Homogeneous Li+ Flux Distribution Enables Highly Stable and Temperature‐Tolerant Lithium Anode
3D carbon hosts can enable low‐stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li+ flux and large concentration polarization, resulting from intrinsically poor Li affinity and limited porosity of carbon scaffolds, make the precise control of Li p...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 32 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 3D carbon hosts can enable low‐stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li+ flux and large concentration polarization, resulting from intrinsically poor Li affinity and limited porosity of carbon scaffolds, make the precise control of Li plating/stripping still one the key challenges facing advanced LMAs. Here it is demonstrated that a lightweight carbon scaffold, featuring parallel‐aligned porous fibers, can work well for homogeneous Li+ flux distribution and reduced concentration gradient to form a stable solid electrolyte interphase, and then synergistically guide smooth Li nucleation/growth even at low temperatures. As a result, the obtained LMAs delivers a high areal capacity up to 15 mAh cm−2, ultralong lifespan (4800 cycles at 4 mA cm−2) with very low voltage hysteresis of ≈21 mV, a high practically available specific capacity of 863.9 mAh g−1 after 1000 cycles, and a long‐term stable behavior at low‐temperature operation. As coupling with the commercial LiNi1/3Co1/3Mn1/3O2 cathodes and common carbonate‐based electrolyte, the corresponding practical cells also possess an ultralong lifespan and outstanding low‐temperature functionality. This study not only presents an advanced carbon host candidate but also sheds new light on crucial design principles of carbon scaffolds for practically feasible rechargeable metal batteries.
A lightweight carbon scaffold with a parallel‐aligned pattern achieves homogeneous Li+ flux distribution and reduces the concentration gradient to guide smooth Li nucleation/growth even at high‐power output and extreme temperatures. Accordingly, the prepared lithium metal anodes deliver a high areal capacity, ultralong lifespan with very low voltage hysteresis of ≈21 mV, and long‐term stable behavior at low‐temperature operation. |
---|---|
AbstractList | 3D carbon hosts can enable low‐stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li+ flux and large concentration polarization, resulting from intrinsically poor Li affinity and limited porosity of carbon scaffolds, make the precise control of Li plating/stripping still one the key challenges facing advanced LMAs. Here it is demonstrated that a lightweight carbon scaffold, featuring parallel‐aligned porous fibers, can work well for homogeneous Li+ flux distribution and reduced concentration gradient to form a stable solid electrolyte interphase, and then synergistically guide smooth Li nucleation/growth even at low temperatures. As a result, the obtained LMAs delivers a high areal capacity up to 15 mAh cm−2, ultralong lifespan (4800 cycles at 4 mA cm−2) with very low voltage hysteresis of ≈21 mV, a high practically available specific capacity of 863.9 mAh g−1 after 1000 cycles, and a long‐term stable behavior at low‐temperature operation. As coupling with the commercial LiNi1/3Co1/3Mn1/3O2 cathodes and common carbonate‐based electrolyte, the corresponding practical cells also possess an ultralong lifespan and outstanding low‐temperature functionality. This study not only presents an advanced carbon host candidate but also sheds new light on crucial design principles of carbon scaffolds for practically feasible rechargeable metal batteries.
A lightweight carbon scaffold with a parallel‐aligned pattern achieves homogeneous Li+ flux distribution and reduces the concentration gradient to guide smooth Li nucleation/growth even at high‐power output and extreme temperatures. Accordingly, the prepared lithium metal anodes deliver a high areal capacity, ultralong lifespan with very low voltage hysteresis of ≈21 mV, and long‐term stable behavior at low‐temperature operation. 3D carbon hosts can enable low‐stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li+ flux and large concentration polarization, resulting from intrinsically poor Li affinity and limited porosity of carbon scaffolds, make the precise control of Li plating/stripping still one the key challenges facing advanced LMAs. Here it is demonstrated that a lightweight carbon scaffold, featuring parallel‐aligned porous fibers, can work well for homogeneous Li+ flux distribution and reduced concentration gradient to form a stable solid electrolyte interphase, and then synergistically guide smooth Li nucleation/growth even at low temperatures. As a result, the obtained LMAs delivers a high areal capacity up to 15 mAh cm−2, ultralong lifespan (4800 cycles at 4 mA cm−2) with very low voltage hysteresis of ≈21 mV, a high practically available specific capacity of 863.9 mAh g−1 after 1000 cycles, and a long‐term stable behavior at low‐temperature operation. As coupling with the commercial LiNi1/3Co1/3Mn1/3O2 cathodes and common carbonate‐based electrolyte, the corresponding practical cells also possess an ultralong lifespan and outstanding low‐temperature functionality. This study not only presents an advanced carbon host candidate but also sheds new light on crucial design principles of carbon scaffolds for practically feasible rechargeable metal batteries. 3D carbon hosts can enable low‐stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li + flux and large concentration polarization, resulting from intrinsically poor Li affinity and limited porosity of carbon scaffolds, make the precise control of Li plating/stripping still one the key challenges facing advanced LMAs. Here it is demonstrated that a lightweight carbon scaffold, featuring parallel‐aligned porous fibers, can work well for homogeneous Li + flux distribution and reduced concentration gradient to form a stable solid electrolyte interphase, and then synergistically guide smooth Li nucleation/growth even at low temperatures. As a result, the obtained LMAs delivers a high areal capacity up to 15 mAh cm −2 , ultralong lifespan (4800 cycles at 4 mA cm −2 ) with very low voltage hysteresis of ≈21 mV, a high practically available specific capacity of 863.9 mAh g −1 after 1000 cycles, and a long‐term stable behavior at low‐temperature operation. As coupling with the commercial LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathodes and common carbonate‐based electrolyte, the corresponding practical cells also possess an ultralong lifespan and outstanding low‐temperature functionality. This study not only presents an advanced carbon host candidate but also sheds new light on crucial design principles of carbon scaffolds for practically feasible rechargeable metal batteries. |
Author | Xie, Dan Wu, Xing‐Long Zhang, Xiao‐Hua Jiang, Ru Fan, Chao‐Ying Diao, Wan‐Yue |
Author_xml | – sequence: 1 givenname: Chao‐Ying surname: Fan fullname: Fan, Chao‐Ying organization: Northeast Normal University – sequence: 2 givenname: Dan surname: Xie fullname: Xie, Dan organization: Northeast Normal University – sequence: 3 givenname: Xiao‐Hua surname: Zhang fullname: Zhang, Xiao‐Hua organization: Northeast Normal University – sequence: 4 givenname: Wan‐Yue surname: Diao fullname: Diao, Wan‐Yue organization: Northeast Normal University – sequence: 5 givenname: Ru surname: Jiang fullname: Jiang, Ru organization: Northeast Normal University – sequence: 6 givenname: Xing‐Long orcidid: 0000-0003-1069-9145 surname: Wu fullname: Wu, Xing‐Long email: xinglong@nenu.edu.cn organization: Northeast Normal University |
BookMark | eNqFkMFKAzEQhoNUUKtXzwGP0ppkN7vJsVRrhYoHK3hb0-2kjewmNcmivfkIPqNP4pZKBUGEgZkf_m-G-Y9QxzoLCJ1S0qeEsAs113WfEUbb4mIPHdKMZr2EMNHZzfTxAB2F8EwIzfMkPURPY1e7BVhwTcATc45HVfOGL02I3syaaJzFV1bNKgh4bBbLao3v40ZiZed4CvUKvIqNh8_3j6mrWmFjuyYuTVPjgXVzOEb7WlUBTr57Fz2MrqbDcW9yd30zHEx6ZUJz0ZOllIwLLSQpiUiEyDOtdZJqzVOW5kkmSD7XAFzyWcLZTCnOgVPGc6AaJE-66Gy7d-XdSwMhFs-u8bY9WTDOZSYJk1nrSreu0rsQPOiiNFFt3oxemaqgpNhkWWyyLHZZtlj_F7byplZ-_Tcgt8CrqWD9j7sYXI5uf9gvp2aJ4A |
CitedBy_id | crossref_primary_10_1021_acsaem_3c00939 crossref_primary_10_1007_s42823_023_00669_y crossref_primary_10_1002_smm2_1076 crossref_primary_10_1021_acsami_1c22016 crossref_primary_10_1016_j_jpowsour_2024_235105 crossref_primary_10_1021_acsami_3c12755 crossref_primary_10_1007_s10853_022_07022_0 crossref_primary_10_1016_j_jcis_2022_03_030 crossref_primary_10_1016_j_ensm_2024_103729 crossref_primary_10_1021_acsami_2c06126 crossref_primary_10_1016_j_apsusc_2022_154168 crossref_primary_10_1002_smll_202404835 crossref_primary_10_1021_acsaem_2c00360 crossref_primary_10_1016_j_jallcom_2022_167644 crossref_primary_10_1039_D2SE00910B crossref_primary_10_1002_adma_202200085 crossref_primary_10_1016_j_enchem_2024_100117 crossref_primary_10_1039_D1DT02923A crossref_primary_10_1002_eem2_12368 crossref_primary_10_1002_cssc_202201252 crossref_primary_10_1002_advs_202105656 crossref_primary_10_1021_acsami_3c00740 crossref_primary_10_1016_j_cej_2023_142895 crossref_primary_10_1021_acsaem_1c02042 crossref_primary_10_1016_j_cej_2022_138913 crossref_primary_10_1002_aenm_202103955 crossref_primary_10_1021_acssuschemeng_1c08196 crossref_primary_10_1016_j_ensm_2022_11_010 crossref_primary_10_1016_j_ensm_2023_102974 crossref_primary_10_1134_S0036023624601491 crossref_primary_10_1016_j_cej_2022_137708 crossref_primary_10_1002_adfm_202206388 crossref_primary_10_1002_adfm_202213811 crossref_primary_10_1002_adfm_202402951 crossref_primary_10_1016_j_carbon_2023_118247 crossref_primary_10_1002_adma_202110047 crossref_primary_10_1021_acsaem_2c00180 crossref_primary_10_1021_acsami_4c00420 crossref_primary_10_1002_adfm_202406357 crossref_primary_10_1002_er_7609 crossref_primary_10_1016_j_electacta_2022_140182 crossref_primary_10_1016_j_cej_2024_153383 crossref_primary_10_1016_j_jechem_2022_08_006 crossref_primary_10_1021_acsami_1c17681 crossref_primary_10_1016_j_jcis_2022_12_081 crossref_primary_10_1021_acsnano_3c08576 crossref_primary_10_1002_cey2_348 crossref_primary_10_1002_ente_202100871 crossref_primary_10_1021_acsaem_2c01661 |
Cites_doi | 10.1016/j.jallcom.2019.03.320 10.1016/j.jpowsour.2017.10.057 10.1016/j.joule.2017.06.004 10.1002/advs.201900943 10.1038/nenergy.2017.12 10.1002/adma.201706102 10.1038/s41563-019-0305-8 10.1016/j.ensm.2018.02.005 10.1002/adfm.201904629 10.1021/acs.chemrev.7b00115 10.1002/adfm.201606422 10.1016/j.nanoen.2017.11.032 10.1002/anie.201903466 10.1016/j.ensm.2019.05.014 10.1016/j.snb.2020.129082 10.1002/aenm.201902819 10.1126/science.aay8672 10.1002/adfm.201805638 10.1002/smll.201900269 10.1016/j.ensm.2018.04.006 10.1016/j.jpowsour.2013.01.051 10.1002/adfm.201808468 10.1002/adma.201706216 10.1002/anie.201908874 10.1002/anie.202000375 10.1021/acsnano.9b03784 10.1016/j.ensm.2019.06.019 10.1002/adfm.202009605 10.1002/adma.201805654 10.1038/s41560-019-0390-6 10.1038/s41560-019-0413-3 10.1039/C9EE02558H 10.1002/anie.201905251 10.1002/adma.201700783 10.1016/j.nanoen.2017.10.065 10.1016/j.jpowsour.2020.228157 10.1002/aenm.201902056 10.1038/s41467-020-14505-8 10.1021/acsaem.8b00961 10.1002/aenm.201800564 10.1016/j.ensm.2017.10.016 10.1038/nnano.2016.32 10.1038/s41586-020-1972-y 10.1002/adfm.201808756 10.1038/s41578-019-0165-5 10.1038/s41560-019-0474-3 10.1002/adma.201700389 10.1021/acs.nanolett.6b04755 10.1002/adma.201601409 10.1038/ncomms8436 10.1002/adma.201700007 10.1016/j.joule.2018.02.001 10.1002/adma.201702714 10.1002/anie.201814324 10.1039/C9TA09502K 10.1038/s41560-019-0464-5 10.1016/j.joule.2017.11.004 10.1002/anie.202004284 10.1016/j.nanoen.2019.104443 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202102158 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202102158 ADFM202102158 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 2412019QD013 – fundername: National Natural Science Foundation of China funderid: 91963118 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3178-9c99258f890c0838876fff34ff5424736807dfee595b352baa55e51257e1fe953 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 02:21:45 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Tue Jul 01 04:12:32 EDT 2025 Wed Jan 22 16:28:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3178-9c99258f890c0838876fff34ff5424736807dfee595b352baa55e51257e1fe953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1069-9145 |
PQID | 2559690296 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2559690296 crossref_citationtrail_10_1002_adfm_202102158 crossref_primary_10_1002_adfm_202102158 wiley_primary_10_1002_adfm_202102158_ADFM202102158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 9 2019; 4 2015; 6 2019 2019 2019; 58 4 791 2019 2020; 10 59 2016 2018; 11 2 2019 2020 2021; 366 5 328 2017 2013; 17 233 2019 2017 2018 2020 2019 2019 2019; 15 2 30 11 58 12 18 2019 2017 2018; 29 27 13 2019; 58 2020; 59 2018 2019 2019 2018 2019; 374 7 23 14 31 2018 2018 2018; 1 2 11 2017; 29 2020; 463 2016 2017 2019 2020 2019; 28 27 29 69 13 2018; 43 2019 2019; 58 4 2018 2020; 28 31 2018; 8 2018 2017; 30 42 2017 2019; 117 4 2019 2018; 29 30 2020; 24 2017 2017; 29 1 2017 2019 2020; 29 6 578 e_1_2_7_3_4 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_7_4 e_1_2_7_9_2 e_1_2_7_3_7 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_3_6 e_1_2_7_7_2 e_1_2_7_3_5 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_28_1 e_1_2_7_28_2 e_1_2_7_7_5 e_1_2_7_25_3 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_24_5 e_1_2_7_24_4 e_1_2_7_24_3 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_22_2 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 463 year: 2020 publication-title: J. Power Sources – volume: 374 7 23 14 31 start-page: 205 181 222 year: 2018 2019 2019 2018 2019 publication-title: J. Power Sources J. Mater. Chem. A Energy Storage Mater. Energy Storage Mater. Adv. Mater. – volume: 43 start-page: 368 year: 2018 publication-title: Nano Energy – volume: 17 233 start-page: 1132 34 year: 2017 2013 publication-title: Nano Lett. J. Power Sources – volume: 15 2 30 11 58 12 18 start-page: 643 7802 3319 384 year: 2019 2017 2018 2020 2019 2019 2019 publication-title: Small Nat. Energy Adv. Mater. Nat. Commun. Angew. Chem., Int. Ed. Energy Environ. Sci. Nat. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 59 start-page: 7743 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 28 27 29 69 13 start-page: 6932 8337 year: 2016 2017 2019 2020 2019 publication-title: Adv. Mater. Adv. Funct. Mater. Adv. Funct. Mater. Nano Energy ACS Nano – volume: 58 4 791 start-page: 882 364 year: 2019 2019 2019 publication-title: Angew. Chem., Int. Ed. Nat. Energy J. Alloys Compd. – volume: 30 42 start-page: 262 year: 2018 2017 publication-title: Adv. Mater. Nano Energy – volume: 117 4 start-page: 796 year: 2017 2019 publication-title: Chem. Rev. Nat. Energy – volume: 29 30 year: 2019 2018 publication-title: Adv. Funct. Mater. Adv. Mater. – volume: 11 2 start-page: 626 184 year: 2016 2018 publication-title: Nat. Nanotechnol. Joule – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 24 start-page: 700 year: 2020 publication-title: Energy Storage Mater. – volume: 366 5 328 start-page: 426 229 year: 2019 2020 2021 publication-title: Science Nat. Rev. Mater. Sens. Actuators B Chem. – volume: 6 start-page: 7436 year: 2015 publication-title: Nat. Commun. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 58 start-page: 2437 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 10 59 year: 2019 2020 publication-title: Adv. Energy Mater. Angew. Chem., Int. Ed. – volume: 1 2 11 start-page: 4341 764 191 year: 2018 2018 2018 publication-title: ACS Appl. Energy Mater. Joule Energy Storage Mater. – volume: 29 27 13 start-page: 323 year: 2019 2017 2018 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Energy Storage Mater. – volume: 29 1 start-page: 563 year: 2017 2017 publication-title: Adv. Mater. Joule – volume: 28 31 year: 2018 2020 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. – volume: 29 6 578 start-page: 251 year: 2017 2019 2020 publication-title: Adv. Mater. Adv. Sci. Nature – volume: 4 start-page: 551 year: 2019 publication-title: Nat. Energy – volume: 58 4 start-page: 664 year: 2019 2019 publication-title: Angew. Chem., Int. Ed. Nat. Energy – ident: e_1_2_7_25_3 doi: 10.1016/j.jallcom.2019.03.320 – ident: e_1_2_7_7_1 doi: 10.1016/j.jpowsour.2017.10.057 – ident: e_1_2_7_9_2 doi: 10.1016/j.joule.2017.06.004 – ident: e_1_2_7_5_2 doi: 10.1002/advs.201900943 – ident: e_1_2_7_3_2 doi: 10.1038/nenergy.2017.12 – ident: e_1_2_7_3_3 doi: 10.1002/adma.201706102 – ident: e_1_2_7_3_7 doi: 10.1038/s41563-019-0305-8 – ident: e_1_2_7_6_3 doi: 10.1016/j.ensm.2018.02.005 – ident: e_1_2_7_16_1 doi: 10.1002/adfm.201904629 – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_24_2 doi: 10.1002/adfm.201606422 – ident: e_1_2_7_8_1 doi: 10.1016/j.nanoen.2017.11.032 – ident: e_1_2_7_3_5 doi: 10.1002/anie.201903466 – ident: e_1_2_7_7_3 doi: 10.1016/j.ensm.2019.05.014 – ident: e_1_2_7_1_3 doi: 10.1016/j.snb.2020.129082 – ident: e_1_2_7_20_1 doi: 10.1002/aenm.201902819 – ident: e_1_2_7_1_1 doi: 10.1126/science.aay8672 – ident: e_1_2_7_6_2 doi: 10.1002/adfm.201606422 – ident: e_1_2_7_26_1 doi: 10.1002/adfm.201805638 – ident: e_1_2_7_3_1 doi: 10.1002/smll.201900269 – ident: e_1_2_7_7_4 doi: 10.1016/j.ensm.2018.04.006 – ident: e_1_2_7_22_2 doi: 10.1016/j.jpowsour.2013.01.051 – ident: e_1_2_7_24_3 doi: 10.1002/adfm.201808468 – ident: e_1_2_7_16_2 doi: 10.1002/adma.201706216 – ident: e_1_2_7_25_1 doi: 10.1002/anie.201908874 – ident: e_1_2_7_21_1 doi: 10.1002/anie.202000375 – ident: e_1_2_7_24_5 doi: 10.1021/acsnano.9b03784 – ident: e_1_2_7_23_1 doi: 10.1016/j.ensm.2019.06.019 – ident: e_1_2_7_26_2 doi: 10.1002/adfm.202009605 – ident: e_1_2_7_7_5 doi: 10.1002/adma.201805654 – ident: e_1_2_7_4_1 doi: 10.1038/s41560-019-0390-6 – ident: e_1_2_7_28_2 doi: 10.1038/s41560-019-0413-3 – ident: e_1_2_7_3_6 doi: 10.1039/C9EE02558H – ident: e_1_2_7_28_1 doi: 10.1002/anie.201905251 – ident: e_1_2_7_27_1 doi: 10.1002/adma.201700783 – ident: e_1_2_7_12_2 doi: 10.1016/j.nanoen.2017.10.065 – ident: e_1_2_7_17_1 doi: 10.1016/j.jpowsour.2020.228157 – ident: e_1_2_7_14_1 doi: 10.1002/aenm.201902056 – ident: e_1_2_7_3_4 doi: 10.1038/s41467-020-14505-8 – ident: e_1_2_7_11_1 doi: 10.1021/acsaem.8b00961 – ident: e_1_2_7_18_1 doi: 10.1002/aenm.201800564 – ident: e_1_2_7_11_3 doi: 10.1016/j.ensm.2017.10.016 – ident: e_1_2_7_13_1 doi: 10.1038/nnano.2016.32 – ident: e_1_2_7_5_3 doi: 10.1038/s41586-020-1972-y – ident: e_1_2_7_6_1 doi: 10.1002/adfm.201808756 – ident: e_1_2_7_1_2 doi: 10.1038/s41578-019-0165-5 – ident: e_1_2_7_25_2 doi: 10.1038/s41560-019-0474-3 – ident: e_1_2_7_9_1 doi: 10.1002/adma.201700389 – ident: e_1_2_7_22_1 doi: 10.1021/acs.nanolett.6b04755 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201706216 – ident: e_1_2_7_24_1 doi: 10.1002/adma.201601409 – ident: e_1_2_7_19_1 doi: 10.1038/ncomms8436 – ident: e_1_2_7_5_1 doi: 10.1002/adma.201700007 – ident: e_1_2_7_11_2 doi: 10.1016/j.joule.2018.02.001 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201702714 – ident: e_1_2_7_10_1 doi: 10.1002/anie.201814324 – ident: e_1_2_7_7_2 doi: 10.1039/C9TA09502K – ident: e_1_2_7_2_2 doi: 10.1038/s41560-019-0464-5 – ident: e_1_2_7_13_2 doi: 10.1016/j.joule.2017.11.004 – ident: e_1_2_7_20_2 doi: 10.1002/anie.202004284 – ident: e_1_2_7_24_4 doi: 10.1016/j.nanoen.2019.104443 |
SSID | ssj0017734 |
Score | 2.5524473 |
Snippet | 3D carbon hosts can enable low‐stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li+ flux and large... 3D carbon hosts can enable low‐stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li + flux and large... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Carbon Concentration gradient Electrode polarization Electrolytes Electrolytic cells Interface stability Life span Lithium lithium metal anodes Low temperature Low voltage Materials science Nucleation parallel‐aligned patterns porous carbon fibers Rechargeable batteries Scaffolds Solid electrolytes Structural stability temperature tolerance uniform Li + flux |
Title | Homogeneous Li+ Flux Distribution Enables Highly Stable and Temperature‐Tolerant Lithium Anode |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202102158 https://www.proquest.com/docview/2559690296 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFLcmuIwDfzYQZVD5MInDlDZxYic-VpSqQu0OrEi9ZXZsi4o2mdZE2nbiI_AZ-SQ8J2lakBASu-VJtpXYfu_9nvPezwh9BRfGpMu1Y9mpbIAiHBEp31GAvRPweMSUB_rj72x4E1xN6XSjir_ih2gO3KxmlPbaKriQy-6aNFQoYyvJbcjiUVvtaxO2LCq6bvijvDCsfiszzyZ4edMVa6NLus-7P_dKa6i5CVhLjzPYQ2L1rlWiyV2nyGUn-feCxvF_PmYf7dZwFPeq_XOAPuj0E9rZICn8jH4Os0UG20xnxRKPZt_wYF78wX1LuFvflYUvywKsJbZJI_O_GAAsiFikCk80wPKKtvnx_mGSzUFIcxgmv50VC9xLM6UP0c3gcnIxdOp7GZwE0AbYx4RzQiMTcTcBBAdmihlj_MAYGpAg9FnkhspoTTmVgO-kEJRqABY01J7RnPpHaCvNUn2MMJdEau0TIwKINJkSAB8FiXQkJFOKBi3krNYlTmrScnt3xjyu6JZJbGcubmauhc6b9r8quo5XW56uljmu1XYZ2_iKcZdw1kKkXK83Rol7_cG4kU7e0-kL-mifq6TCU7SV_y70GQCdXLbRdq8_Hv1ol5v6CXcB9do |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5V5QAc-EcsFPABxAGlTbyxEx84rNiutnS3B7SV9pY6sS0qtgliE0E58Qi8Cq_CI_AkzOSvLRJCQuqBo6PESuz5PN84428AnqELk6mvrEfqVBSgaE_HZugZ5N4Zejzu6g39-YGcHoZvlmK5Ad-7szCNPkS_4UbIqNdrAjhtSO-cqYZq4-goOcUsgYjbvMp9e_oJo7b1q70xTvFzzie7i9dTry0s4GXoLhHgmVJcxC5WfoYUBHEmnXPD0DkR8jAaytiPjLNWKJEiQUm1FsKiZxSRDZxVVCgCV_0rVEac5PrHb3vFqiCKmh_ZMqCUsmDZ6UT6fOfi-170g2fk9jxFrn3c5Cb86EanSW15v12V6Xb25TfhyP9q-G7BjZZxs1EDkduwYfM7cP2cDuNdOJoWJwUiyRbVms2OX7LJqvrMxqQp3JYDY7v1GbM1o7yY1SlDjo5NpnPDFhYjj0aZ-ufXb4tihY28xG7Kd8fVCRvlhbH34PBSPvE-bOZFbh8AUylPrR1yp0MMpqXRyJA1j22sU2mMCAfgdYaQZK0uO5UHWSWNojRPaKaSfqYG8KK__0OjSPLHO7c6u0ralWmdUAgplc-VHACvDeQvvSSj8WTetx7-y0NP4ep0MZ8ls72D_Udwja43OZRbsFl-rOxj5HVl-qRGEoOjy7a9X1lTT_0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qilTBAigPMaW0XlCxQGkTT-zECxYj0mhKH6rQVJpd6sS2qJgmVScRlBWfwKfwK_wCX8J1Xn1ICAmpiy4dJVZi3-N7rnN9LsBrdGE8dYV2rDqVDVCkI0M1dBRy7ww9HjX1hv7-AR8f-R-mbLoAP7uzMI0-RL_hZpFRr9cW4GfKbF2Khkpl7ElyG7J4LGzTKnf1xRcM2ubvdiKc4Q1K4-3J-7HT1hVwMvSWiO9MCMpCEwo3QwaCMOPGmKFvDPOpHwx56AbKaM0ES5GfpFIyptExskB7RgtbJwIX_Xs-d4UtFhF97AWrvCBo_mNzz2aUedNOJtKlW9ff97obvOS2Vxly7eLiR_CrG5wms-XzZlWmm9m3G7qRd2n0HsPDlm-TUQOQZVjQ-RN4cEWF8Skcj4vTAnGki2pO9k7eknhWfSWRVRRui4GR7fqE2ZzYrJjZBUGGjk0ic0UmGuOORpf69_cfk2KGjbzEbspPJ9UpGeWF0s_g6FY-8Tks5kWuXwARKU21HlIjfQyluZLIjyUNdShTrhTzB-B0dpBkrSq7LQ4ySxo9aZrYmUr6mRrAm_7-s0aP5K93rnZmlbTr0jyxASQXLhV8ALS2j3_0koyieL9vrfzPQ-uwdBjFyd7Owe5LuG8vNwmUq7BYnlf6FZK6Ml2rcUTg-LZN7w_vLU6s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homogeneous+Li%2B+Flux+Distribution+Enables+Highly+Stable+and+Temperature%E2%80%90Tolerant+Lithium+Anode&rft.jtitle=Advanced+functional+materials&rft.au=Fan%2C+Chao%E2%80%90Ying&rft.au=Xie%2C+Dan&rft.au=Zhang%2C+Xiao%E2%80%90Hua&rft.au=Diao%2C+Wan%E2%80%90Yue&rft.date=2021-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202102158&rft.externalDBID=10.1002%252Fadfm.202102158&rft.externalDocID=ADFM202102158 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |