Regulating Solvation Structure in Nonflammable Amide‐Based Electrolytes for Long‐Cycling and Safe Lithium Metal Batteries

The cycling stability of lithium metal batteries is steadily improving. The safety issues, which mainly result from the employment of flammable solvents, should be strongly considered for practical Li metal batteries. Nonflammable solvents can mitigate fire hazards; however, their employment irrever...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 24
Main Authors Zhang, Qian‐Kui, Zhang, Xue‐Qiang, Hou, Li‐Peng, Sun, Shu‐Yu, Zhan, Ying‐Xin, Liang, Jia‐Lin, Zhang, Fang‐Shu, Feng, Xu‐Ning, Li, Bo‐Quan, Huang, Jia‐Qi
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The cycling stability of lithium metal batteries is steadily improving. The safety issues, which mainly result from the employment of flammable solvents, should be strongly considered for practical Li metal batteries. Nonflammable solvents can mitigate fire hazards; however, their employment irreversibly deteriorates the cycling stability of working batteries owing to intrinsic high reactivity against Li metal. Herein, regulating solvation structure in a dimethylacetamide (DMAC)‐based electrolyte is proposed to achieve compatibility between cycling stability and nonflammability of electrolytes. DMAC, a nonflammable solvent, is employed to construct a nonflammable localized high‐concentration electrolyte (LHCE). In the DMAC‐based LHCE, there are abundant aggregate clusters resulting in the formation of anion‐derived solid electrolyte interphase to circumvent parasitic reactions between DMAC solvents and Li metal and to improve the uniformity of Li deposition, which ensures the compatibility between cycling stability under practical conditions and nonflammability of electrolytes. This work opens an emerging avenue to construct long‐cycling and safe Li metal batteries by manipulating solvation structure in nonflammable electrolytes. Regulating solvation structure in a dimethylacetamide‐based nonflammable electrolyte is explored to achieve compatibility between cycling stability and safety of electrolytes for practical lithium metal batteries. In the localized high‐concentration electrolyte, aggregate clusters are generated and result in the formation of an anion‐derived solid electrolyte interphase, and also improve the uniformity of Li deposition.
AbstractList The cycling stability of lithium metal batteries is steadily improving. The safety issues, which mainly result from the employment of flammable solvents, should be strongly considered for practical Li metal batteries. Nonflammable solvents can mitigate fire hazards; however, their employment irreversibly deteriorates the cycling stability of working batteries owing to intrinsic high reactivity against Li metal. Herein, regulating solvation structure in a dimethylacetamide (DMAC)‐based electrolyte is proposed to achieve compatibility between cycling stability and nonflammability of electrolytes. DMAC, a nonflammable solvent, is employed to construct a nonflammable localized high‐concentration electrolyte (LHCE). In the DMAC‐based LHCE, there are abundant aggregate clusters resulting in the formation of anion‐derived solid electrolyte interphase to circumvent parasitic reactions between DMAC solvents and Li metal and to improve the uniformity of Li deposition, which ensures the compatibility between cycling stability under practical conditions and nonflammability of electrolytes. This work opens an emerging avenue to construct long‐cycling and safe Li metal batteries by manipulating solvation structure in nonflammable electrolytes. Regulating solvation structure in a dimethylacetamide‐based nonflammable electrolyte is explored to achieve compatibility between cycling stability and safety of electrolytes for practical lithium metal batteries. In the localized high‐concentration electrolyte, aggregate clusters are generated and result in the formation of an anion‐derived solid electrolyte interphase, and also improve the uniformity of Li deposition.
The cycling stability of lithium metal batteries is steadily improving. The safety issues, which mainly result from the employment of flammable solvents, should be strongly considered for practical Li metal batteries. Nonflammable solvents can mitigate fire hazards; however, their employment irreversibly deteriorates the cycling stability of working batteries owing to intrinsic high reactivity against Li metal. Herein, regulating solvation structure in a dimethylacetamide (DMAC)‐based electrolyte is proposed to achieve compatibility between cycling stability and nonflammability of electrolytes. DMAC, a nonflammable solvent, is employed to construct a nonflammable localized high‐concentration electrolyte (LHCE). In the DMAC‐based LHCE, there are abundant aggregate clusters resulting in the formation of anion‐derived solid electrolyte interphase to circumvent parasitic reactions between DMAC solvents and Li metal and to improve the uniformity of Li deposition, which ensures the compatibility between cycling stability under practical conditions and nonflammability of electrolytes. This work opens an emerging avenue to construct long‐cycling and safe Li metal batteries by manipulating solvation structure in nonflammable electrolytes.
Author Huang, Jia‐Qi
Zhan, Ying‐Xin
Liang, Jia‐Lin
Hou, Li‐Peng
Zhang, Fang‐Shu
Li, Bo‐Quan
Zhang, Qian‐Kui
Feng, Xu‐Ning
Zhang, Xue‐Qiang
Sun, Shu‐Yu
Author_xml – sequence: 1
  givenname: Qian‐Kui
  surname: Zhang
  fullname: Zhang, Qian‐Kui
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Xue‐Qiang
  surname: Zhang
  fullname: Zhang, Xue‐Qiang
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Li‐Peng
  surname: Hou
  fullname: Hou, Li‐Peng
  organization: Tsinghua University
– sequence: 4
  givenname: Shu‐Yu
  surname: Sun
  fullname: Sun, Shu‐Yu
  organization: Tsinghua University
– sequence: 5
  givenname: Ying‐Xin
  surname: Zhan
  fullname: Zhan, Ying‐Xin
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Jia‐Lin
  surname: Liang
  fullname: Liang, Jia‐Lin
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Fang‐Shu
  surname: Zhang
  fullname: Zhang, Fang‐Shu
  organization: Tsinghua University
– sequence: 8
  givenname: Xu‐Ning
  surname: Feng
  fullname: Feng, Xu‐Ning
  organization: Tsinghua University
– sequence: 9
  givenname: Bo‐Quan
  surname: Li
  fullname: Li, Bo‐Quan
  organization: Beijing Institute of Technology
– sequence: 10
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
BookMark eNqFkE9rGzEQxUVIIG6Sa86Cnu3o33qto23cpOCkUKfnZbI7cmW0kitpE3wI5CP0M_aTdF2XBAolc5kH835v4H0gxz54JOSSsxFnTFwB-nYkmBCMcamPyICPuRqOJ4odv2opTslFShvWj9KcSTkgz19x3TnI1q_pKrjHXgVPVzl2de4iUuvpXfDGQdvCg0M6bW2Dv15-ziBhQxcO6xyD22VM1IRIl8Gv--t8V7t9IviGrsAgXdr83XYtvcUMjs4gZ4wW0zk5MeASXvzdZ-Tbp8X9_Ga4_HL9eT5dDmvJSz1sSib4RCvOiqIoyweAUuteIwPBm4kyGnSha461VEpJbsZGGQGsAD4RuuDyjHw85G5j-NFhytUmdNH3LysxLntHUUrdu9TBVceQUkRT1Tb_KSRHsK7irNp3Xe27rl677rHRP9g22hbi7v-APgBP1uHuHXc1XdzdvrG_AQj0laA
CitedBy_id crossref_primary_10_1002_aenm_202300443
crossref_primary_10_1021_acsmaterialslett_5c00130
crossref_primary_10_1002_celc_202400444
crossref_primary_10_1007_s11426_023_1730_x
crossref_primary_10_1021_acs_chemrev_3c00826
crossref_primary_10_1016_j_cej_2024_154146
crossref_primary_10_1002_adfm_202414569
crossref_primary_10_1002_aenm_202300918
crossref_primary_10_1021_acsenergylett_3c01383
crossref_primary_10_1002_aenm_202400569
crossref_primary_10_1002_smll_202303210
crossref_primary_10_3390_molecules28134896
crossref_primary_10_1039_D4EE03862B
crossref_primary_10_1002_ange_202300771
crossref_primary_10_1016_j_electacta_2025_145909
crossref_primary_10_1007_s12274_023_6056_5
crossref_primary_10_1016_j_scib_2023_11_039
crossref_primary_10_1039_D4TA00479E
crossref_primary_10_1002_adfm_202300502
crossref_primary_10_1016_j_cej_2022_139398
crossref_primary_10_1016_j_jechem_2023_02_044
crossref_primary_10_1038_s41467_024_47448_5
crossref_primary_10_1039_D2TA08404J
crossref_primary_10_1016_j_jcis_2024_10_024
crossref_primary_10_1002_cey2_283
crossref_primary_10_1021_acs_nanolett_3c03639
crossref_primary_10_1002_adfm_202408365
crossref_primary_10_1002_adfm_202414430
crossref_primary_10_1039_D4TA05906A
crossref_primary_10_1002_ange_202317176
crossref_primary_10_1021_acsami_2c14575
crossref_primary_10_1002_adfm_202212150
crossref_primary_10_1002_adfm_202413544
crossref_primary_10_1002_aenm_202301396
crossref_primary_10_1002_aenm_202302400
crossref_primary_10_1002_anie_202300771
crossref_primary_10_1021_acsami_2c13922
crossref_primary_10_1002_slct_202302517
crossref_primary_10_1002_adfm_202404427
crossref_primary_10_1039_D4TA02958E
crossref_primary_10_1002_ange_202402946
crossref_primary_10_1002_smll_202305055
crossref_primary_10_1002_ange_202400960
crossref_primary_10_1021_acsaem_4c00418
crossref_primary_10_1039_D2TA07516D
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1002_adma_202209114
crossref_primary_10_1002_adma_202312451
crossref_primary_10_1016_j_ensm_2023_01_016
crossref_primary_10_1002_anie_202317176
crossref_primary_10_20517_energymater_2023_144
crossref_primary_10_1016_S1872_5805_23_60744_9
crossref_primary_10_1007_s11705_022_2286_4
crossref_primary_10_1039_D3CS00151B
crossref_primary_10_1039_D2TA06898B
crossref_primary_10_1007_s12274_023_5937_y
crossref_primary_10_1016_j_nanoen_2025_110849
crossref_primary_10_1002_aenm_202301285
crossref_primary_10_1039_D3CS00551H
crossref_primary_10_1039_D3TA01951A
crossref_primary_10_1016_j_chempr_2022_10_027
crossref_primary_10_1002_advs_202401005
crossref_primary_10_1039_D4SC08125K
crossref_primary_10_1002_adma_202408280
crossref_primary_10_1002_adma_202416668
crossref_primary_10_1039_D3EE00157A
crossref_primary_10_1021_acsenergylett_4c00859
crossref_primary_10_1002_smll_202308959
crossref_primary_10_1002_smm2_1182
crossref_primary_10_1039_D2SC06620C
crossref_primary_10_1002_anie_202400960
crossref_primary_10_1002_aenm_202302261
crossref_primary_10_1002_anie_202402946
crossref_primary_10_1021_acsnano_4c13229
crossref_primary_10_1039_D4EE00115J
crossref_primary_10_1002_smtd_202400183
crossref_primary_10_1002_aenm_202302068
crossref_primary_10_1073_pnas_2416817122
crossref_primary_10_26599_NRE_2023_9120046
Cites_doi 10.1002/anie.201405157
10.1016/j.jpowsour.2016.04.017
10.1038/s41565-018-0183-2
10.20517/energymater.2021.17
10.1002/anie.202001793
10.1038/nnano.2017.16
10.1002/aenm.201903568
10.1021/acs.chemmater.9b05003
10.1016/j.mattod.2020.10.021
10.1246/cl.170284
10.1038/natrevmats.2016.13
10.1021/je1003143
10.1016/j.ensm.2020.07.018
10.1021/acs.chemrev.7b00115
10.1002/adma.202105962
10.1021/acsami.8b21069
10.1149/1.1467946
10.1016/j.jechem.2020.09.030
10.1021/acs.chemrev.9b00531
10.1021/acsenergylett.1c00647
10.1073/pnas.2010852117
10.1002/anie.201903466
10.1016/j.nanoen.2018.10.035
10.1002/anie.202101627
10.1038/451652a
10.1038/s41560-018-0196-y
10.1002/sus2.37
10.1039/D0EE00694G
10.1016/j.joule.2018.05.002
10.1002/anie.202201406
10.1021/acsenergylett.8b02527
10.1038/s41467-019-11102-2
10.34133/2021/1205324
10.1002/anie.202103470
10.1016/j.joule.2019.05.006
10.1016/j.nanoen.2020.104860
10.1016/j.nanoen.2020.104471
10.1039/C8TA01236A
10.1002/adfm.202008644
10.1002/anie.201811291
10.1002/smsc.202100058
10.1002/anie.201710806
10.1016/j.joule.2019.09.022
10.1021/jacs.1c08606
10.1038/s41560-017-0033-8
10.1038/s41560-019-0474-3
10.1002/adma.202103178
10.1002/adma.201706102
10.1002/anie.202107732
10.1038/s41560-019-0464-5
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202200139
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202200139
AENM202200139
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program
  funderid: 2021YFB2500300
– fundername: Beijing Institute of Technology
  funderid: 2022015
– fundername: China Postdoctoral Science Foundation
  funderid: 2021M700404
– fundername: Beijing Natural Science Foundation
  funderid: JQ20004
– fundername: Scientific and Technological Key Project of Shanxi Province
  funderid: 20191102003
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
31~
AAHHS
AANHP
AASGY
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3179-d70218941055577baa799055e0a21d84f9a959c1ec344431f6f4f2a05a1829513
ISSN 1614-6832
IngestDate Fri Jul 25 12:13:36 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Tue Jul 01 01:43:44 EDT 2025
Sun Jul 06 04:45:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3179-d70218941055577baa799055e0a21d84f9a959c1ec344431f6f4f2a05a1829513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7394-9186
PQID 2679515739
PQPubID 886389
PageCount 8
ParticipantIDs proquest_journals_2679515739
crossref_citationtrail_10_1002_aenm_202200139
crossref_primary_10_1002_aenm_202200139
wiley_primary_10_1002_aenm_202200139_AENM202200139
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 162
2010; 55
2020 2021 2021; 74 60 1
2018 2019 2020; 13 4 13
2019; 3
2021 2021; 31 1
2017 2017; 117 12
2020 2018; 32 6
2014 2019; 53 58
2021 2021; 33 6
2018 2019 2021; 57 11 33
2020 2022; 69 144
2019 2019 2021; 58 10 1
2019 2018; 4 2
2008 2016; 451 1
2019 2018; 4 3
2018 2020; 30 117
2019 2022 2021; 3 61 2021
2020 2021; 10 60
2016; 318
2021 2021; 58 45
2017 2020; 46 120
2002; 149
2020 2020; 59 32
2021; 60
2018 2019; 3 55
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_15_2
Yamada Y. (e_1_2_7_25_1) 2015; 162
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_24_1
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 3
  start-page: 2647
  year: 2019
  publication-title: Joule
– volume: 117 12
  start-page: 194
  year: 2017 2017
  publication-title: Chem. Rev. Nat. Nanotechnol.
– volume: 58 45
  start-page: 198 62
  year: 2021 2021
  publication-title: J. Energy Chem. Mater. Today
– volume: 59 32
  start-page: 9134 3405
  year: 2020 2020
  publication-title: Angew. Chem., Int. Ed. Chem. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 57 11 33
  start-page: 1505 5159
  year: 2018 2019 2021
  publication-title: Angew. Chem., Int. Ed. ACS Appl. Mater. Interfaces Adv. Mater.
– volume: 55
  start-page: 2943
  year: 2010
  publication-title: J. Chem. Eng. Data
– volume: 32 6
  start-page: 425
  year: 2020 2018
  publication-title: Energy Storage Mater. J. Mater. Chem. A
– volume: 4 2
  start-page: 796 1548
  year: 2019 2018
  publication-title: Nat. Energy Joule
– volume: 31 1
  year: 2021 2021
  publication-title: Adv. Funct. Mater. Small Sci.
– volume: 30 117
  year: 2018 2020
  publication-title: Adv. Mater. Proc. Natl. Acad. Sci. USA
– volume: 69 144
  start-page: 212
  year: 2020 2022
  publication-title: Nano Energy J. Am. Chem. Soc.
– volume: 4 3
  start-page: 483 674
  year: 2019 2018
  publication-title: ACS Energy Lett. Nat. Energy
– volume: 3 61 2021
  start-page: 1662
  year: 2019 2022 2021
  publication-title: Joule Angew. Chem., Int. Ed. Energy Mater. Adv.
– volume: 58 10 1
  start-page: 7802 3302 506
  year: 2019 2019 2021
  publication-title: Angew. Chem., Int. Ed. Nat. Commun. SusMat
– volume: 451 1
  start-page: 652
  year: 2008 2016
  publication-title: Nature Nat. Rev. Mater.
– volume: 74 60 1
  year: 2020 2021 2021
  publication-title: Nano Energy Angew. Chem., Int. Ed. Energy Mater.
– volume: 318
  start-page: 170
  year: 2016
  publication-title: J. Power Sources
– volume: 149
  start-page: A622
  year: 2002
  publication-title: J. Electrochem. Soc.
– volume: 3 55
  start-page: 22 93
  year: 2018 2019
  publication-title: Nat. Energy Nano Energy
– volume: 53 58
  start-page: 791
  year: 2014 2019
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 13 4 13
  start-page: 715 882 1788
  year: 2018 2019 2020
  publication-title: Nat. Nanotechnol. Nat. Energy Energy Environ. Sci.
– volume: 162
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 46 120
  start-page: 1056 6783
  year: 2017 2020
  publication-title: Chem. Lett. Chem. Rev.
– volume: 10 60
  year: 2020 2021
  publication-title: Adv. Energy Mater. Angew. Chem., Int. Ed.
– volume: 33 6
  start-page: 2054
  year: 2021 2021
  publication-title: Adv. Mater. ACS Energy Lett.
– ident: e_1_2_7_15_1
  doi: 10.1002/anie.201405157
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jpowsour.2016.04.017
– ident: e_1_2_7_11_1
  doi: 10.1038/s41565-018-0183-2
– ident: e_1_2_7_8_3
  doi: 10.20517/energymater.2021.17
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.202001793
– ident: e_1_2_7_2_2
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.201903568
– ident: e_1_2_7_13_2
  doi: 10.1021/acs.chemmater.9b05003
– ident: e_1_2_7_4_2
  doi: 10.1016/j.mattod.2020.10.021
– ident: e_1_2_7_17_1
  doi: 10.1246/cl.170284
– ident: e_1_2_7_1_2
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_7_21_1
  doi: 10.1021/je1003143
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ensm.2020.07.018
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_7_3
  doi: 10.1002/adma.202105962
– ident: e_1_2_7_7_2
  doi: 10.1021/acsami.8b21069
– ident: e_1_2_7_23_1
  doi: 10.1149/1.1467946
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jechem.2020.09.030
– ident: e_1_2_7_17_2
  doi: 10.1021/acs.chemrev.9b00531
– ident: e_1_2_7_20_2
  doi: 10.1021/acsenergylett.1c00647
– ident: e_1_2_7_16_2
  doi: 10.1073/pnas.2010852117
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.201903466
– ident: e_1_2_7_10_2
  doi: 10.1016/j.nanoen.2018.10.035
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.202101627
– ident: e_1_2_7_1_1
  doi: 10.1038/451652a
– ident: e_1_2_7_12_2
  doi: 10.1038/s41560-018-0196-y
– ident: e_1_2_7_6_3
  doi: 10.1002/sus2.37
– ident: e_1_2_7_11_3
  doi: 10.1039/D0EE00694G
– ident: e_1_2_7_19_2
  doi: 10.1016/j.joule.2018.05.002
– volume: 162
  year: 2015
  ident: e_1_2_7_25_1
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_7_3_2
  doi: 10.1002/anie.202201406
– ident: e_1_2_7_12_1
  doi: 10.1021/acsenergylett.8b02527
– ident: e_1_2_7_6_2
  doi: 10.1038/s41467-019-11102-2
– ident: e_1_2_7_3_3
  doi: 10.34133/2021/1205324
– ident: e_1_2_7_8_2
  doi: 10.1002/anie.202103470
– ident: e_1_2_7_3_1
  doi: 10.1016/j.joule.2019.05.006
– ident: e_1_2_7_8_1
  doi: 10.1016/j.nanoen.2020.104860
– ident: e_1_2_7_9_1
  doi: 10.1016/j.nanoen.2020.104471
– ident: e_1_2_7_14_2
  doi: 10.1039/C8TA01236A
– ident: e_1_2_7_5_1
  doi: 10.1002/adfm.202008644
– ident: e_1_2_7_15_2
  doi: 10.1002/anie.201811291
– ident: e_1_2_7_5_2
  doi: 10.1002/smsc.202100058
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.201710806
– ident: e_1_2_7_26_1
  doi: 10.1016/j.joule.2019.09.022
– ident: e_1_2_7_9_2
  doi: 10.1021/jacs.1c08606
– ident: e_1_2_7_10_1
  doi: 10.1038/s41560-017-0033-8
– ident: e_1_2_7_11_2
  doi: 10.1038/s41560-019-0474-3
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.202103178
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201706102
– ident: e_1_2_7_18_2
  doi: 10.1002/anie.202107732
– ident: e_1_2_7_19_1
  doi: 10.1038/s41560-019-0464-5
SSID ssj0000491033
Score 2.6304715
Snippet The cycling stability of lithium metal batteries is steadily improving. The safety issues, which mainly result from the employment of flammable solvents,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Compatibility
Cycles
Dimethyl acetamide
Electrolytes
Fire hazards
Hazard mitigation
Lithium
Lithium batteries
lithium metal batteries
nonflammable dimethylacetamide
safety
solid electrolyte interphase
Solid electrolytes
Solvation
solvation structure
Solvents
Stability
Title Regulating Solvation Structure in Nonflammable Amide‐Based Electrolytes for Long‐Cycling and Safe Lithium Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200139
https://www.proquest.com/docview/2679515739
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMsLMgHJA5VoHXtPI5lKVrBtgK6K5VT5Dg2G6lNkdgcFgmJn8Cv4wfwSxg_k6o89xJVnmmSZr7aM5OZzwg9FuAVF6NURWlKRaQjhCiNuYwo5bESGS8zsyXLbB4fndJXS7bs9b53qpaa8-Kp-PzLvpLLWBXGwK66S_Y_LBtOCgPwGewLR7AwHP_Jxu_sRvKGVHuzsslV_Z65se8Fqnow110ffL02DVKTdVXKUN3wHNavcjC12-CsLnT-VZccHusaXa9zeCFWvotxwZXUHBtnVbMezKRuorTknL4M0XPZ-qoCadsKwSW2z2InR_0WoBku9bqpdhSWTXu7WvlDAOGmsQmFIH4jW-misUndsyaI3zfd9AZExqEMy83I4D9EceqSoLI7ZnmewjROOnC1fdluRQ_r3c5yYelnuaw1JwEhxh9uF0ZfDBA02Z91LY3wdD4L8itoj0D4Qvpob_JidrwI2T-Iy0bDsen-8L_PM4oOybPti2x7TG0Y1A2mjDd0cgNdd2EMnlhM3kQ9Wd9C1zrklrfRlxadOKATB3TiqsZddGKDzh9fvxlc4i4uMeASa1yC1CESAyKxRiR2iMQGkTgg8g46fTk9OTyK3GYfkQAXNovKRHubma46ZixJCs4TcJQYk0NORmVKVcYzlomRFGNKwetVsaKK8CHjECFDmDC-i_r1ppb3EC5ToVQaa-46SWmsUjWWJedCkIJlMeX7KPIPNBeOCV9vyLLKLYc3ybUB8mCAffQk6H-0HDC_1Tzw9sndPPEpJ3EC98cSLSbGZn85S76FofuX-dIDdLX9Mx2gPthWPgTv-bx45KD4EwDKuoc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+Solvation+Structure+in+Nonflammable+Amide%E2%80%90Based+Electrolytes+for+Long%E2%80%90Cycling+and+Safe+Lithium+Metal+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Zhang%2C+Qian%E2%80%90Kui&rft.au=Zhang%2C+Xue%E2%80%90Qiang&rft.au=Hou%2C+Li%E2%80%90Peng&rft.au=Sun%2C+Shu%E2%80%90Yu&rft.date=2022-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202200139&rft.externalDBID=10.1002%252Faenm.202200139&rft.externalDocID=AENM202200139
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon