Myeloid‐Derived Suppressor Cell Membrane‐Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death

A major challenge for traditional cancer therapy, including surgical resection, chemoradiotherapy, and immunotherapy, is how to induce tumor cell death and leverage the host immune system at the same time. Here, a myeloid‐derived suppressor cell (MDSC) membrane‐coated iron oxide magnetic nanoparticl...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 28; no. 37
Main Authors Yu, Guang‐Tao, Rao, Lang, Wu, Hao, Yang, Lei‐Lei, Bu, Lin‐Lin, Deng, Wei‐Wei, Wu, Lei, Nan, Xiaolin, Zhang, Wen‐Feng, Zhao, Xing‐Zhong, Liu, Wei, Sun, Zhi‐Jun
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 12.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A major challenge for traditional cancer therapy, including surgical resection, chemoradiotherapy, and immunotherapy, is how to induce tumor cell death and leverage the host immune system at the same time. Here, a myeloid‐derived suppressor cell (MDSC) membrane‐coated iron oxide magnetic nanoparticle (MNP@MDSC) to overcome this conundrum for cancer therapy is developed. In this study, MNP@MDSC demonstrates its superior performance in immune evasion, active tumor‐targeting, magnetic resonance imaging, and photothermal therapy (PTT)‐induced tumor killing. Compared with red blood cell membrane‐coated nanoparticles (MNPs@RBC) or naked MNPs, MNP@MDSCs are much more effective in active tumor‐targeting, a beneficial property afforded by coating MNP with membranes from naturally occurring MDSC, thus converting the MNP into “smart” agents that like to accumulate in tumors as the source MDSCs. Once targeted to the tumor microenvironment, MNPs@MDSC can act as a PTT agents for enhanced antitumor response by inducing immunogenic cell death, reprogramming the tumor infiltrating macrophages, and reducing the tumor's metabolic activity. These benefits, in combination with the excellent biocompatibility and pharmacological kinetics characteristics, make MNP@MDSC a promising, multimodal agent for cancer theranostics. Myeloid‐derived suppressor cell (MDSC) membranes are collected from tumor‐bearing mice and further used for magnetic Fe3O4 nanoparticle (MNP) coating. The resulting MDSC‐mimicking nanoparticles (MNP@MDSC) demonstrate superior performance in immune evasion, active tumor‐targeting, magnetic resonance imaging, photothermal therapy‐induced tumor killing, and excellent biocompatibility and pharmacological kinetics characteristics. These benefits make MNP@MDSC a promising, multimodal agent for cancer theranostics.
AbstractList A major challenge for traditional cancer therapy, including surgical resection, chemoradiotherapy, and immunotherapy, is how to induce tumor cell death and leverage the host immune system at the same time. Here, a myeloid‐derived suppressor cell (MDSC) membrane‐coated iron oxide magnetic nanoparticle (MNP@MDSC) to overcome this conundrum for cancer therapy is developed. In this study, MNP@MDSC demonstrates its superior performance in immune evasion, active tumor‐targeting, magnetic resonance imaging, and photothermal therapy (PTT)‐induced tumor killing. Compared with red blood cell membrane‐coated nanoparticles (MNPs@RBC) or naked MNPs, MNP@MDSCs are much more effective in active tumor‐targeting, a beneficial property afforded by coating MNP with membranes from naturally occurring MDSC, thus converting the MNP into “smart” agents that like to accumulate in tumors as the source MDSCs. Once targeted to the tumor microenvironment, MNPs@MDSC can act as a PTT agents for enhanced antitumor response by inducing immunogenic cell death, reprogramming the tumor infiltrating macrophages, and reducing the tumor's metabolic activity. These benefits, in combination with the excellent biocompatibility and pharmacological kinetics characteristics, make MNP@MDSC a promising, multimodal agent for cancer theranostics.
A major challenge for traditional cancer therapy, including surgical resection, chemoradiotherapy, and immunotherapy, is how to induce tumor cell death and leverage the host immune system at the same time. Here, a myeloid‐derived suppressor cell (MDSC) membrane‐coated iron oxide magnetic nanoparticle (MNP@MDSC) to overcome this conundrum for cancer therapy is developed. In this study, MNP@MDSC demonstrates its superior performance in immune evasion, active tumor‐targeting, magnetic resonance imaging, and photothermal therapy (PTT)‐induced tumor killing. Compared with red blood cell membrane‐coated nanoparticles (MNPs@RBC) or naked MNPs, MNP@MDSCs are much more effective in active tumor‐targeting, a beneficial property afforded by coating MNP with membranes from naturally occurring MDSC, thus converting the MNP into “smart” agents that like to accumulate in tumors as the source MDSCs. Once targeted to the tumor microenvironment, MNPs@MDSC can act as a PTT agents for enhanced antitumor response by inducing immunogenic cell death, reprogramming the tumor infiltrating macrophages, and reducing the tumor's metabolic activity. These benefits, in combination with the excellent biocompatibility and pharmacological kinetics characteristics, make MNP@MDSC a promising, multimodal agent for cancer theranostics. Myeloid‐derived suppressor cell (MDSC) membranes are collected from tumor‐bearing mice and further used for magnetic Fe3O4 nanoparticle (MNP) coating. The resulting MDSC‐mimicking nanoparticles (MNP@MDSC) demonstrate superior performance in immune evasion, active tumor‐targeting, magnetic resonance imaging, photothermal therapy‐induced tumor killing, and excellent biocompatibility and pharmacological kinetics characteristics. These benefits make MNP@MDSC a promising, multimodal agent for cancer theranostics.
Author Bu, Lin‐Lin
Wu, Hao
Zhang, Wen‐Feng
Sun, Zhi‐Jun
Liu, Wei
Nan, Xiaolin
Deng, Wei‐Wei
Zhao, Xing‐Zhong
Yu, Guang‐Tao
Yang, Lei‐Lei
Wu, Lei
Rao, Lang
Author_xml – sequence: 1
  givenname: Guang‐Tao
  surname: Yu
  fullname: Yu, Guang‐Tao
  organization: Wuhan University
– sequence: 2
  givenname: Lang
  surname: Rao
  fullname: Rao, Lang
  organization: Wuhan University
– sequence: 3
  givenname: Hao
  surname: Wu
  fullname: Wu, Hao
  organization: Wuhan University
– sequence: 4
  givenname: Lei‐Lei
  surname: Yang
  fullname: Yang, Lei‐Lei
  organization: Wuhan University
– sequence: 5
  givenname: Lin‐Lin
  surname: Bu
  fullname: Bu, Lin‐Lin
  organization: Wuhan University
– sequence: 6
  givenname: Wei‐Wei
  surname: Deng
  fullname: Deng, Wei‐Wei
  organization: Wuhan University
– sequence: 7
  givenname: Lei
  surname: Wu
  fullname: Wu, Lei
  organization: Oregon Health and Science University
– sequence: 8
  givenname: Xiaolin
  surname: Nan
  fullname: Nan, Xiaolin
  organization: Oregon Health and Science University
– sequence: 9
  givenname: Wen‐Feng
  surname: Zhang
  fullname: Zhang, Wen‐Feng
  organization: Wuhan University
– sequence: 10
  givenname: Xing‐Zhong
  surname: Zhao
  fullname: Zhao, Xing‐Zhong
  organization: Wuhan University
– sequence: 11
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  email: wliu@whu.edu.cn
  organization: Wuhan University
– sequence: 12
  givenname: Zhi‐Jun
  orcidid: 0000-0003-0932-8013
  surname: Sun
  fullname: Sun, Zhi‐Jun
  email: sunzj@whu.edu.cn
  organization: Wuhan University
BookMark eNqFkc9q3DAQxkVIIX_aa8-CnHejsXa99jHsNu1Cti00hd7MWBp7FWzJlewW55RHyIvkpfIk0WZLCoHSucwgfT99Gr4TdmidJcbeg5iCEMk56qqdJgIyATLLD9gxpJBOpEiyw5cZfhyxkxBuhIDFQs6O2cNmpMYZ_Xh3vyJvfpHm34au8xSC83xJTcM31JYeLUXJ0mEfFRusLfVG8c9oXYc-jg0FXu0ItIo8v95SRFyIN4GXI19bPShj64gq77ot1sS_uga9ucXeOMvRRuPRkq_N7U63btvBuppsdHn-xYqw375lbypsAr3700_Z98sP18tPk6svH9fLi6uJkrDIJ6WUaUlCqzmoMs_nmZZZgkoB6DmJUs0QNMSqoNKJjieLtJJIc1FKBJWm8pSd7d_tvPs5UOiLGzd4Gy2LBAQkM5lDHlXTvSquFIKnqui8adGPBYhiF0mxi6R4iSQCs1eAMv3z_r1H0_wby_fYb9PQ-B-T4mJ1ufnLPgHC1ami
CitedBy_id crossref_primary_10_1080_10717544_2021_1983082
crossref_primary_10_1021_acsnano_9b06040
crossref_primary_10_1002_sstr_202400149
crossref_primary_10_1016_j_cej_2019_123979
crossref_primary_10_1038_s41427_023_00528_2
crossref_primary_10_1021_acs_bioconjchem_0c00135
crossref_primary_10_1038_s41392_024_01937_7
crossref_primary_10_1186_s13046_022_02272_x
crossref_primary_10_1002_adfm_201807733
crossref_primary_10_1016_j_addr_2021_113974
crossref_primary_10_1002_adfm_202207181
crossref_primary_10_1038_s41392_021_00631_2
crossref_primary_10_1039_D2BM00692H
crossref_primary_10_1039_D1CC04604G
crossref_primary_10_1002_adma_202204034
crossref_primary_10_1002_adfm_201909369
crossref_primary_10_1038_s41401_020_0400_z
crossref_primary_10_1016_j_pmatsci_2024_101267
crossref_primary_10_1021_acsnano_9b03288
crossref_primary_10_1007_s11705_021_2059_5
crossref_primary_10_1021_acsnano_9b02993
crossref_primary_10_1142_S1793545823300070
crossref_primary_10_1002_mba2_106
crossref_primary_10_1002_adfm_202104199
crossref_primary_10_1039_C9NR06505A
crossref_primary_10_1021_acsami_3c07248
crossref_primary_10_1021_acsanm_1c01913
crossref_primary_10_1007_s11426_020_9943_9
crossref_primary_10_1039_D1BM01127H
crossref_primary_10_1039_D0BM01158D
crossref_primary_10_1002_EXP_20230134
crossref_primary_10_1002_smll_202104783
crossref_primary_10_1186_s12951_022_01510_w
crossref_primary_10_1016_j_addr_2022_114136
crossref_primary_10_1002_rpm_20240027
crossref_primary_10_1016_j_apsb_2021_01_020
crossref_primary_10_1016_j_apsb_2022_05_026
crossref_primary_10_1021_acs_nanolett_8b03913
crossref_primary_10_1007_s12274_020_2736_6
crossref_primary_10_1002_agt2_359
crossref_primary_10_1016_j_jconrel_2020_12_005
crossref_primary_10_3390_pharmaceutics15030943
crossref_primary_10_1021_acsnano_1c00114
crossref_primary_10_1080_1061186X_2024_2410462
crossref_primary_10_1177_18495435211053945
crossref_primary_10_1039_D1NR05512G
crossref_primary_10_1039_D0CS00152J
crossref_primary_10_1002_adfm_201909745
crossref_primary_10_1002_adfm_202004397
crossref_primary_10_3389_fchem_2020_572471
crossref_primary_10_1002_cnma_202100062
crossref_primary_10_1002_anie_201909729
crossref_primary_10_1039_C9BM01392J
crossref_primary_10_1002_adfm_202001446
crossref_primary_10_2147_IJN_S473463
crossref_primary_10_1002_adma_202100012
crossref_primary_10_1016_j_apsb_2021_05_016
crossref_primary_10_3390_cancers15143722
crossref_primary_10_3390_molecules25071508
crossref_primary_10_1016_j_ccr_2024_215712
crossref_primary_10_3390_molecules26195980
crossref_primary_10_1002_adma_201901255
crossref_primary_10_3390_ph14050447
crossref_primary_10_2147_IJN_S285999
crossref_primary_10_1002_ange_202108342
crossref_primary_10_1002_cmdc_202400410
crossref_primary_10_1039_D0CS00260G
crossref_primary_10_1166_mex_2023_2409
crossref_primary_10_1016_j_biomaterials_2021_120893
crossref_primary_10_1039_D1TB00397F
crossref_primary_10_1016_j_jconrel_2023_09_016
crossref_primary_10_2147_IJN_S244849
crossref_primary_10_1002_adma_202100241
crossref_primary_10_3390_pharmaceutics13111867
crossref_primary_10_1002_adfm_201905671
crossref_primary_10_1002_adtp_201900181
crossref_primary_10_1016_j_pmatsci_2020_100768
crossref_primary_10_1021_acsami_1c08105
crossref_primary_10_12677_acm_2024_1451389
crossref_primary_10_1039_D1TB01001H
crossref_primary_10_1002_adma_202007576
crossref_primary_10_1002_anie_202108342
crossref_primary_10_3390_ijms23042223
crossref_primary_10_1002_adma_201808303
crossref_primary_10_1016_j_pmatsci_2024_101347
crossref_primary_10_1021_acsabm_2c00208
crossref_primary_10_1002_smtd_202201412
crossref_primary_10_1002_adfm_202008698
crossref_primary_10_1016_j_apsb_2021_12_021
crossref_primary_10_1016_j_nantod_2023_102033
crossref_primary_10_1002_mabi_202100075
crossref_primary_10_1002_advs_202308248
crossref_primary_10_3390_pr9040621
crossref_primary_10_1002_adma_202004853
crossref_primary_10_1002_adma_202300216
crossref_primary_10_1039_D1NR04196G
crossref_primary_10_1002_adom_202000616
crossref_primary_10_1039_C9CC08447A
crossref_primary_10_3390_pharmaceutics15010073
crossref_primary_10_1016_j_pmatsci_2023_101230
crossref_primary_10_3390_catal13060980
crossref_primary_10_1002_smll_202403024
crossref_primary_10_1021_acsnano_1c05392
crossref_primary_10_1186_s12951_024_02883_w
crossref_primary_10_1080_02656736_2023_2272066
crossref_primary_10_1021_acsabm_1c00461
crossref_primary_10_1002_ange_201909729
crossref_primary_10_1016_j_jconrel_2021_05_018
crossref_primary_10_1021_acsnano_9b05038
crossref_primary_10_1515_mr_2023_0028
crossref_primary_10_1088_1361_6528_ad8626
crossref_primary_10_1002_adma_201902604
crossref_primary_10_3390_magnetochemistry5030045
crossref_primary_10_1002_adfm_202201542
crossref_primary_10_1002_adma_202004172
crossref_primary_10_1021_acs_jpclett_2c00076
crossref_primary_10_1021_acs_nanolett_9b03753
crossref_primary_10_1080_17425247_2021_1882992
crossref_primary_10_1002_adfm_201808640
crossref_primary_10_1002_adhm_202101349
crossref_primary_10_1016_j_ijpharm_2021_120848
crossref_primary_10_3390_cells10051170
crossref_primary_10_1002_smll_201804105
crossref_primary_10_1039_D3BM01552A
crossref_primary_10_1016_j_matt_2022_02_015
crossref_primary_10_1016_j_jconrel_2023_12_006
crossref_primary_10_1002_adfm_202401359
crossref_primary_10_1016_j_jconrel_2023_02_040
crossref_primary_10_1021_acsomega_2c05986
crossref_primary_10_1002_advs_202201734
crossref_primary_10_1088_1748_605X_abd0c4
crossref_primary_10_1002_smtd_202301005
crossref_primary_10_1016_j_canlet_2019_08_009
crossref_primary_10_1021_acsami_4c03434
crossref_primary_10_1002_anbr_202200053
crossref_primary_10_1002_adfm_201903441
crossref_primary_10_1039_D1NH00179E
crossref_primary_10_1002_adhm_202001415
crossref_primary_10_1007_s40820_021_00622_6
crossref_primary_10_1186_s12951_022_01358_0
crossref_primary_10_1002_advs_202102330
crossref_primary_10_1002_smtd_202401860
crossref_primary_10_1021_acsami_9b17137
crossref_primary_10_1177_11795549241236896
crossref_primary_10_1021_acsomega_4c10865
crossref_primary_10_1016_j_ccr_2022_214865
crossref_primary_10_1021_acsabm_0c01272
crossref_primary_10_1002_INMD_20220012
crossref_primary_10_1007_s40820_019_0330_9
crossref_primary_10_1016_j_cej_2021_132329
Cites_doi 10.1021/acsami.6b14450
10.1002/anie.201709457
10.1038/nm1523
10.1016/j.cell.2011.02.013
10.1016/j.nantod.2014.04.008
10.1172/JCI80005
10.1039/c2cs15337h
10.1146/annurev.immunol.21.120601.141135
10.1200/JCO.2006.06.7801
10.1002/adhm.201601289
10.1038/nri3175
10.1038/nnano.2016.168
10.1166/jbn.2014.1898
10.1016/j.nantod.2015.06.007
10.1158/1078-0432.CCR-07-1441
10.1038/nrc3581
10.1200/JCO.2004.07.122
10.1039/c0cs00097c
10.1038/ncomms12150
10.1021/acsnano.7b04836
10.1021/acs.nanolett.6b02978
10.1016/S0006-3495(73)86021-7
10.1126/science.6828875
10.3322/caac.21387
10.1002/adma.201401372
10.1021/acsnano.7b00133
10.4161/auto.25873
10.1038/ncomms13724
10.1172/JCI80006
10.1002/adma.201606209
10.1111/nyas.12469
10.1038/ncomms10764
10.3322/caac.21332
10.1146/annurev.med.59.061506.185523
10.1073/pnas.86.5.1662
10.1111/iju.12086
10.1002/adma.201506312
10.1016/j.mam.2014.05.001
10.1002/adma.201605375
10.1002/jbm.a.35927
10.1038/nbt0207-192
10.1021/acsnano.7b02650
10.1038/nm0107-28
10.1002/adma.201506086
10.1016/j.copbio.2016.02.001
10.7150/thno.21317
10.1002/adhm.201601462
10.1002/smll.201502388
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201801389
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201801389
ADFM201801389
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2042017kf0171
– fundername: National Natural Science Foundation for Outstanding Youth Foundation
  funderid: 61722405
– fundername: Chinese Academy of Sciences
– fundername: National Center for Magnetic Resonance in Wuhan
– fundername: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
– fundername: Huazhong University of Science and Technology
– fundername: National Natural Science Foundation of China
  funderid: 81672668; 81472528; 81472529
– fundername: Wuhan Institute of Physics and Mathematics
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3179-b336be0dc51cb9958d382acc11d5e0bc4a1d1111f1fd2de0b76f3ae50b3a1c663
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 03:16:00 EDT 2025
Tue Jul 01 04:11:50 EDT 2025
Thu Apr 24 23:10:15 EDT 2025
Wed Aug 20 07:25:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3179-b336be0dc51cb9958d382acc11d5e0bc4a1d1111f1fd2de0b76f3ae50b3a1c663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0932-8013
PQID 2101243919
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2101243919
crossref_primary_10_1002_adfm_201801389
crossref_citationtrail_10_1002_adfm_201801389
wiley_primary_10_1002_adfm_201801389_ADFM201801389
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 12, 2018
PublicationDateYYYYMMDD 2018-09-12
PublicationDate_xml – month: 09
  year: 2018
  text: September 12, 2018
  day: 12
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1983 1973; 220 13
2011 2017 2017 2017 2017 2017 2016 2016; 40 29 6 2 7 13 28 40
2016 2017 2015 2017 2017; 28 57 11 105 9
2017 2017 2017 2017 2017 2015; 11 11 29 29 8 10
2008 2008; 14 59
2017 2016; 67 66
2016 2013; 7 13
2006 2004; 24 22
2016 2007 2014 2007 2007 1989 2013; 7 13 40 13 25 86 9
2014 2012; 1319 12
2014; 9
2015 2013 2015; 125 20 125
2013; 8
2014 2017 2017 2012 2017 2016; 26 7 6 41 11 16
2003; 21
2011; 144
2014; 10
2016; 11
e_1_2_7_5_1
Sousa M. P. (e_1_2_7_3_3) 2017; 6
e_1_2_7_3_1
e_1_2_7_3_8
e_1_2_7_9_2
e_1_2_7_3_7
Martinkova P. (e_1_2_7_4_2) 2017; 7
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_15_7
e_1_2_7_3_5
e_1_2_7_7_1
e_1_2_7_15_6
e_1_2_7_15_5
e_1_2_7_15_4
e_1_2_7_17_2
e_1_2_7_15_3
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
Sun Z. (e_1_2_7_3_6) 2017; 13
e_1_2_7_9_6
e_1_2_7_9_5
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_4_6
e_1_2_7_8_2
e_1_2_7_4_5
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_6_2
e_1_2_7_16_1
Parodi A. (e_1_2_7_18_1) 2013; 8
e_1_2_7_2_1
e_1_2_7_10_5
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
Balasubramanian V. (e_1_2_7_9_4) 2017; 29
Chen H. (e_1_2_7_3_4) 2017; 2
Gao M. (e_1_2_7_3_2) 2017; 29
Dehaini D. (e_1_2_7_9_3) 2017; 29
References_xml – volume: 220 13
  start-page: 101 747
  year: 1983 1973
  publication-title: Science Biophys. J.
– volume: 40 29 6 2 7 13 28 40
  start-page: 2673 3915 8912 1
  year: 2011 2017 2017 2017 2017 2017 2016 2016
  publication-title: Chem. Soc. Rev. Adv. Mater. Adv. Healthcare Mater. Nat. Rev. Mater. Theranostics Small Adv. Mater. Curr. Opin. Biotechnol.
– volume: 24 22
  start-page: 4692 900
  year: 2006 2004
  publication-title: J. Clin. Oncol. J. Clin. Oncol.
– volume: 10
  start-page: 2393
  year: 2014
  publication-title: J. Biomed. Nanotechnol.
– volume: 144
  start-page: 646
  year: 2011
  publication-title: Cell
– volume: 28 57 11 105 9
  start-page: 3460 986 6225 521 2159
  year: 2016 2017 2015 2017 2017
  publication-title: Adv. Mater. Angew. Chem., Int. Ed. Engl. Small J. Biomed. Mater. Res., Part A ACS. Appl. Mater. Interfaces
– volume: 9
  start-page: 223
  year: 2014
  publication-title: Nano Today
– volume: 14 59
  start-page: 1310 251
  year: 2008 2008
  publication-title: Clin. Cancer Res. Annu. Rev. Med.
– volume: 26 7 6 41 11 16
  start-page: 5119 4306 3496 7408
  year: 2014 2017 2017 2012 2017 2016
  publication-title: Adv. Mater. Adv. Healthcare Mater. Adv. Healthcare Mater. Chem. Soc. Rev. ACS Nano Nano Lett.
– volume: 21
  start-page: 807
  year: 2003
  publication-title: Annu. Rev. Immunol.
– volume: 7 13 40 13 25 86 9
  start-page: 10764 54 1 28 192 1662 1624
  year: 2016 2007 2014 2007 2007 1989 2013
  publication-title: Nat. Commun. Nat. Med. Mol. Aspects Med. Nat. Med. Nat. Biotechnol. Proc. Natl. Acad. Sci. USA Autophagy
– volume: 7 13
  start-page: 12150 739
  year: 2016 2013
  publication-title: Nat. Commun. Nat. Rev. Cancer
– volume: 125 20 125
  start-page: 3356 971 3365
  year: 2015 2013 2015
  publication-title: J. Clin. Invest. Int. J. Urol. J. Clin. Invest.
– volume: 1319 12
  start-page: 47 253
  year: 2014 2012
  publication-title: Ann. N. Y. Acad. Sci. Nat. Rev. Immunol.
– volume: 11
  start-page: 986
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 67 66
  start-page: 7 7
  year: 2017 2016
  publication-title: CA‐Cancer J. Clin. CA‐Cancer J. Clin.
– volume: 11 11 29 29 8 10
  start-page: 11831 10964 13724 511
  year: 2017 2017 2017 2017 2017 2015
  publication-title: ACS Nano ACS Nano Adv. Mater. Adv. Mater. Nat. Commun. Nano Today
– volume: 8
  start-page: 61
  year: 2013
  publication-title: Nat. Biotechnol.
– ident: e_1_2_7_10_5
  doi: 10.1021/acsami.6b14450
– ident: e_1_2_7_10_2
  doi: 10.1002/anie.201709457
– ident: e_1_2_7_15_2
  doi: 10.1038/nm1523
– ident: e_1_2_7_16_1
  doi: 10.1016/j.cell.2011.02.013
– ident: e_1_2_7_14_1
  doi: 10.1016/j.nantod.2014.04.008
– ident: e_1_2_7_8_1
  doi: 10.1172/JCI80005
– ident: e_1_2_7_4_4
  doi: 10.1039/c2cs15337h
– ident: e_1_2_7_13_1
  doi: 10.1146/annurev.immunol.21.120601.141135
– ident: e_1_2_7_17_1
  doi: 10.1200/JCO.2006.06.7801
– ident: e_1_2_7_4_3
  doi: 10.1002/adhm.201601289
– ident: e_1_2_7_7_2
  doi: 10.1038/nri3175
– ident: e_1_2_7_5_1
  doi: 10.1038/nnano.2016.168
– ident: e_1_2_7_12_1
  doi: 10.1166/jbn.2014.1898
– volume: 7
  year: 2017
  ident: e_1_2_7_4_2
  publication-title: Adv. Healthcare Mater.
– ident: e_1_2_7_9_6
  doi: 10.1016/j.nantod.2015.06.007
– ident: e_1_2_7_2_1
  doi: 10.1158/1078-0432.CCR-07-1441
– ident: e_1_2_7_6_2
  doi: 10.1038/nrc3581
– ident: e_1_2_7_17_2
  doi: 10.1200/JCO.2004.07.122
– ident: e_1_2_7_3_1
  doi: 10.1039/c0cs00097c
– ident: e_1_2_7_6_1
  doi: 10.1038/ncomms12150
– ident: e_1_2_7_9_2
  doi: 10.1021/acsnano.7b04836
– ident: e_1_2_7_4_6
  doi: 10.1021/acs.nanolett.6b02978
– ident: e_1_2_7_11_2
  doi: 10.1016/S0006-3495(73)86021-7
– ident: e_1_2_7_11_1
  doi: 10.1126/science.6828875
– ident: e_1_2_7_1_1
  doi: 10.3322/caac.21387
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201401372
– ident: e_1_2_7_4_5
  doi: 10.1021/acsnano.7b00133
– ident: e_1_2_7_15_7
  doi: 10.4161/auto.25873
– volume: 8
  start-page: 61
  year: 2013
  ident: e_1_2_7_18_1
  publication-title: Nat. Biotechnol.
– ident: e_1_2_7_9_5
  doi: 10.1038/ncomms13724
– ident: e_1_2_7_8_3
  doi: 10.1172/JCI80006
– volume: 13
  year: 2017
  ident: e_1_2_7_3_6
  publication-title: Small
– volume: 29
  year: 2017
  ident: e_1_2_7_9_3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606209
– ident: e_1_2_7_7_1
  doi: 10.1111/nyas.12469
– ident: e_1_2_7_15_1
  doi: 10.1038/ncomms10764
– ident: e_1_2_7_1_2
  doi: 10.3322/caac.21332
– ident: e_1_2_7_2_2
  doi: 10.1146/annurev.med.59.061506.185523
– ident: e_1_2_7_15_6
  doi: 10.1073/pnas.86.5.1662
– ident: e_1_2_7_8_2
  doi: 10.1111/iju.12086
– ident: e_1_2_7_3_7
  doi: 10.1002/adma.201506312
– ident: e_1_2_7_15_3
  doi: 10.1016/j.mam.2014.05.001
– volume: 29
  year: 2017
  ident: e_1_2_7_9_4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605375
– ident: e_1_2_7_10_4
  doi: 10.1002/jbm.a.35927
– ident: e_1_2_7_15_5
  doi: 10.1038/nbt0207-192
– ident: e_1_2_7_9_1
  doi: 10.1021/acsnano.7b02650
– ident: e_1_2_7_15_4
  doi: 10.1038/nm0107-28
– volume: 29
  year: 2017
  ident: e_1_2_7_3_2
  publication-title: Adv. Mater.
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201506086
– ident: e_1_2_7_3_8
  doi: 10.1016/j.copbio.2016.02.001
– ident: e_1_2_7_3_5
  doi: 10.7150/thno.21317
– volume: 2
  year: 2017
  ident: e_1_2_7_3_4
  publication-title: Nat. Rev. Mater.
– volume: 6
  year: 2017
  ident: e_1_2_7_3_3
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201601462
– ident: e_1_2_7_10_3
  doi: 10.1002/smll.201502388
SSID ssj0017734
Score 2.6152542
Snippet A major challenge for traditional cancer therapy, including surgical resection, chemoradiotherapy, and immunotherapy, is how to induce tumor cell death and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anticancer properties
Apoptosis
Biocompatibility
Cancer
Cancer therapies
Cell death
Coating effects
Erythrocytes
immunogenic cell death
Iron oxides
macrophage
Macrophages
Magnetic resonance imaging
Materials science
myeloid‐derived suppressor cell
Nanoparticles
Pharmacology
photothermal therapy
Therapy
Tumors
Title Myeloid‐Derived Suppressor Cell Membrane‐Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201801389
https://www.proquest.com/docview/2101243919
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTttAFB1VsCkLHm0RAYpmUYmVQ2ac8WMZJY0A4Qq1RMrOmmcbNbVREpDCik_gR_gpvoR7bccEJFQJNpY9noetuXPnjD3nXEK-8baLTCC4B2AYDpIxTwZh7MUOJp_QuUCFyB1OfgTHg_bpUAyXWPylPkT9wQ1HRuGvcYBLNT16Eg2VxiGTnEXFvzZwwrhhC1HRz1o_ioVh-Vs5YLjBiw0Xqo0tfvS8-PNZ6QlqLgPWYsbpbxC5eNZyo8nf5tVMNfXNCxnH97zMJlmv4CjtlPazRT7Y7BNZWxIp_Ezuk7kd5yPzcHvXg6RrayiGAsVlej6hXTse08T-g8YzC1m6OYBXQxP5O0N6JAXvDcvyavcddVgC7WxCL5D4leWFTDRVc4oxRDQ0CEUxqtgf8HP0HNfdFVGUygwaniNVcXSD-U6Q2ZKD_UMrxVP0EM1-IYP-94vusVcFefA0QJfYU74fKNsyWjCt4lhExo-41JoxI2xLaTAfg27dMWe4gZQwcL60oqV8yTTgpW2ykuWZ3SFUCekb4VsXa94WsZNQK3csjlBmz4Rhg3iLTk51pYCOgTjGaandzFPshrTuhgY5rPNfltofr-bcX9hMWvmAacpROg2JzXCbF53_n1rSTq-f1Fe7bym0Rz7iuVfEuNgnK7PJlf0KqGmmDshqp5ec_TooRsgj4pIV5w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LThsxFLUKXRQW0BcqlIcXlboaiD3xPJYoIQqFQVUVJHYjPyEinUFpqBRWfAI_0p_iS7jX8wAqVZXazUjj8Wtk-_r4cc4l5BPvusREggcAhuEhGQtkFKdB6mDyiZ2LVIzc4ewkGp52v5yJ5jYhcmEqfYh2ww1HhrfXOMBxQ3rvUTVUGodUcpb4w7YF8hLdevtV1bdWQYrFcXWwHDG84sXOGt3GDt97nv75vPQINp9CVj_nDFaJampbXTW53L2eqV1985uQ43_9zmuyUiNSul91oTfkhS3ekuUnOoXvyK9sbifl2Nzf3vUh6Kc1FL2B4kq9nNKenUxoZr9D6YWFKL0S8KuhmTwvkCFJwYDDyry-gEcdpsCuNqUj5H4VpVeKpmpO0Y2IhgIhKToWuwBTR7_i0rvmilJZQMFzZCuObzDeIZJbShgCUIqvRR8B7XtyOjgY9YZB7ech0IBe0kCFYaRsx2jBtEpTkZgw4VJrxoywHaWhBxm07I45ww2ExJELpRUdFUqmATKtkcWiLOwHQpWQoRGhdanmXZE6Cblyx9IElfZMHK-ToGnlXNci6OiLY5JX8s08x2bI22ZYJ5_b-FeV_McfY242nSavzcCPnKN6GnKb4TP3rf-XXPL9_iBr3zb-JdEOeTUcZcf58eHJ0UeyhOGBd3mxSRZn02u7BSBqprb9MHkAYjYYbg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFLUoSKhd8Cig8mjrBRKrQOyM81iiCSOgBCEE0uwiPwF1mqDpUGlY9RP6I_xUv6T3JpkwVEJIsIkUx44d-fr6OPY5l5Bt3nGxCQX3AAzDRTLmyTBKvMTB5BM5F6oIucPZaXh42Tnui_4Ui7_Wh2h_uOHIqPw1DvBb4_YeRUOlccgkZ3G11_aOzHVCP0a7Ts9bASkWRfW-csjwhBfrT2Qbfb73tPzTaekRa04j1mrK6S0SOWlsfdLk--7dSO3q-_90HN_yNUtkocGjdL82oGUyY4uP5MOUSuEKecjGdlDemL-__6SQ9MsairFAcZ1eDmnXDgY0sz-g8sJClm4J6NXQTF4VyI-k4L5hXd4cv6MOS6ChDekFMr-KstKJpmpMMYiIhgqhKIYVuwZHR89w4d0wRaksoOIxchVv7jHfEVJbShgAUEvVihTh7Cq57B1cdA-9JsqDpwG7JJ4KglBZ32jBtEoSEZsg5lJrxoywvtJgPwb9umPOcAMpUegCaYWvAsk0AKY1MluUhf1EqBIyMCKwLtG8IxIn4a3csSRGnT0TRevEm3RyrhsJdIzEMchr8WaeYzfkbTesk502_20t_vFszq2JzeSNE_iZc9ROQ2YzPOZV57_wlnw_7WXt3cZrCn0l82dpLz85Ov22Sd5jslfFu9gis6Phnf0MCGqkvlSD5B8r3Bcm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myeloid%E2%80%90Derived+Suppressor+Cell+Membrane%E2%80%90Coated+Magnetic+Nanoparticles+for+Cancer+Theranostics+by+Inducing+Macrophage+Polarization+and+Synergizing+Immunogenic+Cell+Death&rft.jtitle=Advanced+functional+materials&rft.au=Yu%2C+Guang%E2%80%90Tao&rft.au=Rao%2C+Lang&rft.au=Wu%2C+Hao&rft.au=Yang%2C+Lei%E2%80%90Lei&rft.date=2018-09-12&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=37&rft_id=info:doi/10.1002%2Fadfm.201801389&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201801389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon