Motion Behavior of Ce‐Containing Inclusions in 8Cr4Mo4V‐Bearing Steel during Vacuum Arc Remelting

Herein, the Ce‐containing inclusions in8Cr4Mo4V‐bearing steel are taken as the research objective to develop anumerical model of inclusions motions behavior. The model is validated bycomparing it with experimental data. During the vacuum arc remelting process, inclusions move along the molten pool&#...

Full description

Saved in:
Bibliographic Details
Published inSteel research international Vol. 95; no. 4
Main Authors Pan, Tao, Zhu, Hong‐Chun, Jiang, Zhou‐Hua, Li, Hua‐Bing, Liu, Fu‐Bin, Zhang, Rui, He, Zhi‐Yu, Ni, Zhuo‐Wen
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text
ISSN1611-3683
1869-344X
DOI10.1002/srin.202300649

Cover

Loading…
Abstract Herein, the Ce‐containing inclusions in8Cr4Mo4V‐bearing steel are taken as the research objective to develop anumerical model of inclusions motions behavior. The model is validated bycomparing it with experimental data. During the vacuum arc remelting process, inclusions move along the molten pool's surface toward the edge under theaction of resultant force, and finally become trapped within the mushy zone. Notably, the majority of inclusions are concentrated near the ingot's edge, andtheir numbers decrease as the radial distance decreases. Furthermore, thenumber of Ce‐Mg‐O‐S inclusions exceeds that of Ce‐O‐S inclusions near the ingot's center. This discrepancy arises due to lower density of Ce‐Mg‐O‐Sinclusions, which exhibits a stronger tendency to migrate toward the moltenpool's center. Additionally, as the inclusion diameter increases, buoyancy forceacting on the inclusions increases, resulting in a higher number of inclusionsnear the ingot's center. When considering the effect of gas cooling, theinclusion distribution becomes more pronounced at the ingot's edge. This isattributed to the enhanced cooling capacity of the mold resulting in the decreasing of molten pool depth and consequently a stronger ability of themushy zone to trap inclusions. The motion behavior of Ce‐containing inclusions in vacuum arcremelting is closely related to the inclusion characteristics. The decrease in density and increase in diameter of inclusions make the net effect of buoyancy and gravity increase, and the inclusions are more likely to escape from mushy zone and exhibit a stronger tendency to migrate toward the molten pool's center.
AbstractList Herein, the Ce‐containing inclusions in8Cr4Mo4V‐bearing steel are taken as the research objective to develop anumerical model of inclusions motions behavior. The model is validated bycomparing it with experimental data. During the vacuum arc remelting process, inclusions move along the molten pool's surface toward the edge under theaction of resultant force, and finally become trapped within the mushy zone. Notably, the majority of inclusions are concentrated near the ingot's edge, andtheir numbers decrease as the radial distance decreases. Furthermore, thenumber of Ce‐Mg‐O‐S inclusions exceeds that of Ce‐O‐S inclusions near the ingot's center. This discrepancy arises due to lower density of Ce‐Mg‐O‐Sinclusions, which exhibits a stronger tendency to migrate toward the moltenpool's center. Additionally, as the inclusion diameter increases, buoyancy forceacting on the inclusions increases, resulting in a higher number of inclusionsnear the ingot's center. When considering the effect of gas cooling, theinclusion distribution becomes more pronounced at the ingot's edge. This isattributed to the enhanced cooling capacity of the mold resulting in the decreasing of molten pool depth and consequently a stronger ability of themushy zone to trap inclusions.
Herein, the Ce‐containing inclusions in8Cr4Mo4V‐bearing steel are taken as the research objective to develop anumerical model of inclusions motions behavior. The model is validated bycomparing it with experimental data. During the vacuum arc remelting process, inclusions move along the molten pool's surface toward the edge under theaction of resultant force, and finally become trapped within the mushy zone. Notably, the majority of inclusions are concentrated near the ingot's edge, andtheir numbers decrease as the radial distance decreases. Furthermore, thenumber of Ce‐Mg‐O‐S inclusions exceeds that of Ce‐O‐S inclusions near the ingot's center. This discrepancy arises due to lower density of Ce‐Mg‐O‐Sinclusions, which exhibits a stronger tendency to migrate toward the moltenpool's center. Additionally, as the inclusion diameter increases, buoyancy forceacting on the inclusions increases, resulting in a higher number of inclusionsnear the ingot's center. When considering the effect of gas cooling, theinclusion distribution becomes more pronounced at the ingot's edge. This isattributed to the enhanced cooling capacity of the mold resulting in the decreasing of molten pool depth and consequently a stronger ability of themushy zone to trap inclusions. The motion behavior of Ce‐containing inclusions in vacuum arcremelting is closely related to the inclusion characteristics. The decrease in density and increase in diameter of inclusions make the net effect of buoyancy and gravity increase, and the inclusions are more likely to escape from mushy zone and exhibit a stronger tendency to migrate toward the molten pool's center.
Author Li, Hua‐Bing
Ni, Zhuo‐Wen
Zhu, Hong‐Chun
Jiang, Zhou‐Hua
Pan, Tao
He, Zhi‐Yu
Zhang, Rui
Liu, Fu‐Bin
Author_xml – sequence: 1
  givenname: Tao
  surname: Pan
  fullname: Pan, Tao
  organization: Northeastern University
– sequence: 2
  givenname: Hong‐Chun
  surname: Zhu
  fullname: Zhu, Hong‐Chun
  email: zhuhc@smm.neu.edu.cn
  organization: Northeastern University
– sequence: 3
  givenname: Zhou‐Hua
  orcidid: 0000-0001-8887-7250
  surname: Jiang
  fullname: Jiang, Zhou‐Hua
  email: jiangzh@smm.neu.edu.cn
  organization: Northeastern University
– sequence: 4
  givenname: Hua‐Bing
  surname: Li
  fullname: Li, Hua‐Bing
  organization: Northeastern University
– sequence: 5
  givenname: Fu‐Bin
  surname: Liu
  fullname: Liu, Fu‐Bin
  organization: Northeastern University
– sequence: 6
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: Northeastern University
– sequence: 7
  givenname: Zhi‐Yu
  surname: He
  fullname: He, Zhi‐Yu
  organization: Northeastern University
– sequence: 8
  givenname: Zhuo‐Wen
  surname: Ni
  fullname: Ni, Zhuo‐Wen
  organization: Northeastern University
BookMark eNqFkMtKxDAUhoMoOF62rgOuO-ZybJulU7wMeAFHxV3JNKca6SRj0irufASf0Sex44iCIGaTnPB954d_g6w675CQHc6GnDGxF4N1Q8GEZCwFtUIGPE9VIgFuV_t3ynki01yuk-0YH1h_ZJ6nGQwInvnWekdHeK-frA_U17TA99e3wrtWW2fdHR27quliT0VqHc2LAGcebnpmhDosgEmL2FDTfQ43uuq6GT0IFb3EGTZt_7lF1mrdRNz-ujfJ9dHhVXGSnF4cj4uD06SSPFOJhrSqDVNGGKhrwUwNxmSQAVdcCg2ZZDjlTE2FQSERKgCOhqdMmOkUUMtNsrvcOw_-scPYlg--C66PLCWTTHFQar-nhkuqCj7GgHU5D3amw0vJWblos1y0WX632QvwS6hsqxe9tUHb5m9NLbVn2-DLPyHl5HJ8_uN-AHwWjhc
CitedBy_id crossref_primary_10_1016_j_ijthermalsci_2024_109626
crossref_primary_10_1002_srin_202500064
Cites_doi 10.22364/mhd.53.4.5
10.1134/S1810232807010031
10.1007/s11661-002-0189-z
10.1016/S0965-9773(97)00064-0
10.1016/j.jallcom.2021.161755
10.1007/s11663-023-02765-w
10.2355/isijinternational.ISIJINT-2019-094
10.1109/TPS.2010.2050075
10.1007/s11663-009-9339-7
10.1007/s11661-008-9638-7
10.1016/j.ijfatigue.2018.08.004
10.1002/srin.202100190
10.1007/s11663-021-02409-x
10.1007/s10853-008-2896-3
10.7449/2000/Superalloys_2000_29_37
10.1016/j.ijheatmasstransfer.2018.04.168
10.1016/j.engfailanal.2022.106273
10.1016/j.pmatsci.2011.06.002
10.1016/j.triboint.2018.12.031
10.1016/S1875-5372(14)60120-X
10.1179/174328405X39680
10.7449/2001/Superalloys_2001_91_102
10.1007/s11663-021-02252-0
10.1002/(SICI)1097-0363(199706)24:12<1271::AID-FLD559>3.0.CO;2-#
10.1016/S1003-6326(09)60401-5
10.1177/1056789519842367
10.1142/S0217979209061305
10.1115/1.2834565
10.1007/s11661-013-1680-4
10.1007/s11663-020-01984-9
10.1179/1743281215Y.0000000037
10.1007/s11663-013-9916-7
10.1007/s11663-019-01719-5
10.1016/j.triboint.2017.10.016
10.1016/j.ijfatigue.2023.107587
10.1007/s11663-008-9187-x
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1002/srin.202300649
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-344X
EndPage n/a
ExternalDocumentID 10_1002_srin_202300649
SRIN202300649
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: U1908223; U52374330
– fundername: Program of Introducing Talents of Discipline to Universities
  funderid: B21001
GroupedDBID 05W
0R~
123
1OC
31~
33P
4.4
50Y
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMNLL
BMXJE
BRXPI
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
I-F
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P2P
P2W
P4E
PALCI
PQQKQ
R.K
RJQFR
ROL
RX1
SJN
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
ZZTAW
~S-
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3179-a46cfd09d2d4ff20df4dd747419132a4730eb109b2de23e4c441ed1602dbb4ea3
IEDL.DBID DR2
ISSN 1611-3683
IngestDate Fri Jul 25 09:35:38 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Tue Jul 01 02:48:53 EDT 2025
Wed Jan 22 16:12:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3179-a46cfd09d2d4ff20df4dd747419132a4730eb109b2de23e4c441ed1602dbb4ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8887-7250
PQID 3030914995
PQPubID 1046344
PageCount 12
ParticipantIDs proquest_journals_3030914995
crossref_primary_10_1002_srin_202300649
crossref_citationtrail_10_1002_srin_202300649
wiley_primary_10_1002_srin_202300649_SRIN202300649
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Steel research international
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 23
2013; 44A
2023; 54
2010; 38
2009; 40
2021; 889
2019; 59
1997; 24
2002; 33
2018; 125
2008; 39
2005; 21
2022; 44
2012; 57
2022; 139
2021; 52
2010; 41
2014; 45
2021; 92
2014; 43
1997; 8
2007; 16
2017; 53
2010; 20
2018; 117
2001
2023; 174
2000
2018; 119
2020; 51
2021
2016; 43
2019; 28
2008; 43
2022; 53
1998; 120
2019; 132
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Wang L. C. (e_1_2_10_14_1) 2022; 44
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 132
  start-page: 253
  year: 2019
  publication-title: Tribol. Int.
– volume: 44A
  start-page: 5365
  year: 2013
  publication-title: Metall. Mater. Trans. A
– volume: 139
  start-page: 106273
  year: 2022
  publication-title: Eng. Failure Anal.
– volume: 174
  start-page: 107587
  year: 2023
  publication-title: Int. J. Fatigue
– volume: 92
  start-page: 2100190
  year: 2021
  publication-title: Steel Res. Int.
– volume: 43
  start-page: 1537
  year: 2014
  publication-title: Rare Met. Mater. Eng.
– volume: 119
  start-page: 165
  year: 2018
  publication-title: Tribol. Int.
– volume: 20
  start-page: 1957
  year: 2010
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 33
  start-page: 1805
  year: 2002
  publication-title: Metall. Mater. Trans. A
– year: 2021
– volume: 8
  start-page: 45
  year: 1997
  publication-title: Nanostruct. Mater.
– volume: 28
  start-page: 1580
  year: 2019
  publication-title: Int. J. Damage Mech.
– volume: 45
  start-page: 22
  year: 2014
  publication-title: Metall. Mater. Trans. B
– volume: 43
  start-page: 220
  year: 2016
  publication-title: Ironmaking Steelmaking
– volume: 44
  start-page: 1507
  year: 2022
  publication-title: Chin. J. Eng.
– volume: 43
  start-page: 5734
  year: 2008
  publication-title: J. Mater. Sci.
– volume: 52
  start-page: 3235
  year: 2021
  publication-title: Metall. Mater. Trans. B
– volume: 53
  start-page: 557
  year: 2017
  publication-title: Magnetohydrodynamics
– volume: 39
  start-page: 2981
  year: 2008
  publication-title: Metall. Mater. Trans. A
– volume: 120
  start-page: 421
  year: 1998
  publication-title: J. Tribol.
– volume: 38
  start-page: 3079
  year: 2010
  publication-title: IEEE Trans. Plasma Sci.
– volume: 117
  start-page: 396
  year: 2018
  publication-title: Int. J. Fatigue
– start-page: 91
  year: 2001
– volume: 40
  start-page: 254
  year: 2009
  publication-title: Metall. Mater. Trans. B
– volume: 23
  start-page: 1584
  year: 2009
  publication-title: Int. J. Mod. Phys. B
– volume: 53
  start-page: 864
  year: 2022
  publication-title: Metall. Mater. Trans. B
– volume: 21
  start-page: 437
  year: 2005
  publication-title: Mater. Sci. Technol.
– volume: 16
  start-page: 19
  year: 2007
  publication-title: J. Eng. Thermophys.
– volume: 24
  start-page: 1271
  year: 1997
  publication-title: Int. J. Numer. Methods Fluids
– volume: 59
  start-page: 1552
  year: 2019
  publication-title: ISIJ Int.
– volume: 57
  start-page: 268
  year: 2012
  publication-title: Prog. Mater. Sci.
– volume: 51
  start-page: 2976
  year: 2020
  publication-title: Metall. Mater. Trans. B
– start-page: 29
  year: 2000
– volume: 54
  start-page: 1342
  year: 2023
  publication-title: Metall. Mater. Trans. B
– volume: 41
  start-page: 646
  year: 2010
  publication-title: Metall. Mater. Trans. B
– volume: 889
  start-page: 161755
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 125
  start-page: 1333
  year: 2018
  publication-title: Int. J. Heat Mass Transfer
– volume: 51
  start-page: 222
  year: 2020
  publication-title: Metall. Mater. Trans. B
– ident: e_1_2_10_24_1
  doi: 10.22364/mhd.53.4.5
– ident: e_1_2_10_31_1
  doi: 10.1134/S1810232807010031
– ident: e_1_2_10_23_1
  doi: 10.1007/s11661-002-0189-z
– ident: e_1_2_10_30_1
– ident: e_1_2_10_3_1
  doi: 10.1016/S0965-9773(97)00064-0
– ident: e_1_2_10_6_1
  doi: 10.1016/j.jallcom.2021.161755
– ident: e_1_2_10_37_1
  doi: 10.1007/s11663-023-02765-w
– ident: e_1_2_10_15_1
  doi: 10.2355/isijinternational.ISIJINT-2019-094
– ident: e_1_2_10_4_1
  doi: 10.1109/TPS.2010.2050075
– ident: e_1_2_10_25_1
  doi: 10.1007/s11663-009-9339-7
– ident: e_1_2_10_36_1
  doi: 10.1007/s11661-008-9638-7
– ident: e_1_2_10_12_1
  doi: 10.1016/j.ijfatigue.2018.08.004
– ident: e_1_2_10_16_1
  doi: 10.1002/srin.202100190
– ident: e_1_2_10_17_1
  doi: 10.1007/s11663-021-02409-x
– ident: e_1_2_10_22_1
  doi: 10.1007/s10853-008-2896-3
– ident: e_1_2_10_26_1
  doi: 10.7449/2000/Superalloys_2000_29_37
– ident: e_1_2_10_29_1
  doi: 10.1016/j.ijheatmasstransfer.2018.04.168
– ident: e_1_2_10_9_1
  doi: 10.1016/j.engfailanal.2022.106273
– ident: e_1_2_10_2_1
  doi: 10.1016/j.pmatsci.2011.06.002
– ident: e_1_2_10_8_1
  doi: 10.1016/j.triboint.2018.12.031
– ident: e_1_2_10_33_1
  doi: 10.1016/S1875-5372(14)60120-X
– ident: e_1_2_10_38_1
  doi: 10.1179/174328405X39680
– ident: e_1_2_10_34_1
  doi: 10.7449/2001/Superalloys_2001_91_102
– ident: e_1_2_10_39_1
  doi: 10.1007/s11663-021-02252-0
– ident: e_1_2_10_18_1
  doi: 10.1002/(SICI)1097-0363(199706)24:12<1271::AID-FLD559>3.0.CO;2-#
– ident: e_1_2_10_32_1
  doi: 10.1016/S1003-6326(09)60401-5
– ident: e_1_2_10_13_1
  doi: 10.1177/1056789519842367
– ident: e_1_2_10_21_1
  doi: 10.1142/S0217979209061305
– ident: e_1_2_10_11_1
  doi: 10.1115/1.2834565
– ident: e_1_2_10_27_1
  doi: 10.1007/s11661-013-1680-4
– ident: e_1_2_10_20_1
  doi: 10.1007/s11663-020-01984-9
– ident: e_1_2_10_5_1
  doi: 10.1179/1743281215Y.0000000037
– ident: e_1_2_10_28_1
  doi: 10.1007/s11663-013-9916-7
– ident: e_1_2_10_19_1
  doi: 10.1007/s11663-019-01719-5
– ident: e_1_2_10_7_1
  doi: 10.1016/j.triboint.2017.10.016
– ident: e_1_2_10_10_1
  doi: 10.1016/j.ijfatigue.2023.107587
– ident: e_1_2_10_35_1
  doi: 10.1007/s11663-008-9187-x
– volume: 44
  start-page: 1507
  year: 2022
  ident: e_1_2_10_14_1
  publication-title: Chin. J. Eng.
SSID ssj0000388674
Score 2.352309
Snippet Herein, the Ce‐containing inclusions in8Cr4Mo4V‐bearing steel are taken as the research objective to develop anumerical model of inclusions motions behavior....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 8Cr4Mo4V‐bearing steel
Bearing steels
Gas cooling
inclusion motion behavior
Inclusions
Ingots
Melting
molten pool
Mushy zones
numerical simulation
Vacuum arc melting
vacuum arc remelting
Title Motion Behavior of Ce‐Containing Inclusions in 8Cr4Mo4V‐Bearing Steel during Vacuum Arc Remelting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsrin.202300649
https://www.proquest.com/docview/3030914995
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4YTnrw34ii2YOJp0K7XUp7VCJBEziAEG5NuzubEKGYll48-Qg-o0_ibFsKmBgTvbXJ9m9nZ-ab7cw3hNw4LYyMpXQMaVsYoICyDBccMLj0FA-Y2Qw9Xe_c6zvdEX-aNCcbVfw5P0S54aY1I7PXWsGDMGmsSUOTeKr5SxFCo1fVFXw6YUujogErN1k01YmTMTEjsLEM23HtFXGjyRrbd9h2TGu0uYlZM6fTOSDB6nXzXJOXeroM6-LtG5Pjf77nkOwXiJTe5UvoiOxAdEz2NngKTwj0sl4_tCBTjOlC0TZ8vn9obqu8xQRFQzNL9dZbQqcRddsx7y34GMfcoy7pAcMlwIzmZZF0HIg0neNDBR3AHGY6-fqUjDoPz-2uUfRnMASiDs8IuCOUND3JJFeKmVKh1DE84RgD2izgaDzQE5heyCQwG7hA6AXSckwmw5BDYJ-RSrSI4JxQ2wstxYXb0gSBiilXIC5D8-KCsHA5QZUYK-H4oiAv1z00Zn5Ou8x8PX1-OX1VcluOf81pO34cWVvJ2i_UN_Ft_eMJY0evWSUsE9ovd_GHg8d-eXbxl4suyS4eF1lBNVJZxilcIeBZhtfZov4CCCH45g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6KsPiBxCiSOmyZHqEBlaQ9tQdyixB5LFV1Q21w48Ql8I1_COBuLhJDgmMjZPJ6ZN5PxG4Ajr0aRsVKepVyHAhTUjuWjh5ZQgRYRt6txYPY7N1te405cP1SLakKzFybjhygTbkYzUnttFNwkpE8_WEMn454hMCUMTW41mIV509Y7jaravEyzGLITL-ViJmjjWK7nuwV1o81Pv97iq2v6wJufUWvqdi5XIC5eOKs2eTxJpvGJfP7G5fivL1qF5RyUsrNsFa3BDA7XYekTVeEGYDNt98NyPsUxG2lWx7eXV0NvlXWZYGRr-onJvk1Yb8j8-lg0R-KexpyTOpkBnSlin2U7I9l9JJNkQA-VrI0D7Jv66024u7zo1htW3qLBkgQ8AisSntTKDhRXQmtuK02CpwhFUBjo8kiQ_SBnYAcxV8hdFJLQFyrHs7mKY4GRuwVzw9EQt4G5QexoIf2a4QjUXPuSoBlZGB-lQysKK2AV0gllzl9u2mj0w4x5mYdm-sJy-ipwXI5_ypg7fhy5Vwg7zDV4Errm3xOFj0G1AjyV2i93CTvtq1Z5tPOXiw5hodFt3oa3V62bXVik83mR0B7MTccJ7hP-mcYH6Qp_B5h7_QE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7Iiy-oDEKZA4rkmOUKjYWqGyiFuU2GMJUVrUNhdOfALfyJcwTtJQkBASHBNNNs_2xrHfAOzIA6qMtZaO9j0qUNB4ToASHaFDI2LuVpPQ7nduNOXprTi_r96P7OLP-SHKCTfrGVm8tg7-rM3-J2lov_dg-UsJQlNWDcdhUkg3sHZ93OLlLIvlOpEZFTMhG8_xZeAPmRtdvv_1Fl8z0yfcHAWtWdapz0E8fN98scnjXjpI9tTLNyrH_3zQPMwWkJQd5ja0AGPYWYSZEaLCJcBG1uyHFWyKPdY1rIbvr2-W3CrvMcEo0rRTO_fWZw8dFtR6otEVdyRzRM5kBa4HiG2W74tkd7FK0yd6qGItfMK2XX29DLf1k5vaqVM0aHAUwY7QiYVURruh5loYw11tSO1UnwgqAn0eC4oelArcMOEauY9CEfZC7UmX6yQRGPsrMNHpdnAVmB8mnhEqOLAMgYabQBEwo_gSoPLInrACzlA5kSrYy20TjXaU8y7zyA5fVA5fBXZL-eect-NHyY2hrqPCf_uRb_88UfEYVivAM6X9cpfounXWLI_W_nLRNkxdHdejy7PmxTpM0-lihdAGTAx6KW4S-BkkW5l9fwC8r_u5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motion+Behavior+of+Ce%E2%80%90Containing+Inclusions+in+8Cr4Mo4V%E2%80%90Bearing+Steel+during+Vacuum+Arc+Remelting&rft.jtitle=Steel+research+international&rft.au=Pan%2C+Tao&rft.au=Hong%E2%80%90Chun+Zhu&rft.au=Zhou%E2%80%90Hua+Jiang&rft.au=Hua%E2%80%90Bing+Li&rft.date=2024-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1611-3683&rft.eissn=1869-344X&rft.volume=95&rft.issue=4&rft_id=info:doi/10.1002%2Fsrin.202300649&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1611-3683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1611-3683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1611-3683&client=summon