Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System

A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in induc...

Full description

Saved in:
Bibliographic Details
Published inAnnalen der Physik Vol. 532; no. 4
Main Authors Yan, Yu, Qi, Lu, Wang, Dong‐Yang, Xing, Yan, Wang, Hong‐Fu, Zhang, Shou
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system. In the case of two identical Kitaev chains, the interchain hopping amplitude induces a topologically nontrivial phase. Two pairs of nonzero edge modes appear when the interchain hopping amplitude or interchain pairing strength is large enough in another case of two non‐identical Kitaev chains. The winding number is equivalent to half of the number of zero energy edge modes.
AbstractList Abstract A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system.
A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system. In the case of two identical Kitaev chains, the interchain hopping amplitude induces a topologically nontrivial phase. Two pairs of nonzero edge modes appear when the interchain hopping amplitude or interchain pairing strength is large enough in another case of two non‐identical Kitaev chains. The winding number is equivalent to half of the number of zero energy edge modes.
A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system.
Author Wang, Hong‐Fu
Qi, Lu
Yan, Yu
Xing, Yan
Zhang, Shou
Wang, Dong‐Yang
Author_xml – sequence: 1
  givenname: Yu
  surname: Yan
  fullname: Yan, Yu
  organization: Yanbian University
– sequence: 2
  givenname: Lu
  surname: Qi
  fullname: Qi, Lu
  organization: Harbin Institute of Technology
– sequence: 3
  givenname: Dong‐Yang
  surname: Wang
  fullname: Wang, Dong‐Yang
  organization: Harbin Institute of Technology
– sequence: 4
  givenname: Yan
  surname: Xing
  fullname: Xing, Yan
  organization: Harbin Institute of Technology
– sequence: 5
  givenname: Hong‐Fu
  orcidid: 0000-0002-6778-6330
  surname: Wang
  fullname: Wang, Hong‐Fu
  email: hfwang@ybu.edu.cn
  organization: Yanbian University
– sequence: 6
  givenname: Shou
  surname: Zhang
  fullname: Zhang, Shou
  email: szhang@ybu.edu.cn
  organization: Yanbian University
BookMark eNqFULtOwzAUtVCRKKUrsyXmFD_iOB6rlpeIoFLDbDmOU1ylcbADVTc-gW_kS0jVCkame-_ReVydczBoXGMAuMRoghEi16op2wlBWCAUc3EChpgRHNE0FQMwRAjRfkfxGRiHsO5PxBBBJB6CZe5aV7uV1aqGi1cVDMy9aoLtrGtg73oE51atvNoEaHsU5lv3_fmVmRV8tJ0yHzBTZWk8XO5CZzYX4LRSdTDj4xyBl9ubfHYfZc93D7NpFmmKuYhindKq4sawpCSq_46lVUGVKGiZVFwLrjDjhWY4LowueFoJg7ChWCexpgwxOgJXB9_Wu7d3Ezq5du--6SMloanAlPAk7lmTA0t7F4I3lWy93Si_kxjJfXdy35387a4XiINga2uz-4ctp0_zxZ_2B-ygdLg
CitedBy_id crossref_primary_10_1103_PhysRevA_104_023707
crossref_primary_10_1103_PhysRevB_107_064505
crossref_primary_10_1016_j_physa_2022_128346
crossref_primary_10_1103_PhysRevA_109_022211
crossref_primary_10_1088_1367_2630_ad1140
crossref_primary_10_1103_PhysRevB_108_125426
Cites_doi 10.1103/PhysRevLett.104.040502
10.1088/1367-2630/17/1/013017
10.1103/PhysRevB.94.125408
10.1016/j.aop.2014.08.013
10.1103/RevModPhys.82.3045
10.1103/PhysRevB.84.144522
10.1002/andp.201900307
10.1103/PhysRevB.89.155135
10.1103/PhysRevLett.123.037203
10.1016/j.physleta.2012.10.016
10.3390/nano9060894
10.1070/1063-7869/44/10S/S29
10.1103/PhysRevB.86.205135
10.1103/PhysRevB.99.195112
10.1103/RevModPhys.83.1057
10.1103/PhysRevLett.105.177002
10.1103/PhysRevB.100.104428
10.1364/OE.26.016250
10.1103/PhysRevB.81.125318
10.1103/PhysRevB.95.195140
10.1103/PhysRevB.98.024205
10.1088/1674-1056/25/5/057101
10.1103/PhysRevA.95.061601
10.1103/PhysRevB.97.115436
10.1103/PhysRevLett.100.096407
10.1088/0034-4885/75/7/076501
10.1103/PhysRevB.89.174514
10.1103/PhysRevA.93.023608
10.1103/PhysRevB.76.193101
10.1103/PhysRevB.90.014505
10.1103/PhysRevB.82.134521
10.1103/PhysRevB.91.134512
10.1103/PhysRevA.92.012116
10.1146/annurev-conmatphys-030212-184337
10.1002/andp.201600262
10.1103/PhysRevB.55.1142
10.1103/PhysRevLett.98.087204
10.1103/PhysRevB.97.085131
10.1016/j.physleta.2005.01.060
10.1088/1751-8113/41/7/075001
10.1103/PhysRevLett.105.080501
10.1007/s11433-018-9212-4
10.1103/PhysRevB.100.045407
10.1103/PhysRevLett.105.077001
10.1103/PhysRevB.99.224418
10.1103/PhysRevB.96.125418
10.1103/PhysRevB.96.205428
10.1016/j.physleta.2017.05.035
10.1088/0268-1242/27/12/124003
10.1016/j.physleta.2016.10.005
10.1088/1742-5468/aa657c
10.1103/PhysRevB.76.180404
10.7566/JPSJ.85.074003
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1002/andp.201900479
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3889
EndPage n/a
ExternalDocumentID 10_1002_andp_201900479
ANDP201900479
Genre article
GrantInformation_xml – fundername: Project of Jilin Science and Technology Development for Leading Talent of Science and Technology Innovation in Middle and Young and Team Project
  funderid: 20160519022JH
– fundername: National Natural Science Foundation of China
  funderid: 61822114; 11465020; 61465013
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
2WC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
669
66C
692
6J9
6P2
6TJ
6TS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYQRN
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQ8
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6R
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGL
RIWAO
RJQFR
RNS
RNW
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
UPT
UQL
V8K
VH1
W8V
W99
WBKPD
WGJPS
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053
IEDL.DBID DR2
ISSN 0003-3804
IngestDate Thu Oct 10 17:11:55 EDT 2024
Thu Sep 26 17:36:25 EDT 2024
Sat Aug 24 01:07:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053
ORCID 0000-0002-6778-6330
PQID 2389132764
PQPubID 946351
PageCount 7
ParticipantIDs proquest_journals_2389132764
crossref_primary_10_1002_andp_201900479
wiley_primary_10_1002_andp_201900479_ANDP201900479
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Annalen der Physik
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 9
2015; 17
2013; 4
2014; 90
2017; 2017
2015; 92
2010; 105
2019; 99
2010; 104
2011; 84
2018; 126
2005; 337
2011; 83
2016; 94
2016; 93
2018; 61
2001; 44
2010; 81
2016; 380
2008; 100
2007; 98
2007; 76
2014; 351
2014; 89
2019; 100
2019; 123
2010; 82
2017; 95
2017; 75
2017; 96
2018; 8
2017; 529
2012; 376
1997; 56
2016; 85
2019; 531
2017; 381
2012; 27
2008; 41
2015; 91
2018; 98
2018; 97
2016; 25
2012; 86
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
McDonald A. (e_1_2_7_33_1) 2018; 8
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 100
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 61
  year: 2018
  publication-title: Sci. China‐Phys. Mech. Astron.
– volume: 82
  start-page: 3045
  year: 2010
  publication-title: Rev. Mod. Phys.
– volume: 8
  year: 2018
  publication-title: Phys. Rev. X
– volume: 91
  year: 2015
  publication-title: Phys. Rev. B
– volume: 89
  year: 2014
  publication-title: Phys. Rev. B
– volume: 98
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 44
  start-page: 131
  year: 2001
  publication-title: Phys.‐Usp.
– volume: 85
  year: 2016
  publication-title: J. Phys. Soc. Jap.
– volume: 86
  year: 2012
  publication-title: Phys. Rev. B
– volume: 123
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 97
  year: 2018
  publication-title: Phys. Rev. B
– volume: 380
  start-page: 3936
  year: 2016
  publication-title: Phys. Lett. A
– volume: 27
  year: 2012
  publication-title: Semicond. Sci. and Technol.
– volume: 95
  year: 2017
  publication-title: Phys. Rev. B
– volume: 104
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 126
  year: 2018
  publication-title: Opt. Exp.
– volume: 90
  year: 2014
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 894
  year: 2019
  publication-title: Nanomaterials
– volume: 337
  start-page: 22
  year: 2005
  publication-title: Phys. Lett. A
– volume: 98
  year: 2018
  publication-title: Phys. Rev. B
– volume: 93
  year: 2016
  publication-title: Phys. Rev. A
– volume: 82
  year: 2010
  publication-title: Phys. Rev. B
– volume: 92
  year: 2015
  publication-title: Phys. Rev. A
– volume: 351
  start-page: 1026
  year: 2014
  publication-title: Ann. Phys.
– volume: 529
  year: 2017
  publication-title: Ann. Phys. (Berlin)
– volume: 94
  year: 2016
  publication-title: Phys. Rev. B
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– volume: 81
  year: 2010
  publication-title: Phys. Rev. B
– volume: 25
  year: 2016
  publication-title: Chin. Phys. B
– volume: 100
  year: 2019
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 1057
  year: 2011
  publication-title: Rev. Mod. Phys.
– volume: 99
  year: 2019
  publication-title: Phys. Rev. B
– volume: 41
  year: 2008
  publication-title: J. Phys. A: Math. Theor.
– volume: 531
  year: 2019
  publication-title: Ann. Phys. (Berlin)
– volume: 76
  year: 2007
  publication-title: Phys. Rev. B
– volume: 56
  start-page: 1142
  year: 1997
  publication-title: Phys. Rev. B
– volume: 95
  year: 2017
  publication-title: Phys. Rev. A
– volume: 2017
  year: 2017
  publication-title: J. Stat. Mech.: Theory Exp.
– volume: 376
  start-page: 3530
  year: 2012
  publication-title: Phys. Lett. A
– volume: 75
  year: 2017
  publication-title: Rep. Prog. Phys.
– volume: 4
  start-page: 113
  year: 2013
  publication-title: Annu. Rev. Cond. Matter Phys.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. B
– volume: 105
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 17
  year: 2015
  publication-title: New J. Phys.
– volume: 381
  start-page: 2426
  year: 2017
  publication-title: Phys. Lett. A
– ident: e_1_2_7_6_1
  doi: 10.1103/PhysRevLett.104.040502
– ident: e_1_2_7_43_1
  doi: 10.1088/1367-2630/17/1/013017
– ident: e_1_2_7_28_1
  doi: 10.1103/PhysRevB.94.125408
– ident: e_1_2_7_13_1
  doi: 10.1016/j.aop.2014.08.013
– ident: e_1_2_7_53_1
  doi: 10.1103/RevModPhys.82.3045
– ident: e_1_2_7_11_1
  doi: 10.1103/PhysRevB.84.144522
– ident: e_1_2_7_41_1
  doi: 10.1002/andp.201900307
– ident: e_1_2_7_17_1
  doi: 10.1103/PhysRevB.89.155135
– ident: e_1_2_7_36_1
  doi: 10.1103/PhysRevLett.123.037203
– ident: e_1_2_7_47_1
  doi: 10.1016/j.physleta.2012.10.016
– ident: e_1_2_7_49_1
  doi: 10.3390/nano9060894
– ident: e_1_2_7_1_1
  doi: 10.1070/1063-7869/44/10S/S29
– ident: e_1_2_7_30_1
  doi: 10.1103/PhysRevB.86.205135
– ident: e_1_2_7_21_1
  doi: 10.1103/PhysRevB.99.195112
– ident: e_1_2_7_54_1
  doi: 10.1103/RevModPhys.83.1057
– ident: e_1_2_7_10_1
  doi: 10.1103/PhysRevLett.105.177002
– ident: e_1_2_7_22_1
  doi: 10.1103/PhysRevB.100.104428
– ident: e_1_2_7_25_1
  doi: 10.1364/OE.26.016250
– ident: e_1_2_7_7_1
  doi: 10.1103/PhysRevB.81.125318
– ident: e_1_2_7_32_1
  doi: 10.1103/PhysRevB.95.195140
– ident: e_1_2_7_37_1
  doi: 10.1103/PhysRevB.98.024205
– volume: 8
  start-page: 041031
  year: 2018
  ident: e_1_2_7_33_1
  publication-title: Phys. Rev. X
  contributor:
    fullname: McDonald A.
– ident: e_1_2_7_27_1
  doi: 10.1088/1674-1056/25/5/057101
– ident: e_1_2_7_39_1
  doi: 10.1103/PhysRevA.95.061601
– ident: e_1_2_7_34_1
  doi: 10.1103/PhysRevB.97.115436
– ident: e_1_2_7_5_1
  doi: 10.1103/PhysRevLett.100.096407
– ident: e_1_2_7_2_1
  doi: 10.1088/0034-4885/75/7/076501
– ident: e_1_2_7_46_1
  doi: 10.1103/PhysRevB.89.174514
– ident: e_1_2_7_45_1
  doi: 10.1103/PhysRevA.93.023608
– ident: e_1_2_7_15_1
  doi: 10.1103/PhysRevB.76.193101
– ident: e_1_2_7_26_1
  doi: 10.1103/PhysRevB.90.014505
– ident: e_1_2_7_8_1
  doi: 10.1103/PhysRevB.82.134521
– ident: e_1_2_7_51_1
  doi: 10.1103/PhysRevB.91.134512
– ident: e_1_2_7_44_1
  doi: 10.1103/PhysRevA.92.012116
– ident: e_1_2_7_4_1
  doi: 10.1146/annurev-conmatphys-030212-184337
– ident: e_1_2_7_42_1
  doi: 10.1002/andp.201600262
– ident: e_1_2_7_50_1
  doi: 10.1103/PhysRevB.55.1142
– ident: e_1_2_7_12_1
  doi: 10.1103/PhysRevLett.98.087204
– ident: e_1_2_7_19_1
  doi: 10.1103/PhysRevB.97.085131
– ident: e_1_2_7_23_1
  doi: 10.1016/j.physleta.2005.01.060
– ident: e_1_2_7_16_1
  doi: 10.1088/1751-8113/41/7/075001
– ident: e_1_2_7_24_1
  doi: 10.1103/PhysRevLett.105.080501
– ident: e_1_2_7_40_1
  doi: 10.1007/s11433-018-9212-4
– ident: e_1_2_7_35_1
  doi: 10.1103/PhysRevB.100.045407
– ident: e_1_2_7_9_1
  doi: 10.1103/PhysRevLett.105.077001
– ident: e_1_2_7_20_1
  doi: 10.1103/PhysRevB.99.224418
– ident: e_1_2_7_38_1
  doi: 10.1103/PhysRevB.96.125418
– ident: e_1_2_7_29_1
  doi: 10.1103/PhysRevB.96.205428
– ident: e_1_2_7_52_1
  doi: 10.1016/j.physleta.2017.05.035
– ident: e_1_2_7_3_1
  doi: 10.1088/0268-1242/27/12/124003
– ident: e_1_2_7_48_1
  doi: 10.1016/j.physleta.2016.10.005
– ident: e_1_2_7_18_1
  doi: 10.1088/1742-5468/aa657c
– ident: e_1_2_7_14_1
  doi: 10.1103/PhysRevB.76.180404
– ident: e_1_2_7_31_1
  doi: 10.7566/JPSJ.85.074003
SSID ssj0000502024
ssj0002169523
ssj0000502025
ssj0009609
Score 2.3156826
Snippet A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical...
Abstract A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Amplitudes
Chains
Energy gap
Energy spectra
Kitaev chains
Phase diagrams
Phase transitions
topological invariants
topological phase transitions
Topology
Title Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fandp.201900479
https://www.proquest.com/docview/2389132764
Volume 532
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA1SENz4FuuLLARX006SyWSyLNYiWqVoC90NSSbRIlSxVcGVn-A3-iUmmUdbN4KuhgSSIcl9nCQ35wJwnFlMgYihATUyCyJsrM5lKAl0ZIjkWSgYcu-dr67j80F0MaTDuVf8OT9EdeDmNMPba6fgQk6aM9JQu9F2fJPWoTmWdGuEEWEupqt9g6tDlpBaNFQ8f5iVaVXGKOZ0znQ7-rUyxR5JwqhkeQxxc_F3i15sBk3nAa73UJ01IMqx5YEpD42XqWyo9x-0j_8Z_DpYLeArbOXytgGW9HgTLPswUjXZArf9POeCW3nYu7ceEnpn6OPCoO2uqGyPhIsKm8CRrYX9t8evj8-uvoOXo6nQr7DrzOEzzNnUt8Ggc9Y_PQ-KtA2BsmCEB5FKiDFMaxpnWCTuJtZIIrgkWWyY4kwgyqSySM3Kj2SJ4TpEmiAVR4pYQEZ2QG38ONa7ADJhkERc6sSRr9sPJVhippGFkUpwUwcn5TKkTzk7R5rzMOPUTVFaTVEdHJSrlBZaOkmxv6TFLI7qAPvp_qWXtHXd7lWlvb802gcr2G3ZffDPAahNn1_0ocU1U3nkZfcbEHDqKQ
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFL1oRXTjW6zPLARXo5NkMplZFqtUrUW0grthkkm0CK3YquDKT_Ab_RKTzKPqRtDVkEAyJLmPk-TmXIDdzGAKTDXzmBaZFxBtdC7DkacCTUWc-SnH9r3zeSdsXQenN6yMJrRvYXJ-iOrAzWqGs9dWwe2B9MGYNdTstC3hpPFoliZ9EqaMzlObvaF5SapjFp8ZPFQ8gBiXWVUmOIzZF-NtCdjKJHs08oOS59EnB9__992PjcHpV4jrfNTxPIhydHloyv3-00jsy9cfxI__Gv4CzBUIFjVykVuECdVfgmkXSSqHy3DVzdMu2MVHF3fGSSLnD11oGDLdFZXNXmoDw4aoZ2pR92Xw8fbeVrforDdK1TNqW4v4iHJC9RW4Pj7qHra8InODJw0eib1ARlRrrhQLM5JG9jJWC5rGgmah5jLmKWZcSAPWjAgJHulY-VhRLMNAUoPJ6CrU-oO-WgPEU40FjoWKLP-6-TBKBOEKGyQp01jXYa9ch-QhJ-hIcipmktgpSqopqsNmuUxJoajDhLh7WsLDoA7EzfcvvSSNTvOiKq3_pdEOzLS65-2kfdI524BZYnfwLhZoE2qjxye1ZWDOSGw7Qf4EvWPuQQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NahsxEB5al4RekjZpiBOn1aHQ0zorabXaPZo4JmlcY1obfFskrZSYgB1iu4We-gh9xj5JJe2P7VwK6WmRQFo00sx8kkbfAHzMLabA1LCAGZkHETFW53KcBDoyVKZ5KDh2752_DOKrcfR5wiYbr_gLfoj6wM1phrfXTsEfcnO-Jg21G23HN2kdmmNJfwmvotjCXweLvpL6lCVkFg6V7x_WZVaXCY5TtmG7Hf9alWOPJmFU0TyG5Hz7f9tubI1NNxGud1G9fRDV4IrIlPv2ainb6ucT3sf_Gf0b2CvxK-oUC-4tvNCzA9jxcaRqcQjfRkXSBTf1aHhnXSTy3tAHhiHbXVnZnQoXFrZAU1uLRj_mf3797utbdDNdCv0d9Z09fEQFnfo7GPcuRxdXQZm3IVAWjaRBpBJqDNeaxTkRibuKNZKKVNI8NlylXGDGpbJQzS4gyROT6hBrilUcKWoRGT2Cxmw-08eAuDBY4lTqxLGv2w-jRBKuscWRSqSmCZ-qacgeCnqOrCBiJpkTUVaLqAmtapayUk0XGfG3tITHUROIF_c_esk6g-6wLp08p9EH2B12e1n_enBzCq-J2777QKAWNJaPK31mMc5SvvfL-C_5_ezw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Phase+Transition+and+Phase+Diagrams+in+a+Two%E2%80%90Leg+Kitaev+Ladder+System&rft.jtitle=Annalen+der+Physik&rft.au=Yu%2C+Yan&rft.au=Lu%2C+Qi&rft.au=Dong%E2%80%90Yang+Wang&rft.au=Xing%2C+Yan&rft.date=2020-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0003-3804&rft.eissn=1521-3889&rft.volume=532&rft.issue=4&rft_id=info:doi/10.1002%2Fandp.201900479&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-3804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-3804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-3804&client=summon