Graphene, SiC and Si Nanostructures Synthesis During Quartz Pyrolysis in Arc‐Discharge Plasma
Composites based on graphene and nanosized silicon have recently been of interest in various applications. This paper reports a new method of synthesising a graphene‐nano silicon composite material by spraying a mixture of quartz‐graphite using an electric arc. The structure and composition of the m...
Saved in:
Published in | Physica status solidi. A, Applications and materials science Vol. 216; no. 14 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Composites based on graphene and nanosized silicon have recently been of interest in various applications. This paper reports a new method of synthesising a graphene‐nano silicon composite material by spraying a mixture of quartz‐graphite using an electric arc. The structure and composition of the materials obtained depends on the synthesis conditions. The quality of the graphene structure depends on the concentration of quartz in the load. Higher SiO2 content leads to the production of more structured graphene. In this case, silicon is present in the materials in the form of carbide nanoparticles deposited on graphene planes. When sputtering pure quartz contained in the cavity of the graphite anode, silicon whiskers form during the synthesis process. The content of the silicon structure depends on the arc current and the sputtering rate of the anode material. The mechanisms that lead to the formation of the graphene structure and silicon whiskers in the condensation process of the products of the electric arc spraying of the anode material are considered.
The article reveals phenomena of graphene, silicon carbide, and silicon whiskers formations during a quartz‐graphite mixture spraying by an arc‐discharge. The experimental conditions influence the materials produced. The higher concentration of quartz in the mixture leads to the quality improvement of the graphene structure. The rising of the arc current leads to the increase of the silicon structure content. |
---|---|
AbstractList | Composites based on graphene and nanosized silicon have recently been of interest in various applications. This paper reports a new method of synthesising a graphene‐nano silicon composite material by spraying a mixture of quartz‐graphite using an electric arc. The structure and composition of the materials obtained depends on the synthesis conditions. The quality of the graphene structure depends on the concentration of quartz in the load. Higher SiO2 content leads to the production of more structured graphene. In this case, silicon is present in the materials in the form of carbide nanoparticles deposited on graphene planes. When sputtering pure quartz contained in the cavity of the graphite anode, silicon whiskers form during the synthesis process. The content of the silicon structure depends on the arc current and the sputtering rate of the anode material. The mechanisms that lead to the formation of the graphene structure and silicon whiskers in the condensation process of the products of the electric arc spraying of the anode material are considered. Composites based on graphene and nanosized silicon have recently been of interest in various applications. This paper reports a new method of synthesising a graphene‐nano silicon composite material by spraying a mixture of quartz‐graphite using an electric arc. The structure and composition of the materials obtained depends on the synthesis conditions. The quality of the graphene structure depends on the concentration of quartz in the load. Higher SiO 2 content leads to the production of more structured graphene. In this case, silicon is present in the materials in the form of carbide nanoparticles deposited on graphene planes. When sputtering pure quartz contained in the cavity of the graphite anode, silicon whiskers form during the synthesis process. The content of the silicon structure depends on the arc current and the sputtering rate of the anode material. The mechanisms that lead to the formation of the graphene structure and silicon whiskers in the condensation process of the products of the electric arc spraying of the anode material are considered. Composites based on graphene and nanosized silicon have recently been of interest in various applications. This paper reports a new method of synthesising a graphene‐nano silicon composite material by spraying a mixture of quartz‐graphite using an electric arc. The structure and composition of the materials obtained depends on the synthesis conditions. The quality of the graphene structure depends on the concentration of quartz in the load. Higher SiO2 content leads to the production of more structured graphene. In this case, silicon is present in the materials in the form of carbide nanoparticles deposited on graphene planes. When sputtering pure quartz contained in the cavity of the graphite anode, silicon whiskers form during the synthesis process. The content of the silicon structure depends on the arc current and the sputtering rate of the anode material. The mechanisms that lead to the formation of the graphene structure and silicon whiskers in the condensation process of the products of the electric arc spraying of the anode material are considered. The article reveals phenomena of graphene, silicon carbide, and silicon whiskers formations during a quartz‐graphite mixture spraying by an arc‐discharge. The experimental conditions influence the materials produced. The higher concentration of quartz in the mixture leads to the quality improvement of the graphene structure. The rising of the arc current leads to the increase of the silicon structure content. |
Author | Kardash, Tatiana Yu Zaikovskii, Alexey V. Kolesov, Boris A. Nikolaeva, Olga A. |
Author_xml | – sequence: 1 givenname: Alexey V. orcidid: 0000-0003-2381-0789 surname: Zaikovskii fullname: Zaikovskii, Alexey V. email: zale@itp.nsc.ru, lexeyza@gmail.com organization: Kutateladze Institute of Thermophysics SB RAS – sequence: 2 givenname: Tatiana Yu surname: Kardash fullname: Kardash, Tatiana Yu organization: Boreskov Institute of Catalysis SB RAS – sequence: 3 givenname: Boris A. surname: Kolesov fullname: Kolesov, Boris A. organization: Nikolaev Institute of Inorganic Chemistry SB RAS – sequence: 4 givenname: Olga A. surname: Nikolaeva fullname: Nikolaeva, Olga A. organization: Boreskov Institute of Catalysis SB RAS |
BookMark | eNqFkM1Kw0AUhQdRsK1uXQ-4NXV-8tNZllarULQSXQ_XyUybkk7iTILElY_gM_okJlTq0tU5XM65B74hOral1QhdUDKmhLDrynsYM0IFISQRR2hAJzELYk7F8cETcoqG3m8JCaMwoQMkFw6qjbb6Cqf5DIPNOsUPYEtfu0bVjdMep62tN9rnHs8bl9s1fmrA1R941bqyaPt7bvHUqe_Pr3nu1QbcWuNVAX4HZ-jEQOH1-a-O0MvtzfPsLlg-Lu5n02WgOE1EkDAehq8ZoXEUg-itjnjIjVaCxokIo0hTAAYQq0wbQg3TKmTGgOGZinjGR-hy_7dy5VujfS23ZeNsNykZi6Nowni3MULjfUq50nunjaxcvgPXSkpkD1H2EOUBYlcQ-8J7Xuj2n7Rcpen0r_sDUJd5wQ |
CitedBy_id | crossref_primary_10_1007_s11706_024_0679_7 crossref_primary_10_1007_s11051_023_05907_y crossref_primary_10_1007_s11837_020_04556_z crossref_primary_10_1002_slct_202303612 crossref_primary_10_1016_j_vacuum_2021_110694 crossref_primary_10_1039_C9RA05485E crossref_primary_10_1002_pssa_202200111 |
Cites_doi | 10.1021/jp900791y 10.1038/srep17477 10.1016/j.jcrysgro.2010.03.039 10.1021/acsami.8b11483 10.1016/j.jallcom.2013.06.116 10.1016/j.cplett.2012.04.020 10.1038/347354a0 10.1038/354056a0 10.1103/PhysRevB.52.12564 10.1063/1.363102 10.1016/j.jallcom.2018.08.118 10.1088/0022-3719/17/35/020 10.1002/adom.201400395 10.1186/s40064-016-2994-7 10.1016/j.nanoen.2015.08.025 10.1016/j.matlet.2010.09.015 10.1063/1.4940047 10.1016/j.apsusc.2012.01.019 10.1002/adma.200900995 10.1039/b506995e 10.1103/PhysRev.2.329 10.1016/j.carbon.2014.11.023 10.1063/1.3681283 10.1016/j.jpowsour.2013.10.087 10.1038/nmat1220 10.1088/2399-1984/aa7d7c 10.1063/1.125852 10.4028/www.scientific.net/MSF.518.119 10.1007/s11671-008-9216-3 10.1016/j.ssc.2007.04.023 10.1007/BF01132959 10.1007/s12274-010-0027-3 10.1088/0268-1242/31/11/113004 10.1143/JJAP.45.6146 10.1063/1.2001136 10.1088/0957-4484/21/17/175602 10.1016/j.physe.2009.10.054 10.1021/j100078a008 10.1016/j.carbon.2016.02.074 10.1016/j.electacta.2015.11.020 10.1016/j.carbon.2016.10.094 10.1021/nl050301c 10.1016/j.matlet.2016.05.100 10.1002/pssa.201600091 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/pssa.201900079 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1862-6319 |
EndPage | n/a |
ExternalDocumentID | 10_1002_pssa_201900079 PSSA201900079 |
Genre | article |
GrantInformation_xml | – fundername: RScF funderid: 18‐79‐00038 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1OC 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BHBCM BMNLL BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS RWI RX1 RYL SUPJJ V2E W8V W99 WBKPD WGJPS WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~IA ~WT .Y3 AAYXX ACBWZ AFFNX ASPBG AVWKF AZFZN BDRZF CITATION LW6 ROL 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3179-72344bd01656a944bde5343fec91679455e1aa2aa6cdef01f2ec42ffaf3dc53d3 |
IEDL.DBID | DR2 |
ISSN | 1862-6300 |
IngestDate | Thu Oct 10 18:54:55 EDT 2024 Fri Aug 23 03:08:46 EDT 2024 Sat Aug 24 01:11:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3179-72344bd01656a944bde5343fec91679455e1aa2aa6cdef01f2ec42ffaf3dc53d3 |
ORCID | 0000-0003-2381-0789 |
PQID | 2265582372 |
PQPubID | 1036347 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2265582372 crossref_primary_10_1002_pssa_201900079 wiley_primary_10_1002_pssa_201900079_PSSA201900079 |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Physica status solidi. A, Applications and materials science |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1995; 52 2017; 1 2015; 17 1990; 347 2015; 5 1991; 354 2006; 518 2009; 21 2015; 3 2007; 143 2016; 102 2016; 31 2004; 3 2005; 87 2016; 187 2009; 113 2017; 112 2016; 180 1994; 64 2016; 5 2010; 21 1987; 22 2014; 249 2010; 42 1913; 2 2012; 2 2006; 45 2016; 119 1984; 17 2010; 312 2000; 76 2013; 579 2005; 5 2011; 65 1996; 80 2009; 4 2016; 213 2010; 3 2012; 258 2018; 10 2012; 538 1994; 98 2019; 770 2005; 36 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Afanas'ev D. V. (e_1_2_7_13_1) 1994; 64 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 187 start-page: 1 year: 2016 publication-title: Electrochim. Acta – volume: 2 start-page: 329 year: 1913 publication-title: Phys. Rev – volume: 3 start-page: 147 year: 2015 publication-title: Adv. Opt. Mater – volume: 64 start-page: 76 year: 1994 publication-title: Tech. Phys – volume: 113 start-page: 4257 year: 2009 publication-title: J. Phys. Chem. C – volume: 22 start-page: 2192 year: 1987 publication-title: J. Mater. Sci – volume: 5 start-page: 1323 year: 2016 publication-title: SpringerPlus – volume: 98 start-page: 6696 year: 1994 publication-title: J. Phys. Chem. Solids – volume: 3 start-page: 677 year: 2004 publication-title: Nat. Mater – volume: 21 start-page: 4701 year: 2009 publication-title: Adv. Mater – volume: 4 start-page: 153 year: 2009 publication-title: Nanoscale Res. Lett – volume: 10 start-page: 36523 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 258 start-page: 4523 year: 2012 publication-title: Appl. Surf. Sci – volume: 3 start-page: 90 year: 2015 publication-title: Carbon – volume: 112 start-page: 97 year: 2017 publication-title: Carbon – volume: 2 start-page: 012126 year: 2012 publication-title: AIP Adv – volume: 119 start-page: 033101 year: 2016 publication-title: J. Appl. Phys – volume: 249 start-page: 118 year: 2014 publication-title: J. Power Sources – volume: 3 start-page: 661 year: 2010 publication-title: Nano Res – volume: 1 start-page: 021001 year: 2017 publication-title: Nano Futures – volume: 354 start-page: 56 year: 1991 publication-title: Nature – volume: 42 start-page: 1267 year: 2010 publication-title: Phys. E – volume: 518 start-page: 23 year: 2006 publication-title: Mater. Sci. Forum – volume: 65 start-page: 100 year: 2011 publication-title: Mater. Lett – volume: 36 start-page: 4690 year: 2005 publication-title: Chem. Commun – volume: 143 start-page: 92 year: 2007 publication-title: Solid State Commun – volume: 213 start-page: 2277 year: 2016 publication-title: Phys. Status Solidi A – volume: 347 start-page: 354 year: 1990 publication-title: Nature – volume: 180 start-page: 313 year: 2016 publication-title: Mater. Lett – volume: 538 start-page: 72 year: 2012 publication-title: Chem. Phys. Lett – volume: 52 start-page: 12564 year: 1995 publication-title: Phys. Rev. B – volume: 45 start-page: 6146 year: 2006 publication-title: Jpn. J. Appl. Phys – volume: 102 start-page: 494 year: 2016 publication-title: Carbon – volume: 76 start-page: 562 year: 2000 publication-title: Appl. Phys. Lett – volume: 579 start-page: 529 year: 2013 publication-title: J. Alloys Compd – volume: 312 start-page: 2133 year: 2010 publication-title: J. Cryst. Growth – volume: 87 start-page: 031107 year: 2005 publication-title: Appl. Phys. Lett – volume: 5 start-page: 17477 year: 2015 publication-title: Sci. Rep – volume: 17 start-page: 6535 year: 1984 publication-title: J. Phys. C – volume: 80 start-page: 2097 year: 1996 publication-title: J. Appl. Phys – volume: 5 start-page: 761 year: 2005 publication-title: Nano Lett – volume: 31 start-page: 113004 year: 2016 publication-title: Semicond. Sci. Technol – volume: 17 start-page: 366 year: 2015 publication-title: Nano Energy – volume: 770 start-page: 116 year: 2019 publication-title: J. Alloys Compd – volume: 21 start-page: 175602 year: 2010 publication-title: Nanotechnology – ident: e_1_2_7_20_1 doi: 10.1021/jp900791y – ident: e_1_2_7_33_1 doi: 10.1038/srep17477 – ident: e_1_2_7_37_1 doi: 10.1016/j.jcrysgro.2010.03.039 – ident: e_1_2_7_3_1 doi: 10.1021/acsami.8b11483 – ident: e_1_2_7_34_1 doi: 10.1016/j.jallcom.2013.06.116 – ident: e_1_2_7_21_1 doi: 10.1016/j.cplett.2012.04.020 – ident: e_1_2_7_11_1 doi: 10.1038/347354a0 – ident: e_1_2_7_15_1 doi: 10.1038/354056a0 – ident: e_1_2_7_27_1 doi: 10.1103/PhysRevB.52.12564 – ident: e_1_2_7_28_1 doi: 10.1063/1.363102 – ident: e_1_2_7_16_1 doi: 10.1016/j.jallcom.2018.08.118 – ident: e_1_2_7_5_1 doi: 10.1088/0022-3719/17/35/020 – ident: e_1_2_7_6_1 doi: 10.1002/adom.201400395 – ident: e_1_2_7_14_1 doi: 10.1186/s40064-016-2994-7 – ident: e_1_2_7_8_1 doi: 10.1016/j.nanoen.2015.08.025 – ident: e_1_2_7_29_1 doi: 10.1016/j.matlet.2010.09.015 – ident: e_1_2_7_4_1 doi: 10.1063/1.4940047 – ident: e_1_2_7_19_1 doi: 10.1016/j.apsusc.2012.01.019 – ident: e_1_2_7_44_1 doi: 10.1002/adma.200900995 – volume: 64 start-page: 76 year: 1994 ident: e_1_2_7_13_1 publication-title: Tech. Phys contributor: fullname: Afanas'ev D. V. – ident: e_1_2_7_31_1 doi: 10.1039/b506995e – ident: e_1_2_7_39_1 doi: 10.1103/PhysRev.2.329 – ident: e_1_2_7_12_1 doi: 10.1016/j.carbon.2014.11.023 – ident: e_1_2_7_35_1 doi: 10.1063/1.3681283 – ident: e_1_2_7_10_1 doi: 10.1016/j.jpowsour.2013.10.087 – ident: e_1_2_7_43_1 doi: 10.1038/nmat1220 – ident: e_1_2_7_7_1 doi: 10.1088/2399-1984/aa7d7c – ident: e_1_2_7_46_1 doi: 10.1063/1.125852 – ident: e_1_2_7_17_1 doi: 10.4028/www.scientific.net/MSF.518.119 – ident: e_1_2_7_36_1 doi: 10.1007/s11671-008-9216-3 – ident: e_1_2_7_40_1 doi: 10.1016/j.ssc.2007.04.023 – ident: e_1_2_7_32_1 doi: 10.1007/BF01132959 – ident: e_1_2_7_24_1 doi: 10.1007/s12274-010-0027-3 – ident: e_1_2_7_42_1 doi: 10.1088/0268-1242/31/11/113004 – ident: e_1_2_7_30_1 doi: 10.1143/JJAP.45.6146 – ident: e_1_2_7_2_1 doi: 10.1063/1.2001136 – ident: e_1_2_7_23_1 doi: 10.1088/0957-4484/21/17/175602 – ident: e_1_2_7_22_1 doi: 10.1016/j.physe.2009.10.054 – ident: e_1_2_7_26_1 doi: 10.1021/j100078a008 – ident: e_1_2_7_25_1 doi: 10.1016/j.carbon.2016.02.074 – ident: e_1_2_7_9_1 doi: 10.1016/j.electacta.2015.11.020 – ident: e_1_2_7_38_1 doi: 10.1016/j.carbon.2016.10.094 – ident: e_1_2_7_45_1 doi: 10.1021/nl050301c – ident: e_1_2_7_18_1 doi: 10.1016/j.matlet.2016.05.100 – ident: e_1_2_7_41_1 doi: 10.1002/pssa.201600091 |
SSID | ssj0045471 |
Score | 2.35521 |
Snippet | Composites based on graphene and nanosized silicon have recently been of interest in various applications. This paper reports a new method of synthesising a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Anodes Arc spraying arc‐discharge Composite materials Condensates Electric arcs Electrode materials Graphene Graphite Nanoparticles nanostructures Pyrolysis Quartz Silicon Silicon carbide Silicon dioxide silicon whiskers Sputtering Synthesis |
Title | Graphene, SiC and Si Nanostructures Synthesis During Quartz Pyrolysis in Arc‐Discharge Plasma |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.201900079 https://www.proquest.com/docview/2265582372 |
Volume | 216 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTsJAFIYnhsTEjXcjimYWJm4s0LkAXRIQiQtDrCTsmulcEmIsxMICVj6Cz-iTOGdKC7gx0VWni-nlnLn8057zDUI3AaeEx5J4RinlMV8YL24S6sWtprTTgQRKHERbPDX6Q_Y44qONLP6MD1F8cIOe4cZr6OAiTmtraOg0TYEb5MOul03I4PNpE2K6us8FPwpgVW7FZWW7B2ypnNpYJ7Xt6tuz0lpqbgpWN-P0DpDInzULNHmtzmdxVS5_YBz_8zKHaH8lR3E7az9HaEcnx2jXhYXK9ARFD8CztsPhHQ7HHSwSZY_YjsiTjDs7t4t1HC4SqyLTcYq7LucRu0DRJR4s3icOeILHib2D_Pr47I5Th2bSeGBV-5s4RcPe_Uun7622ZPCkFRqBZ93IWKwgB6ohAihqThk1WgbwP4dxrn0hiBANqbSp-4ZoyYgxwlAlOVX0DJWSSaLPERZcKqoBxwiOki2h67xlqGCM6bqmrIxuc5dE04y8EWWMZRKBuaLCXGVUyT0WrXpgGllZyTmQeEgZEWf6X64SDcKwXZxd_KXSJdqDchbNW0El6wl9ZTXLLL527fIbXG_lKg |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIZHUITgwo4oqw9IXAi0XtrmiChQVlUUJG6W40WqEGlF4EBPPALPyJPgcZqyXJDglEVy4ng89m9n_BlgOxaMikTTyBljIl5VLkrqlEVJo659d6CREofRFle11i0_uxNFNCGuhcn5EKMJN_SM0F6jg-OE9P4nNbSfZQgOquK2l_V4HCa8zzPcvaF5PSJIIa4qjLm8cI-QLlVwGyt0_3v67_3Sp9j8KllDn3M8C0mR2zzU5H7v-SnZ04MfIMd_fc4czAwVKTnIq9A8jNl0ASZDZKjOFkGeINLat4i7pNM9JCo1_kh8o9zL0bPPfrxOOi-pF5JZNyPNsOyRhFjRAWm_PPYC84R0U_8G_f761uxmgc5kSdsL9we1BLfHRzeHrWi4K0OkvdaII29JzhODy6BqKsZTKxhnzuoYf-lwIWxVKapUTRvrKlVHrebUOeWY0YIZtgyltJfaFSBKaMMsEhnRUrqhbEU0HFOcc1uxjJdhp7CJ7OfwDZljlqnE4pKj4irDemEyOXTCTHplKQTCeGgZaCj7X54i253Owehq9S-JtmCqdXN5IS9Or87XYBrv58G961DyVrEbXsI8JZuhkn4Ar4TpQg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JSwMxFMcfWlG8uIt1zUHw4mibpe0cxVpXpFgFbyGTBYo4LU57aE9-BD-jn8S8TFuXi6CnWSCz5OW9_DPz8gvAfiwYFYmmkTPGRLysXJRUKYuSWlX77kAjJQ6zLW4rFw_86lE8fpnFn_MhJh_c0DNCvEYH7xp3_AkN7WYZcoPKuOplNZ6GGV7x8hdl0d0EIIW0qjDk8ro9QrjUGNtYosffy3_vlj615lfFGrqcxiKo8cPmmSZPR_1ecqSHPziO_3mbJVgY6VFykjegZZiy6QrMhrxQna2CPEegtY-Hh6TVPiUqNX5LfEju5ODZvh-tk9Yg9TIya2ekHiY9kpApOiTNwUsnEE9IO_V30O-vb_V2FthMljS9bH9Wa_DQOLs_vYhGazJE2iuNOPJ25DwxOAmqomLctYJx5qyO8YcOF8KWlaJKVbSxrlR21GpOnVOOGS2YYetQSDup3QCihDbMIo8RDaVrypZEzTHFObcly3gRDsYmkd0cvSFzyDKVWF1yUl1F2B5bTI5cMJNeVwqBKB5aBBqq_peryGardTI52vxLoT2Ya9Yb8uby9noL5vF0ntm7DQVvFLvj9Usv2Q1N9AMHJ-fx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene%2C+SiC+and+Si+Nanostructures+Synthesis+During+Quartz+Pyrolysis+in+Arc%E2%80%90Discharge+Plasma&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Zaikovskii%2C+Alexey+V.&rft.au=Kardash%2C+Tatiana+Yu&rft.au=Kolesov%2C+Boris+A.&rft.au=Nikolaeva%2C+Olga+A.&rft.date=2019-07-01&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=216&rft.issue=14&rft_id=info:doi/10.1002%2Fpssa.201900079&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pssa_201900079 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon |