Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System
A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in induc...
Saved in:
Published in | Annalen der Physik Vol. 532; no. 4 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system.
In the case of two identical Kitaev chains, the interchain hopping amplitude induces a topologically nontrivial phase. Two pairs of nonzero edge modes appear when the interchain hopping amplitude or interchain pairing strength is large enough in another case of two non‐identical Kitaev chains. The winding number is equivalent to half of the number of zero energy edge modes. |
---|---|
AbstractList | Abstract
A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system. A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system. In the case of two identical Kitaev chains, the interchain hopping amplitude induces a topologically nontrivial phase. Two pairs of nonzero edge modes appear when the interchain hopping amplitude or interchain pairing strength is large enough in another case of two non‐identical Kitaev chains. The winding number is equivalent to half of the number of zero energy edge modes. A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system. |
Author | Wang, Hong‐Fu Qi, Lu Yan, Yu Xing, Yan Zhang, Shou Wang, Dong‐Yang |
Author_xml | – sequence: 1 givenname: Yu surname: Yan fullname: Yan, Yu organization: Yanbian University – sequence: 2 givenname: Lu surname: Qi fullname: Qi, Lu organization: Harbin Institute of Technology – sequence: 3 givenname: Dong‐Yang surname: Wang fullname: Wang, Dong‐Yang organization: Harbin Institute of Technology – sequence: 4 givenname: Yan surname: Xing fullname: Xing, Yan organization: Harbin Institute of Technology – sequence: 5 givenname: Hong‐Fu orcidid: 0000-0002-6778-6330 surname: Wang fullname: Wang, Hong‐Fu email: hfwang@ybu.edu.cn organization: Yanbian University – sequence: 6 givenname: Shou surname: Zhang fullname: Zhang, Shou email: szhang@ybu.edu.cn organization: Yanbian University |
BookMark | eNqFULtOwzAUtVCRKKUrsyXmFD_iOB6rlpeIoFLDbDmOU1ylcbADVTc-gW_kS0jVCkame-_ReVydczBoXGMAuMRoghEi16op2wlBWCAUc3EChpgRHNE0FQMwRAjRfkfxGRiHsO5PxBBBJB6CZe5aV7uV1aqGi1cVDMy9aoLtrGtg73oE51atvNoEaHsU5lv3_fmVmRV8tJ0yHzBTZWk8XO5CZzYX4LRSdTDj4xyBl9ubfHYfZc93D7NpFmmKuYhindKq4sawpCSq_46lVUGVKGiZVFwLrjDjhWY4LowueFoJg7ChWCexpgwxOgJXB9_Wu7d3Ezq5du--6SMloanAlPAk7lmTA0t7F4I3lWy93Si_kxjJfXdy35387a4XiINga2uz-4ctp0_zxZ_2B-ygdLg |
CitedBy_id | crossref_primary_10_1103_PhysRevA_104_023707 crossref_primary_10_1103_PhysRevB_107_064505 crossref_primary_10_1016_j_physa_2022_128346 crossref_primary_10_1103_PhysRevA_109_022211 crossref_primary_10_1088_1367_2630_ad1140 crossref_primary_10_1103_PhysRevB_108_125426 |
Cites_doi | 10.1103/PhysRevLett.104.040502 10.1088/1367-2630/17/1/013017 10.1103/PhysRevB.94.125408 10.1016/j.aop.2014.08.013 10.1103/RevModPhys.82.3045 10.1103/PhysRevB.84.144522 10.1002/andp.201900307 10.1103/PhysRevB.89.155135 10.1103/PhysRevLett.123.037203 10.1016/j.physleta.2012.10.016 10.3390/nano9060894 10.1070/1063-7869/44/10S/S29 10.1103/PhysRevB.86.205135 10.1103/PhysRevB.99.195112 10.1103/RevModPhys.83.1057 10.1103/PhysRevLett.105.177002 10.1103/PhysRevB.100.104428 10.1364/OE.26.016250 10.1103/PhysRevB.81.125318 10.1103/PhysRevB.95.195140 10.1103/PhysRevB.98.024205 10.1088/1674-1056/25/5/057101 10.1103/PhysRevA.95.061601 10.1103/PhysRevB.97.115436 10.1103/PhysRevLett.100.096407 10.1088/0034-4885/75/7/076501 10.1103/PhysRevB.89.174514 10.1103/PhysRevA.93.023608 10.1103/PhysRevB.76.193101 10.1103/PhysRevB.90.014505 10.1103/PhysRevB.82.134521 10.1103/PhysRevB.91.134512 10.1103/PhysRevA.92.012116 10.1146/annurev-conmatphys-030212-184337 10.1002/andp.201600262 10.1103/PhysRevB.55.1142 10.1103/PhysRevLett.98.087204 10.1103/PhysRevB.97.085131 10.1016/j.physleta.2005.01.060 10.1088/1751-8113/41/7/075001 10.1103/PhysRevLett.105.080501 10.1007/s11433-018-9212-4 10.1103/PhysRevB.100.045407 10.1103/PhysRevLett.105.077001 10.1103/PhysRevB.99.224418 10.1103/PhysRevB.96.125418 10.1103/PhysRevB.96.205428 10.1016/j.physleta.2017.05.035 10.1088/0268-1242/27/12/124003 10.1016/j.physleta.2016.10.005 10.1088/1742-5468/aa657c 10.1103/PhysRevB.76.180404 10.7566/JPSJ.85.074003 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1002/andp.201900479 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1521-3889 |
EndPage | n/a |
ExternalDocumentID | 10_1002_andp_201900479 ANDP201900479 |
Genre | article |
GrantInformation_xml | – fundername: Project of Jilin Science and Technology Development for Leading Talent of Science and Technology Innovation in Middle and Young and Team Project funderid: 20160519022JH – fundername: National Natural Science Foundation of China funderid: 61822114; 11465020; 61465013 |
GroupedDBID | -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 2WC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 669 66C 692 6J9 6P2 6TJ 6TS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM E3Z EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYQRN H.T H.X HBH HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQ8 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6R MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGL RIWAO RJQFR RNS RNW ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 UPT UQL V8K VH1 W8V W99 WBKPD WGJPS WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XOL XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX CITATION 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053 |
IEDL.DBID | DR2 |
ISSN | 0003-3804 |
IngestDate | Thu Oct 10 17:11:55 EDT 2024 Thu Sep 26 17:36:25 EDT 2024 Sat Aug 24 01:07:09 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053 |
ORCID | 0000-0002-6778-6330 |
PQID | 2389132764 |
PQPubID | 946351 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2389132764 crossref_primary_10_1002_andp_201900479 wiley_primary_10_1002_andp_201900479_ANDP201900479 |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Annalen der Physik |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 9 2015; 17 2013; 4 2014; 90 2017; 2017 2015; 92 2010; 105 2019; 99 2010; 104 2011; 84 2018; 126 2005; 337 2011; 83 2016; 94 2016; 93 2018; 61 2001; 44 2010; 81 2016; 380 2008; 100 2007; 98 2007; 76 2014; 351 2014; 89 2019; 100 2019; 123 2010; 82 2017; 95 2017; 75 2017; 96 2018; 8 2017; 529 2012; 376 1997; 56 2016; 85 2019; 531 2017; 381 2012; 27 2008; 41 2015; 91 2018; 98 2018; 97 2016; 25 2012; 86 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 McDonald A. (e_1_2_7_33_1) 2018; 8 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 100 year: 2008 publication-title: Phys. Rev. Lett. – volume: 61 year: 2018 publication-title: Sci. China‐Phys. Mech. Astron. – volume: 82 start-page: 3045 year: 2010 publication-title: Rev. Mod. Phys. – volume: 8 year: 2018 publication-title: Phys. Rev. X – volume: 91 year: 2015 publication-title: Phys. Rev. B – volume: 89 year: 2014 publication-title: Phys. Rev. B – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. – volume: 44 start-page: 131 year: 2001 publication-title: Phys.‐Usp. – volume: 85 year: 2016 publication-title: J. Phys. Soc. Jap. – volume: 86 year: 2012 publication-title: Phys. Rev. B – volume: 123 year: 2019 publication-title: Phys. Rev. Lett. – volume: 97 year: 2018 publication-title: Phys. Rev. B – volume: 380 start-page: 3936 year: 2016 publication-title: Phys. Lett. A – volume: 27 year: 2012 publication-title: Semicond. Sci. and Technol. – volume: 95 year: 2017 publication-title: Phys. Rev. B – volume: 104 year: 2010 publication-title: Phys. Rev. Lett. – volume: 126 year: 2018 publication-title: Opt. Exp. – volume: 90 year: 2014 publication-title: Phys. Rev. B – volume: 9 start-page: 894 year: 2019 publication-title: Nanomaterials – volume: 337 start-page: 22 year: 2005 publication-title: Phys. Lett. A – volume: 98 year: 2018 publication-title: Phys. Rev. B – volume: 93 year: 2016 publication-title: Phys. Rev. A – volume: 82 year: 2010 publication-title: Phys. Rev. B – volume: 92 year: 2015 publication-title: Phys. Rev. A – volume: 351 start-page: 1026 year: 2014 publication-title: Ann. Phys. – volume: 529 year: 2017 publication-title: Ann. Phys. (Berlin) – volume: 94 year: 2016 publication-title: Phys. Rev. B – volume: 84 year: 2011 publication-title: Phys. Rev. B – volume: 81 year: 2010 publication-title: Phys. Rev. B – volume: 25 year: 2016 publication-title: Chin. Phys. B – volume: 100 year: 2019 publication-title: Phys. Rev. B – volume: 83 start-page: 1057 year: 2011 publication-title: Rev. Mod. Phys. – volume: 99 year: 2019 publication-title: Phys. Rev. B – volume: 41 year: 2008 publication-title: J. Phys. A: Math. Theor. – volume: 531 year: 2019 publication-title: Ann. Phys. (Berlin) – volume: 76 year: 2007 publication-title: Phys. Rev. B – volume: 56 start-page: 1142 year: 1997 publication-title: Phys. Rev. B – volume: 95 year: 2017 publication-title: Phys. Rev. A – volume: 2017 year: 2017 publication-title: J. Stat. Mech.: Theory Exp. – volume: 376 start-page: 3530 year: 2012 publication-title: Phys. Lett. A – volume: 75 year: 2017 publication-title: Rep. Prog. Phys. – volume: 4 start-page: 113 year: 2013 publication-title: Annu. Rev. Cond. Matter Phys. – volume: 96 year: 2017 publication-title: Phys. Rev. B – volume: 105 year: 2010 publication-title: Phys. Rev. Lett. – volume: 17 year: 2015 publication-title: New J. Phys. – volume: 381 start-page: 2426 year: 2017 publication-title: Phys. Lett. A – ident: e_1_2_7_6_1 doi: 10.1103/PhysRevLett.104.040502 – ident: e_1_2_7_43_1 doi: 10.1088/1367-2630/17/1/013017 – ident: e_1_2_7_28_1 doi: 10.1103/PhysRevB.94.125408 – ident: e_1_2_7_13_1 doi: 10.1016/j.aop.2014.08.013 – ident: e_1_2_7_53_1 doi: 10.1103/RevModPhys.82.3045 – ident: e_1_2_7_11_1 doi: 10.1103/PhysRevB.84.144522 – ident: e_1_2_7_41_1 doi: 10.1002/andp.201900307 – ident: e_1_2_7_17_1 doi: 10.1103/PhysRevB.89.155135 – ident: e_1_2_7_36_1 doi: 10.1103/PhysRevLett.123.037203 – ident: e_1_2_7_47_1 doi: 10.1016/j.physleta.2012.10.016 – ident: e_1_2_7_49_1 doi: 10.3390/nano9060894 – ident: e_1_2_7_1_1 doi: 10.1070/1063-7869/44/10S/S29 – ident: e_1_2_7_30_1 doi: 10.1103/PhysRevB.86.205135 – ident: e_1_2_7_21_1 doi: 10.1103/PhysRevB.99.195112 – ident: e_1_2_7_54_1 doi: 10.1103/RevModPhys.83.1057 – ident: e_1_2_7_10_1 doi: 10.1103/PhysRevLett.105.177002 – ident: e_1_2_7_22_1 doi: 10.1103/PhysRevB.100.104428 – ident: e_1_2_7_25_1 doi: 10.1364/OE.26.016250 – ident: e_1_2_7_7_1 doi: 10.1103/PhysRevB.81.125318 – ident: e_1_2_7_32_1 doi: 10.1103/PhysRevB.95.195140 – ident: e_1_2_7_37_1 doi: 10.1103/PhysRevB.98.024205 – volume: 8 start-page: 041031 year: 2018 ident: e_1_2_7_33_1 publication-title: Phys. Rev. X contributor: fullname: McDonald A. – ident: e_1_2_7_27_1 doi: 10.1088/1674-1056/25/5/057101 – ident: e_1_2_7_39_1 doi: 10.1103/PhysRevA.95.061601 – ident: e_1_2_7_34_1 doi: 10.1103/PhysRevB.97.115436 – ident: e_1_2_7_5_1 doi: 10.1103/PhysRevLett.100.096407 – ident: e_1_2_7_2_1 doi: 10.1088/0034-4885/75/7/076501 – ident: e_1_2_7_46_1 doi: 10.1103/PhysRevB.89.174514 – ident: e_1_2_7_45_1 doi: 10.1103/PhysRevA.93.023608 – ident: e_1_2_7_15_1 doi: 10.1103/PhysRevB.76.193101 – ident: e_1_2_7_26_1 doi: 10.1103/PhysRevB.90.014505 – ident: e_1_2_7_8_1 doi: 10.1103/PhysRevB.82.134521 – ident: e_1_2_7_51_1 doi: 10.1103/PhysRevB.91.134512 – ident: e_1_2_7_44_1 doi: 10.1103/PhysRevA.92.012116 – ident: e_1_2_7_4_1 doi: 10.1146/annurev-conmatphys-030212-184337 – ident: e_1_2_7_42_1 doi: 10.1002/andp.201600262 – ident: e_1_2_7_50_1 doi: 10.1103/PhysRevB.55.1142 – ident: e_1_2_7_12_1 doi: 10.1103/PhysRevLett.98.087204 – ident: e_1_2_7_19_1 doi: 10.1103/PhysRevB.97.085131 – ident: e_1_2_7_23_1 doi: 10.1016/j.physleta.2005.01.060 – ident: e_1_2_7_16_1 doi: 10.1088/1751-8113/41/7/075001 – ident: e_1_2_7_24_1 doi: 10.1103/PhysRevLett.105.080501 – ident: e_1_2_7_40_1 doi: 10.1007/s11433-018-9212-4 – ident: e_1_2_7_35_1 doi: 10.1103/PhysRevB.100.045407 – ident: e_1_2_7_9_1 doi: 10.1103/PhysRevLett.105.077001 – ident: e_1_2_7_20_1 doi: 10.1103/PhysRevB.99.224418 – ident: e_1_2_7_38_1 doi: 10.1103/PhysRevB.96.125418 – ident: e_1_2_7_29_1 doi: 10.1103/PhysRevB.96.205428 – ident: e_1_2_7_52_1 doi: 10.1016/j.physleta.2017.05.035 – ident: e_1_2_7_3_1 doi: 10.1088/0268-1242/27/12/124003 – ident: e_1_2_7_48_1 doi: 10.1016/j.physleta.2016.10.005 – ident: e_1_2_7_18_1 doi: 10.1088/1742-5468/aa657c – ident: e_1_2_7_14_1 doi: 10.1103/PhysRevB.76.180404 – ident: e_1_2_7_31_1 doi: 10.7566/JPSJ.85.074003 |
SSID | ssj0000502024 ssj0002169523 ssj0000502025 ssj0009609 |
Score | 2.3156826 |
Snippet | A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical... Abstract A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Amplitudes Chains Energy gap Energy spectra Kitaev chains Phase diagrams Phase transitions topological invariants topological phase transitions Topology |
Title | Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fandp.201900479 https://www.proquest.com/docview/2389132764 |
Volume | 532 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA1SENz4FuuLLARX006SyWSyLNYiWqVoC90NSSbRIlSxVcGVn-A3-iUmmUdbN4KuhgSSIcl9nCQ35wJwnFlMgYihATUyCyJsrM5lKAl0ZIjkWSgYcu-dr67j80F0MaTDuVf8OT9EdeDmNMPba6fgQk6aM9JQu9F2fJPWoTmWdGuEEWEupqt9g6tDlpBaNFQ8f5iVaVXGKOZ0znQ7-rUyxR5JwqhkeQxxc_F3i15sBk3nAa73UJ01IMqx5YEpD42XqWyo9x-0j_8Z_DpYLeArbOXytgGW9HgTLPswUjXZArf9POeCW3nYu7ceEnpn6OPCoO2uqGyPhIsKm8CRrYX9t8evj8-uvoOXo6nQr7DrzOEzzNnUt8Ggc9Y_PQ-KtA2BsmCEB5FKiDFMaxpnWCTuJtZIIrgkWWyY4kwgyqSySM3Kj2SJ4TpEmiAVR4pYQEZ2QG38ONa7ADJhkERc6sSRr9sPJVhippGFkUpwUwcn5TKkTzk7R5rzMOPUTVFaTVEdHJSrlBZaOkmxv6TFLI7qAPvp_qWXtHXd7lWlvb802gcr2G3ZffDPAahNn1_0ocU1U3nkZfcbEHDqKQ |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFL1oRXTjW6zPLARXo5NkMplZFqtUrUW0grthkkm0CK3YquDKT_Ab_RKTzKPqRtDVkEAyJLmPk-TmXIDdzGAKTDXzmBaZFxBtdC7DkacCTUWc-SnH9r3zeSdsXQenN6yMJrRvYXJ-iOrAzWqGs9dWwe2B9MGYNdTstC3hpPFoliZ9EqaMzlObvaF5SapjFp8ZPFQ8gBiXWVUmOIzZF-NtCdjKJHs08oOS59EnB9__992PjcHpV4jrfNTxPIhydHloyv3-00jsy9cfxI__Gv4CzBUIFjVykVuECdVfgmkXSSqHy3DVzdMu2MVHF3fGSSLnD11oGDLdFZXNXmoDw4aoZ2pR92Xw8fbeVrforDdK1TNqW4v4iHJC9RW4Pj7qHra8InODJw0eib1ARlRrrhQLM5JG9jJWC5rGgmah5jLmKWZcSAPWjAgJHulY-VhRLMNAUoPJ6CrU-oO-WgPEU40FjoWKLP-6-TBKBOEKGyQp01jXYa9ch-QhJ-hIcipmktgpSqopqsNmuUxJoajDhLh7WsLDoA7EzfcvvSSNTvOiKq3_pdEOzLS65-2kfdI524BZYnfwLhZoE2qjxye1ZWDOSGw7Qf4EvWPuQQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NahsxEB5al4RekjZpiBOn1aHQ0zorabXaPZo4JmlcY1obfFskrZSYgB1iu4We-gh9xj5JJe2P7VwK6WmRQFo00sx8kkbfAHzMLabA1LCAGZkHETFW53KcBDoyVKZ5KDh2752_DOKrcfR5wiYbr_gLfoj6wM1phrfXTsEfcnO-Jg21G23HN2kdmmNJfwmvotjCXweLvpL6lCVkFg6V7x_WZVaXCY5TtmG7Hf9alWOPJmFU0TyG5Hz7f9tubI1NNxGud1G9fRDV4IrIlPv2ainb6ucT3sf_Gf0b2CvxK-oUC-4tvNCzA9jxcaRqcQjfRkXSBTf1aHhnXSTy3tAHhiHbXVnZnQoXFrZAU1uLRj_mf3797utbdDNdCv0d9Z09fEQFnfo7GPcuRxdXQZm3IVAWjaRBpBJqDNeaxTkRibuKNZKKVNI8NlylXGDGpbJQzS4gyROT6hBrilUcKWoRGT2Cxmw-08eAuDBY4lTqxLGv2w-jRBKuscWRSqSmCZ-qacgeCnqOrCBiJpkTUVaLqAmtapayUk0XGfG3tITHUROIF_c_esk6g-6wLp08p9EH2B12e1n_enBzCq-J2777QKAWNJaPK31mMc5SvvfL-C_5_ezw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Phase+Transition+and+Phase+Diagrams+in+a+Two%E2%80%90Leg+Kitaev+Ladder+System&rft.jtitle=Annalen+der+Physik&rft.au=Yu%2C+Yan&rft.au=Lu%2C+Qi&rft.au=Dong%E2%80%90Yang+Wang&rft.au=Xing%2C+Yan&rft.date=2020-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0003-3804&rft.eissn=1521-3889&rft.volume=532&rft.issue=4&rft_id=info:doi/10.1002%2Fandp.201900479&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-3804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-3804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-3804&client=summon |