Regulating Solvation Structure in Nonflammable Amide‐Based Electrolytes for Long‐Cycling and Safe Lithium Metal Batteries
The cycling stability of lithium metal batteries is steadily improving. The safety issues, which mainly result from the employment of flammable solvents, should be strongly considered for practical Li metal batteries. Nonflammable solvents can mitigate fire hazards; however, their employment irrever...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 24 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The cycling stability of lithium metal batteries is steadily improving. The safety issues, which mainly result from the employment of flammable solvents, should be strongly considered for practical Li metal batteries. Nonflammable solvents can mitigate fire hazards; however, their employment irreversibly deteriorates the cycling stability of working batteries owing to intrinsic high reactivity against Li metal. Herein, regulating solvation structure in a dimethylacetamide (DMAC)‐based electrolyte is proposed to achieve compatibility between cycling stability and nonflammability of electrolytes. DMAC, a nonflammable solvent, is employed to construct a nonflammable localized high‐concentration electrolyte (LHCE). In the DMAC‐based LHCE, there are abundant aggregate clusters resulting in the formation of anion‐derived solid electrolyte interphase to circumvent parasitic reactions between DMAC solvents and Li metal and to improve the uniformity of Li deposition, which ensures the compatibility between cycling stability under practical conditions and nonflammability of electrolytes. This work opens an emerging avenue to construct long‐cycling and safe Li metal batteries by manipulating solvation structure in nonflammable electrolytes.
Regulating solvation structure in a dimethylacetamide‐based nonflammable electrolyte is explored to achieve compatibility between cycling stability and safety of electrolytes for practical lithium metal batteries. In the localized high‐concentration electrolyte, aggregate clusters are generated and result in the formation of an anion‐derived solid electrolyte interphase, and also improve the uniformity of Li deposition. |
---|---|
AbstractList | The cycling stability of lithium metal batteries is steadily improving. The safety issues, which mainly result from the employment of flammable solvents, should be strongly considered for practical Li metal batteries. Nonflammable solvents can mitigate fire hazards; however, their employment irreversibly deteriorates the cycling stability of working batteries owing to intrinsic high reactivity against Li metal. Herein, regulating solvation structure in a dimethylacetamide (DMAC)‐based electrolyte is proposed to achieve compatibility between cycling stability and nonflammability of electrolytes. DMAC, a nonflammable solvent, is employed to construct a nonflammable localized high‐concentration electrolyte (LHCE). In the DMAC‐based LHCE, there are abundant aggregate clusters resulting in the formation of anion‐derived solid electrolyte interphase to circumvent parasitic reactions between DMAC solvents and Li metal and to improve the uniformity of Li deposition, which ensures the compatibility between cycling stability under practical conditions and nonflammability of electrolytes. This work opens an emerging avenue to construct long‐cycling and safe Li metal batteries by manipulating solvation structure in nonflammable electrolytes.
Regulating solvation structure in a dimethylacetamide‐based nonflammable electrolyte is explored to achieve compatibility between cycling stability and safety of electrolytes for practical lithium metal batteries. In the localized high‐concentration electrolyte, aggregate clusters are generated and result in the formation of an anion‐derived solid electrolyte interphase, and also improve the uniformity of Li deposition. The cycling stability of lithium metal batteries is steadily improving. The safety issues, which mainly result from the employment of flammable solvents, should be strongly considered for practical Li metal batteries. Nonflammable solvents can mitigate fire hazards; however, their employment irreversibly deteriorates the cycling stability of working batteries owing to intrinsic high reactivity against Li metal. Herein, regulating solvation structure in a dimethylacetamide (DMAC)‐based electrolyte is proposed to achieve compatibility between cycling stability and nonflammability of electrolytes. DMAC, a nonflammable solvent, is employed to construct a nonflammable localized high‐concentration electrolyte (LHCE). In the DMAC‐based LHCE, there are abundant aggregate clusters resulting in the formation of anion‐derived solid electrolyte interphase to circumvent parasitic reactions between DMAC solvents and Li metal and to improve the uniformity of Li deposition, which ensures the compatibility between cycling stability under practical conditions and nonflammability of electrolytes. This work opens an emerging avenue to construct long‐cycling and safe Li metal batteries by manipulating solvation structure in nonflammable electrolytes. |
Author | Huang, Jia‐Qi Zhan, Ying‐Xin Liang, Jia‐Lin Hou, Li‐Peng Zhang, Fang‐Shu Li, Bo‐Quan Zhang, Qian‐Kui Feng, Xu‐Ning Zhang, Xue‐Qiang Sun, Shu‐Yu |
Author_xml | – sequence: 1 givenname: Qian‐Kui surname: Zhang fullname: Zhang, Qian‐Kui organization: Beijing Institute of Technology – sequence: 2 givenname: Xue‐Qiang surname: Zhang fullname: Zhang, Xue‐Qiang organization: Beijing Institute of Technology – sequence: 3 givenname: Li‐Peng surname: Hou fullname: Hou, Li‐Peng organization: Tsinghua University – sequence: 4 givenname: Shu‐Yu surname: Sun fullname: Sun, Shu‐Yu organization: Tsinghua University – sequence: 5 givenname: Ying‐Xin surname: Zhan fullname: Zhan, Ying‐Xin organization: Beijing Institute of Technology – sequence: 6 givenname: Jia‐Lin surname: Liang fullname: Liang, Jia‐Lin organization: Beijing Institute of Technology – sequence: 7 givenname: Fang‐Shu surname: Zhang fullname: Zhang, Fang‐Shu organization: Tsinghua University – sequence: 8 givenname: Xu‐Ning surname: Feng fullname: Feng, Xu‐Ning organization: Tsinghua University – sequence: 9 givenname: Bo‐Quan surname: Li fullname: Li, Bo‐Quan organization: Beijing Institute of Technology – sequence: 10 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology |
BookMark | eNqFkE9rGzEQxUVIIG6Sa86Cnu3o33qto23cpOCkUKfnZbI7cmW0kitpE3wI5CP0M_aTdF2XBAolc5kH835v4H0gxz54JOSSsxFnTFwB-nYkmBCMcamPyICPuRqOJ4odv2opTslFShvWj9KcSTkgz19x3TnI1q_pKrjHXgVPVzl2de4iUuvpXfDGQdvCg0M6bW2Dv15-ziBhQxcO6xyD22VM1IRIl8Gv--t8V7t9IviGrsAgXdr83XYtvcUMjs4gZ4wW0zk5MeASXvzdZ-Tbp8X9_Ga4_HL9eT5dDmvJSz1sSib4RCvOiqIoyweAUuteIwPBm4kyGnSha461VEpJbsZGGQGsAD4RuuDyjHw85G5j-NFhytUmdNH3LysxLntHUUrdu9TBVceQUkRT1Tb_KSRHsK7irNp3Xe27rl677rHRP9g22hbi7v-APgBP1uHuHXc1XdzdvrG_AQj0laA |
CitedBy_id | crossref_primary_10_1002_aenm_202300443 crossref_primary_10_1021_acsmaterialslett_5c00130 crossref_primary_10_1002_celc_202400444 crossref_primary_10_1007_s11426_023_1730_x crossref_primary_10_1021_acs_chemrev_3c00826 crossref_primary_10_1016_j_cej_2024_154146 crossref_primary_10_1002_adfm_202414569 crossref_primary_10_1002_aenm_202300918 crossref_primary_10_1021_acsenergylett_3c01383 crossref_primary_10_1002_aenm_202400569 crossref_primary_10_1002_smll_202303210 crossref_primary_10_3390_molecules28134896 crossref_primary_10_1039_D4EE03862B crossref_primary_10_1002_ange_202300771 crossref_primary_10_1016_j_electacta_2025_145909 crossref_primary_10_1007_s12274_023_6056_5 crossref_primary_10_1016_j_scib_2023_11_039 crossref_primary_10_1039_D4TA00479E crossref_primary_10_1002_adfm_202300502 crossref_primary_10_1016_j_cej_2022_139398 crossref_primary_10_1016_j_jechem_2023_02_044 crossref_primary_10_1038_s41467_024_47448_5 crossref_primary_10_1039_D2TA08404J crossref_primary_10_1016_j_jcis_2024_10_024 crossref_primary_10_1002_cey2_283 crossref_primary_10_1021_acs_nanolett_3c03639 crossref_primary_10_1002_adfm_202408365 crossref_primary_10_1002_adfm_202414430 crossref_primary_10_1039_D4TA05906A crossref_primary_10_1002_ange_202317176 crossref_primary_10_1021_acsami_2c14575 crossref_primary_10_1002_adfm_202212150 crossref_primary_10_1002_adfm_202413544 crossref_primary_10_1002_aenm_202301396 crossref_primary_10_1002_aenm_202302400 crossref_primary_10_1002_anie_202300771 crossref_primary_10_1021_acsami_2c13922 crossref_primary_10_1002_slct_202302517 crossref_primary_10_1002_adfm_202404427 crossref_primary_10_1039_D4TA02958E crossref_primary_10_1002_ange_202402946 crossref_primary_10_1002_smll_202305055 crossref_primary_10_1002_ange_202400960 crossref_primary_10_1021_acsaem_4c00418 crossref_primary_10_1039_D2TA07516D crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1002_adma_202209114 crossref_primary_10_1002_adma_202312451 crossref_primary_10_1016_j_ensm_2023_01_016 crossref_primary_10_1002_anie_202317176 crossref_primary_10_20517_energymater_2023_144 crossref_primary_10_1016_S1872_5805_23_60744_9 crossref_primary_10_1007_s11705_022_2286_4 crossref_primary_10_1039_D3CS00151B crossref_primary_10_1039_D2TA06898B crossref_primary_10_1007_s12274_023_5937_y crossref_primary_10_1016_j_nanoen_2025_110849 crossref_primary_10_1002_aenm_202301285 crossref_primary_10_1039_D3CS00551H crossref_primary_10_1039_D3TA01951A crossref_primary_10_1016_j_chempr_2022_10_027 crossref_primary_10_1002_advs_202401005 crossref_primary_10_1039_D4SC08125K crossref_primary_10_1002_adma_202408280 crossref_primary_10_1002_adma_202416668 crossref_primary_10_1039_D3EE00157A crossref_primary_10_1021_acsenergylett_4c00859 crossref_primary_10_1002_smll_202308959 crossref_primary_10_1002_smm2_1182 crossref_primary_10_1039_D2SC06620C crossref_primary_10_1002_anie_202400960 crossref_primary_10_1002_aenm_202302261 crossref_primary_10_1002_anie_202402946 crossref_primary_10_1021_acsnano_4c13229 crossref_primary_10_1039_D4EE00115J crossref_primary_10_1002_smtd_202400183 crossref_primary_10_1002_aenm_202302068 crossref_primary_10_1073_pnas_2416817122 crossref_primary_10_26599_NRE_2023_9120046 |
Cites_doi | 10.1002/anie.201405157 10.1016/j.jpowsour.2016.04.017 10.1038/s41565-018-0183-2 10.20517/energymater.2021.17 10.1002/anie.202001793 10.1038/nnano.2017.16 10.1002/aenm.201903568 10.1021/acs.chemmater.9b05003 10.1016/j.mattod.2020.10.021 10.1246/cl.170284 10.1038/natrevmats.2016.13 10.1021/je1003143 10.1016/j.ensm.2020.07.018 10.1021/acs.chemrev.7b00115 10.1002/adma.202105962 10.1021/acsami.8b21069 10.1149/1.1467946 10.1016/j.jechem.2020.09.030 10.1021/acs.chemrev.9b00531 10.1021/acsenergylett.1c00647 10.1073/pnas.2010852117 10.1002/anie.201903466 10.1016/j.nanoen.2018.10.035 10.1002/anie.202101627 10.1038/451652a 10.1038/s41560-018-0196-y 10.1002/sus2.37 10.1039/D0EE00694G 10.1016/j.joule.2018.05.002 10.1002/anie.202201406 10.1021/acsenergylett.8b02527 10.1038/s41467-019-11102-2 10.34133/2021/1205324 10.1002/anie.202103470 10.1016/j.joule.2019.05.006 10.1016/j.nanoen.2020.104860 10.1016/j.nanoen.2020.104471 10.1039/C8TA01236A 10.1002/adfm.202008644 10.1002/anie.201811291 10.1002/smsc.202100058 10.1002/anie.201710806 10.1016/j.joule.2019.09.022 10.1021/jacs.1c08606 10.1038/s41560-017-0033-8 10.1038/s41560-019-0474-3 10.1002/adma.202103178 10.1002/adma.201706102 10.1002/anie.202107732 10.1038/s41560-019-0464-5 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202200139 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202200139 AENM202200139 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program funderid: 2021YFB2500300 – fundername: Beijing Institute of Technology funderid: 2022015 – fundername: China Postdoctoral Science Foundation funderid: 2021M700404 – fundername: Beijing Natural Science Foundation funderid: JQ20004 – fundername: Scientific and Technological Key Project of Shanxi Province funderid: 20191102003 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- 31~ AAHHS AANHP AASGY AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3179-d70218941055577baa799055e0a21d84f9a959c1ec344431f6f4f2a05a1829513 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:13:36 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Tue Jul 01 01:43:44 EDT 2025 Sun Jul 06 04:45:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3179-d70218941055577baa799055e0a21d84f9a959c1ec344431f6f4f2a05a1829513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7394-9186 |
PQID | 2679515739 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2679515739 crossref_citationtrail_10_1002_aenm_202200139 crossref_primary_10_1002_aenm_202200139 wiley_primary_10_1002_aenm_202200139_AENM202200139 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 162 2010; 55 2020 2021 2021; 74 60 1 2018 2019 2020; 13 4 13 2019; 3 2021 2021; 31 1 2017 2017; 117 12 2020 2018; 32 6 2014 2019; 53 58 2021 2021; 33 6 2018 2019 2021; 57 11 33 2020 2022; 69 144 2019 2019 2021; 58 10 1 2019 2018; 4 2 2008 2016; 451 1 2019 2018; 4 3 2018 2020; 30 117 2019 2022 2021; 3 61 2021 2020 2021; 10 60 2016; 318 2021 2021; 58 45 2017 2020; 46 120 2002; 149 2020 2020; 59 32 2021; 60 2018 2019; 3 55 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_15_2 Yamada Y. (e_1_2_7_25_1) 2015; 162 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_24_1 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 3 start-page: 2647 year: 2019 publication-title: Joule – volume: 117 12 start-page: 194 year: 2017 2017 publication-title: Chem. Rev. Nat. Nanotechnol. – volume: 58 45 start-page: 198 62 year: 2021 2021 publication-title: J. Energy Chem. Mater. Today – volume: 59 32 start-page: 9134 3405 year: 2020 2020 publication-title: Angew. Chem., Int. Ed. Chem. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 57 11 33 start-page: 1505 5159 year: 2018 2019 2021 publication-title: Angew. Chem., Int. Ed. ACS Appl. Mater. Interfaces Adv. Mater. – volume: 55 start-page: 2943 year: 2010 publication-title: J. Chem. Eng. Data – volume: 32 6 start-page: 425 year: 2020 2018 publication-title: Energy Storage Mater. J. Mater. Chem. A – volume: 4 2 start-page: 796 1548 year: 2019 2018 publication-title: Nat. Energy Joule – volume: 31 1 year: 2021 2021 publication-title: Adv. Funct. Mater. Small Sci. – volume: 30 117 year: 2018 2020 publication-title: Adv. Mater. Proc. Natl. Acad. Sci. USA – volume: 69 144 start-page: 212 year: 2020 2022 publication-title: Nano Energy J. Am. Chem. Soc. – volume: 4 3 start-page: 483 674 year: 2019 2018 publication-title: ACS Energy Lett. Nat. Energy – volume: 3 61 2021 start-page: 1662 year: 2019 2022 2021 publication-title: Joule Angew. Chem., Int. Ed. Energy Mater. Adv. – volume: 58 10 1 start-page: 7802 3302 506 year: 2019 2019 2021 publication-title: Angew. Chem., Int. Ed. Nat. Commun. SusMat – volume: 451 1 start-page: 652 year: 2008 2016 publication-title: Nature Nat. Rev. Mater. – volume: 74 60 1 year: 2020 2021 2021 publication-title: Nano Energy Angew. Chem., Int. Ed. Energy Mater. – volume: 318 start-page: 170 year: 2016 publication-title: J. Power Sources – volume: 149 start-page: A622 year: 2002 publication-title: J. Electrochem. Soc. – volume: 3 55 start-page: 22 93 year: 2018 2019 publication-title: Nat. Energy Nano Energy – volume: 53 58 start-page: 791 year: 2014 2019 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 13 4 13 start-page: 715 882 1788 year: 2018 2019 2020 publication-title: Nat. Nanotechnol. Nat. Energy Energy Environ. Sci. – volume: 162 year: 2015 publication-title: J. Electrochem. Soc. – volume: 46 120 start-page: 1056 6783 year: 2017 2020 publication-title: Chem. Lett. Chem. Rev. – volume: 10 60 year: 2020 2021 publication-title: Adv. Energy Mater. Angew. Chem., Int. Ed. – volume: 33 6 start-page: 2054 year: 2021 2021 publication-title: Adv. Mater. ACS Energy Lett. – ident: e_1_2_7_15_1 doi: 10.1002/anie.201405157 – ident: e_1_2_7_24_1 doi: 10.1016/j.jpowsour.2016.04.017 – ident: e_1_2_7_11_1 doi: 10.1038/s41565-018-0183-2 – ident: e_1_2_7_8_3 doi: 10.20517/energymater.2021.17 – ident: e_1_2_7_13_1 doi: 10.1002/anie.202001793 – ident: e_1_2_7_2_2 doi: 10.1038/nnano.2017.16 – ident: e_1_2_7_18_1 doi: 10.1002/aenm.201903568 – ident: e_1_2_7_13_2 doi: 10.1021/acs.chemmater.9b05003 – ident: e_1_2_7_4_2 doi: 10.1016/j.mattod.2020.10.021 – ident: e_1_2_7_17_1 doi: 10.1246/cl.170284 – ident: e_1_2_7_1_2 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_7_21_1 doi: 10.1021/je1003143 – ident: e_1_2_7_14_1 doi: 10.1016/j.ensm.2020.07.018 – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_7_3 doi: 10.1002/adma.202105962 – ident: e_1_2_7_7_2 doi: 10.1021/acsami.8b21069 – ident: e_1_2_7_23_1 doi: 10.1149/1.1467946 – ident: e_1_2_7_4_1 doi: 10.1016/j.jechem.2020.09.030 – ident: e_1_2_7_17_2 doi: 10.1021/acs.chemrev.9b00531 – ident: e_1_2_7_20_2 doi: 10.1021/acsenergylett.1c00647 – ident: e_1_2_7_16_2 doi: 10.1073/pnas.2010852117 – ident: e_1_2_7_6_1 doi: 10.1002/anie.201903466 – ident: e_1_2_7_10_2 doi: 10.1016/j.nanoen.2018.10.035 – ident: e_1_2_7_22_1 doi: 10.1002/anie.202101627 – ident: e_1_2_7_1_1 doi: 10.1038/451652a – ident: e_1_2_7_12_2 doi: 10.1038/s41560-018-0196-y – ident: e_1_2_7_6_3 doi: 10.1002/sus2.37 – ident: e_1_2_7_11_3 doi: 10.1039/D0EE00694G – ident: e_1_2_7_19_2 doi: 10.1016/j.joule.2018.05.002 – volume: 162 year: 2015 ident: e_1_2_7_25_1 publication-title: J. Electrochem. Soc. – ident: e_1_2_7_3_2 doi: 10.1002/anie.202201406 – ident: e_1_2_7_12_1 doi: 10.1021/acsenergylett.8b02527 – ident: e_1_2_7_6_2 doi: 10.1038/s41467-019-11102-2 – ident: e_1_2_7_3_3 doi: 10.34133/2021/1205324 – ident: e_1_2_7_8_2 doi: 10.1002/anie.202103470 – ident: e_1_2_7_3_1 doi: 10.1016/j.joule.2019.05.006 – ident: e_1_2_7_8_1 doi: 10.1016/j.nanoen.2020.104860 – ident: e_1_2_7_9_1 doi: 10.1016/j.nanoen.2020.104471 – ident: e_1_2_7_14_2 doi: 10.1039/C8TA01236A – ident: e_1_2_7_5_1 doi: 10.1002/adfm.202008644 – ident: e_1_2_7_15_2 doi: 10.1002/anie.201811291 – ident: e_1_2_7_5_2 doi: 10.1002/smsc.202100058 – ident: e_1_2_7_7_1 doi: 10.1002/anie.201710806 – ident: e_1_2_7_26_1 doi: 10.1016/j.joule.2019.09.022 – ident: e_1_2_7_9_2 doi: 10.1021/jacs.1c08606 – ident: e_1_2_7_10_1 doi: 10.1038/s41560-017-0033-8 – ident: e_1_2_7_11_2 doi: 10.1038/s41560-019-0474-3 – ident: e_1_2_7_20_1 doi: 10.1002/adma.202103178 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201706102 – ident: e_1_2_7_18_2 doi: 10.1002/anie.202107732 – ident: e_1_2_7_19_1 doi: 10.1038/s41560-019-0464-5 |
SSID | ssj0000491033 |
Score | 2.6304715 |
Snippet | The cycling stability of lithium metal batteries is steadily improving. The safety issues, which mainly result from the employment of flammable solvents,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Compatibility Cycles Dimethyl acetamide Electrolytes Fire hazards Hazard mitigation Lithium Lithium batteries lithium metal batteries nonflammable dimethylacetamide safety solid electrolyte interphase Solid electrolytes Solvation solvation structure Solvents Stability |
Title | Regulating Solvation Structure in Nonflammable Amide‐Based Electrolytes for Long‐Cycling and Safe Lithium Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200139 https://www.proquest.com/docview/2679515739 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMsLMgHJA5VoHXtPI5lKVrBtgK6K5VT5Dg2G6lNkdgcFgmJn8Cv4wfwSxg_k6o89xJVnmmSZr7aM5OZzwg9FuAVF6NURWlKRaQjhCiNuYwo5bESGS8zsyXLbB4fndJXS7bs9b53qpaa8-Kp-PzLvpLLWBXGwK66S_Y_LBtOCgPwGewLR7AwHP_Jxu_sRvKGVHuzsslV_Z65se8Fqnow110ffL02DVKTdVXKUN3wHNavcjC12-CsLnT-VZccHusaXa9zeCFWvotxwZXUHBtnVbMezKRuorTknL4M0XPZ-qoCadsKwSW2z2InR_0WoBku9bqpdhSWTXu7WvlDAOGmsQmFIH4jW-misUndsyaI3zfd9AZExqEMy83I4D9EceqSoLI7ZnmewjROOnC1fdluRQ_r3c5yYelnuaw1JwEhxh9uF0ZfDBA02Z91LY3wdD4L8itoj0D4Qvpob_JidrwI2T-Iy0bDsen-8L_PM4oOybPti2x7TG0Y1A2mjDd0cgNdd2EMnlhM3kQ9Wd9C1zrklrfRlxadOKATB3TiqsZddGKDzh9fvxlc4i4uMeASa1yC1CESAyKxRiR2iMQGkTgg8g46fTk9OTyK3GYfkQAXNovKRHubma46ZixJCs4TcJQYk0NORmVKVcYzlomRFGNKwetVsaKK8CHjECFDmDC-i_r1ppb3EC5ToVQaa-46SWmsUjWWJedCkIJlMeX7KPIPNBeOCV9vyLLKLYc3ybUB8mCAffQk6H-0HDC_1Tzw9sndPPEpJ3EC98cSLSbGZn85S76FofuX-dIDdLX9Mx2gPthWPgTv-bx45KD4EwDKuoc |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+Solvation+Structure+in+Nonflammable+Amide%E2%80%90Based+Electrolytes+for+Long%E2%80%90Cycling+and+Safe+Lithium+Metal+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Zhang%2C+Qian%E2%80%90Kui&rft.au=Zhang%2C+Xue%E2%80%90Qiang&rft.au=Hou%2C+Li%E2%80%90Peng&rft.au=Sun%2C+Shu%E2%80%90Yu&rft.date=2022-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202200139&rft.externalDBID=10.1002%252Faenm.202200139&rft.externalDocID=AENM202200139 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |