Tuning 2D MXenes by Surface Controlling and Interlayer Engineering: Methods, Properties, and Synchrotron Radiation Characterizations
MXenes, layered transition metal carbides/nitrides, have already received considerable attention in various research areas including but not limited to energy storage/conversion and photo/electrocatalysis. In fact, the intrinsic property of MXenes is highly tunable by controlling the surface termina...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 47 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MXenes, layered transition metal carbides/nitrides, have already received considerable attention in various research areas including but not limited to energy storage/conversion and photo/electrocatalysis. In fact, the intrinsic property of MXenes is highly tunable by controlling the surface terminations and interlayer spacing. Moreover, synchrotron radiation X‐ray characterizations have shown high potential for exploring the causal relationship between the properties and structure of MXenes. Particularly, operando X‐ray measurements could provide useful insight for better understanding the dynamic process of MXene‐based energy materials. In this review, a comprehensive summary of recent studies on surface controlling, interlayer engineering, and the synchrotron‐based characterizations of MXenes is presented. The outlook of MXenes and applications of advanced X‐ray characterizations are also discussed.
In this review, the structure and synthesis strategies of MXenes are briefly discussed. Surface controlling, interlayer engineering toward the tunable structure of MXenes, and relevant applications are also comprehensively summarized. Particularly, the progresses and advantages of synchrotron‐based characterizations in the exploration of MXenes' structure and dynamic mechanism are emphasized, and the challenges and prospects are proposed as well. |
---|---|
AbstractList | MXenes, layered transition metal carbides/nitrides, have already received considerable attention in various research areas including but not limited to energy storage/conversion and photo/electrocatalysis. In fact, the intrinsic property of MXenes is highly tunable by controlling the surface terminations and interlayer spacing. Moreover, synchrotron radiation X‐ray characterizations have shown high potential for exploring the causal relationship between the properties and structure of MXenes. Particularly, operando X‐ray measurements could provide useful insight for better understanding the dynamic process of MXene‐based energy materials. In this review, a comprehensive summary of recent studies on surface controlling, interlayer engineering, and the synchrotron‐based characterizations of MXenes is presented. The outlook of MXenes and applications of advanced X‐ray characterizations are also discussed. MXenes, layered transition metal carbides/nitrides, have already received considerable attention in various research areas including but not limited to energy storage/conversion and photo/electrocatalysis. In fact, the intrinsic property of MXenes is highly tunable by controlling the surface terminations and interlayer spacing. Moreover, synchrotron radiation X‐ray characterizations have shown high potential for exploring the causal relationship between the properties and structure of MXenes. Particularly, operando X‐ray measurements could provide useful insight for better understanding the dynamic process of MXene‐based energy materials. In this review, a comprehensive summary of recent studies on surface controlling, interlayer engineering, and the synchrotron‐based characterizations of MXenes is presented. The outlook of MXenes and applications of advanced X‐ray characterizations are also discussed. In this review, the structure and synthesis strategies of MXenes are briefly discussed. Surface controlling, interlayer engineering toward the tunable structure of MXenes, and relevant applications are also comprehensively summarized. Particularly, the progresses and advantages of synchrotron‐based characterizations in the exploration of MXenes' structure and dynamic mechanism are emphasized, and the challenges and prospects are proposed as well. |
Author | Song, Li Chen, Shuangming Wang, Changda |
Author_xml | – sequence: 1 givenname: Changda orcidid: 0000-0002-3822-3475 surname: Wang fullname: Wang, Changda organization: University of Science and Technology of China – sequence: 2 givenname: Shuangming orcidid: 0000-0001-7567-1552 surname: Chen fullname: Chen, Shuangming email: csmp@ustc.edu.cn organization: University of Science and Technology of China – sequence: 3 givenname: Li orcidid: 0000-0003-0585-8519 surname: Song fullname: Song, Li email: song2012@ustc.edu.cn organization: University of Science and Technology of China |
BookMark | eNqFkEtLAzEUhYMoaKtb1wG3tiaZdCZxV_rQQoviA9wNaeaOjUyTmkyRce0PN21FQRBX93BzvnPJaaF96ywgdEpJlxLCLlRRLruMMEKISOUeOqIpTTsJYWL_W9OnQ9QK4YUQmmUJP0IfD2tr7DNmQzx7AgsBzxt8v_al0oAHztbeVdXGoGyBJ7YGX6kGPB7ZZ2MBfHy6xDOoF64I5_jWuxX42kDUG-C-sXrhXQyx-E4VRtUmqsFCeaVjlHnfLsIxOihVFeDka7bR43j0MLjuTG-uJoP-tKMTmslOVlChKNeZLLSSMpWJVIyzklEmAUShSSnmxTzlqeBpjzMFQmQJsB7jWvaibKOzXe7Ku9c1hDp_cWtv48mc8ZRySqmg0dXdubR3IXgo85U3S-WbnJJ803S-aTr_bjoC_BegTb39We2Vqf7G5A57MxU0_xzJ-8Px7If9BDsXlms |
CitedBy_id | crossref_primary_10_1021_acsenergylett_1c02132 crossref_primary_10_1039_D1MA00625H crossref_primary_10_1016_j_flatc_2023_100493 crossref_primary_10_1021_acs_chemrev_3c00389 crossref_primary_10_1007_s12598_020_01488_0 crossref_primary_10_1002_smll_202402003 crossref_primary_10_1007_s40820_022_00880_y crossref_primary_10_1002_aenm_202100864 crossref_primary_10_1002_eem2_12619 crossref_primary_10_1002_aenm_202403757 crossref_primary_10_3389_fchem_2022_1090905 crossref_primary_10_3390_batteries11020063 crossref_primary_10_1088_1361_6528_acc539 crossref_primary_10_1002_smll_202102218 crossref_primary_10_1016_j_jallcom_2022_164730 crossref_primary_10_1088_1361_6528_ac8f99 crossref_primary_10_1002_smll_202204121 crossref_primary_10_1016_j_diamond_2023_109883 crossref_primary_10_1021_acsnano_1c04423 crossref_primary_10_1016_j_surfin_2024_104628 crossref_primary_10_1016_j_est_2024_112449 crossref_primary_10_1039_D3NR00347G crossref_primary_10_1016_j_jechem_2022_08_034 crossref_primary_10_1080_14686996_2021_1972755 crossref_primary_10_1016_j_ccr_2021_214339 crossref_primary_10_1021_acs_jpclett_2c00711 crossref_primary_10_1016_j_desal_2025_118601 crossref_primary_10_1039_D2TA01140A crossref_primary_10_1021_jacs_3c01083 crossref_primary_10_1021_acsaem_2c00676 crossref_primary_10_1002_adma_202004129 crossref_primary_10_1016_j_nanoen_2023_108331 crossref_primary_10_1002_smll_202205249 crossref_primary_10_1021_acsami_4c03629 crossref_primary_10_1103_PhysRevMaterials_7_085801 crossref_primary_10_1002_admt_202101277 crossref_primary_10_1002_smtd_202100580 crossref_primary_10_1021_acs_chemmater_3c01742 crossref_primary_10_1016_j_bioactmat_2021_06_021 crossref_primary_10_1088_1361_6463_ac629e crossref_primary_10_1002_smll_202304483 crossref_primary_10_1039_D2RA02985E crossref_primary_10_1515_nanoph_2022_0599 crossref_primary_10_1039_D3CP06247C crossref_primary_10_1039_D3NA00429E crossref_primary_10_1021_acsanm_1c04469 crossref_primary_10_1002_adfm_202202469 crossref_primary_10_1002_smll_202105883 crossref_primary_10_2174_1872210517666230427161120 crossref_primary_10_3390_batteries10110395 crossref_primary_10_1002_smtd_202301602 crossref_primary_10_1016_j_mtener_2021_100832 crossref_primary_10_1063_5_0160277 crossref_primary_10_1021_acsanm_4c02902 crossref_primary_10_1002_adma_202107554 crossref_primary_10_1002_eom2_12485 crossref_primary_10_1016_j_pmatsci_2020_100757 crossref_primary_10_1039_D0CS00175A crossref_primary_10_3390_molecules29010002 crossref_primary_10_1039_D0CP02275F crossref_primary_10_1016_j_cej_2021_133171 crossref_primary_10_1002_asia_202401181 crossref_primary_10_1039_D1MH00986A crossref_primary_10_1039_D3NR03005A crossref_primary_10_1016_j_jechem_2021_01_023 crossref_primary_10_1021_acs_jpcc_3c07472 crossref_primary_10_1016_j_apcatb_2023_123585 crossref_primary_10_1016_j_carbon_2022_03_004 crossref_primary_10_1039_D1TA03070A crossref_primary_10_1002_adfm_202402543 crossref_primary_10_1002_smll_202201740 crossref_primary_10_20517_energymater_2024_48 crossref_primary_10_1021_acsami_1c19596 crossref_primary_10_1016_j_susmat_2022_e00490 crossref_primary_10_1038_s41427_021_00289_w crossref_primary_10_1002_adfm_202408892 crossref_primary_10_1021_acs_nanolett_1c01986 crossref_primary_10_1021_acsnano_1c00248 crossref_primary_10_1016_j_aca_2022_339520 crossref_primary_10_1002_adfm_202316159 crossref_primary_10_1007_s12598_020_01602_2 crossref_primary_10_1007_s40843_022_2091_4 crossref_primary_10_1021_acs_energyfuels_1c04104 crossref_primary_10_1016_j_cej_2023_142508 crossref_primary_10_1002_aenm_202204014 crossref_primary_10_1016_j_jece_2022_108663 crossref_primary_10_1557_s43577_021_00150_z crossref_primary_10_1016_j_ccr_2022_214518 crossref_primary_10_1002_adfm_202308508 crossref_primary_10_1103_PhysRevB_110_094507 crossref_primary_10_1021_acs_energyfuels_3c01346 crossref_primary_10_1016_j_ccr_2023_215565 crossref_primary_10_1021_acsnano_1c02215 crossref_primary_10_1039_D2NA00782G crossref_primary_10_1016_j_cplett_2025_141931 crossref_primary_10_1039_D1TC03166J crossref_primary_10_3390_bios13050495 crossref_primary_10_1021_acsanm_2c03538 crossref_primary_10_1016_j_pmatsci_2023_101166 crossref_primary_10_1021_acssuschemeng_4c02435 crossref_primary_10_1016_j_flatc_2024_100719 crossref_primary_10_1039_D4TA02102A crossref_primary_10_1007_s12613_024_2859_y crossref_primary_10_1002_rpm_20240015 crossref_primary_10_1039_D4SD00171K crossref_primary_10_1021_acsami_3c02654 crossref_primary_10_1080_10408436_2022_2078789 crossref_primary_10_1021_acsaelm_1c00484 crossref_primary_10_1142_S1793604721300115 crossref_primary_10_1002_adfm_202211199 crossref_primary_10_1515_nanoph_2022_0268 crossref_primary_10_1021_acs_nanolett_2c04712 crossref_primary_10_1016_j_cej_2022_135734 crossref_primary_10_1016_j_cej_2022_139139 crossref_primary_10_1002_admi_202001789 crossref_primary_10_1007_s11771_021_4846_z crossref_primary_10_1002_adma_202101015 crossref_primary_10_1002_asia_202300474 |
Cites_doi | 10.1002/adma.201700072 10.1016/j.cclet.2019.08.045 10.1002/adfm.201908075 10.1039/C8TA06567E 10.1021/acs.chemmater.9b01105 10.1038/s41929-018-0195-1 10.1016/j.jcat.2019.05.019 10.1002/adfm.201202502 10.1021/acsnano.7b00030 10.1039/C9QI00723G 10.1002/adma.201902725 10.1021/acsnano.9b04977 10.1016/j.elecom.2012.01.002 10.1021/ja403082s 10.1002/adfm.201907451 10.1002/adfm.201905384 10.1002/cssc.201903222 10.1021/acsami.9b14265 10.1021/acssensors.9b00310 10.1002/cssc.201803032 10.1039/C8TA10574J 10.1021/acsaem.9b01329 10.1016/j.scriptamat.2015.07.003 10.1021/acsnano.5b07333 10.1002/smtd.201900495 10.1039/C9EE03250A 10.1016/j.nanoen.2019.103880 10.1021/acs.jpclett.5b00868 10.1002/adfm.201806500 10.1016/j.ensm.2017.03.012 10.1038/s41467-018-07502-5 10.1016/j.carbon.2019.10.016 10.1002/aelm.201600255 10.1002/aenm.201700959 10.1021/acsami.8b19302 10.1002/adma.201102306 10.1021/acs.langmuir.7b01339 10.1016/j.ceramint.2019.06.114 10.1038/ncomms2664 10.1021/acs.jpcc.8b09677 10.1002/adma.201807658 10.1021/ja405735d 10.1039/C8TA02068J 10.1002/aenm.201801897 10.1111/j.1551-2916.2011.04896.x 10.1016/S0921-5093(00)01281-8 10.1016/j.ceramint.2019.01.148 10.1021/acsnano.9b05599 10.1021/acscatal.9b01925 10.1016/j.nanoen.2019.103961 10.1021/acsnano.9b07325 10.1016/j.elecom.2014.09.002 10.1002/adma.201906739 10.1038/s41467-018-08169-8 10.1103/PhysRevB.70.092102 10.1002/adma.201702367 10.1016/j.jpowsour.2019.227150 10.1002/smll.201906851 10.1002/adfm.201903443 10.1038/nmat4374 10.1002/aenm.201802917 10.1039/C9TA02190F 10.1039/C9TA09776G 10.1038/natrevmats.2016.98 10.1016/j.jpowsour.2016.04.035 10.1016/j.jpowsour.2016.03.066 10.1016/j.trechm.2019.04.006 10.1021/acsnano.9b07729 10.1002/aenm.201802977 10.1038/s41586-019-1904-x 10.1007/s40843-015-0043-4 10.1002/adma.201901820 10.1039/C9NR08960H 10.1039/C4NR02080D 10.1021/acsami.9b09941 10.1002/anie.201809662 10.1002/anie.201912570 10.1016/j.ensm.2019.11.021 10.1039/C6NR02253G 10.1002/aelm.201900537 10.1039/C9TA08227A 10.1002/adma.201903841 10.1016/j.elecom.2016.08.023 10.1016/j.jechem.2018.03.020 10.1103/RevModPhys.72.621 10.1021/acsami.9b11988 10.1021/acsnano.9b07708 10.1021/acs.chemmater.5b01623 10.3390/ma11020204 10.1021/acsenergylett.9b01580 10.1021/acsnano.9b07710 10.1021/jacs.8b13579 10.1021/acs.jpcc.8b08914 10.1002/anie.201509758 10.1021/acsnano.9b03889 10.1021/jacs.9b00574 10.1039/C9EE00308H 10.1016/S0167-5729(97)00011-3 10.1016/j.nanoen.2019.104431 10.1021/ja508154e 10.1002/anie.201800887 10.1021/acsnano.7b03738 10.1039/C9TA00212J 10.1021/jacs.9b08897 10.1002/cssc.201902537 10.1039/C9NR03020D 10.1002/smtd.201700341 10.1038/s41586-018-0109-z 10.1021/acsami.9b19960 10.1016/j.nanoen.2019.04.002 10.1021/acsnano.6b06597 10.3390/catal7020058 10.1021/cm500641a 10.1126/science.1241488 10.1021/acsnano.9b06653 10.1021/acsnano.6b07668 10.1039/C8TA09600G 10.1021/acsami.6b11744 10.1002/anie.201410174 10.1002/adfm.201808107 10.1002/cctc.201701522 10.1021/acsami.9b17088 10.1002/adma.201802525 10.1002/aenm.201500589 10.1039/C9TA04902A 10.1016/j.cej.2019.122696 10.1002/adfm.201905015 10.1021/ja512820k 10.1039/C8NR05760E 10.1007/s40820-019-0309-6 10.1002/smtd.201900337 10.1021/acs.chemmater.9b00414 10.1002/aenm.201602725 10.1016/j.nanoen.2019.06.013 10.1002/adfm.201905197 10.1021/ja308463r 10.1021/acs.jpclett.8b00200 10.1021/acsenergylett.6b00247 10.1002/aenm.201700460 10.1016/j.nanoen.2015.07.028 10.1038/s41467-019-10885-8 10.1002/adfm.201902953 10.1007/s40820-019-0341-6 10.1021/acsnano.9b03412 10.1002/smll.201901503 10.1002/anie.201911604 10.1021/acsmaterialslett.9b00419 10.1016/j.elecom.2019.05.021 10.1149/1.1392573 10.1016/j.nanoen.2017.06.009 10.1016/j.jpowsour.2019.227481 10.1021/acsami.9b12550 10.1021/jp507336x 10.1021/acsaem.7b00054 10.1021/am501144q 10.1016/j.nanoen.2019.104196 10.1038/s41893-019-0373-4 10.1038/s41929-018-0067-8 10.1002/cssc.201901746 10.1039/C6NR01462C 10.1021/acsami.9b13711 10.1021/acsnano.9b00177 10.1038/nature13970 10.1021/acsnano.5b03591 10.1021/jacs.9b02578 10.1002/adfm.201900326 10.1021/acsnano.9b04301 10.1016/j.matchemphys.2013.01.008 10.1002/smll.201804736 10.1039/C9TA00076C 10.1021/acsnano.9b07183 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202000869 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202000869 ADFM202000869 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: WK2310000074 – fundername: NSFC‐MAECI funderid: 51861135202 – fundername: USTC start‐up fund and China Postdoctoral Science Foundation funderid: 2019M662161 – fundername: CAS Iterdisciplinary Innovation Team – fundername: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) – fundername: CAS Key Research Program of Frontier Sciences funderid: QYZDB‐SSW‐SLH018 – fundername: 111 Project funderid: B12015 – fundername: NSFC funderid: U1932201; 21727801 – fundername: International Partnership Program of Chinese Academy of Sciences funderid: 211134KYSB20190063 – fundername: CAS Collaborative Innovation Program of Hefei Science Center funderid: 2019HSC‐CIP002 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3179-7d18a14c79dca996939a242f2129ee8dc0f8bdb646846542ae8873e2524c95873 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 08:20:59 EDT 2025 Thu Apr 24 23:09:23 EDT 2025 Tue Jul 01 04:12:12 EDT 2025 Wed Jan 22 16:31:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3179-7d18a14c79dca996939a242f2129ee8dc0f8bdb646846542ae8873e2524c95873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0585-8519 0000-0002-3822-3475 0000-0001-7567-1552 |
PQID | 2461411181 |
PQPubID | 2045204 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2461411181 crossref_primary_10_1002_adfm_202000869 crossref_citationtrail_10_1002_adfm_202000869 wiley_primary_10_1002_adfm_202000869_ADFM202000869 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 4 2019 2019; 11 58 2019; 11 2019; 10 2019; 13 2019; 12 2019; 15 2014; 26 2020; 14 2020; 12 2012; 16 2020; 10 2014; 136 2018; 6 2018; 9 2018; 8 2019 2019 2019; 13 30 31 2012; 134 2015; 137 2018 2019; 10 11 2018; 1 2019 2020; 58 26 2020; 577 2019; 29 2018; 30 2019 2020; 60 69 2019; 7 2015; 58 2019; 9 2019; 4 2019 2019 2019 2019; 2 7 141 29 2019; 3 2019; 5 2019; 31 2020 2019; 12 11 2019; 2 2019; 1 2015; 54 2019; 104 2016; 10 2000; 72 2014; 48 2016; 326 2013; 341 2020 2019; 14 31 2019 2017; 11 29 2020; 32 2018; 27 2016; 1 2016; 2 2020; 31 2019 2020 2019; 9 16 29 2013 2014; 139 516 1997; 30 2019; 45 2011; 94 2020; 157 2018 2018; 10 122 2020 2020; 449 13 2016; 8 2016 2016; 8 72 2020 2019 2019 2020; 30 29 11 381 2017; 7 2018; 122 2017; 8 2017; 2 2013; 23 2015; 108 2019 2020; 66 12 2001; 298 2004; 70 2019; 62 2019; 64 2019; 63 2017; 38 2017; 33 2011; 23 2019 2020 2019 2019; 13 2 45 11 2014; 6 2014; 118 2015; 14 2015; 17 2015; 6 2015; 5 1999; 146 2017; 29 2019 2019 2019; 7 13 6 2019; 141 2015; 9 2016; 55 2015; 27 2019 2019; 29 440 2018; 557 2016 2018 2019 2019; 10 9 29 12 2017; 11 2018 2018; 2 11 2013; 135 2019 2020 2019; 7 13 29 2019; 375 2018; 57 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_98_2 e_1_2_9_71_2 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_75_2 e_1_2_9_90_1 e_1_2_9_107_2 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_2 e_1_2_9_99_2 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_129_2 e_1_2_9_129_3 e_1_2_9_102_1 e_1_2_9_129_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_15_3 e_1_2_9_15_2 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_15_4 e_1_2_9_61_4 e_1_2_9_42_1 e_1_2_9_61_3 e_1_2_9_88_1 e_1_2_9_61_2 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_133_2 e_1_2_9_9_2 e_1_2_9_133_3 e_1_2_9_9_1 e_1_2_9_133_4 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_96_3 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_50_2 e_1_2_9_35_1 e_1_2_9_31_2 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_96_2 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_128_3 e_1_2_9_128_4 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_128_2 e_1_2_9_105_2 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_89_2 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_2 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_113_3 e_1_2_9_136_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_97_2 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_108_3 e_1_2_9_108_2 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_123_2 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_2 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 5314 year: 2015 publication-title: Chem. Mater. – volume: 8 start-page: 42 year: 2017 publication-title: Energy Storage Mater. – volume: 58 26 start-page: 472 year: 2019 2020 publication-title: Angew. Chem., Int. Ed. Energy Storage Mater. – volume: 64 year: 2019 publication-title: Nano Energy – volume: 1 start-page: 589 year: 2016 publication-title: ACS Energy Lett. – volume: 4 start-page: 1365 year: 2019 publication-title: ACS Sens. – volume: 30 29 11 381 year: 2020 2019 2019 2020 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. ACS Appl. Mater. Interfaces Chem. Eng. J. – volume: 17 start-page: 27 year: 2015 publication-title: Nano Energy – volume: 375 start-page: 8 year: 2019 publication-title: J. Catal. – volume: 326 start-page: 686 year: 2016 publication-title: J. Power Sources – volume: 6 year: 2014 publication-title: Nanoscale – volume: 7 13 6 start-page: 6507 3608 2894 year: 2019 2019 2019 publication-title: J. Mater. Chem. A ACS Nano Inorg. Chem. Front. – volume: 1 start-page: 173 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 557 start-page: 409 year: 2018 publication-title: Nature – volume: 137 start-page: 2715 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 1368 year: 2019 publication-title: ChemSusChem – volume: 14 31 start-page: 640 year: 2020 2019 publication-title: ACS Nano Adv. Mater. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 11 29 year: 2019 2017 publication-title: Nanoscale Adv. Mater. – volume: 6 start-page: 2305 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 2 7 141 29 start-page: 6851 year: 2019 2019 2019 2019 publication-title: ACS Appl. Energy Mater. J. Mater. Chem. A J. Am. Chem. Soc. Adv. Funct. Mater. – volume: 10 start-page: 522 year: 2019 publication-title: Nat. Commun. – volume: 10 122 year: 2018 2018 publication-title: Nanoscale J. Phys. Chem. C – volume: 26 start-page: 2374 year: 2014 publication-title: Chem. Mater. – volume: 58 start-page: 313 year: 2015 publication-title: Sci. China Mater. – volume: 12 start-page: 3984 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 9128 year: 2016 publication-title: Nanoscale – volume: 55 start-page: 1138 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 11 58 year: 2019 2019 publication-title: ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. – volume: 63 year: 2019 publication-title: Nano Energy – volume: 48 start-page: 118 year: 2014 publication-title: Electrochem. Commun. – volume: 4 start-page: 2452 year: 2019 publication-title: ACS Energy Lett. – volume: 12 start-page: 763 year: 2020 publication-title: Nanoscale – volume: 94 start-page: 4556 year: 2011 publication-title: J. Am. Ceram. Soc. – volume: 141 start-page: 9610 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2016 publication-title: Nanoscale – volume: 7 13 29 start-page: 945 year: 2019 2020 2019 publication-title: J. Mater. Chem. A ChemSusChem Adv. Funct. Mater. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 108 start-page: 147 year: 2015 publication-title: Scr. Mater. – volume: 13 2 45 11 start-page: 1409 55 79 year: 2019 2020 2019 2019 publication-title: ChemSusChem ACS Mater. Lett. Ceram. Int. Nano‐Micro Lett. – volume: 54 start-page: 3907 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 349 year: 2018 publication-title: Nat. Catal. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 11 start-page: 3841 year: 2017 publication-title: ACS Nano – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 5258 year: 2018 publication-title: Nat. Commun. – volume: 146 start-page: 3919 year: 1999 publication-title: J. Electrochem. Soc. – volume: 11 start-page: 2459 year: 2017 publication-title: ACS Nano – volume: 7 start-page: 5416 year: 2019 publication-title: J. Mater. Chem. A – volume: 12 11 start-page: 4 year: 2020 2019 publication-title: Nano‐Micro Lett. ACS Appl. Mater. Interfaces – volume: 9 start-page: 9507 year: 2015 publication-title: ACS Nano – volume: 57 start-page: 6115 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 2491 year: 2016 publication-title: ACS Nano – volume: 141 start-page: 4086 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 8 72 start-page: 50 year: 2016 2016 publication-title: ACS Appl. Mater. Interfaces Electrochem. Commun. – volume: 7 start-page: 1281 year: 2019 publication-title: J. Mater. Chem. A – volume: 27 start-page: 1566 year: 2018 publication-title: J. Energy Chem. – volume: 23 start-page: 4248 year: 2011 publication-title: Adv. Mater. – volume: 14 start-page: 603 year: 2020 publication-title: ACS Nano – volume: 10 start-page: 253 year: 2020 publication-title: ACS Catal. – volume: 341 start-page: 1502 year: 2013 publication-title: Science – volume: 449 13 start-page: 246 year: 2020 2020 publication-title: J. Power Sources Energy Environ. Sci. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 7794 year: 2018 publication-title: J. Mater. Chem. A – volume: 2 start-page: 856 year: 2019 publication-title: Nat. Sustain. – volume: 60 69 start-page: 734 year: 2019 2020 publication-title: Nano Energy Nano Energy – volume: 11 year: 2017 publication-title: ACS Nano – volume: 45 start-page: 8395 year: 2019 publication-title: Ceram. Int. – volume: 38 start-page: 368 year: 2017 publication-title: Nano Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 298 start-page: 174 year: 2001 publication-title: Mater. Sci. Eng., A – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 7 start-page: 9478 year: 2019 publication-title: J. Mater. Chem. A – volume: 31 start-page: 969 year: 2020 publication-title: Chin. Chem. Lett. – volume: 1 start-page: 985 year: 2018 publication-title: Nat. Catal. – volume: 10 11 start-page: 666 2526 year: 2018 2019 publication-title: ChemCatChem ACS Appl. Mater. Interfaces – volume: 30 start-page: 1 year: 1997 publication-title: Surf. Sci. Rep. – volume: 31 start-page: 6590 year: 2019 publication-title: Chem. Mater. – volume: 13 start-page: 9449 year: 2019 publication-title: ACS Nano – volume: 62 start-page: 853 year: 2019 publication-title: Nano Energy – volume: 33 start-page: 9000 year: 2017 publication-title: Langmuir – volume: 14 start-page: 1135 year: 2015 publication-title: Nat. Mater. – volume: 31 start-page: 4505 year: 2019 publication-title: Chem. Mater. – volume: 1 start-page: 656 year: 2019 publication-title: Trends Chem. – volume: 135 start-page: 9829 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 139 516 start-page: 147 78 year: 2013 2014 publication-title: Mater. Chem. Phys. Nature – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 577 start-page: 492 year: 2020 publication-title: Nature – volume: 104 year: 2019 publication-title: Electrochem. Commun. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 2 11 start-page: 204 year: 2018 2018 publication-title: Small Methods Materials – volume: 66 12 start-page: 2400 year: 2019 2020 publication-title: Nano Energy ACS Appl. Mater. Interfaces – volume: 326 start-page: 575 year: 2016 publication-title: J. Power Sources – volume: 7 start-page: 58 year: 2017 publication-title: Catalysts – volume: 13 year: 2019 publication-title: ACS Nano – volume: 157 start-page: 90 year: 2020 publication-title: Carbon – volume: 15 year: 2019 publication-title: Small – volume: 23 start-page: 2185 year: 2013 publication-title: Adv. Funct. Mater. – volume: 141 start-page: 4730 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 16 start-page: 61 year: 2012 publication-title: Electrochem. Commun. – volume: 4 start-page: 1716 year: 2013 publication-title: Nat. Commun. – volume: 9 16 29 year: 2019 2020 2019 publication-title: Adv. Energy Mater. Small Adv. Funct. Mater. – volume: 70 year: 2004 publication-title: Phys. Rev. B – volume: 14 start-page: 204 year: 2020 publication-title: ACS Nano – volume: 3 year: 2019 publication-title: Small Methods – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 10 start-page: 2920 year: 2019 publication-title: Nat. Commun. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 29 440 year: 2019 2019 publication-title: Adv. Funct. Mater. J. Power Sources – volume: 12 start-page: 2422 year: 2019 publication-title: Energy Environ. Sci. – volume: 72 start-page: 621 year: 2000 publication-title: Rev. Mod. Phys. – volume: 10 9 29 12 start-page: 1223 4480 year: 2016 2018 2019 2019 publication-title: ACS Nano J. Phys. Chem. Lett. Adv. Funct. Mater. ChemSusChem – volume: 118 year: 2014 publication-title: J. Phys. Chem. C – volume: 13 30 31 year: 2019 2019 2019 publication-title: ACS Nano Adv. Funct. Mater. Adv. Mater. – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_9_46_1 doi: 10.1002/adma.201700072 – ident: e_1_2_9_3_1 doi: 10.1016/j.cclet.2019.08.045 – ident: e_1_2_9_113_2 doi: 10.1002/adfm.201908075 – ident: e_1_2_9_130_1 doi: 10.1039/C8TA06567E – ident: e_1_2_9_14_1 doi: 10.1021/acs.chemmater.9b01105 – ident: e_1_2_9_13_1 doi: 10.1038/s41929-018-0195-1 – ident: e_1_2_9_118_1 doi: 10.1016/j.jcat.2019.05.019 – ident: e_1_2_9_21_1 doi: 10.1002/adfm.201202502 – ident: e_1_2_9_28_1 doi: 10.1021/acsnano.7b00030 – ident: e_1_2_9_108_3 doi: 10.1039/C9QI00723G – ident: e_1_2_9_99_2 doi: 10.1002/adma.201902725 – ident: e_1_2_9_109_1 doi: 10.1021/acsnano.9b04977 – ident: e_1_2_9_25_1 doi: 10.1016/j.elecom.2012.01.002 – ident: e_1_2_9_91_1 doi: 10.1021/ja403082s – ident: e_1_2_9_133_1 doi: 10.1002/adfm.201907451 – ident: e_1_2_9_18_1 doi: 10.1002/adfm.201905384 – ident: e_1_2_9_129_2 doi: 10.1002/cssc.201903222 – ident: e_1_2_9_135_1 doi: 10.1021/acsami.9b14265 – ident: e_1_2_9_64_1 doi: 10.1021/acssensors.9b00310 – ident: e_1_2_9_126_1 doi: 10.1002/cssc.201803032 – ident: e_1_2_9_121_1 doi: 10.1039/C8TA10574J – ident: e_1_2_9_128_1 doi: 10.1021/acsaem.9b01329 – ident: e_1_2_9_47_1 doi: 10.1016/j.scriptamat.2015.07.003 – ident: e_1_2_9_67_1 doi: 10.1021/acsnano.5b07333 – ident: e_1_2_9_79_1 doi: 10.1002/smtd.201900495 – ident: e_1_2_9_107_2 doi: 10.1039/C9EE03250A – ident: e_1_2_9_120_1 doi: 10.1016/j.nanoen.2019.103880 – ident: e_1_2_9_87_1 doi: 10.1021/acs.jpclett.5b00868 – ident: e_1_2_9_129_3 doi: 10.1002/adfm.201806500 – ident: e_1_2_9_30_1 doi: 10.1016/j.ensm.2017.03.012 – ident: e_1_2_9_81_1 doi: 10.1038/s41467-018-07502-5 – ident: e_1_2_9_53_1 doi: 10.1016/j.carbon.2019.10.016 – ident: e_1_2_9_36_1 doi: 10.1002/aelm.201600255 – ident: e_1_2_9_86_1 doi: 10.1002/aenm.201700959 – ident: e_1_2_9_89_2 doi: 10.1021/acsami.8b19302 – ident: e_1_2_9_1_1 doi: 10.1002/adma.201102306 – ident: e_1_2_9_41_1 doi: 10.1021/acs.langmuir.7b01339 – ident: e_1_2_9_15_3 doi: 10.1016/j.ceramint.2019.06.114 – ident: e_1_2_9_49_1 doi: 10.1038/ncomms2664 – ident: e_1_2_9_72_2 doi: 10.1021/acs.jpcc.8b09677 – ident: e_1_2_9_5_1 doi: 10.1002/adma.201807658 – ident: e_1_2_9_26_1 doi: 10.1021/ja405735d – ident: e_1_2_9_102_1 doi: 10.1039/C8TA02068J – ident: e_1_2_9_19_1 doi: 10.1002/aenm.201801897 – ident: e_1_2_9_34_1 doi: 10.1111/j.1551-2916.2011.04896.x – ident: e_1_2_9_33_1 doi: 10.1016/S0921-5093(00)01281-8 – ident: e_1_2_9_42_1 doi: 10.1016/j.ceramint.2019.01.148 – ident: e_1_2_9_116_1 doi: 10.1021/acsnano.9b05599 – ident: e_1_2_9_132_1 doi: 10.1021/acscatal.9b01925 – ident: e_1_2_9_94_1 doi: 10.1016/j.nanoen.2019.103961 – ident: e_1_2_9_99_1 doi: 10.1021/acsnano.9b07325 – ident: e_1_2_9_56_1 doi: 10.1016/j.elecom.2014.09.002 – ident: e_1_2_9_115_1 doi: 10.1002/adma.201906739 – ident: e_1_2_9_52_1 doi: 10.1038/s41467-018-08169-8 – ident: e_1_2_9_20_1 doi: 10.1103/PhysRevB.70.092102 – ident: e_1_2_9_50_2 doi: 10.1002/adma.201702367 – ident: e_1_2_9_97_2 doi: 10.1016/j.jpowsour.2019.227150 – ident: e_1_2_9_96_2 doi: 10.1002/smll.201906851 – ident: e_1_2_9_128_4 doi: 10.1002/adfm.201903443 – ident: e_1_2_9_45_1 doi: 10.1038/nmat4374 – ident: e_1_2_9_96_1 doi: 10.1002/aenm.201802917 – ident: e_1_2_9_73_1 doi: 10.1039/C9TA02190F – ident: e_1_2_9_128_2 doi: 10.1039/C9TA09776G – ident: e_1_2_9_16_1 doi: 10.1038/natrevmats.2016.98 – ident: e_1_2_9_70_1 doi: 10.1016/j.jpowsour.2016.04.035 – ident: e_1_2_9_101_1 doi: 10.1016/j.jpowsour.2016.03.066 – ident: e_1_2_9_2_1 doi: 10.1016/j.trechm.2019.04.006 – ident: e_1_2_9_114_1 doi: 10.1021/acsnano.9b07729 – ident: e_1_2_9_85_1 doi: 10.1002/aenm.201802977 – ident: e_1_2_9_137_1 doi: 10.1038/s41586-019-1904-x – ident: e_1_2_9_77_1 doi: 10.1007/s40843-015-0043-4 – ident: e_1_2_9_113_3 doi: 10.1002/adma.201901820 – ident: e_1_2_9_65_1 doi: 10.1039/C9NR08960H – ident: e_1_2_9_40_1 doi: 10.1039/C4NR02080D – ident: e_1_2_9_131_1 doi: 10.1021/acsami.9b09941 – ident: e_1_2_9_38_1 doi: 10.1002/anie.201809662 – ident: e_1_2_9_9_2 doi: 10.1002/anie.201912570 – ident: e_1_2_9_105_2 doi: 10.1016/j.ensm.2019.11.021 – ident: e_1_2_9_35_1 doi: 10.1039/C6NR02253G – ident: e_1_2_9_103_1 doi: 10.1002/aelm.201900537 – ident: e_1_2_9_95_1 doi: 10.1039/C9TA08227A – ident: e_1_2_9_78_1 doi: 10.1002/adma.201903841 – ident: e_1_2_9_71_2 doi: 10.1016/j.elecom.2016.08.023 – ident: e_1_2_9_90_1 doi: 10.1016/j.jechem.2018.03.020 – ident: e_1_2_9_76_1 doi: 10.1103/RevModPhys.72.621 – ident: e_1_2_9_112_2 doi: 10.1021/acsami.9b11988 – ident: e_1_2_9_4_1 doi: 10.1021/acsnano.9b07708 – ident: e_1_2_9_57_1 doi: 10.1021/acs.chemmater.5b01623 – ident: e_1_2_9_75_2 doi: 10.3390/ma11020204 – ident: e_1_2_9_136_1 doi: 10.1021/acsenergylett.9b01580 – ident: e_1_2_9_117_1 doi: 10.1021/acsnano.9b07710 – ident: e_1_2_9_12_1 doi: 10.1021/jacs.8b13579 – ident: e_1_2_9_127_1 doi: 10.1021/acs.jpcc.8b08914 – ident: e_1_2_9_84_1 doi: 10.1002/anie.201509758 – ident: e_1_2_9_8_1 doi: 10.1021/acsnano.9b03889 – ident: e_1_2_9_39_1 doi: 10.1021/jacs.9b00574 – ident: e_1_2_9_106_1 doi: 10.1039/C9EE00308H – ident: e_1_2_9_82_1 doi: 10.1016/S0167-5729(97)00011-3 – ident: e_1_2_9_98_2 doi: 10.1016/j.nanoen.2019.104431 – ident: e_1_2_9_55_1 doi: 10.1021/ja508154e – ident: e_1_2_9_37_1 doi: 10.1002/anie.201800887 – ident: e_1_2_9_122_1 doi: 10.1021/acsnano.7b03738 – ident: e_1_2_9_108_1 doi: 10.1039/C9TA00212J – ident: e_1_2_9_128_3 doi: 10.1021/jacs.9b08897 – ident: e_1_2_9_15_1 doi: 10.1002/cssc.201902537 – ident: e_1_2_9_50_1 doi: 10.1039/C9NR03020D – ident: e_1_2_9_75_1 doi: 10.1002/smtd.201700341 – ident: e_1_2_9_93_1 doi: 10.1038/s41586-018-0109-z – ident: e_1_2_9_134_1 doi: 10.1021/acsami.9b19960 – ident: e_1_2_9_98_1 doi: 10.1016/j.nanoen.2019.04.002 – ident: e_1_2_9_61_1 doi: 10.1021/acsnano.6b06597 – ident: e_1_2_9_88_1 doi: 10.3390/catal7020058 – ident: e_1_2_9_17_1 doi: 10.1021/cm500641a – ident: e_1_2_9_62_1 doi: 10.1126/science.1241488 – ident: e_1_2_9_113_1 doi: 10.1021/acsnano.9b06653 – ident: e_1_2_9_11_1 doi: 10.1021/acsnano.6b07668 – ident: e_1_2_9_68_1 doi: 10.1039/C8TA09600G – ident: e_1_2_9_71_1 doi: 10.1021/acsami.6b11744 – ident: e_1_2_9_110_1 doi: 10.1002/anie.201410174 – ident: e_1_2_9_69_1 doi: 10.1002/adfm.201808107 – ident: e_1_2_9_89_1 doi: 10.1002/cctc.201701522 – ident: e_1_2_9_123_2 doi: 10.1021/acsami.9b17088 – ident: e_1_2_9_27_1 doi: 10.1002/adma.201802525 – ident: e_1_2_9_83_1 doi: 10.1002/aenm.201500589 – ident: e_1_2_9_129_1 doi: 10.1039/C9TA04902A – ident: e_1_2_9_133_4 doi: 10.1016/j.cej.2019.122696 – ident: e_1_2_9_97_1 doi: 10.1002/adfm.201905015 – ident: e_1_2_9_24_1 doi: 10.1021/ja512820k – ident: e_1_2_9_72_1 doi: 10.1039/C8NR05760E – ident: e_1_2_9_15_4 doi: 10.1007/s40820-019-0309-6 – ident: e_1_2_9_119_1 doi: 10.1002/smtd.201900337 – ident: e_1_2_9_51_1 doi: 10.1021/acs.chemmater.9b00414 – ident: e_1_2_9_66_1 doi: 10.1002/aenm.201602725 – ident: e_1_2_9_104_1 doi: 10.1016/j.nanoen.2019.06.013 – ident: e_1_2_9_133_2 doi: 10.1002/adfm.201905197 – ident: e_1_2_9_22_1 doi: 10.1021/ja308463r – ident: e_1_2_9_61_2 doi: 10.1021/acs.jpclett.8b00200 – ident: e_1_2_9_54_1 doi: 10.1021/acsenergylett.6b00247 – ident: e_1_2_9_74_1 doi: 10.1002/aenm.201700460 – ident: e_1_2_9_63_1 doi: 10.1016/j.nanoen.2015.07.028 – ident: e_1_2_9_6_1 doi: 10.1038/s41467-019-10885-8 – ident: e_1_2_9_61_3 doi: 10.1002/adfm.201902953 – ident: e_1_2_9_112_1 doi: 10.1007/s40820-019-0341-6 – ident: e_1_2_9_111_1 doi: 10.1021/acsnano.9b03412 – ident: e_1_2_9_48_1 doi: 10.1002/smll.201901503 – ident: e_1_2_9_105_1 doi: 10.1002/anie.201911604 – ident: e_1_2_9_15_2 doi: 10.1021/acsmaterialslett.9b00419 – ident: e_1_2_9_43_1 doi: 10.1016/j.elecom.2019.05.021 – ident: e_1_2_9_32_1 doi: 10.1149/1.1392573 – ident: e_1_2_9_92_1 doi: 10.1016/j.nanoen.2017.06.009 – ident: e_1_2_9_107_1 doi: 10.1016/j.jpowsour.2019.227481 – ident: e_1_2_9_133_3 doi: 10.1021/acsami.9b12550 – ident: e_1_2_9_23_1 doi: 10.1021/jp507336x – ident: e_1_2_9_125_1 doi: 10.1021/acsaem.7b00054 – ident: e_1_2_9_10_1 doi: 10.1021/am501144q – ident: e_1_2_9_123_1 doi: 10.1016/j.nanoen.2019.104196 – ident: e_1_2_9_7_1 doi: 10.1038/s41893-019-0373-4 – ident: e_1_2_9_80_1 doi: 10.1038/s41929-018-0067-8 – ident: e_1_2_9_61_4 doi: 10.1002/cssc.201901746 – ident: e_1_2_9_59_1 doi: 10.1039/C6NR01462C – ident: e_1_2_9_9_1 doi: 10.1021/acsami.9b13711 – ident: e_1_2_9_108_2 doi: 10.1021/acsnano.9b00177 – ident: e_1_2_9_31_2 doi: 10.1038/nature13970 – ident: e_1_2_9_29_1 doi: 10.1021/acsnano.5b03591 – ident: e_1_2_9_44_1 doi: 10.1021/jacs.9b02578 – ident: e_1_2_9_96_3 doi: 10.1002/adfm.201900326 – ident: e_1_2_9_58_1 doi: 10.1021/acsnano.9b04301 – ident: e_1_2_9_31_1 doi: 10.1016/j.matchemphys.2013.01.008 – ident: e_1_2_9_124_1 doi: 10.1002/smll.201804736 – ident: e_1_2_9_60_1 doi: 10.1039/C9TA00076C – ident: e_1_2_9_100_1 doi: 10.1021/acsnano.9b07183 |
SSID | ssj0017734 |
Score | 2.6578302 |
SecondaryResourceType | review_article |
Snippet | MXenes, layered transition metal carbides/nitrides, have already received considerable attention in various research areas including but not limited to energy... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Energy storage energy storage, energy conversion interlayer engineering Interlayers Materials science Metal carbides MXenes surface controlling Synchrotron radiation synchrotron radiation characterizations Synchrotrons Transition metals |
Title | Tuning 2D MXenes by Surface Controlling and Interlayer Engineering: Methods, Properties, and Synchrotron Radiation Characterizations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202000869 https://www.proquest.com/docview/2461411181 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-iFz34LU7nyEHwsm5tlq2Nt7E5hliRfcBuJV9FcHSyj8M8-4ebl3bdJoigtxSatE1eXn55fb9fELoVnh9TX2lHKk85VBs_KLTgDjdbB58Fsastjzt8bnSH9HFUH22w-FN9iDzgBjPD-muY4FzMqmvRUK5iYJITi8qBwQcJW4CKerl-lHlc-lu54UGClzdaqTa6pLpdfXtVWkPNTcBqV5zOEeKrd00TTd4qi7moyI9vMo7_-ZhjdJjBUdxM7ecE7ejkFB1siBSeoc_BAmInmLRxOALPiMUS9xfTmEuNW2mmO3DaMU8UtgHGMTc4Hm80co9De1D1rIxfIPg_BRXXsq3QXybydTqBgDzugU4CGApu5TLSGUv0HA07D4NW18nObnCkQSTM8ZUXcI9KnynJzZ6K1Rg3aCA2KyXTOlDSjQOhRIM2AlB0I1wbb1fTpE6oZHVTvEC7ySTRlwgTyQUPaN13Y0VZIJhiLhOmBdeAS0FlATmrsYtkJmwO52uMo1SSmUTQu1HeuwV0l9__nkp6_HhncWUKUTa1ZxEI8FEP-LoFROyY_tJK1Gx3wvzq6i-VrtE-lFMOZBHtzqcLfWPA0FyU0F6zHT71S9bwvwB5kAPD |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYCBN6I8PSCxEEiM28RsqFCVRxCCInWL_IqQQAGVdigzPxyf86AgISTYksh2HPt8_ny5-w5gVwZhykJtPKUD7TFj9aA0UnjCHh1CHqW-cXHc8XWzc88ueo3SmxBjYXJ-iMrghivD6Wtc4GiQPvxkDRU6xVBy6mA5n4QpTOvtTlW3FYOUfWH-Y7kZoItX0Ct5G316-LX-133pE2yOQ1a357TnQZa9zV1NHg-GA3mg3r4ROf7rcxZgrkCk5CQXoUWYMNkSzI7xFC7De3eI5hNCT0ncQ-VI5IjcDfupUIa0cmd3DGsnItPE2RifhIXyZKyRYxK7XNWv--QG7f99JHLddxXuRpl66D-jTZ7cIlUCygppVUzSRaDoCty3z7qtjlekb_CUBSXcC3UQiYCpkGsl7LGKH3FhAUFqN0tuTKSVn0ZSyyZrRkjqRoWxCu_I0AZlijfs5SrUsufMrAGhSkgRsUbop5rxSHLNfS5tC77Fl5KpOnjl5CWq4DbHFBtPSc7KTBMc3aQa3TrsVeVfclaPH0tulrKQFKv7NUEOPhZgyG4dqJvUX1pJTk7bcXW3_pdKOzDd6cZXydX59eUGzODzPCRyE2qD_tBsWWw0kNtO-j8Ag68GSg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54AdEH7-K85kHwxWobs7bxTTaHt43hBfZWciuCo5O5PeizP9yctKubIIK-tSVJ0-Tk5Mtpvi8ABzKIUhZp4ykdaI8Z6welkcITdukQ8Tj1jeNxN1vh5SO77lQ7Yyz-XB-iDLjhyHD-Ggf4i05PvkRDhU6RSU4dKufTMMtCP0a7rt-VAlL2ffl_5TDAHV5BZyTb6NOTyfyT09IX1hxHrG7KaSyBGFU232nyfDwcyGP1_k3H8T9fswyLBR4l57kBrcCUyVZhYUylcA0-HoYYPCG0TpoddI1EvpH7YT8VypBavtUdSe1EZJq4CGNXWCBPxgo5I013UvXrEWlj9L-PMq5HLsP9W6ae-j2MyJM7FEpASyG1Uke6oImuw2Pj4qF26RWHN3jKQhLuRTqIRcBUxLUSdlHFT7mwcCC1UyU3JtbKT2OpZcjCGCXdqDDW3Z0aWqVM8aq93ICZrJeZTSBUCSliVo38VDMeS665z6UtwbfoUjJVAW_Ud4kqlM3xgI1ukmsy0wRbNylbtwKHZfqXXNPjx5Q7I1NIirH9mqACHwuQsFsB6vr0l1KS83qjWd5t_SXTPsy1643k9qp1sw3z-DjnQ-7AzKA_NLsWGA3knrP9T4MTBQI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+2D+MXenes+by+Surface+Controlling+and+Interlayer+Engineering%3A+Methods%2C+Properties%2C+and+Synchrotron+Radiation+Characterizations&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Changda&rft.au=Chen%2C+Shuangming&rft.au=Song%2C+Li&rft.date=2020-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=47&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202000869&rft.externalDBID=10.1002%252Fadfm.202000869&rft.externalDocID=ADFM202000869 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |