Motion Behavior of Ce‐Containing Inclusions in 8Cr4Mo4V‐Bearing Steel during Vacuum Arc Remelting
Herein, the Ce‐containing inclusions in8Cr4Mo4V‐bearing steel are taken as the research objective to develop anumerical model of inclusions motions behavior. The model is validated bycomparing it with experimental data. During the vacuum arc remelting process, inclusions move along the molten pool...
Saved in:
Published in | Steel research international Vol. 95; no. 4 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1611-3683 1869-344X |
DOI | 10.1002/srin.202300649 |
Cover
Loading…
Abstract | Herein, the Ce‐containing inclusions in8Cr4Mo4V‐bearing steel are taken as the research objective to develop anumerical model of inclusions motions behavior. The model is validated bycomparing it with experimental data. During the vacuum arc remelting process, inclusions move along the molten pool's surface toward the edge under theaction of resultant force, and finally become trapped within the mushy zone. Notably, the majority of inclusions are concentrated near the ingot's edge, andtheir numbers decrease as the radial distance decreases. Furthermore, thenumber of Ce‐Mg‐O‐S inclusions exceeds that of Ce‐O‐S inclusions near the ingot's center. This discrepancy arises due to lower density of Ce‐Mg‐O‐Sinclusions, which exhibits a stronger tendency to migrate toward the moltenpool's center. Additionally, as the inclusion diameter increases, buoyancy forceacting on the inclusions increases, resulting in a higher number of inclusionsnear the ingot's center. When considering the effect of gas cooling, theinclusion distribution becomes more pronounced at the ingot's edge. This isattributed to the enhanced cooling capacity of the mold resulting in the decreasing of molten pool depth and consequently a stronger ability of themushy zone to trap inclusions.
The motion behavior of Ce‐containing inclusions in vacuum arcremelting is closely related to the inclusion characteristics. The decrease in density and increase in diameter of inclusions make the net effect of buoyancy and gravity increase, and the inclusions are more likely to escape from mushy zone and exhibit a stronger tendency to migrate toward the molten pool's center. |
---|---|
AbstractList | Herein, the Ce‐containing inclusions in8Cr4Mo4V‐bearing steel are taken as the research objective to develop anumerical model of inclusions motions behavior. The model is validated bycomparing it with experimental data. During the vacuum arc remelting process, inclusions move along the molten pool's surface toward the edge under theaction of resultant force, and finally become trapped within the mushy zone. Notably, the majority of inclusions are concentrated near the ingot's edge, andtheir numbers decrease as the radial distance decreases. Furthermore, thenumber of Ce‐Mg‐O‐S inclusions exceeds that of Ce‐O‐S inclusions near the ingot's center. This discrepancy arises due to lower density of Ce‐Mg‐O‐Sinclusions, which exhibits a stronger tendency to migrate toward the moltenpool's center. Additionally, as the inclusion diameter increases, buoyancy forceacting on the inclusions increases, resulting in a higher number of inclusionsnear the ingot's center. When considering the effect of gas cooling, theinclusion distribution becomes more pronounced at the ingot's edge. This isattributed to the enhanced cooling capacity of the mold resulting in the decreasing of molten pool depth and consequently a stronger ability of themushy zone to trap inclusions. Herein, the Ce‐containing inclusions in8Cr4Mo4V‐bearing steel are taken as the research objective to develop anumerical model of inclusions motions behavior. The model is validated bycomparing it with experimental data. During the vacuum arc remelting process, inclusions move along the molten pool's surface toward the edge under theaction of resultant force, and finally become trapped within the mushy zone. Notably, the majority of inclusions are concentrated near the ingot's edge, andtheir numbers decrease as the radial distance decreases. Furthermore, thenumber of Ce‐Mg‐O‐S inclusions exceeds that of Ce‐O‐S inclusions near the ingot's center. This discrepancy arises due to lower density of Ce‐Mg‐O‐Sinclusions, which exhibits a stronger tendency to migrate toward the moltenpool's center. Additionally, as the inclusion diameter increases, buoyancy forceacting on the inclusions increases, resulting in a higher number of inclusionsnear the ingot's center. When considering the effect of gas cooling, theinclusion distribution becomes more pronounced at the ingot's edge. This isattributed to the enhanced cooling capacity of the mold resulting in the decreasing of molten pool depth and consequently a stronger ability of themushy zone to trap inclusions. The motion behavior of Ce‐containing inclusions in vacuum arcremelting is closely related to the inclusion characteristics. The decrease in density and increase in diameter of inclusions make the net effect of buoyancy and gravity increase, and the inclusions are more likely to escape from mushy zone and exhibit a stronger tendency to migrate toward the molten pool's center. |
Author | Li, Hua‐Bing Ni, Zhuo‐Wen Zhu, Hong‐Chun Jiang, Zhou‐Hua Pan, Tao He, Zhi‐Yu Zhang, Rui Liu, Fu‐Bin |
Author_xml | – sequence: 1 givenname: Tao surname: Pan fullname: Pan, Tao organization: Northeastern University – sequence: 2 givenname: Hong‐Chun surname: Zhu fullname: Zhu, Hong‐Chun email: zhuhc@smm.neu.edu.cn organization: Northeastern University – sequence: 3 givenname: Zhou‐Hua orcidid: 0000-0001-8887-7250 surname: Jiang fullname: Jiang, Zhou‐Hua email: jiangzh@smm.neu.edu.cn organization: Northeastern University – sequence: 4 givenname: Hua‐Bing surname: Li fullname: Li, Hua‐Bing organization: Northeastern University – sequence: 5 givenname: Fu‐Bin surname: Liu fullname: Liu, Fu‐Bin organization: Northeastern University – sequence: 6 givenname: Rui surname: Zhang fullname: Zhang, Rui organization: Northeastern University – sequence: 7 givenname: Zhi‐Yu surname: He fullname: He, Zhi‐Yu organization: Northeastern University – sequence: 8 givenname: Zhuo‐Wen surname: Ni fullname: Ni, Zhuo‐Wen organization: Northeastern University |
BookMark | eNqFkMtKxDAUhoMoOF62rgOuO-ZybJulU7wMeAFHxV3JNKca6SRj0irufASf0Sex44iCIGaTnPB954d_g6w675CQHc6GnDGxF4N1Q8GEZCwFtUIGPE9VIgFuV_t3ynki01yuk-0YH1h_ZJ6nGQwInvnWekdHeK-frA_U17TA99e3wrtWW2fdHR27quliT0VqHc2LAGcebnpmhDosgEmL2FDTfQ43uuq6GT0IFb3EGTZt_7lF1mrdRNz-ujfJ9dHhVXGSnF4cj4uD06SSPFOJhrSqDVNGGKhrwUwNxmSQAVdcCg2ZZDjlTE2FQSERKgCOhqdMmOkUUMtNsrvcOw_-scPYlg--C66PLCWTTHFQar-nhkuqCj7GgHU5D3amw0vJWblos1y0WX632QvwS6hsqxe9tUHb5m9NLbVn2-DLPyHl5HJ8_uN-AHwWjhc |
CitedBy_id | crossref_primary_10_1016_j_ijthermalsci_2024_109626 crossref_primary_10_1002_srin_202500064 |
Cites_doi | 10.22364/mhd.53.4.5 10.1134/S1810232807010031 10.1007/s11661-002-0189-z 10.1016/S0965-9773(97)00064-0 10.1016/j.jallcom.2021.161755 10.1007/s11663-023-02765-w 10.2355/isijinternational.ISIJINT-2019-094 10.1109/TPS.2010.2050075 10.1007/s11663-009-9339-7 10.1007/s11661-008-9638-7 10.1016/j.ijfatigue.2018.08.004 10.1002/srin.202100190 10.1007/s11663-021-02409-x 10.1007/s10853-008-2896-3 10.7449/2000/Superalloys_2000_29_37 10.1016/j.ijheatmasstransfer.2018.04.168 10.1016/j.engfailanal.2022.106273 10.1016/j.pmatsci.2011.06.002 10.1016/j.triboint.2018.12.031 10.1016/S1875-5372(14)60120-X 10.1179/174328405X39680 10.7449/2001/Superalloys_2001_91_102 10.1007/s11663-021-02252-0 10.1002/(SICI)1097-0363(199706)24:12<1271::AID-FLD559>3.0.CO;2-# 10.1016/S1003-6326(09)60401-5 10.1177/1056789519842367 10.1142/S0217979209061305 10.1115/1.2834565 10.1007/s11661-013-1680-4 10.1007/s11663-020-01984-9 10.1179/1743281215Y.0000000037 10.1007/s11663-013-9916-7 10.1007/s11663-019-01719-5 10.1016/j.triboint.2017.10.016 10.1016/j.ijfatigue.2023.107587 10.1007/s11663-008-9187-x |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1002/srin.202300649 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1869-344X |
EndPage | n/a |
ExternalDocumentID | 10_1002_srin_202300649 SRIN202300649 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: U1908223; U52374330 – fundername: Program of Introducing Talents of Discipline to Universities funderid: B21001 |
GroupedDBID | 05W 0R~ 123 1OC 31~ 33P 4.4 50Y 8-1 A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BMNLL BMXJE BRXPI DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX FEDTE G-S GODZA HGLYW HVGLF HZ~ I-F LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- P2P P2W P4E PALCI PQQKQ R.K RJQFR ROL RX1 SJN SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR WYJ ZZTAW ~S- AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3179-a46cfd09d2d4ff20df4dd747419132a4730eb109b2de23e4c441ed1602dbb4ea3 |
IEDL.DBID | DR2 |
ISSN | 1611-3683 |
IngestDate | Fri Jul 25 09:35:38 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Tue Jul 01 02:48:53 EDT 2025 Wed Jan 22 16:12:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3179-a46cfd09d2d4ff20df4dd747419132a4730eb109b2de23e4c441ed1602dbb4ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8887-7250 |
PQID | 3030914995 |
PQPubID | 1046344 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3030914995 crossref_primary_10_1002_srin_202300649 crossref_citationtrail_10_1002_srin_202300649 wiley_primary_10_1002_srin_202300649_SRIN202300649 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Steel research international |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 23 2013; 44A 2023; 54 2010; 38 2009; 40 2021; 889 2019; 59 1997; 24 2002; 33 2018; 125 2008; 39 2005; 21 2022; 44 2012; 57 2022; 139 2021; 52 2010; 41 2014; 45 2021; 92 2014; 43 1997; 8 2007; 16 2017; 53 2010; 20 2018; 117 2001 2023; 174 2000 2018; 119 2020; 51 2021 2016; 43 2019; 28 2008; 43 2022; 53 1998; 120 2019; 132 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 Wang L. C. (e_1_2_10_14_1) 2022; 44 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 132 start-page: 253 year: 2019 publication-title: Tribol. Int. – volume: 44A start-page: 5365 year: 2013 publication-title: Metall. Mater. Trans. A – volume: 139 start-page: 106273 year: 2022 publication-title: Eng. Failure Anal. – volume: 174 start-page: 107587 year: 2023 publication-title: Int. J. Fatigue – volume: 92 start-page: 2100190 year: 2021 publication-title: Steel Res. Int. – volume: 43 start-page: 1537 year: 2014 publication-title: Rare Met. Mater. Eng. – volume: 119 start-page: 165 year: 2018 publication-title: Tribol. Int. – volume: 20 start-page: 1957 year: 2010 publication-title: Trans. Nonferrous Met. Soc. China – volume: 33 start-page: 1805 year: 2002 publication-title: Metall. Mater. Trans. A – year: 2021 – volume: 8 start-page: 45 year: 1997 publication-title: Nanostruct. Mater. – volume: 28 start-page: 1580 year: 2019 publication-title: Int. J. Damage Mech. – volume: 45 start-page: 22 year: 2014 publication-title: Metall. Mater. Trans. B – volume: 43 start-page: 220 year: 2016 publication-title: Ironmaking Steelmaking – volume: 44 start-page: 1507 year: 2022 publication-title: Chin. J. Eng. – volume: 43 start-page: 5734 year: 2008 publication-title: J. Mater. Sci. – volume: 52 start-page: 3235 year: 2021 publication-title: Metall. Mater. Trans. B – volume: 53 start-page: 557 year: 2017 publication-title: Magnetohydrodynamics – volume: 39 start-page: 2981 year: 2008 publication-title: Metall. Mater. Trans. A – volume: 120 start-page: 421 year: 1998 publication-title: J. Tribol. – volume: 38 start-page: 3079 year: 2010 publication-title: IEEE Trans. Plasma Sci. – volume: 117 start-page: 396 year: 2018 publication-title: Int. J. Fatigue – start-page: 91 year: 2001 – volume: 40 start-page: 254 year: 2009 publication-title: Metall. Mater. Trans. B – volume: 23 start-page: 1584 year: 2009 publication-title: Int. J. Mod. Phys. B – volume: 53 start-page: 864 year: 2022 publication-title: Metall. Mater. Trans. B – volume: 21 start-page: 437 year: 2005 publication-title: Mater. Sci. Technol. – volume: 16 start-page: 19 year: 2007 publication-title: J. Eng. Thermophys. – volume: 24 start-page: 1271 year: 1997 publication-title: Int. J. Numer. Methods Fluids – volume: 59 start-page: 1552 year: 2019 publication-title: ISIJ Int. – volume: 57 start-page: 268 year: 2012 publication-title: Prog. Mater. Sci. – volume: 51 start-page: 2976 year: 2020 publication-title: Metall. Mater. Trans. B – start-page: 29 year: 2000 – volume: 54 start-page: 1342 year: 2023 publication-title: Metall. Mater. Trans. B – volume: 41 start-page: 646 year: 2010 publication-title: Metall. Mater. Trans. B – volume: 889 start-page: 161755 year: 2021 publication-title: J. Alloys Compd. – volume: 125 start-page: 1333 year: 2018 publication-title: Int. J. Heat Mass Transfer – volume: 51 start-page: 222 year: 2020 publication-title: Metall. Mater. Trans. B – ident: e_1_2_10_24_1 doi: 10.22364/mhd.53.4.5 – ident: e_1_2_10_31_1 doi: 10.1134/S1810232807010031 – ident: e_1_2_10_23_1 doi: 10.1007/s11661-002-0189-z – ident: e_1_2_10_30_1 – ident: e_1_2_10_3_1 doi: 10.1016/S0965-9773(97)00064-0 – ident: e_1_2_10_6_1 doi: 10.1016/j.jallcom.2021.161755 – ident: e_1_2_10_37_1 doi: 10.1007/s11663-023-02765-w – ident: e_1_2_10_15_1 doi: 10.2355/isijinternational.ISIJINT-2019-094 – ident: e_1_2_10_4_1 doi: 10.1109/TPS.2010.2050075 – ident: e_1_2_10_25_1 doi: 10.1007/s11663-009-9339-7 – ident: e_1_2_10_36_1 doi: 10.1007/s11661-008-9638-7 – ident: e_1_2_10_12_1 doi: 10.1016/j.ijfatigue.2018.08.004 – ident: e_1_2_10_16_1 doi: 10.1002/srin.202100190 – ident: e_1_2_10_17_1 doi: 10.1007/s11663-021-02409-x – ident: e_1_2_10_22_1 doi: 10.1007/s10853-008-2896-3 – ident: e_1_2_10_26_1 doi: 10.7449/2000/Superalloys_2000_29_37 – ident: e_1_2_10_29_1 doi: 10.1016/j.ijheatmasstransfer.2018.04.168 – ident: e_1_2_10_9_1 doi: 10.1016/j.engfailanal.2022.106273 – ident: e_1_2_10_2_1 doi: 10.1016/j.pmatsci.2011.06.002 – ident: e_1_2_10_8_1 doi: 10.1016/j.triboint.2018.12.031 – ident: e_1_2_10_33_1 doi: 10.1016/S1875-5372(14)60120-X – ident: e_1_2_10_38_1 doi: 10.1179/174328405X39680 – ident: e_1_2_10_34_1 doi: 10.7449/2001/Superalloys_2001_91_102 – ident: e_1_2_10_39_1 doi: 10.1007/s11663-021-02252-0 – ident: e_1_2_10_18_1 doi: 10.1002/(SICI)1097-0363(199706)24:12<1271::AID-FLD559>3.0.CO;2-# – ident: e_1_2_10_32_1 doi: 10.1016/S1003-6326(09)60401-5 – ident: e_1_2_10_13_1 doi: 10.1177/1056789519842367 – ident: e_1_2_10_21_1 doi: 10.1142/S0217979209061305 – ident: e_1_2_10_11_1 doi: 10.1115/1.2834565 – ident: e_1_2_10_27_1 doi: 10.1007/s11661-013-1680-4 – ident: e_1_2_10_20_1 doi: 10.1007/s11663-020-01984-9 – ident: e_1_2_10_5_1 doi: 10.1179/1743281215Y.0000000037 – ident: e_1_2_10_28_1 doi: 10.1007/s11663-013-9916-7 – ident: e_1_2_10_19_1 doi: 10.1007/s11663-019-01719-5 – ident: e_1_2_10_7_1 doi: 10.1016/j.triboint.2017.10.016 – ident: e_1_2_10_10_1 doi: 10.1016/j.ijfatigue.2023.107587 – ident: e_1_2_10_35_1 doi: 10.1007/s11663-008-9187-x – volume: 44 start-page: 1507 year: 2022 ident: e_1_2_10_14_1 publication-title: Chin. J. Eng. |
SSID | ssj0000388674 |
Score | 2.352309 |
Snippet | Herein, the Ce‐containing inclusions in8Cr4Mo4V‐bearing steel are taken as the research objective to develop anumerical model of inclusions motions behavior.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 8Cr4Mo4V‐bearing steel Bearing steels Gas cooling inclusion motion behavior Inclusions Ingots Melting molten pool Mushy zones numerical simulation Vacuum arc melting vacuum arc remelting |
Title | Motion Behavior of Ce‐Containing Inclusions in 8Cr4Mo4V‐Bearing Steel during Vacuum Arc Remelting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsrin.202300649 https://www.proquest.com/docview/3030914995 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4YTnrw34ii2YOJp0K7XUp7VCJBEziAEG5NuzubEKGYll48-Qg-o0_ibFsKmBgTvbXJ9m9nZ-ab7cw3hNw4LYyMpXQMaVsYoICyDBccMLj0FA-Y2Qw9Xe_c6zvdEX-aNCcbVfw5P0S54aY1I7PXWsGDMGmsSUOTeKr5SxFCo1fVFXw6YUujogErN1k01YmTMTEjsLEM23HtFXGjyRrbd9h2TGu0uYlZM6fTOSDB6nXzXJOXeroM6-LtG5Pjf77nkOwXiJTe5UvoiOxAdEz2NngKTwj0sl4_tCBTjOlC0TZ8vn9obqu8xQRFQzNL9dZbQqcRddsx7y34GMfcoy7pAcMlwIzmZZF0HIg0neNDBR3AHGY6-fqUjDoPz-2uUfRnMASiDs8IuCOUND3JJFeKmVKh1DE84RgD2izgaDzQE5heyCQwG7hA6AXSckwmw5BDYJ-RSrSI4JxQ2wstxYXb0gSBiilXIC5D8-KCsHA5QZUYK-H4oiAv1z00Zn5Ou8x8PX1-OX1VcluOf81pO34cWVvJ2i_UN_Ft_eMJY0evWSUsE9ovd_GHg8d-eXbxl4suyS4eF1lBNVJZxilcIeBZhtfZov4CCCH45g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6KsPiBxCiSOmyZHqEBlaQ9tQdyixB5LFV1Q21w48Ql8I1_COBuLhJDgmMjZPJ6ZN5PxG4Ajr0aRsVKepVyHAhTUjuWjh5ZQgRYRt6txYPY7N1te405cP1SLakKzFybjhygTbkYzUnttFNwkpE8_WEMn454hMCUMTW41mIV509Y7jaravEyzGLITL-ViJmjjWK7nuwV1o81Pv97iq2v6wJufUWvqdi5XIC5eOKs2eTxJpvGJfP7G5fivL1qF5RyUsrNsFa3BDA7XYekTVeEGYDNt98NyPsUxG2lWx7eXV0NvlXWZYGRr-onJvk1Yb8j8-lg0R-KexpyTOpkBnSlin2U7I9l9JJNkQA-VrI0D7Jv66024u7zo1htW3qLBkgQ8AisSntTKDhRXQmtuK02CpwhFUBjo8kiQ_SBnYAcxV8hdFJLQFyrHs7mKY4GRuwVzw9EQt4G5QexoIf2a4QjUXPuSoBlZGB-lQysKK2AV0gllzl9u2mj0w4x5mYdm-sJy-ipwXI5_ypg7fhy5Vwg7zDV4Errm3xOFj0G1AjyV2i93CTvtq1Z5tPOXiw5hodFt3oa3V62bXVik83mR0B7MTccJ7hP-mcYH6Qp_B5h7_QE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7Iiy-oDEKZA4rkmOUKjYWqGyiFuU2GMJUVrUNhdOfALfyJcwTtJQkBASHBNNNs_2xrHfAOzIA6qMtZaO9j0qUNB4ToASHaFDI2LuVpPQ7nduNOXprTi_r96P7OLP-SHKCTfrGVm8tg7-rM3-J2lov_dg-UsJQlNWDcdhUkg3sHZ93OLlLIvlOpEZFTMhG8_xZeAPmRtdvv_1Fl8z0yfcHAWtWdapz0E8fN98scnjXjpI9tTLNyrH_3zQPMwWkJQd5ja0AGPYWYSZEaLCJcBG1uyHFWyKPdY1rIbvr2-W3CrvMcEo0rRTO_fWZw8dFtR6otEVdyRzRM5kBa4HiG2W74tkd7FK0yd6qGItfMK2XX29DLf1k5vaqVM0aHAUwY7QiYVURruh5loYw11tSO1UnwgqAn0eC4oelArcMOEauY9CEfZC7UmX6yQRGPsrMNHpdnAVmB8mnhEqOLAMgYabQBEwo_gSoPLInrACzlA5kSrYy20TjXaU8y7zyA5fVA5fBXZL-eect-NHyY2hrqPCf_uRb_88UfEYVivAM6X9cpfounXWLI_W_nLRNkxdHdejy7PmxTpM0-lihdAGTAx6KW4S-BkkW5l9fwC8r_u5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motion+Behavior+of+Ce%E2%80%90Containing+Inclusions+in+8Cr4Mo4V%E2%80%90Bearing+Steel+during+Vacuum+Arc+Remelting&rft.jtitle=Steel+research+international&rft.au=Pan%2C+Tao&rft.au=Hong%E2%80%90Chun+Zhu&rft.au=Zhou%E2%80%90Hua+Jiang&rft.au=Hua%E2%80%90Bing+Li&rft.date=2024-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1611-3683&rft.eissn=1869-344X&rft.volume=95&rft.issue=4&rft_id=info:doi/10.1002%2Fsrin.202300649&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1611-3683&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1611-3683&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1611-3683&client=summon |