The Regulation of Lithium Plating Behavior by State of Stripping in Working Lithium Metal Anode

The enthusiasm of reviving lithium metal anodes has motivated the battery community to pursue higher Li utilization. To this end, an exhaustively complete stripping pattern (C‐stripping) is conventionally adopted to obtain a higher apparent Coulombic efficiency (CE) in individual cycles while ignori...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 13; no. 29
Main Authors Xiao, Ye, Xu, Rui, Xu, Lei, Zhan, Ying‐Xin, Ding, Jun‐Fan, Zhang, Shuo, Li, Ze‐Heng, Yan, Chong, Huang, Jia‐Qi
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The enthusiasm of reviving lithium metal anodes has motivated the battery community to pursue higher Li utilization. To this end, an exhaustively complete stripping pattern (C‐stripping) is conventionally adopted to obtain a higher apparent Coulombic efficiency (CE) in individual cycles while ignoring the effects of Li stripping state on subsequent Li plating behavior. In this contribution, a partial stripping (P‐stripping) protocol, in which a tiny amount of active Li is intentionally reserved, is validated as beneficial for an improved realistic Li reversibility. Compared to the C‐stripping protocol, the partially reserved active Li in P‐stripping mode serves critically as nucleation sites for following Li plating, which not only reduces the nucleation overpotential for flattened Li deposition morphology, but also favorably facilitates the re‐utilization of the original solid electrolyte interphase (SEI). This explains the lower growth rates of both “dead Li” and SEI‐Li+ under the P‐stripping protocol. Benefitting from the intrinsically more reversible Li cycling, the anode‐free Cu||LiNi0.5Co0.2Mn0.3O2 cells using the P‐stripping protocol acquire higher available capacities in long‐term cycles. This work uncovers the crucial significance of the former state of Li stripping on regulating the following Li plating manner and SEI re‐utilization, providing fresh design implications toward more sustainable cycling of Li anodes. This work reveals the crucial significance of former Li stripping states on subsequent Li plating/stripping behavior for practical Li utilization. The partially reserved active Li not only lowers the nucleation overpotential for flat Li deposition morphology, but also favorably facilitates the re‐filling of Li into original solid electrolyte interphase (SEI) shells to minimize SEI reconstruction.
AbstractList The enthusiasm of reviving lithium metal anodes has motivated the battery community to pursue higher Li utilization. To this end, an exhaustively complete stripping pattern (C‐stripping) is conventionally adopted to obtain a higher apparent Coulombic efficiency (CE) in individual cycles while ignoring the effects of Li stripping state on subsequent Li plating behavior. In this contribution, a partial stripping (P‐stripping) protocol, in which a tiny amount of active Li is intentionally reserved, is validated as beneficial for an improved realistic Li reversibility. Compared to the C‐stripping protocol, the partially reserved active Li in P‐stripping mode serves critically as nucleation sites for following Li plating, which not only reduces the nucleation overpotential for flattened Li deposition morphology, but also favorably facilitates the re‐utilization of the original solid electrolyte interphase (SEI). This explains the lower growth rates of both “dead Li” and SEI‐Li+ under the P‐stripping protocol. Benefitting from the intrinsically more reversible Li cycling, the anode‐free Cu||LiNi0.5Co0.2Mn0.3O2 cells using the P‐stripping protocol acquire higher available capacities in long‐term cycles. This work uncovers the crucial significance of the former state of Li stripping on regulating the following Li plating manner and SEI re‐utilization, providing fresh design implications toward more sustainable cycling of Li anodes. This work reveals the crucial significance of former Li stripping states on subsequent Li plating/stripping behavior for practical Li utilization. The partially reserved active Li not only lowers the nucleation overpotential for flat Li deposition morphology, but also favorably facilitates the re‐filling of Li into original solid electrolyte interphase (SEI) shells to minimize SEI reconstruction.
The enthusiasm of reviving lithium metal anodes has motivated the battery community to pursue higher Li utilization. To this end, an exhaustively complete stripping pattern (C‐stripping) is conventionally adopted to obtain a higher apparent Coulombic efficiency (CE) in individual cycles while ignoring the effects of Li stripping state on subsequent Li plating behavior. In this contribution, a partial stripping (P‐stripping) protocol, in which a tiny amount of active Li is intentionally reserved, is validated as beneficial for an improved realistic Li reversibility. Compared to the C‐stripping protocol, the partially reserved active Li in P‐stripping mode serves critically as nucleation sites for following Li plating, which not only reduces the nucleation overpotential for flattened Li deposition morphology, but also favorably facilitates the re‐utilization of the original solid electrolyte interphase (SEI). This explains the lower growth rates of both “dead Li” and SEI‐Li+ under the P‐stripping protocol. Benefitting from the intrinsically more reversible Li cycling, the anode‐free Cu||LiNi0.5Co0.2Mn0.3O2 cells using the P‐stripping protocol acquire higher available capacities in long‐term cycles. This work uncovers the crucial significance of the former state of Li stripping on regulating the following Li plating manner and SEI re‐utilization, providing fresh design implications toward more sustainable cycling of Li anodes.
The enthusiasm of reviving lithium metal anodes has motivated the battery community to pursue higher Li utilization. To this end, an exhaustively complete stripping pattern (C‐stripping) is conventionally adopted to obtain a higher apparent Coulombic efficiency (CE) in individual cycles while ignoring the effects of Li stripping state on subsequent Li plating behavior. In this contribution, a partial stripping (P‐stripping) protocol, in which a tiny amount of active Li is intentionally reserved, is validated as beneficial for an improved realistic Li reversibility. Compared to the C‐stripping protocol, the partially reserved active Li in P‐stripping mode serves critically as nucleation sites for following Li plating, which not only reduces the nucleation overpotential for flattened Li deposition morphology, but also favorably facilitates the re‐utilization of the original solid electrolyte interphase (SEI). This explains the lower growth rates of both “dead Li” and SEI‐Li + under the P‐stripping protocol. Benefitting from the intrinsically more reversible Li cycling, the anode‐free Cu||LiNi 0.5 Co 0.2 Mn 0.3 O 2 cells using the P‐stripping protocol acquire higher available capacities in long‐term cycles. This work uncovers the crucial significance of the former state of Li stripping on regulating the following Li plating manner and SEI re‐utilization, providing fresh design implications toward more sustainable cycling of Li anodes.
Author Huang, Jia‐Qi
Li, Ze‐Heng
Xu, Rui
Zhang, Shuo
Xiao, Ye
Zhan, Ying‐Xin
Xu, Lei
Ding, Jun‐Fan
Yan, Chong
Author_xml – sequence: 1
  givenname: Ye
  surname: Xiao
  fullname: Xiao, Ye
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Lei
  surname: Xu
  fullname: Xu, Lei
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Ying‐Xin
  surname: Zhan
  fullname: Zhan, Ying‐Xin
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Jun‐Fan
  surname: Ding
  fullname: Ding, Jun‐Fan
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Shuo
  surname: Zhang
  fullname: Zhang, Shuo
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Ze‐Heng
  surname: Li
  fullname: Li, Ze‐Heng
  organization: Tsinghua University
– sequence: 8
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
BookMark eNqFkE1PwzAMhiMEEmPsyjkS5458NG1zHNP4kDZAbIhjlLXultE1Jc1A-_e0DIaEhPDFlv0-tvyeoMPSloDQGSV9Sgi70FCu-4wwTogU8gB1aETDIEpCcrivOTtGvbpekSZCSQnnHaRmS8CPsNgU2htbYpvjsfFLs1njh7ZVLvAlLPWbsQ7Pt3jqtYdWNPXOVFU7NiV-tu6lLb_JCXhd4EFpMzhFR7kuauh95S56uhrNhjfB-P76djgYBymnsQxEEkZMgKYxh0jHEtI0JVryJMtiiHkmGIlyKklK4jykuQ5jmUo2j4QQLId5xLvofLe3cvZ1A7VXK7txZXNSsSQUXMYiSRpVuFOlzta1g1ylxn8-7p02haJEtW6q1k21d7PB-r-wypm1dtu_AbkD3k0B23_UajC6m_ywH3UxiS4
CitedBy_id crossref_primary_10_1039_D3TA08019F
crossref_primary_10_1021_acsmaterialslett_3c01164
crossref_primary_10_1016_j_nanoen_2024_109571
crossref_primary_10_1016_j_est_2024_113683
crossref_primary_10_1149_1945_7111_ad430f
crossref_primary_10_1002_adma_202305645
crossref_primary_10_1016_j_jpowsour_2025_236534
crossref_primary_10_1002_smll_202406579
crossref_primary_10_1016_j_ensm_2023_103134
crossref_primary_10_1002_aenm_202304532
crossref_primary_10_1016_j_energy_2025_135529
Cites_doi 10.1002/anie.202115602
10.1149/2.0661914jes
10.1002/aenm.202200584
10.1039/D1EE03103A
10.1038/s41560-021-00910-w
10.1016/j.ensm.2019.12.023
10.1002/adma.202200538
10.1038/nnano.2017.16
10.1002/anie.202017063
10.1039/D1FD00043H
10.1002/aenm.201800266
10.1149/2.0641814jes
10.1038/nenergy.2016.10
10.1021/acs.nanolett.9b03548
10.1039/D0TA04768F
10.1038/s41560-019-0428-9
10.1038/s41586-019-1481-z
10.1016/j.joule.2019.07.027
10.1149/2.0091908jes
10.1002/adma.202004128
10.1021/acs.accounts.9b00437
10.1002/aenm.202000804
10.1021/acs.chemrev.7b00115
10.1021/jacs.9b10195
10.1038/s41467-021-21683-6
10.1038/s41560-021-00839-0
10.1021/acsami.2c20422
10.1016/j.ensm.2019.05.019
10.1039/C3EE40795K
10.1038/s41560-021-00917-3
10.1016/j.ensm.2019.02.011
10.1016/j.ensm.2020.07.004
10.1021/acs.chemrev.0c00275
10.1002/adma.202108252
10.1021/acs.nanolett.6b04755
10.1016/j.electacta.2017.11.175
10.1016/j.ensm.2021.03.008
10.1002/aenm.202201044
10.1038/s41560-020-0668-8
10.1149/1945-7111/abe089
10.1021/acs.chemmater.2c03518
10.1016/j.jpowsour.2019.226912
10.1149/1945-7111/ac62c4
10.1007/s41918-022-00158-2
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202300959
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202300959
AENM202300959
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22109083
– fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2021YFB2400300
– fundername: Beijing Institute of Technology Research Fund Program for Young Scholars
– fundername: Beijing Natural Science Foundation
  funderid: JQ20004
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3179-584625ea173e6a79eccc0a938dd7e73d5206f190c07f41fa479c92b65552feb63
ISSN 1614-6832
IngestDate Fri Jul 25 12:13:11 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Tue Jul 01 01:43:51 EDT 2025
Wed Jan 22 16:18:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3179-584625ea173e6a79eccc0a938dd7e73d5206f190c07f41fa479c92b65552feb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7394-9186
PQID 2845397588
PQPubID 886389
PageCount 8
ParticipantIDs proquest_journals_2845397588
crossref_citationtrail_10_1002_aenm_202300959
crossref_primary_10_1002_aenm_202300959
wiley_primary_10_1002_aenm_202300959_AENM202300959
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 6
2020; 5
2023; 35
2018 2021 2022; 165 168 169
2022 2022; 34 233
2021; 12
2019 2022 2019; 4 15 437
2021 2021; 6 60
2023; 15
2022; 61
2022 2019 2019 2016 2021; 12 19 141 1 33
2023 2019; 35 23
2017 2018 2020 2021; 258 8 26 38
2014 2019 2019; 7 52 19
2020 2022; 11 12
2020 2021 2020; 120 6 8
2019 2019; 166 166
2017 2022; 17 5
2020; 32
2017; 117
2019 2017; 3 12
2019; 572
e_1_2_7_5_2
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_3
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_18_5
e_1_2_7_8_1
e_1_2_7_18_4
e_1_2_7_19_3
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_18_3
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_13_3
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_8_4
e_1_2_7_9_3
e_1_2_7_21_2
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 117
  year: 2017
  publication-title: Chem. Rev.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 35
  start-page: 2381
  year: 2023
  publication-title: Chem. Mater.
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 693
  year: 2020
  publication-title: Nat. Energy
– volume: 17 5
  start-page: 1132 23
  year: 2017 2022
  publication-title: Nano Lett. Electrochem. Energy Rev.
– volume: 6 60
  start-page: 653 8289
  year: 2021 2021
  publication-title: Nat. Energy Angew. Chem. Int. Ed.
– volume: 572
  start-page: 511
  year: 2019
  publication-title: Nature
– volume: 34 233
  start-page: 190
  year: 2022 2022
  publication-title: Adv. Mater. Faraday Discuss.
– volume: 6
  start-page: 987
  year: 2021
  publication-title: Nat. Energy
– volume: 12
  start-page: 1452
  year: 2021
  publication-title: Nat. Commun.
– volume: 7 52 19
  start-page: 513 3223 8191
  year: 2014 2019 2019
  publication-title: Energy Environ. Sci. Acc. Chem. Res. Nano Lett.
– volume: 32
  start-page: 386
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 120 6 8
  start-page: 951
  year: 2020 2021 2020
  publication-title: Chem. Rev. Nat. Energy J. Mater. Chem. A
– volume: 4 15 437
  start-page: 683 843
  year: 2019 2022 2019
  publication-title: Nat. Energy Energy Environ. Sci. J. Power Sources
– volume: 166 166
  year: 2019 2019
  publication-title: J. Electrochem. Soc. J. Electrochem. Soc.
– volume: 35 23
  start-page: 144
  year: 2023 2019
  publication-title: Adv. Mater. Energy Storage Mater.
– volume: 165 168 169
  year: 2018 2021 2022
  publication-title: J. Electrochem. Soc. J. Electrochem. Soc. J. Electrochem. Soc.
– volume: 11 12
  year: 2020 2022
  publication-title: Adv. Energy Mater. Adv. Energy Mater.
– volume: 258 8 26 38
  start-page: 1201 56 276
  year: 2017 2018 2020 2021
  publication-title: Electrochim. Acta Adv. Energy Mater. Energy Storage Mater. Energy Storage Mater.
– volume: 12 19 141 1 33
  start-page: 154
  year: 2022 2019 2019 2016 2021
  publication-title: Adv. Energy Mater. Energy Storage Mater. J. Am. Chem. Soc. Nat. Energy Adv. Mater.
– volume: 3 12
  start-page: 2334 194
  year: 2019 2017
  publication-title: Joule Nat. Nanotechnol.
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.202115602
– ident: e_1_2_7_11_2
  doi: 10.1149/2.0661914jes
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.202200584
– ident: e_1_2_7_9_2
  doi: 10.1039/D1EE03103A
– ident: e_1_2_7_5_2
  doi: 10.1038/s41560-021-00910-w
– ident: e_1_2_7_8_3
  doi: 10.1016/j.ensm.2019.12.023
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.202200538
– ident: e_1_2_7_3_2
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_7_10_2
  doi: 10.1002/anie.202017063
– ident: e_1_2_7_20_2
  doi: 10.1039/D1FD00043H
– ident: e_1_2_7_8_2
  doi: 10.1002/aenm.201800266
– ident: e_1_2_7_13_1
  doi: 10.1149/2.0641814jes
– ident: e_1_2_7_18_4
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_7_19_3
  doi: 10.1021/acs.nanolett.9b03548
– ident: e_1_2_7_5_3
  doi: 10.1039/D0TA04768F
– ident: e_1_2_7_9_1
  doi: 10.1038/s41560-019-0428-9
– ident: e_1_2_7_15_1
  doi: 10.1038/s41586-019-1481-z
– ident: e_1_2_7_3_1
  doi: 10.1016/j.joule.2019.07.027
– ident: e_1_2_7_11_1
  doi: 10.1149/2.0091908jes
– ident: e_1_2_7_18_5
  doi: 10.1002/adma.202004128
– ident: e_1_2_7_19_2
  doi: 10.1021/acs.accounts.9b00437
– ident: e_1_2_7_21_1
  doi: 10.1002/aenm.202000804
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_18_3
  doi: 10.1021/jacs.9b10195
– ident: e_1_2_7_22_1
  doi: 10.1038/s41467-021-21683-6
– ident: e_1_2_7_10_1
  doi: 10.1038/s41560-021-00839-0
– ident: e_1_2_7_14_1
  doi: 10.1021/acsami.2c20422
– ident: e_1_2_7_1_2
  doi: 10.1016/j.ensm.2019.05.019
– ident: e_1_2_7_19_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_7_6_1
  doi: 10.1038/s41560-021-00917-3
– ident: e_1_2_7_18_2
  doi: 10.1016/j.ensm.2019.02.011
– ident: e_1_2_7_4_1
  doi: 10.1016/j.ensm.2020.07.004
– ident: e_1_2_7_5_1
  doi: 10.1021/acs.chemrev.0c00275
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.202108252
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.nanolett.6b04755
– ident: e_1_2_7_8_1
  doi: 10.1016/j.electacta.2017.11.175
– ident: e_1_2_7_8_4
  doi: 10.1016/j.ensm.2021.03.008
– ident: e_1_2_7_21_2
  doi: 10.1002/aenm.202201044
– ident: e_1_2_7_7_1
  doi: 10.1038/s41560-020-0668-8
– ident: e_1_2_7_13_2
  doi: 10.1149/1945-7111/abe089
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.chemmater.2c03518
– ident: e_1_2_7_9_3
  doi: 10.1016/j.jpowsour.2019.226912
– ident: e_1_2_7_13_3
  doi: 10.1149/1945-7111/ac62c4
– ident: e_1_2_7_17_2
  doi: 10.1007/s41918-022-00158-2
SSID ssj0000491033
Score 2.4697297
Snippet The enthusiasm of reviving lithium metal anodes has motivated the battery community to pursue higher Li utilization. To this end, an exhaustively complete...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
anode‐free batteries
Cycles
dead Li
Electrolytic cells
Lithium
lithium metal anodes
Nucleation
Plating
solid electrolyte interphases
Solid electrolytes
state of Li stripping
Utilization
Title The Regulation of Lithium Plating Behavior by State of Stripping in Working Lithium Metal Anode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202300959
https://www.proquest.com/docview/2845397588
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKfo7oJ8QOIUSB0ncY7RsmiF2j3ArhROkR3bEAmlqJse4NczfjaFRSxconZkp03nG_ub6cwYoZdpl7Fccp6UC5kmVKoqYbqgYHiaaqAHRDNTO7y6KM6v6Psmb2YzPcla2o7idffjxrqS_9EqyECvpkr2HzQbbwoCeA36hStoGK631vEHd5i8533LfvzSm9x2Ixo-h_aHG8MyLa-0RSrjxrZlsMUsPloeZ66UKY-sh7XcSxKqQ66AcsWCQHTdEwaNNT23UddPESnN1upv2-8LlioKTLTazjFV1yHrovG9wH0ogmQxES6snrDXJwXzAUs1lbmeTHHJzSbQchGP35Zy1xqWq8H0CwBHyQQsd5tW-KP-l70sZhi6bsykNfPbOP8OOiTgTsB6eFi_XS0_xmgc-EmLNLPVGOEZQofPlLzZ_xL7DGbnlkydG8tOLh-g-96twLXDyEM0U8MjdG_SbPIxagEteIcWvNbY6xx7tOCAFiy-Y4sWMyiiBfcD9miJMy1asEXLE3T17uzy9Dzxx2skHZDGKjHUk-SKL8pMFbyswJi7lFcZk7JUZSZzkhYa-GKXgt0uNKdl1VVEFHkOFqxEkT1FB8N6UM8QpgIojpKMSCFpJ7lgTFFFKa9ERxnXc5SEn6ztfO95cwTK1_ZmPc3Rqzj-m-u68seRJ0EDrbfM6xYoVw48O2dsjojVyl_u0tZnF6v47ujWn36M7u7s4AQdjJuteg4kdRQvPMJ-AvRHjQU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Regulation+of+Lithium+Plating+Behavior+by+State+of+Stripping+in+Working+Lithium+Metal+Anode&rft.jtitle=Advanced+energy+materials&rft.au=Xiao%2C+Ye&rft.au=Xu%2C+Rui&rft.au=Xu%2C+Lei&rft.au=Zhan%2C+Ying%E2%80%90Xin&rft.date=2023-08-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=29&rft_id=info:doi/10.1002%2Faenm.202300959&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202300959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon