The Regulation of Lithium Plating Behavior by State of Stripping in Working Lithium Metal Anode
The enthusiasm of reviving lithium metal anodes has motivated the battery community to pursue higher Li utilization. To this end, an exhaustively complete stripping pattern (C‐stripping) is conventionally adopted to obtain a higher apparent Coulombic efficiency (CE) in individual cycles while ignori...
Saved in:
Published in | Advanced energy materials Vol. 13; no. 29 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The enthusiasm of reviving lithium metal anodes has motivated the battery community to pursue higher Li utilization. To this end, an exhaustively complete stripping pattern (C‐stripping) is conventionally adopted to obtain a higher apparent Coulombic efficiency (CE) in individual cycles while ignoring the effects of Li stripping state on subsequent Li plating behavior. In this contribution, a partial stripping (P‐stripping) protocol, in which a tiny amount of active Li is intentionally reserved, is validated as beneficial for an improved realistic Li reversibility. Compared to the C‐stripping protocol, the partially reserved active Li in P‐stripping mode serves critically as nucleation sites for following Li plating, which not only reduces the nucleation overpotential for flattened Li deposition morphology, but also favorably facilitates the re‐utilization of the original solid electrolyte interphase (SEI). This explains the lower growth rates of both “dead Li” and SEI‐Li+ under the P‐stripping protocol. Benefitting from the intrinsically more reversible Li cycling, the anode‐free Cu||LiNi0.5Co0.2Mn0.3O2 cells using the P‐stripping protocol acquire higher available capacities in long‐term cycles. This work uncovers the crucial significance of the former state of Li stripping on regulating the following Li plating manner and SEI re‐utilization, providing fresh design implications toward more sustainable cycling of Li anodes.
This work reveals the crucial significance of former Li stripping states on subsequent Li plating/stripping behavior for practical Li utilization. The partially reserved active Li not only lowers the nucleation overpotential for flat Li deposition morphology, but also favorably facilitates the re‐filling of Li into original solid electrolyte interphase (SEI) shells to minimize SEI reconstruction. |
---|---|
AbstractList | The enthusiasm of reviving lithium metal anodes has motivated the battery community to pursue higher Li utilization. To this end, an exhaustively complete stripping pattern (C‐stripping) is conventionally adopted to obtain a higher apparent Coulombic efficiency (CE) in individual cycles while ignoring the effects of Li stripping state on subsequent Li plating behavior. In this contribution, a partial stripping (P‐stripping) protocol, in which a tiny amount of active Li is intentionally reserved, is validated as beneficial for an improved realistic Li reversibility. Compared to the C‐stripping protocol, the partially reserved active Li in P‐stripping mode serves critically as nucleation sites for following Li plating, which not only reduces the nucleation overpotential for flattened Li deposition morphology, but also favorably facilitates the re‐utilization of the original solid electrolyte interphase (SEI). This explains the lower growth rates of both “dead Li” and SEI‐Li+ under the P‐stripping protocol. Benefitting from the intrinsically more reversible Li cycling, the anode‐free Cu||LiNi0.5Co0.2Mn0.3O2 cells using the P‐stripping protocol acquire higher available capacities in long‐term cycles. This work uncovers the crucial significance of the former state of Li stripping on regulating the following Li plating manner and SEI re‐utilization, providing fresh design implications toward more sustainable cycling of Li anodes.
This work reveals the crucial significance of former Li stripping states on subsequent Li plating/stripping behavior for practical Li utilization. The partially reserved active Li not only lowers the nucleation overpotential for flat Li deposition morphology, but also favorably facilitates the re‐filling of Li into original solid electrolyte interphase (SEI) shells to minimize SEI reconstruction. The enthusiasm of reviving lithium metal anodes has motivated the battery community to pursue higher Li utilization. To this end, an exhaustively complete stripping pattern (C‐stripping) is conventionally adopted to obtain a higher apparent Coulombic efficiency (CE) in individual cycles while ignoring the effects of Li stripping state on subsequent Li plating behavior. In this contribution, a partial stripping (P‐stripping) protocol, in which a tiny amount of active Li is intentionally reserved, is validated as beneficial for an improved realistic Li reversibility. Compared to the C‐stripping protocol, the partially reserved active Li in P‐stripping mode serves critically as nucleation sites for following Li plating, which not only reduces the nucleation overpotential for flattened Li deposition morphology, but also favorably facilitates the re‐utilization of the original solid electrolyte interphase (SEI). This explains the lower growth rates of both “dead Li” and SEI‐Li+ under the P‐stripping protocol. Benefitting from the intrinsically more reversible Li cycling, the anode‐free Cu||LiNi0.5Co0.2Mn0.3O2 cells using the P‐stripping protocol acquire higher available capacities in long‐term cycles. This work uncovers the crucial significance of the former state of Li stripping on regulating the following Li plating manner and SEI re‐utilization, providing fresh design implications toward more sustainable cycling of Li anodes. The enthusiasm of reviving lithium metal anodes has motivated the battery community to pursue higher Li utilization. To this end, an exhaustively complete stripping pattern (C‐stripping) is conventionally adopted to obtain a higher apparent Coulombic efficiency (CE) in individual cycles while ignoring the effects of Li stripping state on subsequent Li plating behavior. In this contribution, a partial stripping (P‐stripping) protocol, in which a tiny amount of active Li is intentionally reserved, is validated as beneficial for an improved realistic Li reversibility. Compared to the C‐stripping protocol, the partially reserved active Li in P‐stripping mode serves critically as nucleation sites for following Li plating, which not only reduces the nucleation overpotential for flattened Li deposition morphology, but also favorably facilitates the re‐utilization of the original solid electrolyte interphase (SEI). This explains the lower growth rates of both “dead Li” and SEI‐Li + under the P‐stripping protocol. Benefitting from the intrinsically more reversible Li cycling, the anode‐free Cu||LiNi 0.5 Co 0.2 Mn 0.3 O 2 cells using the P‐stripping protocol acquire higher available capacities in long‐term cycles. This work uncovers the crucial significance of the former state of Li stripping on regulating the following Li plating manner and SEI re‐utilization, providing fresh design implications toward more sustainable cycling of Li anodes. |
Author | Huang, Jia‐Qi Li, Ze‐Heng Xu, Rui Zhang, Shuo Xiao, Ye Zhan, Ying‐Xin Xu, Lei Ding, Jun‐Fan Yan, Chong |
Author_xml | – sequence: 1 givenname: Ye surname: Xiao fullname: Xiao, Ye organization: Beijing Institute of Technology – sequence: 2 givenname: Rui surname: Xu fullname: Xu, Rui organization: Beijing Institute of Technology – sequence: 3 givenname: Lei surname: Xu fullname: Xu, Lei organization: Beijing Institute of Technology – sequence: 4 givenname: Ying‐Xin surname: Zhan fullname: Zhan, Ying‐Xin organization: Beijing Institute of Technology – sequence: 5 givenname: Jun‐Fan surname: Ding fullname: Ding, Jun‐Fan organization: Beijing Institute of Technology – sequence: 6 givenname: Shuo surname: Zhang fullname: Zhang, Shuo organization: Beijing Institute of Technology – sequence: 7 givenname: Ze‐Heng surname: Li fullname: Li, Ze‐Heng organization: Tsinghua University – sequence: 8 givenname: Chong surname: Yan fullname: Yan, Chong organization: Beijing Institute of Technology – sequence: 9 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology |
BookMark | eNqFkE1PwzAMhiMEEmPsyjkS5458NG1zHNP4kDZAbIhjlLXultE1Jc1A-_e0DIaEhPDFlv0-tvyeoMPSloDQGSV9Sgi70FCu-4wwTogU8gB1aETDIEpCcrivOTtGvbpekSZCSQnnHaRmS8CPsNgU2htbYpvjsfFLs1njh7ZVLvAlLPWbsQ7Pt3jqtYdWNPXOVFU7NiV-tu6lLb_JCXhd4EFpMzhFR7kuauh95S56uhrNhjfB-P76djgYBymnsQxEEkZMgKYxh0jHEtI0JVryJMtiiHkmGIlyKklK4jykuQ5jmUo2j4QQLId5xLvofLe3cvZ1A7VXK7txZXNSsSQUXMYiSRpVuFOlzta1g1ylxn8-7p02haJEtW6q1k21d7PB-r-wypm1dtu_AbkD3k0B23_UajC6m_ywH3UxiS4 |
CitedBy_id | crossref_primary_10_1039_D3TA08019F crossref_primary_10_1021_acsmaterialslett_3c01164 crossref_primary_10_1016_j_nanoen_2024_109571 crossref_primary_10_1016_j_est_2024_113683 crossref_primary_10_1149_1945_7111_ad430f crossref_primary_10_1002_adma_202305645 crossref_primary_10_1016_j_jpowsour_2025_236534 crossref_primary_10_1002_smll_202406579 crossref_primary_10_1016_j_ensm_2023_103134 crossref_primary_10_1002_aenm_202304532 crossref_primary_10_1016_j_energy_2025_135529 |
Cites_doi | 10.1002/anie.202115602 10.1149/2.0661914jes 10.1002/aenm.202200584 10.1039/D1EE03103A 10.1038/s41560-021-00910-w 10.1016/j.ensm.2019.12.023 10.1002/adma.202200538 10.1038/nnano.2017.16 10.1002/anie.202017063 10.1039/D1FD00043H 10.1002/aenm.201800266 10.1149/2.0641814jes 10.1038/nenergy.2016.10 10.1021/acs.nanolett.9b03548 10.1039/D0TA04768F 10.1038/s41560-019-0428-9 10.1038/s41586-019-1481-z 10.1016/j.joule.2019.07.027 10.1149/2.0091908jes 10.1002/adma.202004128 10.1021/acs.accounts.9b00437 10.1002/aenm.202000804 10.1021/acs.chemrev.7b00115 10.1021/jacs.9b10195 10.1038/s41467-021-21683-6 10.1038/s41560-021-00839-0 10.1021/acsami.2c20422 10.1016/j.ensm.2019.05.019 10.1039/C3EE40795K 10.1038/s41560-021-00917-3 10.1016/j.ensm.2019.02.011 10.1016/j.ensm.2020.07.004 10.1021/acs.chemrev.0c00275 10.1002/adma.202108252 10.1021/acs.nanolett.6b04755 10.1016/j.electacta.2017.11.175 10.1016/j.ensm.2021.03.008 10.1002/aenm.202201044 10.1038/s41560-020-0668-8 10.1149/1945-7111/abe089 10.1021/acs.chemmater.2c03518 10.1016/j.jpowsour.2019.226912 10.1149/1945-7111/ac62c4 10.1007/s41918-022-00158-2 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202300959 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202300959 AENM202300959 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22109083 – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2021YFB2400300 – fundername: Beijing Institute of Technology Research Fund Program for Young Scholars – fundername: Beijing Natural Science Foundation funderid: JQ20004 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3179-584625ea173e6a79eccc0a938dd7e73d5206f190c07f41fa479c92b65552feb63 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:13:11 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Tue Jul 01 01:43:51 EDT 2025 Wed Jan 22 16:18:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3179-584625ea173e6a79eccc0a938dd7e73d5206f190c07f41fa479c92b65552feb63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7394-9186 |
PQID | 2845397588 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2845397588 crossref_citationtrail_10_1002_aenm_202300959 crossref_primary_10_1002_aenm_202300959 wiley_primary_10_1002_aenm_202300959_AENM202300959 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 6 2020; 5 2023; 35 2018 2021 2022; 165 168 169 2022 2022; 34 233 2021; 12 2019 2022 2019; 4 15 437 2021 2021; 6 60 2023; 15 2022; 61 2022 2019 2019 2016 2021; 12 19 141 1 33 2023 2019; 35 23 2017 2018 2020 2021; 258 8 26 38 2014 2019 2019; 7 52 19 2020 2022; 11 12 2020 2021 2020; 120 6 8 2019 2019; 166 166 2017 2022; 17 5 2020; 32 2017; 117 2019 2017; 3 12 2019; 572 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_8_3 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_18_5 e_1_2_7_8_1 e_1_2_7_18_4 e_1_2_7_19_3 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_18_3 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_13_3 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_8_4 e_1_2_7_9_3 e_1_2_7_21_2 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 117 year: 2017 publication-title: Chem. Rev. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 35 start-page: 2381 year: 2023 publication-title: Chem. Mater. – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 693 year: 2020 publication-title: Nat. Energy – volume: 17 5 start-page: 1132 23 year: 2017 2022 publication-title: Nano Lett. Electrochem. Energy Rev. – volume: 6 60 start-page: 653 8289 year: 2021 2021 publication-title: Nat. Energy Angew. Chem. Int. Ed. – volume: 572 start-page: 511 year: 2019 publication-title: Nature – volume: 34 233 start-page: 190 year: 2022 2022 publication-title: Adv. Mater. Faraday Discuss. – volume: 6 start-page: 987 year: 2021 publication-title: Nat. Energy – volume: 12 start-page: 1452 year: 2021 publication-title: Nat. Commun. – volume: 7 52 19 start-page: 513 3223 8191 year: 2014 2019 2019 publication-title: Energy Environ. Sci. Acc. Chem. Res. Nano Lett. – volume: 32 start-page: 386 year: 2020 publication-title: Energy Storage Mater. – volume: 120 6 8 start-page: 951 year: 2020 2021 2020 publication-title: Chem. Rev. Nat. Energy J. Mater. Chem. A – volume: 4 15 437 start-page: 683 843 year: 2019 2022 2019 publication-title: Nat. Energy Energy Environ. Sci. J. Power Sources – volume: 166 166 year: 2019 2019 publication-title: J. Electrochem. Soc. J. Electrochem. Soc. – volume: 35 23 start-page: 144 year: 2023 2019 publication-title: Adv. Mater. Energy Storage Mater. – volume: 165 168 169 year: 2018 2021 2022 publication-title: J. Electrochem. Soc. J. Electrochem. Soc. J. Electrochem. Soc. – volume: 11 12 year: 2020 2022 publication-title: Adv. Energy Mater. Adv. Energy Mater. – volume: 258 8 26 38 start-page: 1201 56 276 year: 2017 2018 2020 2021 publication-title: Electrochim. Acta Adv. Energy Mater. Energy Storage Mater. Energy Storage Mater. – volume: 12 19 141 1 33 start-page: 154 year: 2022 2019 2019 2016 2021 publication-title: Adv. Energy Mater. Energy Storage Mater. J. Am. Chem. Soc. Nat. Energy Adv. Mater. – volume: 3 12 start-page: 2334 194 year: 2019 2017 publication-title: Joule Nat. Nanotechnol. – ident: e_1_2_7_16_1 doi: 10.1002/anie.202115602 – ident: e_1_2_7_11_2 doi: 10.1149/2.0661914jes – ident: e_1_2_7_18_1 doi: 10.1002/aenm.202200584 – ident: e_1_2_7_9_2 doi: 10.1039/D1EE03103A – ident: e_1_2_7_5_2 doi: 10.1038/s41560-021-00910-w – ident: e_1_2_7_8_3 doi: 10.1016/j.ensm.2019.12.023 – ident: e_1_2_7_1_1 doi: 10.1002/adma.202200538 – ident: e_1_2_7_3_2 doi: 10.1038/nnano.2017.16 – ident: e_1_2_7_10_2 doi: 10.1002/anie.202017063 – ident: e_1_2_7_20_2 doi: 10.1039/D1FD00043H – ident: e_1_2_7_8_2 doi: 10.1002/aenm.201800266 – ident: e_1_2_7_13_1 doi: 10.1149/2.0641814jes – ident: e_1_2_7_18_4 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_7_19_3 doi: 10.1021/acs.nanolett.9b03548 – ident: e_1_2_7_5_3 doi: 10.1039/D0TA04768F – ident: e_1_2_7_9_1 doi: 10.1038/s41560-019-0428-9 – ident: e_1_2_7_15_1 doi: 10.1038/s41586-019-1481-z – ident: e_1_2_7_3_1 doi: 10.1016/j.joule.2019.07.027 – ident: e_1_2_7_11_1 doi: 10.1149/2.0091908jes – ident: e_1_2_7_18_5 doi: 10.1002/adma.202004128 – ident: e_1_2_7_19_2 doi: 10.1021/acs.accounts.9b00437 – ident: e_1_2_7_21_1 doi: 10.1002/aenm.202000804 – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_18_3 doi: 10.1021/jacs.9b10195 – ident: e_1_2_7_22_1 doi: 10.1038/s41467-021-21683-6 – ident: e_1_2_7_10_1 doi: 10.1038/s41560-021-00839-0 – ident: e_1_2_7_14_1 doi: 10.1021/acsami.2c20422 – ident: e_1_2_7_1_2 doi: 10.1016/j.ensm.2019.05.019 – ident: e_1_2_7_19_1 doi: 10.1039/C3EE40795K – ident: e_1_2_7_6_1 doi: 10.1038/s41560-021-00917-3 – ident: e_1_2_7_18_2 doi: 10.1016/j.ensm.2019.02.011 – ident: e_1_2_7_4_1 doi: 10.1016/j.ensm.2020.07.004 – ident: e_1_2_7_5_1 doi: 10.1021/acs.chemrev.0c00275 – ident: e_1_2_7_20_1 doi: 10.1002/adma.202108252 – ident: e_1_2_7_17_1 doi: 10.1021/acs.nanolett.6b04755 – ident: e_1_2_7_8_1 doi: 10.1016/j.electacta.2017.11.175 – ident: e_1_2_7_8_4 doi: 10.1016/j.ensm.2021.03.008 – ident: e_1_2_7_21_2 doi: 10.1002/aenm.202201044 – ident: e_1_2_7_7_1 doi: 10.1038/s41560-020-0668-8 – ident: e_1_2_7_13_2 doi: 10.1149/1945-7111/abe089 – ident: e_1_2_7_12_1 doi: 10.1021/acs.chemmater.2c03518 – ident: e_1_2_7_9_3 doi: 10.1016/j.jpowsour.2019.226912 – ident: e_1_2_7_13_3 doi: 10.1149/1945-7111/ac62c4 – ident: e_1_2_7_17_2 doi: 10.1007/s41918-022-00158-2 |
SSID | ssj0000491033 |
Score | 2.4697297 |
Snippet | The enthusiasm of reviving lithium metal anodes has motivated the battery community to pursue higher Li utilization. To this end, an exhaustively complete... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes anode‐free batteries Cycles dead Li Electrolytic cells Lithium lithium metal anodes Nucleation Plating solid electrolyte interphases Solid electrolytes state of Li stripping Utilization |
Title | The Regulation of Lithium Plating Behavior by State of Stripping in Working Lithium Metal Anode |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202300959 https://www.proquest.com/docview/2845397588 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKfo7oJ8QOIUSB0ncY7RsmiF2j3ArhROkR3bEAmlqJse4NczfjaFRSxconZkp03nG_ub6cwYoZdpl7Fccp6UC5kmVKoqYbqgYHiaaqAHRDNTO7y6KM6v6Psmb2YzPcla2o7idffjxrqS_9EqyECvpkr2HzQbbwoCeA36hStoGK631vEHd5i8533LfvzSm9x2Ixo-h_aHG8MyLa-0RSrjxrZlsMUsPloeZ66UKY-sh7XcSxKqQ66AcsWCQHTdEwaNNT23UddPESnN1upv2-8LlioKTLTazjFV1yHrovG9wH0ogmQxES6snrDXJwXzAUs1lbmeTHHJzSbQchGP35Zy1xqWq8H0CwBHyQQsd5tW-KP-l70sZhi6bsykNfPbOP8OOiTgTsB6eFi_XS0_xmgc-EmLNLPVGOEZQofPlLzZ_xL7DGbnlkydG8tOLh-g-96twLXDyEM0U8MjdG_SbPIxagEteIcWvNbY6xx7tOCAFiy-Y4sWMyiiBfcD9miJMy1asEXLE3T17uzy9Dzxx2skHZDGKjHUk-SKL8pMFbyswJi7lFcZk7JUZSZzkhYa-GKXgt0uNKdl1VVEFHkOFqxEkT1FB8N6UM8QpgIojpKMSCFpJ7lgTFFFKa9ERxnXc5SEn6ztfO95cwTK1_ZmPc3Rqzj-m-u68seRJ0EDrbfM6xYoVw48O2dsjojVyl_u0tZnF6v47ujWn36M7u7s4AQdjJuteg4kdRQvPMJ-AvRHjQU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Regulation+of+Lithium+Plating+Behavior+by+State+of+Stripping+in+Working+Lithium+Metal+Anode&rft.jtitle=Advanced+energy+materials&rft.au=Xiao%2C+Ye&rft.au=Xu%2C+Rui&rft.au=Xu%2C+Lei&rft.au=Zhan%2C+Ying%E2%80%90Xin&rft.date=2023-08-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=29&rft_id=info:doi/10.1002%2Faenm.202300959&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202300959 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |