Tuning 2D MXenes by Surface Controlling and Interlayer Engineering: Methods, Properties, and Synchrotron Radiation Characterizations

MXenes, layered transition metal carbides/nitrides, have already received considerable attention in various research areas including but not limited to energy storage/conversion and photo/electrocatalysis. In fact, the intrinsic property of MXenes is highly tunable by controlling the surface termina...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 47
Main Authors Wang, Changda, Chen, Shuangming, Song, Li
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MXenes, layered transition metal carbides/nitrides, have already received considerable attention in various research areas including but not limited to energy storage/conversion and photo/electrocatalysis. In fact, the intrinsic property of MXenes is highly tunable by controlling the surface terminations and interlayer spacing. Moreover, synchrotron radiation X‐ray characterizations have shown high potential for exploring the causal relationship between the properties and structure of MXenes. Particularly, operando X‐ray measurements could provide useful insight for better understanding the dynamic process of MXene‐based energy materials. In this review, a comprehensive summary of recent studies on surface controlling, interlayer engineering, and the synchrotron‐based characterizations of MXenes is presented. The outlook of MXenes and applications of advanced X‐ray characterizations are also discussed. In this review, the structure and synthesis strategies of MXenes are briefly discussed. Surface controlling, interlayer engineering toward the tunable structure of MXenes, and relevant applications are also comprehensively summarized. Particularly, the progresses and advantages of synchrotron‐based characterizations in the exploration of MXenes' structure and dynamic mechanism are emphasized, and the challenges and prospects are proposed as well.
AbstractList MXenes, layered transition metal carbides/nitrides, have already received considerable attention in various research areas including but not limited to energy storage/conversion and photo/electrocatalysis. In fact, the intrinsic property of MXenes is highly tunable by controlling the surface terminations and interlayer spacing. Moreover, synchrotron radiation X‐ray characterizations have shown high potential for exploring the causal relationship between the properties and structure of MXenes. Particularly, operando X‐ray measurements could provide useful insight for better understanding the dynamic process of MXene‐based energy materials. In this review, a comprehensive summary of recent studies on surface controlling, interlayer engineering, and the synchrotron‐based characterizations of MXenes is presented. The outlook of MXenes and applications of advanced X‐ray characterizations are also discussed.
MXenes, layered transition metal carbides/nitrides, have already received considerable attention in various research areas including but not limited to energy storage/conversion and photo/electrocatalysis. In fact, the intrinsic property of MXenes is highly tunable by controlling the surface terminations and interlayer spacing. Moreover, synchrotron radiation X‐ray characterizations have shown high potential for exploring the causal relationship between the properties and structure of MXenes. Particularly, operando X‐ray measurements could provide useful insight for better understanding the dynamic process of MXene‐based energy materials. In this review, a comprehensive summary of recent studies on surface controlling, interlayer engineering, and the synchrotron‐based characterizations of MXenes is presented. The outlook of MXenes and applications of advanced X‐ray characterizations are also discussed. In this review, the structure and synthesis strategies of MXenes are briefly discussed. Surface controlling, interlayer engineering toward the tunable structure of MXenes, and relevant applications are also comprehensively summarized. Particularly, the progresses and advantages of synchrotron‐based characterizations in the exploration of MXenes' structure and dynamic mechanism are emphasized, and the challenges and prospects are proposed as well.
Author Song, Li
Chen, Shuangming
Wang, Changda
Author_xml – sequence: 1
  givenname: Changda
  orcidid: 0000-0002-3822-3475
  surname: Wang
  fullname: Wang, Changda
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Shuangming
  orcidid: 0000-0001-7567-1552
  surname: Chen
  fullname: Chen, Shuangming
  email: csmp@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Li
  orcidid: 0000-0003-0585-8519
  surname: Song
  fullname: Song, Li
  email: song2012@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNqFkEtLAzEUhYMoaKtb1wG3tiaZdCZxV_rQQoviA9wNaeaOjUyTmkyRce0PN21FQRBX93BzvnPJaaF96ywgdEpJlxLCLlRRLruMMEKISOUeOqIpTTsJYWL_W9OnQ9QK4YUQmmUJP0IfD2tr7DNmQzx7AgsBzxt8v_al0oAHztbeVdXGoGyBJ7YGX6kGPB7ZZ2MBfHy6xDOoF64I5_jWuxX42kDUG-C-sXrhXQyx-E4VRtUmqsFCeaVjlHnfLsIxOihVFeDka7bR43j0MLjuTG-uJoP-tKMTmslOVlChKNeZLLSSMpWJVIyzklEmAUShSSnmxTzlqeBpjzMFQmQJsB7jWvaibKOzXe7Ku9c1hDp_cWtv48mc8ZRySqmg0dXdubR3IXgo85U3S-WbnJJ803S-aTr_bjoC_BegTb39We2Vqf7G5A57MxU0_xzJ-8Px7If9BDsXlms
CitedBy_id crossref_primary_10_1021_acsenergylett_1c02132
crossref_primary_10_1039_D1MA00625H
crossref_primary_10_1016_j_flatc_2023_100493
crossref_primary_10_1021_acs_chemrev_3c00389
crossref_primary_10_1007_s12598_020_01488_0
crossref_primary_10_1002_smll_202402003
crossref_primary_10_1007_s40820_022_00880_y
crossref_primary_10_1002_aenm_202100864
crossref_primary_10_1002_eem2_12619
crossref_primary_10_1002_aenm_202403757
crossref_primary_10_3389_fchem_2022_1090905
crossref_primary_10_3390_batteries11020063
crossref_primary_10_1088_1361_6528_acc539
crossref_primary_10_1002_smll_202102218
crossref_primary_10_1016_j_jallcom_2022_164730
crossref_primary_10_1088_1361_6528_ac8f99
crossref_primary_10_1002_smll_202204121
crossref_primary_10_1016_j_diamond_2023_109883
crossref_primary_10_1021_acsnano_1c04423
crossref_primary_10_1016_j_surfin_2024_104628
crossref_primary_10_1016_j_est_2024_112449
crossref_primary_10_1039_D3NR00347G
crossref_primary_10_1016_j_jechem_2022_08_034
crossref_primary_10_1080_14686996_2021_1972755
crossref_primary_10_1016_j_ccr_2021_214339
crossref_primary_10_1021_acs_jpclett_2c00711
crossref_primary_10_1016_j_desal_2025_118601
crossref_primary_10_1039_D2TA01140A
crossref_primary_10_1021_jacs_3c01083
crossref_primary_10_1021_acsaem_2c00676
crossref_primary_10_1002_adma_202004129
crossref_primary_10_1016_j_nanoen_2023_108331
crossref_primary_10_1002_smll_202205249
crossref_primary_10_1021_acsami_4c03629
crossref_primary_10_1103_PhysRevMaterials_7_085801
crossref_primary_10_1002_admt_202101277
crossref_primary_10_1002_smtd_202100580
crossref_primary_10_1021_acs_chemmater_3c01742
crossref_primary_10_1016_j_bioactmat_2021_06_021
crossref_primary_10_1088_1361_6463_ac629e
crossref_primary_10_1002_smll_202304483
crossref_primary_10_1039_D2RA02985E
crossref_primary_10_1515_nanoph_2022_0599
crossref_primary_10_1039_D3CP06247C
crossref_primary_10_1039_D3NA00429E
crossref_primary_10_1021_acsanm_1c04469
crossref_primary_10_1002_adfm_202202469
crossref_primary_10_1002_smll_202105883
crossref_primary_10_2174_1872210517666230427161120
crossref_primary_10_3390_batteries10110395
crossref_primary_10_1002_smtd_202301602
crossref_primary_10_1016_j_mtener_2021_100832
crossref_primary_10_1063_5_0160277
crossref_primary_10_1021_acsanm_4c02902
crossref_primary_10_1002_adma_202107554
crossref_primary_10_1002_eom2_12485
crossref_primary_10_1016_j_pmatsci_2020_100757
crossref_primary_10_1039_D0CS00175A
crossref_primary_10_3390_molecules29010002
crossref_primary_10_1039_D0CP02275F
crossref_primary_10_1016_j_cej_2021_133171
crossref_primary_10_1002_asia_202401181
crossref_primary_10_1039_D1MH00986A
crossref_primary_10_1039_D3NR03005A
crossref_primary_10_1016_j_jechem_2021_01_023
crossref_primary_10_1021_acs_jpcc_3c07472
crossref_primary_10_1016_j_apcatb_2023_123585
crossref_primary_10_1016_j_carbon_2022_03_004
crossref_primary_10_1039_D1TA03070A
crossref_primary_10_1002_adfm_202402543
crossref_primary_10_1002_smll_202201740
crossref_primary_10_20517_energymater_2024_48
crossref_primary_10_1021_acsami_1c19596
crossref_primary_10_1016_j_susmat_2022_e00490
crossref_primary_10_1038_s41427_021_00289_w
crossref_primary_10_1002_adfm_202408892
crossref_primary_10_1021_acs_nanolett_1c01986
crossref_primary_10_1021_acsnano_1c00248
crossref_primary_10_1016_j_aca_2022_339520
crossref_primary_10_1002_adfm_202316159
crossref_primary_10_1007_s12598_020_01602_2
crossref_primary_10_1007_s40843_022_2091_4
crossref_primary_10_1021_acs_energyfuels_1c04104
crossref_primary_10_1016_j_cej_2023_142508
crossref_primary_10_1002_aenm_202204014
crossref_primary_10_1016_j_jece_2022_108663
crossref_primary_10_1557_s43577_021_00150_z
crossref_primary_10_1016_j_ccr_2022_214518
crossref_primary_10_1002_adfm_202308508
crossref_primary_10_1103_PhysRevB_110_094507
crossref_primary_10_1021_acs_energyfuels_3c01346
crossref_primary_10_1016_j_ccr_2023_215565
crossref_primary_10_1021_acsnano_1c02215
crossref_primary_10_1039_D2NA00782G
crossref_primary_10_1016_j_cplett_2025_141931
crossref_primary_10_1039_D1TC03166J
crossref_primary_10_3390_bios13050495
crossref_primary_10_1021_acsanm_2c03538
crossref_primary_10_1016_j_pmatsci_2023_101166
crossref_primary_10_1021_acssuschemeng_4c02435
crossref_primary_10_1016_j_flatc_2024_100719
crossref_primary_10_1039_D4TA02102A
crossref_primary_10_1007_s12613_024_2859_y
crossref_primary_10_1002_rpm_20240015
crossref_primary_10_1039_D4SD00171K
crossref_primary_10_1021_acsami_3c02654
crossref_primary_10_1080_10408436_2022_2078789
crossref_primary_10_1021_acsaelm_1c00484
crossref_primary_10_1142_S1793604721300115
crossref_primary_10_1002_adfm_202211199
crossref_primary_10_1515_nanoph_2022_0268
crossref_primary_10_1021_acs_nanolett_2c04712
crossref_primary_10_1016_j_cej_2022_135734
crossref_primary_10_1016_j_cej_2022_139139
crossref_primary_10_1002_admi_202001789
crossref_primary_10_1007_s11771_021_4846_z
crossref_primary_10_1002_adma_202101015
crossref_primary_10_1002_asia_202300474
Cites_doi 10.1002/adma.201700072
10.1016/j.cclet.2019.08.045
10.1002/adfm.201908075
10.1039/C8TA06567E
10.1021/acs.chemmater.9b01105
10.1038/s41929-018-0195-1
10.1016/j.jcat.2019.05.019
10.1002/adfm.201202502
10.1021/acsnano.7b00030
10.1039/C9QI00723G
10.1002/adma.201902725
10.1021/acsnano.9b04977
10.1016/j.elecom.2012.01.002
10.1021/ja403082s
10.1002/adfm.201907451
10.1002/adfm.201905384
10.1002/cssc.201903222
10.1021/acsami.9b14265
10.1021/acssensors.9b00310
10.1002/cssc.201803032
10.1039/C8TA10574J
10.1021/acsaem.9b01329
10.1016/j.scriptamat.2015.07.003
10.1021/acsnano.5b07333
10.1002/smtd.201900495
10.1039/C9EE03250A
10.1016/j.nanoen.2019.103880
10.1021/acs.jpclett.5b00868
10.1002/adfm.201806500
10.1016/j.ensm.2017.03.012
10.1038/s41467-018-07502-5
10.1016/j.carbon.2019.10.016
10.1002/aelm.201600255
10.1002/aenm.201700959
10.1021/acsami.8b19302
10.1002/adma.201102306
10.1021/acs.langmuir.7b01339
10.1016/j.ceramint.2019.06.114
10.1038/ncomms2664
10.1021/acs.jpcc.8b09677
10.1002/adma.201807658
10.1021/ja405735d
10.1039/C8TA02068J
10.1002/aenm.201801897
10.1111/j.1551-2916.2011.04896.x
10.1016/S0921-5093(00)01281-8
10.1016/j.ceramint.2019.01.148
10.1021/acsnano.9b05599
10.1021/acscatal.9b01925
10.1016/j.nanoen.2019.103961
10.1021/acsnano.9b07325
10.1016/j.elecom.2014.09.002
10.1002/adma.201906739
10.1038/s41467-018-08169-8
10.1103/PhysRevB.70.092102
10.1002/adma.201702367
10.1016/j.jpowsour.2019.227150
10.1002/smll.201906851
10.1002/adfm.201903443
10.1038/nmat4374
10.1002/aenm.201802917
10.1039/C9TA02190F
10.1039/C9TA09776G
10.1038/natrevmats.2016.98
10.1016/j.jpowsour.2016.04.035
10.1016/j.jpowsour.2016.03.066
10.1016/j.trechm.2019.04.006
10.1021/acsnano.9b07729
10.1002/aenm.201802977
10.1038/s41586-019-1904-x
10.1007/s40843-015-0043-4
10.1002/adma.201901820
10.1039/C9NR08960H
10.1039/C4NR02080D
10.1021/acsami.9b09941
10.1002/anie.201809662
10.1002/anie.201912570
10.1016/j.ensm.2019.11.021
10.1039/C6NR02253G
10.1002/aelm.201900537
10.1039/C9TA08227A
10.1002/adma.201903841
10.1016/j.elecom.2016.08.023
10.1016/j.jechem.2018.03.020
10.1103/RevModPhys.72.621
10.1021/acsami.9b11988
10.1021/acsnano.9b07708
10.1021/acs.chemmater.5b01623
10.3390/ma11020204
10.1021/acsenergylett.9b01580
10.1021/acsnano.9b07710
10.1021/jacs.8b13579
10.1021/acs.jpcc.8b08914
10.1002/anie.201509758
10.1021/acsnano.9b03889
10.1021/jacs.9b00574
10.1039/C9EE00308H
10.1016/S0167-5729(97)00011-3
10.1016/j.nanoen.2019.104431
10.1021/ja508154e
10.1002/anie.201800887
10.1021/acsnano.7b03738
10.1039/C9TA00212J
10.1021/jacs.9b08897
10.1002/cssc.201902537
10.1039/C9NR03020D
10.1002/smtd.201700341
10.1038/s41586-018-0109-z
10.1021/acsami.9b19960
10.1016/j.nanoen.2019.04.002
10.1021/acsnano.6b06597
10.3390/catal7020058
10.1021/cm500641a
10.1126/science.1241488
10.1021/acsnano.9b06653
10.1021/acsnano.6b07668
10.1039/C8TA09600G
10.1021/acsami.6b11744
10.1002/anie.201410174
10.1002/adfm.201808107
10.1002/cctc.201701522
10.1021/acsami.9b17088
10.1002/adma.201802525
10.1002/aenm.201500589
10.1039/C9TA04902A
10.1016/j.cej.2019.122696
10.1002/adfm.201905015
10.1021/ja512820k
10.1039/C8NR05760E
10.1007/s40820-019-0309-6
10.1002/smtd.201900337
10.1021/acs.chemmater.9b00414
10.1002/aenm.201602725
10.1016/j.nanoen.2019.06.013
10.1002/adfm.201905197
10.1021/ja308463r
10.1021/acs.jpclett.8b00200
10.1021/acsenergylett.6b00247
10.1002/aenm.201700460
10.1016/j.nanoen.2015.07.028
10.1038/s41467-019-10885-8
10.1002/adfm.201902953
10.1007/s40820-019-0341-6
10.1021/acsnano.9b03412
10.1002/smll.201901503
10.1002/anie.201911604
10.1021/acsmaterialslett.9b00419
10.1016/j.elecom.2019.05.021
10.1149/1.1392573
10.1016/j.nanoen.2017.06.009
10.1016/j.jpowsour.2019.227481
10.1021/acsami.9b12550
10.1021/jp507336x
10.1021/acsaem.7b00054
10.1021/am501144q
10.1016/j.nanoen.2019.104196
10.1038/s41893-019-0373-4
10.1038/s41929-018-0067-8
10.1002/cssc.201901746
10.1039/C6NR01462C
10.1021/acsami.9b13711
10.1021/acsnano.9b00177
10.1038/nature13970
10.1021/acsnano.5b03591
10.1021/jacs.9b02578
10.1002/adfm.201900326
10.1021/acsnano.9b04301
10.1016/j.matchemphys.2013.01.008
10.1002/smll.201804736
10.1039/C9TA00076C
10.1021/acsnano.9b07183
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202000869
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202000869
ADFM202000869
Genre reviewArticle
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: WK2310000074
– fundername: NSFC‐MAECI
  funderid: 51861135202
– fundername: USTC start‐up fund and China Postdoctoral Science Foundation
  funderid: 2019M662161
– fundername: CAS Iterdisciplinary Innovation Team
– fundername: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
– fundername: CAS Key Research Program of Frontier Sciences
  funderid: QYZDB‐SSW‐SLH018
– fundername: 111 Project
  funderid: B12015
– fundername: NSFC
  funderid: U1932201; 21727801
– fundername: International Partnership Program of Chinese Academy of Sciences
  funderid: 211134KYSB20190063
– fundername: CAS Collaborative Innovation Program of Hefei Science Center
  funderid: 2019HSC‐CIP002
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3179-7d18a14c79dca996939a242f2129ee8dc0f8bdb646846542ae8873e2524c95873
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 08:20:59 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Tue Jul 01 04:12:12 EDT 2025
Wed Jan 22 16:31:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3179-7d18a14c79dca996939a242f2129ee8dc0f8bdb646846542ae8873e2524c95873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0585-8519
0000-0002-3822-3475
0000-0001-7567-1552
PQID 2461411181
PQPubID 2045204
PageCount 24
ParticipantIDs proquest_journals_2461411181
crossref_primary_10_1002_adfm_202000869
crossref_citationtrail_10_1002_adfm_202000869
wiley_primary_10_1002_adfm_202000869_ADFM202000869
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 4
2019 2019; 11 58
2019; 11
2019; 10
2019; 13
2019; 12
2019; 15
2014; 26
2020; 14
2020; 12
2012; 16
2020; 10
2014; 136
2018; 6
2018; 9
2018; 8
2019 2019 2019; 13 30 31
2012; 134
2015; 137
2018 2019; 10 11
2018; 1
2019 2020; 58 26
2020; 577
2019; 29
2018; 30
2019 2020; 60 69
2019; 7
2015; 58
2019; 9
2019; 4
2019 2019 2019 2019; 2 7 141 29
2019; 3
2019; 5
2019; 31
2020 2019; 12 11
2019; 2
2019; 1
2015; 54
2019; 104
2016; 10
2000; 72
2014; 48
2016; 326
2013; 341
2020 2019; 14 31
2019 2017; 11 29
2020; 32
2018; 27
2016; 1
2016; 2
2020; 31
2019 2020 2019; 9 16 29
2013 2014; 139 516
1997; 30
2019; 45
2011; 94
2020; 157
2018 2018; 10 122
2020 2020; 449 13
2016; 8
2016 2016; 8 72
2020 2019 2019 2020; 30 29 11 381
2017; 7
2018; 122
2017; 8
2017; 2
2013; 23
2015; 108
2019 2020; 66 12
2001; 298
2004; 70
2019; 62
2019; 64
2019; 63
2017; 38
2017; 33
2011; 23
2019 2020 2019 2019; 13 2 45 11
2014; 6
2014; 118
2015; 14
2015; 17
2015; 6
2015; 5
1999; 146
2017; 29
2019 2019 2019; 7 13 6
2019; 141
2015; 9
2016; 55
2015; 27
2019 2019; 29 440
2018; 557
2016 2018 2019 2019; 10 9 29 12
2017; 11
2018 2018; 2 11
2013; 135
2019 2020 2019; 7 13 29
2019; 375
2018; 57
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_98_2
e_1_2_9_71_2
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_75_2
e_1_2_9_90_1
e_1_2_9_107_2
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_2
e_1_2_9_99_2
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_129_2
e_1_2_9_129_3
e_1_2_9_102_1
e_1_2_9_129_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_15_3
e_1_2_9_15_2
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_15_4
e_1_2_9_61_4
e_1_2_9_42_1
e_1_2_9_61_3
e_1_2_9_88_1
e_1_2_9_61_2
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_133_2
e_1_2_9_9_2
e_1_2_9_133_3
e_1_2_9_9_1
e_1_2_9_133_4
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_96_3
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_50_2
e_1_2_9_35_1
e_1_2_9_31_2
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_96_2
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_128_3
e_1_2_9_128_4
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_128_2
e_1_2_9_105_2
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_89_2
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_2
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_113_3
e_1_2_9_136_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_97_2
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_108_3
e_1_2_9_108_2
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_123_2
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_2
e_1_2_9_112_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 5314
  year: 2015
  publication-title: Chem. Mater.
– volume: 8
  start-page: 42
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 58 26
  start-page: 472
  year: 2019 2020
  publication-title: Angew. Chem., Int. Ed. Energy Storage Mater.
– volume: 64
  year: 2019
  publication-title: Nano Energy
– volume: 1
  start-page: 589
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 1365
  year: 2019
  publication-title: ACS Sens.
– volume: 30 29 11 381
  year: 2020 2019 2019 2020
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater. ACS Appl. Mater. Interfaces Chem. Eng. J.
– volume: 17
  start-page: 27
  year: 2015
  publication-title: Nano Energy
– volume: 375
  start-page: 8
  year: 2019
  publication-title: J. Catal.
– volume: 326
  start-page: 686
  year: 2016
  publication-title: J. Power Sources
– volume: 6
  year: 2014
  publication-title: Nanoscale
– volume: 7 13 6
  start-page: 6507 3608 2894
  year: 2019 2019 2019
  publication-title: J. Mater. Chem. A ACS Nano Inorg. Chem. Front.
– volume: 1
  start-page: 173
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 557
  start-page: 409
  year: 2018
  publication-title: Nature
– volume: 137
  start-page: 2715
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 1368
  year: 2019
  publication-title: ChemSusChem
– volume: 14 31
  start-page: 640
  year: 2020 2019
  publication-title: ACS Nano Adv. Mater.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 11 29
  year: 2019 2017
  publication-title: Nanoscale Adv. Mater.
– volume: 6
  start-page: 2305
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 2 7 141 29
  start-page: 6851
  year: 2019 2019 2019 2019
  publication-title: ACS Appl. Energy Mater. J. Mater. Chem. A J. Am. Chem. Soc. Adv. Funct. Mater.
– volume: 10
  start-page: 522
  year: 2019
  publication-title: Nat. Commun.
– volume: 10 122
  year: 2018 2018
  publication-title: Nanoscale J. Phys. Chem. C
– volume: 26
  start-page: 2374
  year: 2014
  publication-title: Chem. Mater.
– volume: 58
  start-page: 313
  year: 2015
  publication-title: Sci. China Mater.
– volume: 12
  start-page: 3984
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 9128
  year: 2016
  publication-title: Nanoscale
– volume: 55
  start-page: 1138
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 11 58
  year: 2019 2019
  publication-title: ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed.
– volume: 63
  year: 2019
  publication-title: Nano Energy
– volume: 48
  start-page: 118
  year: 2014
  publication-title: Electrochem. Commun.
– volume: 4
  start-page: 2452
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 763
  year: 2020
  publication-title: Nanoscale
– volume: 94
  start-page: 4556
  year: 2011
  publication-title: J. Am. Ceram. Soc.
– volume: 141
  start-page: 9610
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 7 13 29
  start-page: 945
  year: 2019 2020 2019
  publication-title: J. Mater. Chem. A ChemSusChem Adv. Funct. Mater.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 108
  start-page: 147
  year: 2015
  publication-title: Scr. Mater.
– volume: 13 2 45 11
  start-page: 1409 55 79
  year: 2019 2020 2019 2019
  publication-title: ChemSusChem ACS Mater. Lett. Ceram. Int. Nano‐Micro Lett.
– volume: 54
  start-page: 3907
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 349
  year: 2018
  publication-title: Nat. Catal.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 3841
  year: 2017
  publication-title: ACS Nano
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 5258
  year: 2018
  publication-title: Nat. Commun.
– volume: 146
  start-page: 3919
  year: 1999
  publication-title: J. Electrochem. Soc.
– volume: 11
  start-page: 2459
  year: 2017
  publication-title: ACS Nano
– volume: 7
  start-page: 5416
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 12 11
  start-page: 4
  year: 2020 2019
  publication-title: Nano‐Micro Lett. ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 9507
  year: 2015
  publication-title: ACS Nano
– volume: 57
  start-page: 6115
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 2491
  year: 2016
  publication-title: ACS Nano
– volume: 141
  start-page: 4086
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 8 72
  start-page: 50
  year: 2016 2016
  publication-title: ACS Appl. Mater. Interfaces Electrochem. Commun.
– volume: 7
  start-page: 1281
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 1566
  year: 2018
  publication-title: J. Energy Chem.
– volume: 23
  start-page: 4248
  year: 2011
  publication-title: Adv. Mater.
– volume: 14
  start-page: 603
  year: 2020
  publication-title: ACS Nano
– volume: 10
  start-page: 253
  year: 2020
  publication-title: ACS Catal.
– volume: 341
  start-page: 1502
  year: 2013
  publication-title: Science
– volume: 449 13
  start-page: 246
  year: 2020 2020
  publication-title: J. Power Sources Energy Environ. Sci.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 7794
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 856
  year: 2019
  publication-title: Nat. Sustain.
– volume: 60 69
  start-page: 734
  year: 2019 2020
  publication-title: Nano Energy Nano Energy
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 45
  start-page: 8395
  year: 2019
  publication-title: Ceram. Int.
– volume: 38
  start-page: 368
  year: 2017
  publication-title: Nano Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 298
  start-page: 174
  year: 2001
  publication-title: Mater. Sci. Eng., A
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 7
  start-page: 9478
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 31
  start-page: 969
  year: 2020
  publication-title: Chin. Chem. Lett.
– volume: 1
  start-page: 985
  year: 2018
  publication-title: Nat. Catal.
– volume: 10 11
  start-page: 666 2526
  year: 2018 2019
  publication-title: ChemCatChem ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 1
  year: 1997
  publication-title: Surf. Sci. Rep.
– volume: 31
  start-page: 6590
  year: 2019
  publication-title: Chem. Mater.
– volume: 13
  start-page: 9449
  year: 2019
  publication-title: ACS Nano
– volume: 62
  start-page: 853
  year: 2019
  publication-title: Nano Energy
– volume: 33
  start-page: 9000
  year: 2017
  publication-title: Langmuir
– volume: 14
  start-page: 1135
  year: 2015
  publication-title: Nat. Mater.
– volume: 31
  start-page: 4505
  year: 2019
  publication-title: Chem. Mater.
– volume: 1
  start-page: 656
  year: 2019
  publication-title: Trends Chem.
– volume: 135
  start-page: 9829
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 139 516
  start-page: 147 78
  year: 2013 2014
  publication-title: Mater. Chem. Phys. Nature
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 577
  start-page: 492
  year: 2020
  publication-title: Nature
– volume: 104
  year: 2019
  publication-title: Electrochem. Commun.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 2 11
  start-page: 204
  year: 2018 2018
  publication-title: Small Methods Materials
– volume: 66 12
  start-page: 2400
  year: 2019 2020
  publication-title: Nano Energy ACS Appl. Mater. Interfaces
– volume: 326
  start-page: 575
  year: 2016
  publication-title: J. Power Sources
– volume: 7
  start-page: 58
  year: 2017
  publication-title: Catalysts
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 157
  start-page: 90
  year: 2020
  publication-title: Carbon
– volume: 15
  year: 2019
  publication-title: Small
– volume: 23
  start-page: 2185
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 141
  start-page: 4730
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 61
  year: 2012
  publication-title: Electrochem. Commun.
– volume: 4
  start-page: 1716
  year: 2013
  publication-title: Nat. Commun.
– volume: 9 16 29
  year: 2019 2020 2019
  publication-title: Adv. Energy Mater. Small Adv. Funct. Mater.
– volume: 70
  year: 2004
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 204
  year: 2020
  publication-title: ACS Nano
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 10
  start-page: 2920
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 29 440
  year: 2019 2019
  publication-title: Adv. Funct. Mater. J. Power Sources
– volume: 12
  start-page: 2422
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 72
  start-page: 621
  year: 2000
  publication-title: Rev. Mod. Phys.
– volume: 10 9 29 12
  start-page: 1223 4480
  year: 2016 2018 2019 2019
  publication-title: ACS Nano J. Phys. Chem. Lett. Adv. Funct. Mater. ChemSusChem
– volume: 118
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 13 30 31
  year: 2019 2019 2019
  publication-title: ACS Nano Adv. Funct. Mater. Adv. Mater.
– volume: 6
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_9_46_1
  doi: 10.1002/adma.201700072
– ident: e_1_2_9_3_1
  doi: 10.1016/j.cclet.2019.08.045
– ident: e_1_2_9_113_2
  doi: 10.1002/adfm.201908075
– ident: e_1_2_9_130_1
  doi: 10.1039/C8TA06567E
– ident: e_1_2_9_14_1
  doi: 10.1021/acs.chemmater.9b01105
– ident: e_1_2_9_13_1
  doi: 10.1038/s41929-018-0195-1
– ident: e_1_2_9_118_1
  doi: 10.1016/j.jcat.2019.05.019
– ident: e_1_2_9_21_1
  doi: 10.1002/adfm.201202502
– ident: e_1_2_9_28_1
  doi: 10.1021/acsnano.7b00030
– ident: e_1_2_9_108_3
  doi: 10.1039/C9QI00723G
– ident: e_1_2_9_99_2
  doi: 10.1002/adma.201902725
– ident: e_1_2_9_109_1
  doi: 10.1021/acsnano.9b04977
– ident: e_1_2_9_25_1
  doi: 10.1016/j.elecom.2012.01.002
– ident: e_1_2_9_91_1
  doi: 10.1021/ja403082s
– ident: e_1_2_9_133_1
  doi: 10.1002/adfm.201907451
– ident: e_1_2_9_18_1
  doi: 10.1002/adfm.201905384
– ident: e_1_2_9_129_2
  doi: 10.1002/cssc.201903222
– ident: e_1_2_9_135_1
  doi: 10.1021/acsami.9b14265
– ident: e_1_2_9_64_1
  doi: 10.1021/acssensors.9b00310
– ident: e_1_2_9_126_1
  doi: 10.1002/cssc.201803032
– ident: e_1_2_9_121_1
  doi: 10.1039/C8TA10574J
– ident: e_1_2_9_128_1
  doi: 10.1021/acsaem.9b01329
– ident: e_1_2_9_47_1
  doi: 10.1016/j.scriptamat.2015.07.003
– ident: e_1_2_9_67_1
  doi: 10.1021/acsnano.5b07333
– ident: e_1_2_9_79_1
  doi: 10.1002/smtd.201900495
– ident: e_1_2_9_107_2
  doi: 10.1039/C9EE03250A
– ident: e_1_2_9_120_1
  doi: 10.1016/j.nanoen.2019.103880
– ident: e_1_2_9_87_1
  doi: 10.1021/acs.jpclett.5b00868
– ident: e_1_2_9_129_3
  doi: 10.1002/adfm.201806500
– ident: e_1_2_9_30_1
  doi: 10.1016/j.ensm.2017.03.012
– ident: e_1_2_9_81_1
  doi: 10.1038/s41467-018-07502-5
– ident: e_1_2_9_53_1
  doi: 10.1016/j.carbon.2019.10.016
– ident: e_1_2_9_36_1
  doi: 10.1002/aelm.201600255
– ident: e_1_2_9_86_1
  doi: 10.1002/aenm.201700959
– ident: e_1_2_9_89_2
  doi: 10.1021/acsami.8b19302
– ident: e_1_2_9_1_1
  doi: 10.1002/adma.201102306
– ident: e_1_2_9_41_1
  doi: 10.1021/acs.langmuir.7b01339
– ident: e_1_2_9_15_3
  doi: 10.1016/j.ceramint.2019.06.114
– ident: e_1_2_9_49_1
  doi: 10.1038/ncomms2664
– ident: e_1_2_9_72_2
  doi: 10.1021/acs.jpcc.8b09677
– ident: e_1_2_9_5_1
  doi: 10.1002/adma.201807658
– ident: e_1_2_9_26_1
  doi: 10.1021/ja405735d
– ident: e_1_2_9_102_1
  doi: 10.1039/C8TA02068J
– ident: e_1_2_9_19_1
  doi: 10.1002/aenm.201801897
– ident: e_1_2_9_34_1
  doi: 10.1111/j.1551-2916.2011.04896.x
– ident: e_1_2_9_33_1
  doi: 10.1016/S0921-5093(00)01281-8
– ident: e_1_2_9_42_1
  doi: 10.1016/j.ceramint.2019.01.148
– ident: e_1_2_9_116_1
  doi: 10.1021/acsnano.9b05599
– ident: e_1_2_9_132_1
  doi: 10.1021/acscatal.9b01925
– ident: e_1_2_9_94_1
  doi: 10.1016/j.nanoen.2019.103961
– ident: e_1_2_9_99_1
  doi: 10.1021/acsnano.9b07325
– ident: e_1_2_9_56_1
  doi: 10.1016/j.elecom.2014.09.002
– ident: e_1_2_9_115_1
  doi: 10.1002/adma.201906739
– ident: e_1_2_9_52_1
  doi: 10.1038/s41467-018-08169-8
– ident: e_1_2_9_20_1
  doi: 10.1103/PhysRevB.70.092102
– ident: e_1_2_9_50_2
  doi: 10.1002/adma.201702367
– ident: e_1_2_9_97_2
  doi: 10.1016/j.jpowsour.2019.227150
– ident: e_1_2_9_96_2
  doi: 10.1002/smll.201906851
– ident: e_1_2_9_128_4
  doi: 10.1002/adfm.201903443
– ident: e_1_2_9_45_1
  doi: 10.1038/nmat4374
– ident: e_1_2_9_96_1
  doi: 10.1002/aenm.201802917
– ident: e_1_2_9_73_1
  doi: 10.1039/C9TA02190F
– ident: e_1_2_9_128_2
  doi: 10.1039/C9TA09776G
– ident: e_1_2_9_16_1
  doi: 10.1038/natrevmats.2016.98
– ident: e_1_2_9_70_1
  doi: 10.1016/j.jpowsour.2016.04.035
– ident: e_1_2_9_101_1
  doi: 10.1016/j.jpowsour.2016.03.066
– ident: e_1_2_9_2_1
  doi: 10.1016/j.trechm.2019.04.006
– ident: e_1_2_9_114_1
  doi: 10.1021/acsnano.9b07729
– ident: e_1_2_9_85_1
  doi: 10.1002/aenm.201802977
– ident: e_1_2_9_137_1
  doi: 10.1038/s41586-019-1904-x
– ident: e_1_2_9_77_1
  doi: 10.1007/s40843-015-0043-4
– ident: e_1_2_9_113_3
  doi: 10.1002/adma.201901820
– ident: e_1_2_9_65_1
  doi: 10.1039/C9NR08960H
– ident: e_1_2_9_40_1
  doi: 10.1039/C4NR02080D
– ident: e_1_2_9_131_1
  doi: 10.1021/acsami.9b09941
– ident: e_1_2_9_38_1
  doi: 10.1002/anie.201809662
– ident: e_1_2_9_9_2
  doi: 10.1002/anie.201912570
– ident: e_1_2_9_105_2
  doi: 10.1016/j.ensm.2019.11.021
– ident: e_1_2_9_35_1
  doi: 10.1039/C6NR02253G
– ident: e_1_2_9_103_1
  doi: 10.1002/aelm.201900537
– ident: e_1_2_9_95_1
  doi: 10.1039/C9TA08227A
– ident: e_1_2_9_78_1
  doi: 10.1002/adma.201903841
– ident: e_1_2_9_71_2
  doi: 10.1016/j.elecom.2016.08.023
– ident: e_1_2_9_90_1
  doi: 10.1016/j.jechem.2018.03.020
– ident: e_1_2_9_76_1
  doi: 10.1103/RevModPhys.72.621
– ident: e_1_2_9_112_2
  doi: 10.1021/acsami.9b11988
– ident: e_1_2_9_4_1
  doi: 10.1021/acsnano.9b07708
– ident: e_1_2_9_57_1
  doi: 10.1021/acs.chemmater.5b01623
– ident: e_1_2_9_75_2
  doi: 10.3390/ma11020204
– ident: e_1_2_9_136_1
  doi: 10.1021/acsenergylett.9b01580
– ident: e_1_2_9_117_1
  doi: 10.1021/acsnano.9b07710
– ident: e_1_2_9_12_1
  doi: 10.1021/jacs.8b13579
– ident: e_1_2_9_127_1
  doi: 10.1021/acs.jpcc.8b08914
– ident: e_1_2_9_84_1
  doi: 10.1002/anie.201509758
– ident: e_1_2_9_8_1
  doi: 10.1021/acsnano.9b03889
– ident: e_1_2_9_39_1
  doi: 10.1021/jacs.9b00574
– ident: e_1_2_9_106_1
  doi: 10.1039/C9EE00308H
– ident: e_1_2_9_82_1
  doi: 10.1016/S0167-5729(97)00011-3
– ident: e_1_2_9_98_2
  doi: 10.1016/j.nanoen.2019.104431
– ident: e_1_2_9_55_1
  doi: 10.1021/ja508154e
– ident: e_1_2_9_37_1
  doi: 10.1002/anie.201800887
– ident: e_1_2_9_122_1
  doi: 10.1021/acsnano.7b03738
– ident: e_1_2_9_108_1
  doi: 10.1039/C9TA00212J
– ident: e_1_2_9_128_3
  doi: 10.1021/jacs.9b08897
– ident: e_1_2_9_15_1
  doi: 10.1002/cssc.201902537
– ident: e_1_2_9_50_1
  doi: 10.1039/C9NR03020D
– ident: e_1_2_9_75_1
  doi: 10.1002/smtd.201700341
– ident: e_1_2_9_93_1
  doi: 10.1038/s41586-018-0109-z
– ident: e_1_2_9_134_1
  doi: 10.1021/acsami.9b19960
– ident: e_1_2_9_98_1
  doi: 10.1016/j.nanoen.2019.04.002
– ident: e_1_2_9_61_1
  doi: 10.1021/acsnano.6b06597
– ident: e_1_2_9_88_1
  doi: 10.3390/catal7020058
– ident: e_1_2_9_17_1
  doi: 10.1021/cm500641a
– ident: e_1_2_9_62_1
  doi: 10.1126/science.1241488
– ident: e_1_2_9_113_1
  doi: 10.1021/acsnano.9b06653
– ident: e_1_2_9_11_1
  doi: 10.1021/acsnano.6b07668
– ident: e_1_2_9_68_1
  doi: 10.1039/C8TA09600G
– ident: e_1_2_9_71_1
  doi: 10.1021/acsami.6b11744
– ident: e_1_2_9_110_1
  doi: 10.1002/anie.201410174
– ident: e_1_2_9_69_1
  doi: 10.1002/adfm.201808107
– ident: e_1_2_9_89_1
  doi: 10.1002/cctc.201701522
– ident: e_1_2_9_123_2
  doi: 10.1021/acsami.9b17088
– ident: e_1_2_9_27_1
  doi: 10.1002/adma.201802525
– ident: e_1_2_9_83_1
  doi: 10.1002/aenm.201500589
– ident: e_1_2_9_129_1
  doi: 10.1039/C9TA04902A
– ident: e_1_2_9_133_4
  doi: 10.1016/j.cej.2019.122696
– ident: e_1_2_9_97_1
  doi: 10.1002/adfm.201905015
– ident: e_1_2_9_24_1
  doi: 10.1021/ja512820k
– ident: e_1_2_9_72_1
  doi: 10.1039/C8NR05760E
– ident: e_1_2_9_15_4
  doi: 10.1007/s40820-019-0309-6
– ident: e_1_2_9_119_1
  doi: 10.1002/smtd.201900337
– ident: e_1_2_9_51_1
  doi: 10.1021/acs.chemmater.9b00414
– ident: e_1_2_9_66_1
  doi: 10.1002/aenm.201602725
– ident: e_1_2_9_104_1
  doi: 10.1016/j.nanoen.2019.06.013
– ident: e_1_2_9_133_2
  doi: 10.1002/adfm.201905197
– ident: e_1_2_9_22_1
  doi: 10.1021/ja308463r
– ident: e_1_2_9_61_2
  doi: 10.1021/acs.jpclett.8b00200
– ident: e_1_2_9_54_1
  doi: 10.1021/acsenergylett.6b00247
– ident: e_1_2_9_74_1
  doi: 10.1002/aenm.201700460
– ident: e_1_2_9_63_1
  doi: 10.1016/j.nanoen.2015.07.028
– ident: e_1_2_9_6_1
  doi: 10.1038/s41467-019-10885-8
– ident: e_1_2_9_61_3
  doi: 10.1002/adfm.201902953
– ident: e_1_2_9_112_1
  doi: 10.1007/s40820-019-0341-6
– ident: e_1_2_9_111_1
  doi: 10.1021/acsnano.9b03412
– ident: e_1_2_9_48_1
  doi: 10.1002/smll.201901503
– ident: e_1_2_9_105_1
  doi: 10.1002/anie.201911604
– ident: e_1_2_9_15_2
  doi: 10.1021/acsmaterialslett.9b00419
– ident: e_1_2_9_43_1
  doi: 10.1016/j.elecom.2019.05.021
– ident: e_1_2_9_32_1
  doi: 10.1149/1.1392573
– ident: e_1_2_9_92_1
  doi: 10.1016/j.nanoen.2017.06.009
– ident: e_1_2_9_107_1
  doi: 10.1016/j.jpowsour.2019.227481
– ident: e_1_2_9_133_3
  doi: 10.1021/acsami.9b12550
– ident: e_1_2_9_23_1
  doi: 10.1021/jp507336x
– ident: e_1_2_9_125_1
  doi: 10.1021/acsaem.7b00054
– ident: e_1_2_9_10_1
  doi: 10.1021/am501144q
– ident: e_1_2_9_123_1
  doi: 10.1016/j.nanoen.2019.104196
– ident: e_1_2_9_7_1
  doi: 10.1038/s41893-019-0373-4
– ident: e_1_2_9_80_1
  doi: 10.1038/s41929-018-0067-8
– ident: e_1_2_9_61_4
  doi: 10.1002/cssc.201901746
– ident: e_1_2_9_59_1
  doi: 10.1039/C6NR01462C
– ident: e_1_2_9_9_1
  doi: 10.1021/acsami.9b13711
– ident: e_1_2_9_108_2
  doi: 10.1021/acsnano.9b00177
– ident: e_1_2_9_31_2
  doi: 10.1038/nature13970
– ident: e_1_2_9_29_1
  doi: 10.1021/acsnano.5b03591
– ident: e_1_2_9_44_1
  doi: 10.1021/jacs.9b02578
– ident: e_1_2_9_96_3
  doi: 10.1002/adfm.201900326
– ident: e_1_2_9_58_1
  doi: 10.1021/acsnano.9b04301
– ident: e_1_2_9_31_1
  doi: 10.1016/j.matchemphys.2013.01.008
– ident: e_1_2_9_124_1
  doi: 10.1002/smll.201804736
– ident: e_1_2_9_60_1
  doi: 10.1039/C9TA00076C
– ident: e_1_2_9_100_1
  doi: 10.1021/acsnano.9b07183
SSID ssj0017734
Score 2.6578302
SecondaryResourceType review_article
Snippet MXenes, layered transition metal carbides/nitrides, have already received considerable attention in various research areas including but not limited to energy...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Energy storage
energy storage, energy conversion
interlayer engineering
Interlayers
Materials science
Metal carbides
MXenes
surface controlling
Synchrotron radiation
synchrotron radiation characterizations
Synchrotrons
Transition metals
Title Tuning 2D MXenes by Surface Controlling and Interlayer Engineering: Methods, Properties, and Synchrotron Radiation Characterizations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202000869
https://www.proquest.com/docview/2461411181
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-iFz34LU7nyEHwsm5tlq2Nt7E5hliRfcBuJV9FcHSyj8M8-4ebl3bdJoigtxSatE1eXn55fb9fELoVnh9TX2lHKk85VBs_KLTgDjdbB58Fsastjzt8bnSH9HFUH22w-FN9iDzgBjPD-muY4FzMqmvRUK5iYJITi8qBwQcJW4CKerl-lHlc-lu54UGClzdaqTa6pLpdfXtVWkPNTcBqV5zOEeKrd00TTd4qi7moyI9vMo7_-ZhjdJjBUdxM7ecE7ejkFB1siBSeoc_BAmInmLRxOALPiMUS9xfTmEuNW2mmO3DaMU8UtgHGMTc4Hm80co9De1D1rIxfIPg_BRXXsq3QXybydTqBgDzugU4CGApu5TLSGUv0HA07D4NW18nObnCkQSTM8ZUXcI9KnynJzZ6K1Rg3aCA2KyXTOlDSjQOhRIM2AlB0I1wbb1fTpE6oZHVTvEC7ySTRlwgTyQUPaN13Y0VZIJhiLhOmBdeAS0FlATmrsYtkJmwO52uMo1SSmUTQu1HeuwV0l9__nkp6_HhncWUKUTa1ZxEI8FEP-LoFROyY_tJK1Gx3wvzq6i-VrtE-lFMOZBHtzqcLfWPA0FyU0F6zHT71S9bwvwB5kAPD
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYCBN6I8PSCxEEiM28RsqFCVRxCCInWL_IqQQAGVdigzPxyf86AgISTYksh2HPt8_ny5-w5gVwZhykJtPKUD7TFj9aA0UnjCHh1CHqW-cXHc8XWzc88ueo3SmxBjYXJ-iMrghivD6Wtc4GiQPvxkDRU6xVBy6mA5n4QpTOvtTlW3FYOUfWH-Y7kZoItX0Ct5G316-LX-133pE2yOQ1a357TnQZa9zV1NHg-GA3mg3r4ROf7rcxZgrkCk5CQXoUWYMNkSzI7xFC7De3eI5hNCT0ncQ-VI5IjcDfupUIa0cmd3DGsnItPE2RifhIXyZKyRYxK7XNWv--QG7f99JHLddxXuRpl66D-jTZ7cIlUCygppVUzSRaDoCty3z7qtjlekb_CUBSXcC3UQiYCpkGsl7LGKH3FhAUFqN0tuTKSVn0ZSyyZrRkjqRoWxCu_I0AZlijfs5SrUsufMrAGhSkgRsUbop5rxSHLNfS5tC77Fl5KpOnjl5CWq4DbHFBtPSc7KTBMc3aQa3TrsVeVfclaPH0tulrKQFKv7NUEOPhZgyG4dqJvUX1pJTk7bcXW3_pdKOzDd6cZXydX59eUGzODzPCRyE2qD_tBsWWw0kNtO-j8Ag68GSg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54AdEH7-K85kHwxWobs7bxTTaHt43hBfZWciuCo5O5PeizP9yctKubIIK-tSVJ0-Tk5Mtpvi8ABzKIUhZp4ykdaI8Z6welkcITdukQ8Tj1jeNxN1vh5SO77lQ7Yyz-XB-iDLjhyHD-Ggf4i05PvkRDhU6RSU4dKufTMMtCP0a7rt-VAlL2ffl_5TDAHV5BZyTb6NOTyfyT09IX1hxHrG7KaSyBGFU232nyfDwcyGP1_k3H8T9fswyLBR4l57kBrcCUyVZhYUylcA0-HoYYPCG0TpoddI1EvpH7YT8VypBavtUdSe1EZJq4CGNXWCBPxgo5I013UvXrEWlj9L-PMq5HLsP9W6ae-j2MyJM7FEpASyG1Uke6oImuw2Pj4qF26RWHN3jKQhLuRTqIRcBUxLUSdlHFT7mwcCC1UyU3JtbKT2OpZcjCGCXdqDDW3Z0aWqVM8aq93ICZrJeZTSBUCSliVo38VDMeS665z6UtwbfoUjJVAW_Ud4kqlM3xgI1ukmsy0wRbNylbtwKHZfqXXNPjx5Q7I1NIirH9mqACHwuQsFsB6vr0l1KS83qjWd5t_SXTPsy1643k9qp1sw3z-DjnQ-7AzKA_NLsWGA3knrP9T4MTBQI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+2D+MXenes+by+Surface+Controlling+and+Interlayer+Engineering%3A+Methods%2C+Properties%2C+and+Synchrotron+Radiation+Characterizations&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Changda&rft.au=Chen%2C+Shuangming&rft.au=Song%2C+Li&rft.date=2020-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=47&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202000869&rft.externalDBID=10.1002%252Fadfm.202000869&rft.externalDocID=ADFM202000869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon