Myeloid‐Derived Suppressor Cell Membrane‐Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death
A major challenge for traditional cancer therapy, including surgical resection, chemoradiotherapy, and immunotherapy, is how to induce tumor cell death and leverage the host immune system at the same time. Here, a myeloid‐derived suppressor cell (MDSC) membrane‐coated iron oxide magnetic nanoparticl...
Saved in:
Published in | Advanced functional materials Vol. 28; no. 37 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
12.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A major challenge for traditional cancer therapy, including surgical resection, chemoradiotherapy, and immunotherapy, is how to induce tumor cell death and leverage the host immune system at the same time. Here, a myeloid‐derived suppressor cell (MDSC) membrane‐coated iron oxide magnetic nanoparticle (MNP@MDSC) to overcome this conundrum for cancer therapy is developed. In this study, MNP@MDSC demonstrates its superior performance in immune evasion, active tumor‐targeting, magnetic resonance imaging, and photothermal therapy (PTT)‐induced tumor killing. Compared with red blood cell membrane‐coated nanoparticles (MNPs@RBC) or naked MNPs, MNP@MDSCs are much more effective in active tumor‐targeting, a beneficial property afforded by coating MNP with membranes from naturally occurring MDSC, thus converting the MNP into “smart” agents that like to accumulate in tumors as the source MDSCs. Once targeted to the tumor microenvironment, MNPs@MDSC can act as a PTT agents for enhanced antitumor response by inducing immunogenic cell death, reprogramming the tumor infiltrating macrophages, and reducing the tumor's metabolic activity. These benefits, in combination with the excellent biocompatibility and pharmacological kinetics characteristics, make MNP@MDSC a promising, multimodal agent for cancer theranostics.
Myeloid‐derived suppressor cell (MDSC) membranes are collected from tumor‐bearing mice and further used for magnetic Fe3O4 nanoparticle (MNP) coating. The resulting MDSC‐mimicking nanoparticles (MNP@MDSC) demonstrate superior performance in immune evasion, active tumor‐targeting, magnetic resonance imaging, photothermal therapy‐induced tumor killing, and excellent biocompatibility and pharmacological kinetics characteristics. These benefits make MNP@MDSC a promising, multimodal agent for cancer theranostics. |
---|---|
AbstractList | A major challenge for traditional cancer therapy, including surgical resection, chemoradiotherapy, and immunotherapy, is how to induce tumor cell death and leverage the host immune system at the same time. Here, a myeloid‐derived suppressor cell (MDSC) membrane‐coated iron oxide magnetic nanoparticle (MNP@MDSC) to overcome this conundrum for cancer therapy is developed. In this study, MNP@MDSC demonstrates its superior performance in immune evasion, active tumor‐targeting, magnetic resonance imaging, and photothermal therapy (PTT)‐induced tumor killing. Compared with red blood cell membrane‐coated nanoparticles (MNPs@RBC) or naked MNPs, MNP@MDSCs are much more effective in active tumor‐targeting, a beneficial property afforded by coating MNP with membranes from naturally occurring MDSC, thus converting the MNP into “smart” agents that like to accumulate in tumors as the source MDSCs. Once targeted to the tumor microenvironment, MNPs@MDSC can act as a PTT agents for enhanced antitumor response by inducing immunogenic cell death, reprogramming the tumor infiltrating macrophages, and reducing the tumor's metabolic activity. These benefits, in combination with the excellent biocompatibility and pharmacological kinetics characteristics, make MNP@MDSC a promising, multimodal agent for cancer theranostics. A major challenge for traditional cancer therapy, including surgical resection, chemoradiotherapy, and immunotherapy, is how to induce tumor cell death and leverage the host immune system at the same time. Here, a myeloid‐derived suppressor cell (MDSC) membrane‐coated iron oxide magnetic nanoparticle (MNP@MDSC) to overcome this conundrum for cancer therapy is developed. In this study, MNP@MDSC demonstrates its superior performance in immune evasion, active tumor‐targeting, magnetic resonance imaging, and photothermal therapy (PTT)‐induced tumor killing. Compared with red blood cell membrane‐coated nanoparticles (MNPs@RBC) or naked MNPs, MNP@MDSCs are much more effective in active tumor‐targeting, a beneficial property afforded by coating MNP with membranes from naturally occurring MDSC, thus converting the MNP into “smart” agents that like to accumulate in tumors as the source MDSCs. Once targeted to the tumor microenvironment, MNPs@MDSC can act as a PTT agents for enhanced antitumor response by inducing immunogenic cell death, reprogramming the tumor infiltrating macrophages, and reducing the tumor's metabolic activity. These benefits, in combination with the excellent biocompatibility and pharmacological kinetics characteristics, make MNP@MDSC a promising, multimodal agent for cancer theranostics. Myeloid‐derived suppressor cell (MDSC) membranes are collected from tumor‐bearing mice and further used for magnetic Fe3O4 nanoparticle (MNP) coating. The resulting MDSC‐mimicking nanoparticles (MNP@MDSC) demonstrate superior performance in immune evasion, active tumor‐targeting, magnetic resonance imaging, photothermal therapy‐induced tumor killing, and excellent biocompatibility and pharmacological kinetics characteristics. These benefits make MNP@MDSC a promising, multimodal agent for cancer theranostics. |
Author | Bu, Lin‐Lin Wu, Hao Zhang, Wen‐Feng Sun, Zhi‐Jun Liu, Wei Nan, Xiaolin Deng, Wei‐Wei Zhao, Xing‐Zhong Yu, Guang‐Tao Yang, Lei‐Lei Wu, Lei Rao, Lang |
Author_xml | – sequence: 1 givenname: Guang‐Tao surname: Yu fullname: Yu, Guang‐Tao organization: Wuhan University – sequence: 2 givenname: Lang surname: Rao fullname: Rao, Lang organization: Wuhan University – sequence: 3 givenname: Hao surname: Wu fullname: Wu, Hao organization: Wuhan University – sequence: 4 givenname: Lei‐Lei surname: Yang fullname: Yang, Lei‐Lei organization: Wuhan University – sequence: 5 givenname: Lin‐Lin surname: Bu fullname: Bu, Lin‐Lin organization: Wuhan University – sequence: 6 givenname: Wei‐Wei surname: Deng fullname: Deng, Wei‐Wei organization: Wuhan University – sequence: 7 givenname: Lei surname: Wu fullname: Wu, Lei organization: Oregon Health and Science University – sequence: 8 givenname: Xiaolin surname: Nan fullname: Nan, Xiaolin organization: Oregon Health and Science University – sequence: 9 givenname: Wen‐Feng surname: Zhang fullname: Zhang, Wen‐Feng organization: Wuhan University – sequence: 10 givenname: Xing‐Zhong surname: Zhao fullname: Zhao, Xing‐Zhong organization: Wuhan University – sequence: 11 givenname: Wei surname: Liu fullname: Liu, Wei email: wliu@whu.edu.cn organization: Wuhan University – sequence: 12 givenname: Zhi‐Jun orcidid: 0000-0003-0932-8013 surname: Sun fullname: Sun, Zhi‐Jun email: sunzj@whu.edu.cn organization: Wuhan University |
BookMark | eNqFkc9q3DAQxkVIIX_aa8-CnHejsXa99jHsNu1Cti00hd7MWBp7FWzJlewW55RHyIvkpfIk0WZLCoHSucwgfT99Gr4TdmidJcbeg5iCEMk56qqdJgIyATLLD9gxpJBOpEiyw5cZfhyxkxBuhIDFQs6O2cNmpMYZ_Xh3vyJvfpHm34au8xSC83xJTcM31JYeLUXJ0mEfFRusLfVG8c9oXYc-jg0FXu0ItIo8v95SRFyIN4GXI19bPShj64gq77ot1sS_uga9ucXeOMvRRuPRkq_N7U63btvBuppsdHn-xYqw375lbypsAr3700_Z98sP18tPk6svH9fLi6uJkrDIJ6WUaUlCqzmoMs_nmZZZgkoB6DmJUs0QNMSqoNKJjieLtJJIc1FKBJWm8pSd7d_tvPs5UOiLGzd4Gy2LBAQkM5lDHlXTvSquFIKnqui8adGPBYhiF0mxi6R4iSQCs1eAMv3z_r1H0_wby_fYb9PQ-B-T4mJ1ufnLPgHC1ami |
CitedBy_id | crossref_primary_10_1080_10717544_2021_1983082 crossref_primary_10_1021_acsnano_9b06040 crossref_primary_10_1002_sstr_202400149 crossref_primary_10_1016_j_cej_2019_123979 crossref_primary_10_1038_s41427_023_00528_2 crossref_primary_10_1021_acs_bioconjchem_0c00135 crossref_primary_10_1038_s41392_024_01937_7 crossref_primary_10_1186_s13046_022_02272_x crossref_primary_10_1002_adfm_201807733 crossref_primary_10_1016_j_addr_2021_113974 crossref_primary_10_1002_adfm_202207181 crossref_primary_10_1038_s41392_021_00631_2 crossref_primary_10_1039_D2BM00692H crossref_primary_10_1039_D1CC04604G crossref_primary_10_1002_adma_202204034 crossref_primary_10_1002_adfm_201909369 crossref_primary_10_1038_s41401_020_0400_z crossref_primary_10_1016_j_pmatsci_2024_101267 crossref_primary_10_1021_acsnano_9b03288 crossref_primary_10_1007_s11705_021_2059_5 crossref_primary_10_1021_acsnano_9b02993 crossref_primary_10_1142_S1793545823300070 crossref_primary_10_1002_mba2_106 crossref_primary_10_1002_adfm_202104199 crossref_primary_10_1039_C9NR06505A crossref_primary_10_1021_acsami_3c07248 crossref_primary_10_1021_acsanm_1c01913 crossref_primary_10_1007_s11426_020_9943_9 crossref_primary_10_1039_D1BM01127H crossref_primary_10_1039_D0BM01158D crossref_primary_10_1002_EXP_20230134 crossref_primary_10_1002_smll_202104783 crossref_primary_10_1186_s12951_022_01510_w crossref_primary_10_1016_j_addr_2022_114136 crossref_primary_10_1002_rpm_20240027 crossref_primary_10_1016_j_apsb_2021_01_020 crossref_primary_10_1016_j_apsb_2022_05_026 crossref_primary_10_1021_acs_nanolett_8b03913 crossref_primary_10_1007_s12274_020_2736_6 crossref_primary_10_1002_agt2_359 crossref_primary_10_1016_j_jconrel_2020_12_005 crossref_primary_10_3390_pharmaceutics15030943 crossref_primary_10_1021_acsnano_1c00114 crossref_primary_10_1080_1061186X_2024_2410462 crossref_primary_10_1177_18495435211053945 crossref_primary_10_1039_D1NR05512G crossref_primary_10_1039_D0CS00152J crossref_primary_10_1002_adfm_201909745 crossref_primary_10_1002_adfm_202004397 crossref_primary_10_3389_fchem_2020_572471 crossref_primary_10_1002_cnma_202100062 crossref_primary_10_1002_anie_201909729 crossref_primary_10_1039_C9BM01392J crossref_primary_10_1002_adfm_202001446 crossref_primary_10_2147_IJN_S473463 crossref_primary_10_1002_adma_202100012 crossref_primary_10_1016_j_apsb_2021_05_016 crossref_primary_10_3390_cancers15143722 crossref_primary_10_3390_molecules25071508 crossref_primary_10_1016_j_ccr_2024_215712 crossref_primary_10_3390_molecules26195980 crossref_primary_10_1002_adma_201901255 crossref_primary_10_3390_ph14050447 crossref_primary_10_2147_IJN_S285999 crossref_primary_10_1002_ange_202108342 crossref_primary_10_1002_cmdc_202400410 crossref_primary_10_1039_D0CS00260G crossref_primary_10_1166_mex_2023_2409 crossref_primary_10_1016_j_biomaterials_2021_120893 crossref_primary_10_1039_D1TB00397F crossref_primary_10_1016_j_jconrel_2023_09_016 crossref_primary_10_2147_IJN_S244849 crossref_primary_10_1002_adma_202100241 crossref_primary_10_3390_pharmaceutics13111867 crossref_primary_10_1002_adfm_201905671 crossref_primary_10_1002_adtp_201900181 crossref_primary_10_1016_j_pmatsci_2020_100768 crossref_primary_10_1021_acsami_1c08105 crossref_primary_10_12677_acm_2024_1451389 crossref_primary_10_1039_D1TB01001H crossref_primary_10_1002_adma_202007576 crossref_primary_10_1002_anie_202108342 crossref_primary_10_3390_ijms23042223 crossref_primary_10_1002_adma_201808303 crossref_primary_10_1016_j_pmatsci_2024_101347 crossref_primary_10_1021_acsabm_2c00208 crossref_primary_10_1002_smtd_202201412 crossref_primary_10_1002_adfm_202008698 crossref_primary_10_1016_j_apsb_2021_12_021 crossref_primary_10_1016_j_nantod_2023_102033 crossref_primary_10_1002_mabi_202100075 crossref_primary_10_1002_advs_202308248 crossref_primary_10_3390_pr9040621 crossref_primary_10_1002_adma_202004853 crossref_primary_10_1002_adma_202300216 crossref_primary_10_1039_D1NR04196G crossref_primary_10_1002_adom_202000616 crossref_primary_10_1039_C9CC08447A crossref_primary_10_3390_pharmaceutics15010073 crossref_primary_10_1016_j_pmatsci_2023_101230 crossref_primary_10_3390_catal13060980 crossref_primary_10_1002_smll_202403024 crossref_primary_10_1021_acsnano_1c05392 crossref_primary_10_1186_s12951_024_02883_w crossref_primary_10_1080_02656736_2023_2272066 crossref_primary_10_1021_acsabm_1c00461 crossref_primary_10_1002_ange_201909729 crossref_primary_10_1016_j_jconrel_2021_05_018 crossref_primary_10_1021_acsnano_9b05038 crossref_primary_10_1515_mr_2023_0028 crossref_primary_10_1088_1361_6528_ad8626 crossref_primary_10_1002_adma_201902604 crossref_primary_10_3390_magnetochemistry5030045 crossref_primary_10_1002_adfm_202201542 crossref_primary_10_1002_adma_202004172 crossref_primary_10_1021_acs_jpclett_2c00076 crossref_primary_10_1021_acs_nanolett_9b03753 crossref_primary_10_1080_17425247_2021_1882992 crossref_primary_10_1002_adfm_201808640 crossref_primary_10_1002_adhm_202101349 crossref_primary_10_1016_j_ijpharm_2021_120848 crossref_primary_10_3390_cells10051170 crossref_primary_10_1002_smll_201804105 crossref_primary_10_1039_D3BM01552A crossref_primary_10_1016_j_matt_2022_02_015 crossref_primary_10_1016_j_jconrel_2023_12_006 crossref_primary_10_1002_adfm_202401359 crossref_primary_10_1016_j_jconrel_2023_02_040 crossref_primary_10_1021_acsomega_2c05986 crossref_primary_10_1002_advs_202201734 crossref_primary_10_1088_1748_605X_abd0c4 crossref_primary_10_1002_smtd_202301005 crossref_primary_10_1016_j_canlet_2019_08_009 crossref_primary_10_1021_acsami_4c03434 crossref_primary_10_1002_anbr_202200053 crossref_primary_10_1002_adfm_201903441 crossref_primary_10_1039_D1NH00179E crossref_primary_10_1002_adhm_202001415 crossref_primary_10_1007_s40820_021_00622_6 crossref_primary_10_1186_s12951_022_01358_0 crossref_primary_10_1002_advs_202102330 crossref_primary_10_1002_smtd_202401860 crossref_primary_10_1021_acsami_9b17137 crossref_primary_10_1177_11795549241236896 crossref_primary_10_1021_acsomega_4c10865 crossref_primary_10_1016_j_ccr_2022_214865 crossref_primary_10_1021_acsabm_0c01272 crossref_primary_10_1002_INMD_20220012 crossref_primary_10_1007_s40820_019_0330_9 crossref_primary_10_1016_j_cej_2021_132329 |
Cites_doi | 10.1021/acsami.6b14450 10.1002/anie.201709457 10.1038/nm1523 10.1016/j.cell.2011.02.013 10.1016/j.nantod.2014.04.008 10.1172/JCI80005 10.1039/c2cs15337h 10.1146/annurev.immunol.21.120601.141135 10.1200/JCO.2006.06.7801 10.1002/adhm.201601289 10.1038/nri3175 10.1038/nnano.2016.168 10.1166/jbn.2014.1898 10.1016/j.nantod.2015.06.007 10.1158/1078-0432.CCR-07-1441 10.1038/nrc3581 10.1200/JCO.2004.07.122 10.1039/c0cs00097c 10.1038/ncomms12150 10.1021/acsnano.7b04836 10.1021/acs.nanolett.6b02978 10.1016/S0006-3495(73)86021-7 10.1126/science.6828875 10.3322/caac.21387 10.1002/adma.201401372 10.1021/acsnano.7b00133 10.4161/auto.25873 10.1038/ncomms13724 10.1172/JCI80006 10.1002/adma.201606209 10.1111/nyas.12469 10.1038/ncomms10764 10.3322/caac.21332 10.1146/annurev.med.59.061506.185523 10.1073/pnas.86.5.1662 10.1111/iju.12086 10.1002/adma.201506312 10.1016/j.mam.2014.05.001 10.1002/adma.201605375 10.1002/jbm.a.35927 10.1038/nbt0207-192 10.1021/acsnano.7b02650 10.1038/nm0107-28 10.1002/adma.201506086 10.1016/j.copbio.2016.02.001 10.7150/thno.21317 10.1002/adhm.201601462 10.1002/smll.201502388 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201801389 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201801389 ADFM201801389 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 2042017kf0171 – fundername: National Natural Science Foundation for Outstanding Youth Foundation funderid: 61722405 – fundername: Chinese Academy of Sciences – fundername: National Center for Magnetic Resonance in Wuhan – fundername: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics – fundername: Huazhong University of Science and Technology – fundername: National Natural Science Foundation of China funderid: 81672668; 81472528; 81472529 – fundername: Wuhan Institute of Physics and Mathematics |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3179-b336be0dc51cb9958d382acc11d5e0bc4a1d1111f1fd2de0b76f3ae50b3a1c663 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 03:16:00 EDT 2025 Tue Jul 01 04:11:50 EDT 2025 Thu Apr 24 23:10:15 EDT 2025 Wed Aug 20 07:25:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3179-b336be0dc51cb9958d382acc11d5e0bc4a1d1111f1fd2de0b76f3ae50b3a1c663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0932-8013 |
PQID | 2101243919 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2101243919 crossref_primary_10_1002_adfm_201801389 crossref_citationtrail_10_1002_adfm_201801389 wiley_primary_10_1002_adfm_201801389_ADFM201801389 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 12, 2018 |
PublicationDateYYYYMMDD | 2018-09-12 |
PublicationDate_xml | – month: 09 year: 2018 text: September 12, 2018 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1983 1973; 220 13 2011 2017 2017 2017 2017 2017 2016 2016; 40 29 6 2 7 13 28 40 2016 2017 2015 2017 2017; 28 57 11 105 9 2017 2017 2017 2017 2017 2015; 11 11 29 29 8 10 2008 2008; 14 59 2017 2016; 67 66 2016 2013; 7 13 2006 2004; 24 22 2016 2007 2014 2007 2007 1989 2013; 7 13 40 13 25 86 9 2014 2012; 1319 12 2014; 9 2015 2013 2015; 125 20 125 2013; 8 2014 2017 2017 2012 2017 2016; 26 7 6 41 11 16 2003; 21 2011; 144 2014; 10 2016; 11 e_1_2_7_5_1 Sousa M. P. (e_1_2_7_3_3) 2017; 6 e_1_2_7_3_1 e_1_2_7_3_8 e_1_2_7_9_2 e_1_2_7_3_7 Martinkova P. (e_1_2_7_4_2) 2017; 7 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_15_7 e_1_2_7_3_5 e_1_2_7_7_1 e_1_2_7_15_6 e_1_2_7_15_5 e_1_2_7_15_4 e_1_2_7_17_2 e_1_2_7_15_3 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 Sun Z. (e_1_2_7_3_6) 2017; 13 e_1_2_7_9_6 e_1_2_7_9_5 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_4_6 e_1_2_7_8_2 e_1_2_7_4_5 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_6_2 e_1_2_7_16_1 Parodi A. (e_1_2_7_18_1) 2013; 8 e_1_2_7_2_1 e_1_2_7_10_5 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 Balasubramanian V. (e_1_2_7_9_4) 2017; 29 Chen H. (e_1_2_7_3_4) 2017; 2 Gao M. (e_1_2_7_3_2) 2017; 29 Dehaini D. (e_1_2_7_9_3) 2017; 29 |
References_xml | – volume: 220 13 start-page: 101 747 year: 1983 1973 publication-title: Science Biophys. J. – volume: 40 29 6 2 7 13 28 40 start-page: 2673 3915 8912 1 year: 2011 2017 2017 2017 2017 2017 2016 2016 publication-title: Chem. Soc. Rev. Adv. Mater. Adv. Healthcare Mater. Nat. Rev. Mater. Theranostics Small Adv. Mater. Curr. Opin. Biotechnol. – volume: 24 22 start-page: 4692 900 year: 2006 2004 publication-title: J. Clin. Oncol. J. Clin. Oncol. – volume: 10 start-page: 2393 year: 2014 publication-title: J. Biomed. Nanotechnol. – volume: 144 start-page: 646 year: 2011 publication-title: Cell – volume: 28 57 11 105 9 start-page: 3460 986 6225 521 2159 year: 2016 2017 2015 2017 2017 publication-title: Adv. Mater. Angew. Chem., Int. Ed. Engl. Small J. Biomed. Mater. Res., Part A ACS. Appl. Mater. Interfaces – volume: 9 start-page: 223 year: 2014 publication-title: Nano Today – volume: 14 59 start-page: 1310 251 year: 2008 2008 publication-title: Clin. Cancer Res. Annu. Rev. Med. – volume: 26 7 6 41 11 16 start-page: 5119 4306 3496 7408 year: 2014 2017 2017 2012 2017 2016 publication-title: Adv. Mater. Adv. Healthcare Mater. Adv. Healthcare Mater. Chem. Soc. Rev. ACS Nano Nano Lett. – volume: 21 start-page: 807 year: 2003 publication-title: Annu. Rev. Immunol. – volume: 7 13 40 13 25 86 9 start-page: 10764 54 1 28 192 1662 1624 year: 2016 2007 2014 2007 2007 1989 2013 publication-title: Nat. Commun. Nat. Med. Mol. Aspects Med. Nat. Med. Nat. Biotechnol. Proc. Natl. Acad. Sci. USA Autophagy – volume: 7 13 start-page: 12150 739 year: 2016 2013 publication-title: Nat. Commun. Nat. Rev. Cancer – volume: 125 20 125 start-page: 3356 971 3365 year: 2015 2013 2015 publication-title: J. Clin. Invest. Int. J. Urol. J. Clin. Invest. – volume: 1319 12 start-page: 47 253 year: 2014 2012 publication-title: Ann. N. Y. Acad. Sci. Nat. Rev. Immunol. – volume: 11 start-page: 986 year: 2016 publication-title: Nat. Nanotechnol. – volume: 67 66 start-page: 7 7 year: 2017 2016 publication-title: CA‐Cancer J. Clin. CA‐Cancer J. Clin. – volume: 11 11 29 29 8 10 start-page: 11831 10964 13724 511 year: 2017 2017 2017 2017 2017 2015 publication-title: ACS Nano ACS Nano Adv. Mater. Adv. Mater. Nat. Commun. Nano Today – volume: 8 start-page: 61 year: 2013 publication-title: Nat. Biotechnol. – ident: e_1_2_7_10_5 doi: 10.1021/acsami.6b14450 – ident: e_1_2_7_10_2 doi: 10.1002/anie.201709457 – ident: e_1_2_7_15_2 doi: 10.1038/nm1523 – ident: e_1_2_7_16_1 doi: 10.1016/j.cell.2011.02.013 – ident: e_1_2_7_14_1 doi: 10.1016/j.nantod.2014.04.008 – ident: e_1_2_7_8_1 doi: 10.1172/JCI80005 – ident: e_1_2_7_4_4 doi: 10.1039/c2cs15337h – ident: e_1_2_7_13_1 doi: 10.1146/annurev.immunol.21.120601.141135 – ident: e_1_2_7_17_1 doi: 10.1200/JCO.2006.06.7801 – ident: e_1_2_7_4_3 doi: 10.1002/adhm.201601289 – ident: e_1_2_7_7_2 doi: 10.1038/nri3175 – ident: e_1_2_7_5_1 doi: 10.1038/nnano.2016.168 – ident: e_1_2_7_12_1 doi: 10.1166/jbn.2014.1898 – volume: 7 year: 2017 ident: e_1_2_7_4_2 publication-title: Adv. Healthcare Mater. – ident: e_1_2_7_9_6 doi: 10.1016/j.nantod.2015.06.007 – ident: e_1_2_7_2_1 doi: 10.1158/1078-0432.CCR-07-1441 – ident: e_1_2_7_6_2 doi: 10.1038/nrc3581 – ident: e_1_2_7_17_2 doi: 10.1200/JCO.2004.07.122 – ident: e_1_2_7_3_1 doi: 10.1039/c0cs00097c – ident: e_1_2_7_6_1 doi: 10.1038/ncomms12150 – ident: e_1_2_7_9_2 doi: 10.1021/acsnano.7b04836 – ident: e_1_2_7_4_6 doi: 10.1021/acs.nanolett.6b02978 – ident: e_1_2_7_11_2 doi: 10.1016/S0006-3495(73)86021-7 – ident: e_1_2_7_11_1 doi: 10.1126/science.6828875 – ident: e_1_2_7_1_1 doi: 10.3322/caac.21387 – ident: e_1_2_7_4_1 doi: 10.1002/adma.201401372 – ident: e_1_2_7_4_5 doi: 10.1021/acsnano.7b00133 – ident: e_1_2_7_15_7 doi: 10.4161/auto.25873 – volume: 8 start-page: 61 year: 2013 ident: e_1_2_7_18_1 publication-title: Nat. Biotechnol. – ident: e_1_2_7_9_5 doi: 10.1038/ncomms13724 – ident: e_1_2_7_8_3 doi: 10.1172/JCI80006 – volume: 13 year: 2017 ident: e_1_2_7_3_6 publication-title: Small – volume: 29 year: 2017 ident: e_1_2_7_9_3 publication-title: Adv. Mater. doi: 10.1002/adma.201606209 – ident: e_1_2_7_7_1 doi: 10.1111/nyas.12469 – ident: e_1_2_7_15_1 doi: 10.1038/ncomms10764 – ident: e_1_2_7_1_2 doi: 10.3322/caac.21332 – ident: e_1_2_7_2_2 doi: 10.1146/annurev.med.59.061506.185523 – ident: e_1_2_7_15_6 doi: 10.1073/pnas.86.5.1662 – ident: e_1_2_7_8_2 doi: 10.1111/iju.12086 – ident: e_1_2_7_3_7 doi: 10.1002/adma.201506312 – ident: e_1_2_7_15_3 doi: 10.1016/j.mam.2014.05.001 – volume: 29 year: 2017 ident: e_1_2_7_9_4 publication-title: Adv. Mater. doi: 10.1002/adma.201605375 – ident: e_1_2_7_10_4 doi: 10.1002/jbm.a.35927 – ident: e_1_2_7_15_5 doi: 10.1038/nbt0207-192 – ident: e_1_2_7_9_1 doi: 10.1021/acsnano.7b02650 – ident: e_1_2_7_15_4 doi: 10.1038/nm0107-28 – volume: 29 year: 2017 ident: e_1_2_7_3_2 publication-title: Adv. Mater. – ident: e_1_2_7_10_1 doi: 10.1002/adma.201506086 – ident: e_1_2_7_3_8 doi: 10.1016/j.copbio.2016.02.001 – ident: e_1_2_7_3_5 doi: 10.7150/thno.21317 – volume: 2 year: 2017 ident: e_1_2_7_3_4 publication-title: Nat. Rev. Mater. – volume: 6 year: 2017 ident: e_1_2_7_3_3 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201601462 – ident: e_1_2_7_10_3 doi: 10.1002/smll.201502388 |
SSID | ssj0017734 |
Score | 2.6152542 |
Snippet | A major challenge for traditional cancer therapy, including surgical resection, chemoradiotherapy, and immunotherapy, is how to induce tumor cell death and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anticancer properties Apoptosis Biocompatibility Cancer Cancer therapies Cell death Coating effects Erythrocytes immunogenic cell death Iron oxides macrophage Macrophages Magnetic resonance imaging Materials science myeloid‐derived suppressor cell Nanoparticles Pharmacology photothermal therapy Therapy Tumors |
Title | Myeloid‐Derived Suppressor Cell Membrane‐Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201801389 https://www.proquest.com/docview/2101243919 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTttAFB1VsCkLHm0RAYpmUYmVQ2ac8WMZJY0A4Qq1RMrOmmcbNbVREpDCik_gR_gpvoR7bccEJFQJNpY9noetuXPnjD3nXEK-8baLTCC4B2AYDpIxTwZh7MUOJp_QuUCFyB1OfgTHg_bpUAyXWPylPkT9wQ1HRuGvcYBLNT16Eg2VxiGTnEXFvzZwwrhhC1HRz1o_ioVh-Vs5YLjBiw0Xqo0tfvS8-PNZ6QlqLgPWYsbpbxC5eNZyo8nf5tVMNfXNCxnH97zMJlmv4CjtlPazRT7Y7BNZWxIp_Ezuk7kd5yPzcHvXg6RrayiGAsVlej6hXTse08T-g8YzC1m6OYBXQxP5O0N6JAXvDcvyavcddVgC7WxCL5D4leWFTDRVc4oxRDQ0CEUxqtgf8HP0HNfdFVGUygwaniNVcXSD-U6Q2ZKD_UMrxVP0EM1-IYP-94vusVcFefA0QJfYU74fKNsyWjCt4lhExo-41JoxI2xLaTAfg27dMWe4gZQwcL60oqV8yTTgpW2ykuWZ3SFUCekb4VsXa94WsZNQK3csjlBmz4Rhg3iLTk51pYCOgTjGaandzFPshrTuhgY5rPNfltofr-bcX9hMWvmAacpROg2JzXCbF53_n1rSTq-f1Fe7bym0Rz7iuVfEuNgnK7PJlf0KqGmmDshqp5ec_TooRsgj4pIV5w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LThsxFLUKXRQW0BcqlIcXlboaiD3xPJYoIQqFQVUVJHYjPyEinUFpqBRWfAI_0p_iS7jX8wAqVZXazUjj8Wtk-_r4cc4l5BPvusREggcAhuEhGQtkFKdB6mDyiZ2LVIzc4ewkGp52v5yJ5jYhcmEqfYh2ww1HhrfXOMBxQ3rvUTVUGodUcpb4w7YF8hLdevtV1bdWQYrFcXWwHDG84sXOGt3GDt97nv75vPQINp9CVj_nDFaJampbXTW53L2eqV1985uQ43_9zmuyUiNSul91oTfkhS3ekuUnOoXvyK9sbifl2Nzf3vUh6Kc1FL2B4kq9nNKenUxoZr9D6YWFKL0S8KuhmTwvkCFJwYDDyry-gEcdpsCuNqUj5H4VpVeKpmpO0Y2IhgIhKToWuwBTR7_i0rvmilJZQMFzZCuObzDeIZJbShgCUIqvRR8B7XtyOjgY9YZB7ech0IBe0kCFYaRsx2jBtEpTkZgw4VJrxoywHaWhBxm07I45ww2ExJELpRUdFUqmATKtkcWiLOwHQpWQoRGhdanmXZE6Cblyx9IElfZMHK-ToGnlXNci6OiLY5JX8s08x2bI22ZYJ5_b-FeV_McfY242nSavzcCPnKN6GnKb4TP3rf-XXPL9_iBr3zb-JdEOeTUcZcf58eHJ0UeyhOGBd3mxSRZn02u7BSBqprb9MHkAYjYYbg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFLUoSKhd8Cig8mjrBRKrQOyM81iiCSOgBCEE0uwiPwF1mqDpUGlY9RP6I_xUv6T3JpkwVEJIsIkUx44d-fr6OPY5l5Bt3nGxCQX3AAzDRTLmyTBKvMTB5BM5F6oIucPZaXh42Tnui_4Ui7_Wh2h_uOHIqPw1DvBb4_YeRUOlccgkZ3G11_aOzHVCP0a7Ts9bASkWRfW-csjwhBfrT2Qbfb73tPzTaekRa04j1mrK6S0SOWlsfdLk--7dSO3q-_90HN_yNUtkocGjdL82oGUyY4uP5MOUSuEKecjGdlDemL-__6SQ9MsairFAcZ1eDmnXDgY0sz-g8sJClm4J6NXQTF4VyI-k4L5hXd4cv6MOS6ChDekFMr-KstKJpmpMMYiIhgqhKIYVuwZHR89w4d0wRaksoOIxchVv7jHfEVJbShgAUEvVihTh7Cq57B1cdA-9JsqDpwG7JJ4KglBZ32jBtEoSEZsg5lJrxoywvtJgPwb9umPOcAMpUegCaYWvAsk0AKY1MluUhf1EqBIyMCKwLtG8IxIn4a3csSRGnT0TRevEm3RyrhsJdIzEMchr8WaeYzfkbTesk502_20t_vFszq2JzeSNE_iZc9ROQ2YzPOZV57_wlnw_7WXt3cZrCn0l82dpLz85Ov22Sd5jslfFu9gis6Phnf0MCGqkvlSD5B8r3Bcm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myeloid%E2%80%90Derived+Suppressor+Cell+Membrane%E2%80%90Coated+Magnetic+Nanoparticles+for+Cancer+Theranostics+by+Inducing+Macrophage+Polarization+and+Synergizing+Immunogenic+Cell+Death&rft.jtitle=Advanced+functional+materials&rft.au=Yu%2C+Guang%E2%80%90Tao&rft.au=Rao%2C+Lang&rft.au=Wu%2C+Hao&rft.au=Yang%2C+Lei%E2%80%90Lei&rft.date=2018-09-12&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=37&rft_id=info:doi/10.1002%2Fadfm.201801389&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201801389 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |