | 10.1039/B916237B 10.1039/C9CS00573K 10.1039/D2TC00698G 10.1002/adhm.201900260 10.1039/c3dt51211h 10.1039/D3TC00144J 10.1016/j.cej.2022.138632 10.1002/ejic.202200222 10.1002/adfm.201906738 10.1016/j.isci.2021.102156 10.1039/b716743a 10.1002/anie.202300815 10.3390/molecules24071412 10.1039/D0TC05218C 10.1039/C9TC06813A 10.1039/C3CP53806K 10.1002/adfm.202208082 10.1039/D2QI02449G 10.1016/j.theochem.2009.08.018 10.1021/acs.accounts.2c00827 10.1002/adfm.202211853 10.1016/j.ccr.2018.01.010 10.1002/adma.201603253 10.1039/D0CC02745F 10.1002/adma.200401806 10.1039/C9SC05492H 10.1021/ic0489443 10.1002/adom.202000154 10.1063/1.1558471 10.1021/acsami.9b16576 10.1038/s41566-022-01079-8 10.1002/anie.202113718 10.3390/molecules27010286 10.1002/adma.202005630 10.1021/acs.inorgchem.9b01383 10.1039/C8CS00660A 10.1021/acs.orglett.7b00323 10.1016/j.isci.2021.102545 10.1039/C5TC00163C 10.1021/acs.chemmater.7b00518 10.1038/s41566-020-0653-6 10.1038/s41566-021-00855-2 10.1039/D2QM01163H 10.1002/adom.202201291 10.1039/D2TC01511K 10.1039/c3tc30866a 10.1557/mrs2007.144 10.1248/cpb.33.626 10.1021/acs.accounts.7b00180 10.1002/adom.202200111 10.1039/D2SC05023D 10.1039/D0DT01964J 10.1016/j.ica.2021.120737 10.1039/C9TC03645H 10.1021/accountsmr.2c00078 10.1080/00268977000100171 10.1002/chem.201903707 10.1002/chem.201806148 10.1002/adpr.202100121 10.1021/acs.inorgchem.3c00670 10.1021/acs.chemmater.8b04278 10.1016/j.ccr.2016.11.016 10.1002/anie.201006629 10.1016/j.isci.2021.102858 10.1016/j.ccr.2010.12.013 10.1002/adma.201907539 10.1016/j.cej.2022.138956 10.1021/acsami.1c00238 10.1039/D2QI02058K 10.1002/chem.201601216 10.1002/chem.202103202 10.1039/D0TC04881J 10.1007/s41061-021-00357-3 10.1002/adma.201601861 10.1002/adom.201800512 10.1016/j.ccr.2011.01.042 10.1021/ic202756w 10.1021/ic100740e 10.1002/adma.201003128 10.1039/C6CC06729H |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1002/adom.202301739 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2195-1071 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adom_202301739 ADOM202301739 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61961160731; 51821002 – fundername: University Grants Council funderid: N_CityU102/19 – fundername: Discovery Early Career Researcher Award funderid: ARC DECRA DE190100144 |
GroupedDBID | 0R~ 1OC 33P 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI D-B DCZOG DPXWK EBS G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION EJD GODZA 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY H8D L7M |
ID | FETCH-LOGICAL-c3179-f68999172c766d8da91c88d2cfb04034e785738c8f420992d11205f832aedcc93 |
ISSN | 2195-1071 |
IngestDate | Tue Aug 12 22:22:11 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Tue Jul 01 00:36:03 EDT 2025 Wed Jan 22 16:15:19 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3179-f68999172c766d8da91c88d2cfb04034e785738c8f420992d11205f832aedcc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8305-5749 0000-0002-8441-3974 |
PQID | 2925759868 |
PQPubID | 2034581 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2925759868 crossref_primary_10_1002_adom_202301739 crossref_citationtrail_10_1002_adom_202301739 wiley_primary_10_1002_adom_202301739_ADOM202301739 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced optical materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2005 2017; 17 50 2009; 914 2003; 118 2018; 360 2013; 1 2007 2014 2021; 32 16 33 2022 2022; 10 2022 2020; 14 2023 2023 2023; 7 33 11 2020; 12 2020; 11 2022; 27 2022; 28 2020; 8 2019 2019 2021; 58 25 9 2023; 62 2017 2017 2020 2022; 53 29 49 3 2019 2020; 25 49 2021 2023; 15 56 2022 2023; 16 62 2023; 451 2021 2021 2023; 24 24 33 2011 2011; 255 255 2023; 10 2019; 7 2019 2019; 24 8 2008 2017; 16 346 2015; 3 2021; 2 2019; 31 2013; 42 2021; 380 2020 2021 2022 2022 2023; 56 24 9 10 452 2006 2017; 29 2020; 32 1970; 18 2005; 44 2021; 13 2022 2021 2022; 10 9 13 2010; 49 2020; 30 2010 2011 2017 2018; 39 23 29 6 2022; 61 2011; 50 2017; 19 2022; 10 1985; 33 2012 2020 2022; 51 49 532 2016; 22 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_28_3 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_49_1 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_1_4 Weber A. E. (e_1_2_8_26_1) 2006 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_17_3 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_29_3 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_16_2 e_1_2_8_16_3 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_18_2 e_1_2_8_10_4 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_10_5 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_14_2 e_1_2_8_35_4 e_1_2_8_16_1 e_1_2_8_35_3 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_10_3 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2019 publication-title: J. Mater. Chem. C – volume: 360 start-page: 34 year: 2018 publication-title: Coord. Chem. Rev. – volume: 255 255 start-page: 2622 2653 year: 2011 2011 publication-title: Coord. Chem. Rev. Coord. Chem. Rev. – volume: 10 2022 year: 2022 2022 publication-title: Adv. Opt. Mater. Eur. J. Inorg. Chem. – volume: 118 start-page: 4775 year: 2003 publication-title: J. Chem. Phys. – volume: 22 year: 2016 publication-title: Chem. ‐ Eur. J. – volume: 42 year: 2013 publication-title: Dalton Trans. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 44 start-page: 1344 year: 2005 publication-title: Inorg. Chem. – volume: 11 start-page: 2342 year: 2020 publication-title: Chem. Sci. – volume: 18 start-page: 145 year: 1970 publication-title: Mol. Phys. – volume: 451 year: 2023 publication-title: Chem. Eng. J. – volume: 62 start-page: 7898 year: 2023 publication-title: Inorg. Chem. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 53 29 49 3 start-page: 807 765 830 year: 2017 2017 2020 2022 publication-title: Chem. Commun. Adv. Mater. Chem. Soc. Rev. Acc Mater Res – volume: 32 16 33 start-page: 694 1719 year: 2007 2014 2021 publication-title: MRS Bull. Phys. Chem. Chem. Phys. Adv. Mater. – volume: 2 year: 2021 publication-title: Adv Photonics Res – volume: 16 62 start-page: 843 year: 2022 2023 publication-title: Nat. Photonics Angew. Chem., Int. Ed. – volume: 31 start-page: 6453 year: 2019 publication-title: Chem. Mater. – volume: 51 49 532 start-page: 3813 year: 2012 2020 2022 publication-title: Inorg. Chem. Dalton Trans. Inorg. Chim. Acta – volume: 28 year: 2022 publication-title: Chem. ‐ Eur. J. – volume: 3 start-page: 3460 year: 2015 publication-title: J. Mater. Chem. C – volume: 24 8 start-page: 1412 year: 2019 2019 publication-title: Molecules Adv. Healthcare Mater. – volume: 12 start-page: 1084 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 914 start-page: 3 year: 2009 publication-title: J. Mol. Struct. – volume: 49 year: 2010 publication-title: Inorg. Chem. – volume: 33 start-page: 626 year: 1985 publication-title: Chem. Pharm. Bull. – volume: 17 50 start-page: 1059 2727 year: 2005 2017 publication-title: Adv. Mater. Acc. Chem. Res. – volume: 16 346 start-page: 2081 91 year: 2008 2017 publication-title: Dalton Trans. Coord. Chem. Rev. – volume: 25 49 start-page: 6043 1057 year: 2019 2020 publication-title: Chem. ‐ Eur. J. Chem. Soc. Rev. – volume: 1 start-page: 6446 year: 2013 publication-title: J. Mater. Chem. C – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 50 start-page: 2054 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 19 start-page: 1236 year: 2017 publication-title: Org. Lett. – volume: 29 start-page: 4775 year: 2017 publication-title: Chem. Mater. – volume: 24 24 33 year: 2021 2021 2023 publication-title: iScience iScience Adv. Funct. Mater. – volume: 56 24 9 10 452 start-page: 8754 6544 year: 2020 2021 2022 2022 2023 publication-title: Chem. Commun. iScience Inorg. Chem. Front. Adv. Opt. Mater. Chem. Eng. J. – volume: 27 start-page: 286 year: 2022 publication-title: Molecules – volume: 380 start-page: 6 year: 2021 publication-title: Top Curr Chem – volume: 14 start-page: 570 year: 2020 publication-title: Nat. Photonics – year: 2006 – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 15 56 start-page: 656 689 year: 2021 2023 publication-title: Nat. Photonics Acc. Chem. Res. – volume: 58 25 9 start-page: 1318 year: 2019 2019 2021 publication-title: Inorg. Chem. Chem. ‐ Eur. J. J. Mater. Chem. C – volume: 7 33 11 start-page: 873 4017 year: 2023 2023 2023 publication-title: Mater. Chem. Front. Adv. Funct. Mater. J. Mater. Chem. C – volume: 10 start-page: 1395 year: 2023 publication-title: Inorg. Chem. Front. – volume: 10 9 13 start-page: 127 year: 2022 2021 2022 publication-title: J. Mater. Chem. C J. Mater. Chem. C Chem. Sci. – volume: 8 start-page: 4789 year: 2020 publication-title: J. Mater. Chem. C – volume: 39 23 29 6 start-page: 638 926 year: 2010 2011 2017 2018 publication-title: Chem. Soc. Rev. Adv. Mater. Adv. Mater. Adv. Opt. Mater. – volume: 10 start-page: 6646 year: 2022 publication-title: J. Mater. Chem. C – ident: e_1_2_8_1_1 doi: 10.1039/B916237B – ident: e_1_2_8_33_2 doi: 10.1039/C9CS00573K – ident: e_1_2_8_46_1 doi: 10.1039/D2TC00698G – ident: e_1_2_8_7_2 doi: 10.1002/adhm.201900260 – ident: e_1_2_8_24_1 doi: 10.1039/c3dt51211h – ident: e_1_2_8_16_3 doi: 10.1039/D3TC00144J – ident: e_1_2_8_42_1 doi: 10.1016/j.cej.2022.138632 – ident: e_1_2_8_9_2 doi: 10.1002/ejic.202200222 – ident: e_1_2_8_34_1 doi: 10.1002/adfm.201906738 – ident: e_1_2_8_4_1 doi: 10.1016/j.isci.2021.102156 – ident: e_1_2_8_18_1 doi: 10.1039/b716743a – ident: e_1_2_8_11_2 doi: 10.1002/anie.202300815 – ident: e_1_2_8_7_1 doi: 10.3390/molecules24071412 – ident: e_1_2_8_29_3 doi: 10.1039/D0TC05218C – ident: e_1_2_8_47_1 doi: 10.1039/C9TC06813A – ident: e_1_2_8_2_2 doi: 10.1039/C3CP53806K – ident: e_1_2_8_4_3 doi: 10.1002/adfm.202208082 – ident: e_1_2_8_40_1 doi: 10.1039/D2QI02449G – ident: e_1_2_8_38_1 doi: 10.1016/j.theochem.2009.08.018 – ident: e_1_2_8_14_2 doi: 10.1021/acs.accounts.2c00827 – ident: e_1_2_8_16_2 doi: 10.1002/adfm.202211853 – ident: e_1_2_8_6_1 doi: 10.1016/j.ccr.2018.01.010 – ident: e_1_2_8_35_2 doi: 10.1002/adma.201603253 – ident: e_1_2_8_10_1 doi: 10.1039/D0CC02745F – ident: e_1_2_8_8_1 doi: 10.1002/adma.200401806 – ident: e_1_2_8_41_1 doi: 10.1039/C9SC05492H – ident: e_1_2_8_19_1 doi: 10.1021/ic0489443 – ident: e_1_2_8_45_1 doi: 10.1002/adom.202000154 – ident: e_1_2_8_39_1 doi: 10.1063/1.1558471 – ident: e_1_2_8_31_1 doi: 10.1021/acsami.9b16576 – ident: e_1_2_8_11_1 doi: 10.1038/s41566-022-01079-8 – ident: e_1_2_8_51_1 doi: 10.1002/anie.202113718 – ident: e_1_2_8_44_1 doi: 10.3390/molecules27010286 – ident: e_1_2_8_2_3 doi: 10.1002/adma.202005630 – ident: e_1_2_8_29_1 doi: 10.1021/acs.inorgchem.9b01383 – ident: e_1_2_8_35_3 doi: 10.1039/C8CS00660A – ident: e_1_2_8_22_1 doi: 10.1021/acs.orglett.7b00323 – ident: e_1_2_8_4_2 doi: 10.1016/j.isci.2021.102545 – ident: e_1_2_8_23_1 doi: 10.1039/C5TC00163C – ident: e_1_2_8_49_1 doi: 10.1021/acs.chemmater.7b00518 – ident: e_1_2_8_13_1 doi: 10.1038/s41566-020-0653-6 – ident: e_1_2_8_14_1 doi: 10.1038/s41566-021-00855-2 – ident: e_1_2_8_16_1 doi: 10.1039/D2QM01163H – ident: e_1_2_8_9_1 doi: 10.1002/adom.202201291 – ident: e_1_2_8_17_1 doi: 10.1039/D2TC01511K – ident: e_1_2_8_50_1 doi: 10.1039/c3tc30866a – ident: e_1_2_8_2_1 doi: 10.1557/mrs2007.144 – ident: e_1_2_8_25_1 doi: 10.1248/cpb.33.626 – ident: e_1_2_8_8_2 doi: 10.1021/acs.accounts.7b00180 – ident: e_1_2_8_10_4 doi: 10.1002/adom.202200111 – ident: e_1_2_8_17_3 doi: 10.1039/D2SC05023D – ident: e_1_2_8_28_2 doi: 10.1039/D0DT01964J – ident: e_1_2_8_28_3 doi: 10.1016/j.ica.2021.120737 – ident: e_1_2_8_48_1 doi: 10.1039/C9TC03645H – ident: e_1_2_8_35_4 doi: 10.1021/accountsmr.2c00078 – ident: e_1_2_8_36_1 doi: 10.1080/00268977000100171 – ident: e_1_2_8_29_2 doi: 10.1002/chem.201903707 – ident: e_1_2_8_33_1 doi: 10.1002/chem.201806148 – ident: e_1_2_8_43_1 doi: 10.1002/adpr.202100121 – start-page: WO2006023750 volume-title: World Intellectual Property Organization year: 2006 ident: e_1_2_8_26_1 – ident: e_1_2_8_37_1 doi: 10.1021/acs.inorgchem.3c00670 – ident: e_1_2_8_21_1 doi: 10.1021/acs.chemmater.8b04278 – ident: e_1_2_8_18_2 doi: 10.1016/j.ccr.2016.11.016 – ident: e_1_2_8_20_1 doi: 10.1002/anie.201006629 – ident: e_1_2_8_10_2 doi: 10.1016/j.isci.2021.102858 – ident: e_1_2_8_12_2 doi: 10.1016/j.ccr.2010.12.013 – ident: e_1_2_8_3_1 doi: 10.1002/adma.201907539 – ident: e_1_2_8_10_5 doi: 10.1016/j.cej.2022.138956 – ident: e_1_2_8_30_1 doi: 10.1021/acsami.1c00238 – ident: e_1_2_8_10_3 doi: 10.1039/D2QI02058K – ident: e_1_2_8_27_1 doi: 10.1002/chem.201601216 – ident: e_1_2_8_15_1 doi: 10.1002/chem.202103202 – ident: e_1_2_8_17_2 doi: 10.1039/D0TC04881J – ident: e_1_2_8_5_1 doi: 10.1007/s41061-021-00357-3 – ident: e_1_2_8_1_3 doi: 10.1002/adma.201601861 – ident: e_1_2_8_1_4 doi: 10.1002/adom.201800512 – ident: e_1_2_8_12_1 doi: 10.1016/j.ccr.2011.01.042 – ident: e_1_2_8_28_1 doi: 10.1021/ic202756w – ident: e_1_2_8_32_1 doi: 10.1021/ic100740e – ident: e_1_2_8_1_2 doi: 10.1002/adma.201003128 – ident: e_1_2_8_35_1 doi: 10.1039/C6CC06729H |
SSID | ssj0001073947 |
Score | 2.3892446 |
Snippet | Efficient saturated red and near‐infrared (NIR) emissive materials are needed in the development of organic light‐emitting diodes (OLEDs), with applications... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Chelates Conjugation cyclometalation Emission Flat panel displays iridium near infrared Near infrared radiation Organic light emitting diodes Phosphors pyrazine pyrazolate pyridine Quantum efficiency Toluene |
Title | Red and Near Infrared Emissive Bis‐Tridentate Ir(III) Phosphors for Organic Light Emitting Diodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202301739 https://www.proquest.com/docview/2925759868 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9sILjJsoDOQHJEAokLhO4jwOOrROFBDrpMFL5NiOGgk1VdpqEk_8BJ74gfwSjq9txbjtJaoc1218Pp-Lc_wdhB5JViVMxlUExk5FVFQy4pSzqKbgLNQxrSpDkjR-mx2d0uOz9KzX-76RtbRaVs_FlwvPlVxGqtAGctWnZP9DsmFQaIDPIF-4goTh-k8y_qAM0SpoKt7BSq87k01-CKIzSekvm0XIZZh0unqo9iyfjTrtVY5GekPg_bRdzKe64I5ON7QHMwUE6hCx63FsUvSwaaVLNfR8tT5zoJ3bvXDwe-0DBy1iN1aPmwCcE5f8O24CHj9N25X14uGW_6cfvTE1b0vMvv2qPVfN5v4EoT6l2asxoqtBQpBpm9QFbV4Pkw28pRsWOdirX9S9pY_lstWcAhBMJbllRtrm1Q490z_3tTTAw3fjcP8K2iUQfoDC3z0Yjt-crHfv9AtOU70uPIpnBI3Ji-0f2fZ41mHMZjBkvJnJHrrmwhB8YDF1A_XU7Ca67kIS7BT-4hYSADEMEMMaYthDDHuIYYDYj6_f1uDCo-4JQOspDsDCACzsgIUNsLAHFrbAuo1OXx9OXh1Fri5HJMDbLKI6YzqsyInIs0wyyYtEMCaJqCswCQOqcpbmAyZYTfXBbCLBp4_TGmwHV1KIYnAH7czambqLcKx4NkiqOi4Up7XKi6SgMVEpl3WeKx73UeTnrhSOtF7XTvlcWrptUuq5LsNc99Hj0H9u6Vp-23Pfi6J0S3pRkoLogrUsY31EjHj-Mkq5BZd7l_nSfXR1vWz20c6yW6kH4Oguq4cOdT8BzjKdZg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Red+and+Near+Infrared+Emissive+Bis%E2%80%90Tridentate+Ir%28III%29+Phosphors+for+Organic+Light+Emitting+Diodes&rft.jtitle=Advanced+optical+materials&rft.au=Yan%2C+Jie&rft.au=Song%2C+Min&rft.au=Zhou%2C+Dong%E2%80%90Ying&rft.au=Ni%2C+Guowei&rft.date=2024-02-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=12&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadom.202301739&rft.externalDBID=10.1002%252Fadom.202301739&rft.externalDocID=ADOM202301739 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon |