Homogeneous Li+ Flux Distribution Enables Highly Stable and Temperature‐Tolerant Lithium Anode

3D carbon hosts can enable low‐stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li+ flux and large concentration polarization, resulting from intrinsically poor Li affinity and limited porosity of carbon scaffolds, make the precise control of Li p...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 32
Main Authors Fan, Chao‐Ying, Xie, Dan, Zhang, Xiao‐Hua, Diao, Wan‐Yue, Jiang, Ru, Wu, Xing‐Long
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 3D carbon hosts can enable low‐stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li+ flux and large concentration polarization, resulting from intrinsically poor Li affinity and limited porosity of carbon scaffolds, make the precise control of Li plating/stripping still one the key challenges facing advanced LMAs. Here it is demonstrated that a lightweight carbon scaffold, featuring parallel‐aligned porous fibers, can work well for homogeneous Li+ flux distribution and reduced concentration gradient to form a stable solid electrolyte interphase, and then synergistically guide smooth Li nucleation/growth even at low temperatures. As a result, the obtained LMAs delivers a high areal capacity up to 15 mAh cm−2, ultralong lifespan (4800 cycles at 4 mA cm−2) with very low voltage hysteresis of ≈21 mV, a high practically available specific capacity of 863.9 mAh g−1 after 1000 cycles, and a long‐term stable behavior at low‐temperature operation. As coupling with the commercial LiNi1/3Co1/3Mn1/3O2 cathodes and common carbonate‐based electrolyte, the corresponding practical cells also possess an ultralong lifespan and outstanding low‐temperature functionality. This study not only presents an advanced carbon host candidate but also sheds new light on crucial design principles of carbon scaffolds for practically feasible rechargeable metal batteries. A lightweight carbon scaffold with a parallel‐aligned pattern achieves homogeneous Li+ flux distribution and reduces the concentration gradient to guide smooth Li nucleation/growth even at high‐power output and extreme temperatures. Accordingly, the prepared lithium metal anodes deliver a high areal capacity, ultralong lifespan with very low voltage hysteresis of ≈21 mV, and long‐term stable behavior at low‐temperature operation.
AbstractList 3D carbon hosts can enable low‐stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li+ flux and large concentration polarization, resulting from intrinsically poor Li affinity and limited porosity of carbon scaffolds, make the precise control of Li plating/stripping still one the key challenges facing advanced LMAs. Here it is demonstrated that a lightweight carbon scaffold, featuring parallel‐aligned porous fibers, can work well for homogeneous Li+ flux distribution and reduced concentration gradient to form a stable solid electrolyte interphase, and then synergistically guide smooth Li nucleation/growth even at low temperatures. As a result, the obtained LMAs delivers a high areal capacity up to 15 mAh cm−2, ultralong lifespan (4800 cycles at 4 mA cm−2) with very low voltage hysteresis of ≈21 mV, a high practically available specific capacity of 863.9 mAh g−1 after 1000 cycles, and a long‐term stable behavior at low‐temperature operation. As coupling with the commercial LiNi1/3Co1/3Mn1/3O2 cathodes and common carbonate‐based electrolyte, the corresponding practical cells also possess an ultralong lifespan and outstanding low‐temperature functionality. This study not only presents an advanced carbon host candidate but also sheds new light on crucial design principles of carbon scaffolds for practically feasible rechargeable metal batteries. A lightweight carbon scaffold with a parallel‐aligned pattern achieves homogeneous Li+ flux distribution and reduces the concentration gradient to guide smooth Li nucleation/growth even at high‐power output and extreme temperatures. Accordingly, the prepared lithium metal anodes deliver a high areal capacity, ultralong lifespan with very low voltage hysteresis of ≈21 mV, and long‐term stable behavior at low‐temperature operation.
3D carbon hosts can enable low‐stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li+ flux and large concentration polarization, resulting from intrinsically poor Li affinity and limited porosity of carbon scaffolds, make the precise control of Li plating/stripping still one the key challenges facing advanced LMAs. Here it is demonstrated that a lightweight carbon scaffold, featuring parallel‐aligned porous fibers, can work well for homogeneous Li+ flux distribution and reduced concentration gradient to form a stable solid electrolyte interphase, and then synergistically guide smooth Li nucleation/growth even at low temperatures. As a result, the obtained LMAs delivers a high areal capacity up to 15 mAh cm−2, ultralong lifespan (4800 cycles at 4 mA cm−2) with very low voltage hysteresis of ≈21 mV, a high practically available specific capacity of 863.9 mAh g−1 after 1000 cycles, and a long‐term stable behavior at low‐temperature operation. As coupling with the commercial LiNi1/3Co1/3Mn1/3O2 cathodes and common carbonate‐based electrolyte, the corresponding practical cells also possess an ultralong lifespan and outstanding low‐temperature functionality. This study not only presents an advanced carbon host candidate but also sheds new light on crucial design principles of carbon scaffolds for practically feasible rechargeable metal batteries.
3D carbon hosts can enable low‐stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li + flux and large concentration polarization, resulting from intrinsically poor Li affinity and limited porosity of carbon scaffolds, make the precise control of Li plating/stripping still one the key challenges facing advanced LMAs. Here it is demonstrated that a lightweight carbon scaffold, featuring parallel‐aligned porous fibers, can work well for homogeneous Li + flux distribution and reduced concentration gradient to form a stable solid electrolyte interphase, and then synergistically guide smooth Li nucleation/growth even at low temperatures. As a result, the obtained LMAs delivers a high areal capacity up to 15 mAh cm −2 , ultralong lifespan (4800 cycles at 4 mA cm −2 ) with very low voltage hysteresis of ≈21 mV, a high practically available specific capacity of 863.9 mAh g −1 after 1000 cycles, and a long‐term stable behavior at low‐temperature operation. As coupling with the commercial LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathodes and common carbonate‐based electrolyte, the corresponding practical cells also possess an ultralong lifespan and outstanding low‐temperature functionality. This study not only presents an advanced carbon host candidate but also sheds new light on crucial design principles of carbon scaffolds for practically feasible rechargeable metal batteries.
Author Xie, Dan
Wu, Xing‐Long
Zhang, Xiao‐Hua
Jiang, Ru
Fan, Chao‐Ying
Diao, Wan‐Yue
Author_xml – sequence: 1
  givenname: Chao‐Ying
  surname: Fan
  fullname: Fan, Chao‐Ying
  organization: Northeast Normal University
– sequence: 2
  givenname: Dan
  surname: Xie
  fullname: Xie, Dan
  organization: Northeast Normal University
– sequence: 3
  givenname: Xiao‐Hua
  surname: Zhang
  fullname: Zhang, Xiao‐Hua
  organization: Northeast Normal University
– sequence: 4
  givenname: Wan‐Yue
  surname: Diao
  fullname: Diao, Wan‐Yue
  organization: Northeast Normal University
– sequence: 5
  givenname: Ru
  surname: Jiang
  fullname: Jiang, Ru
  organization: Northeast Normal University
– sequence: 6
  givenname: Xing‐Long
  orcidid: 0000-0003-1069-9145
  surname: Wu
  fullname: Wu, Xing‐Long
  email: xinglong@nenu.edu.cn
  organization: Northeast Normal University
BookMark eNqFkMFKAzEQhoNUUKtXzwGP0ppkN7vJsVRrhYoHK3hb0-2kjewmNcmivfkIPqNP4pZKBUGEgZkf_m-G-Y9QxzoLCJ1S0qeEsAs113WfEUbb4mIPHdKMZr2EMNHZzfTxAB2F8EwIzfMkPURPY1e7BVhwTcATc45HVfOGL02I3syaaJzFV1bNKgh4bBbLao3v40ZiZed4CvUKvIqNh8_3j6mrWmFjuyYuTVPjgXVzOEb7WlUBTr57Fz2MrqbDcW9yd30zHEx6ZUJz0ZOllIwLLSQpiUiEyDOtdZJqzVOW5kkmSD7XAFzyWcLZTCnOgVPGc6AaJE-66Gy7d-XdSwMhFs-u8bY9WTDOZSYJk1nrSreu0rsQPOiiNFFt3oxemaqgpNhkWWyyLHZZtlj_F7byplZ-_Tcgt8CrqWD9j7sYXI5uf9gvp2aJ4A
CitedBy_id crossref_primary_10_1021_acsaem_3c00939
crossref_primary_10_1007_s42823_023_00669_y
crossref_primary_10_1002_smm2_1076
crossref_primary_10_1021_acsami_1c22016
crossref_primary_10_1016_j_jpowsour_2024_235105
crossref_primary_10_1021_acsami_3c12755
crossref_primary_10_1007_s10853_022_07022_0
crossref_primary_10_1016_j_jcis_2022_03_030
crossref_primary_10_1016_j_ensm_2024_103729
crossref_primary_10_1021_acsami_2c06126
crossref_primary_10_1016_j_apsusc_2022_154168
crossref_primary_10_1002_smll_202404835
crossref_primary_10_1021_acsaem_2c00360
crossref_primary_10_1016_j_jallcom_2022_167644
crossref_primary_10_1039_D2SE00910B
crossref_primary_10_1002_adma_202200085
crossref_primary_10_1016_j_enchem_2024_100117
crossref_primary_10_1039_D1DT02923A
crossref_primary_10_1002_eem2_12368
crossref_primary_10_1002_cssc_202201252
crossref_primary_10_1002_advs_202105656
crossref_primary_10_1021_acsami_3c00740
crossref_primary_10_1016_j_cej_2023_142895
crossref_primary_10_1021_acsaem_1c02042
crossref_primary_10_1016_j_cej_2022_138913
crossref_primary_10_1002_aenm_202103955
crossref_primary_10_1021_acssuschemeng_1c08196
crossref_primary_10_1016_j_ensm_2022_11_010
crossref_primary_10_1016_j_ensm_2023_102974
crossref_primary_10_1134_S0036023624601491
crossref_primary_10_1016_j_cej_2022_137708
crossref_primary_10_1002_adfm_202206388
crossref_primary_10_1002_adfm_202213811
crossref_primary_10_1002_adfm_202402951
crossref_primary_10_1016_j_carbon_2023_118247
crossref_primary_10_1002_adma_202110047
crossref_primary_10_1021_acsaem_2c00180
crossref_primary_10_1021_acsami_4c00420
crossref_primary_10_1002_adfm_202406357
crossref_primary_10_1002_er_7609
crossref_primary_10_1016_j_electacta_2022_140182
crossref_primary_10_1016_j_cej_2024_153383
crossref_primary_10_1016_j_jechem_2022_08_006
crossref_primary_10_1021_acsami_1c17681
crossref_primary_10_1016_j_jcis_2022_12_081
crossref_primary_10_1021_acsnano_3c08576
crossref_primary_10_1002_cey2_348
crossref_primary_10_1002_ente_202100871
crossref_primary_10_1021_acsaem_2c01661
Cites_doi 10.1016/j.jallcom.2019.03.320
10.1016/j.jpowsour.2017.10.057
10.1016/j.joule.2017.06.004
10.1002/advs.201900943
10.1038/nenergy.2017.12
10.1002/adma.201706102
10.1038/s41563-019-0305-8
10.1016/j.ensm.2018.02.005
10.1002/adfm.201904629
10.1021/acs.chemrev.7b00115
10.1002/adfm.201606422
10.1016/j.nanoen.2017.11.032
10.1002/anie.201903466
10.1016/j.ensm.2019.05.014
10.1016/j.snb.2020.129082
10.1002/aenm.201902819
10.1126/science.aay8672
10.1002/adfm.201805638
10.1002/smll.201900269
10.1016/j.ensm.2018.04.006
10.1016/j.jpowsour.2013.01.051
10.1002/adfm.201808468
10.1002/adma.201706216
10.1002/anie.201908874
10.1002/anie.202000375
10.1021/acsnano.9b03784
10.1016/j.ensm.2019.06.019
10.1002/adfm.202009605
10.1002/adma.201805654
10.1038/s41560-019-0390-6
10.1038/s41560-019-0413-3
10.1039/C9EE02558H
10.1002/anie.201905251
10.1002/adma.201700783
10.1016/j.nanoen.2017.10.065
10.1016/j.jpowsour.2020.228157
10.1002/aenm.201902056
10.1038/s41467-020-14505-8
10.1021/acsaem.8b00961
10.1002/aenm.201800564
10.1016/j.ensm.2017.10.016
10.1038/nnano.2016.32
10.1038/s41586-020-1972-y
10.1002/adfm.201808756
10.1038/s41578-019-0165-5
10.1038/s41560-019-0474-3
10.1002/adma.201700389
10.1021/acs.nanolett.6b04755
10.1002/adma.201601409
10.1038/ncomms8436
10.1002/adma.201700007
10.1016/j.joule.2018.02.001
10.1002/adma.201702714
10.1002/anie.201814324
10.1039/C9TA09502K
10.1038/s41560-019-0464-5
10.1016/j.joule.2017.11.004
10.1002/anie.202004284
10.1016/j.nanoen.2019.104443
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202102158
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202102158
ADFM202102158
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2412019QD013
– fundername: National Natural Science Foundation of China
  funderid: 91963118
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3178-9c99258f890c0838876fff34ff5424736807dfee595b352baa55e51257e1fe953
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 02:21:45 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Tue Jul 01 04:12:32 EDT 2025
Wed Jan 22 16:28:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3178-9c99258f890c0838876fff34ff5424736807dfee595b352baa55e51257e1fe953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1069-9145
PQID 2559690296
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2559690296
crossref_citationtrail_10_1002_adfm_202102158
crossref_primary_10_1002_adfm_202102158
wiley_primary_10_1002_adfm_202102158_ADFM202102158
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 9
2019; 4
2015; 6
2019 2019 2019; 58 4 791
2019 2020; 10 59
2016 2018; 11 2
2019 2020 2021; 366 5 328
2017 2013; 17 233
2019 2017 2018 2020 2019 2019 2019; 15 2 30 11 58 12 18
2019 2017 2018; 29 27 13
2019; 58
2020; 59
2018 2019 2019 2018 2019; 374 7 23 14 31
2018 2018 2018; 1 2 11
2017; 29
2020; 463
2016 2017 2019 2020 2019; 28 27 29 69 13
2018; 43
2019 2019; 58 4
2018 2020; 28 31
2018; 8
2018 2017; 30 42
2017 2019; 117 4
2019 2018; 29 30
2020; 24
2017 2017; 29 1
2017 2019 2020; 29 6 578
e_1_2_7_3_4
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_7_4
e_1_2_7_9_2
e_1_2_7_3_7
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_3_6
e_1_2_7_7_2
e_1_2_7_3_5
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_28_1
e_1_2_7_28_2
e_1_2_7_7_5
e_1_2_7_25_3
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_24_5
e_1_2_7_24_4
e_1_2_7_24_3
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_22_2
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 463
  year: 2020
  publication-title: J. Power Sources
– volume: 374 7 23 14 31
  start-page: 205 181 222
  year: 2018 2019 2019 2018 2019
  publication-title: J. Power Sources J. Mater. Chem. A Energy Storage Mater. Energy Storage Mater. Adv. Mater.
– volume: 43
  start-page: 368
  year: 2018
  publication-title: Nano Energy
– volume: 17 233
  start-page: 1132 34
  year: 2017 2013
  publication-title: Nano Lett. J. Power Sources
– volume: 15 2 30 11 58 12 18
  start-page: 643 7802 3319 384
  year: 2019 2017 2018 2020 2019 2019 2019
  publication-title: Small Nat. Energy Adv. Mater. Nat. Commun. Angew. Chem., Int. Ed. Energy Environ. Sci. Nat. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 59
  start-page: 7743
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 28 27 29 69 13
  start-page: 6932 8337
  year: 2016 2017 2019 2020 2019
  publication-title: Adv. Mater. Adv. Funct. Mater. Adv. Funct. Mater. Nano Energy ACS Nano
– volume: 58 4 791
  start-page: 882 364
  year: 2019 2019 2019
  publication-title: Angew. Chem., Int. Ed. Nat. Energy J. Alloys Compd.
– volume: 30 42
  start-page: 262
  year: 2018 2017
  publication-title: Adv. Mater. Nano Energy
– volume: 117 4
  start-page: 796
  year: 2017 2019
  publication-title: Chem. Rev. Nat. Energy
– volume: 29 30
  year: 2019 2018
  publication-title: Adv. Funct. Mater. Adv. Mater.
– volume: 11 2
  start-page: 626 184
  year: 2016 2018
  publication-title: Nat. Nanotechnol. Joule
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 24
  start-page: 700
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 366 5 328
  start-page: 426 229
  year: 2019 2020 2021
  publication-title: Science Nat. Rev. Mater. Sens. Actuators B Chem.
– volume: 6
  start-page: 7436
  year: 2015
  publication-title: Nat. Commun.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 58
  start-page: 2437
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 10 59
  year: 2019 2020
  publication-title: Adv. Energy Mater. Angew. Chem., Int. Ed.
– volume: 1 2 11
  start-page: 4341 764 191
  year: 2018 2018 2018
  publication-title: ACS Appl. Energy Mater. Joule Energy Storage Mater.
– volume: 29 27 13
  start-page: 323
  year: 2019 2017 2018
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Energy Storage Mater.
– volume: 29 1
  start-page: 563
  year: 2017 2017
  publication-title: Adv. Mater. Joule
– volume: 28 31
  year: 2018 2020
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater.
– volume: 29 6 578
  start-page: 251
  year: 2017 2019 2020
  publication-title: Adv. Mater. Adv. Sci. Nature
– volume: 4
  start-page: 551
  year: 2019
  publication-title: Nat. Energy
– volume: 58 4
  start-page: 664
  year: 2019 2019
  publication-title: Angew. Chem., Int. Ed. Nat. Energy
– ident: e_1_2_7_25_3
  doi: 10.1016/j.jallcom.2019.03.320
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jpowsour.2017.10.057
– ident: e_1_2_7_9_2
  doi: 10.1016/j.joule.2017.06.004
– ident: e_1_2_7_5_2
  doi: 10.1002/advs.201900943
– ident: e_1_2_7_3_2
  doi: 10.1038/nenergy.2017.12
– ident: e_1_2_7_3_3
  doi: 10.1002/adma.201706102
– ident: e_1_2_7_3_7
  doi: 10.1038/s41563-019-0305-8
– ident: e_1_2_7_6_3
  doi: 10.1016/j.ensm.2018.02.005
– ident: e_1_2_7_16_1
  doi: 10.1002/adfm.201904629
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_24_2
  doi: 10.1002/adfm.201606422
– ident: e_1_2_7_8_1
  doi: 10.1016/j.nanoen.2017.11.032
– ident: e_1_2_7_3_5
  doi: 10.1002/anie.201903466
– ident: e_1_2_7_7_3
  doi: 10.1016/j.ensm.2019.05.014
– ident: e_1_2_7_1_3
  doi: 10.1016/j.snb.2020.129082
– ident: e_1_2_7_20_1
  doi: 10.1002/aenm.201902819
– ident: e_1_2_7_1_1
  doi: 10.1126/science.aay8672
– ident: e_1_2_7_6_2
  doi: 10.1002/adfm.201606422
– ident: e_1_2_7_26_1
  doi: 10.1002/adfm.201805638
– ident: e_1_2_7_3_1
  doi: 10.1002/smll.201900269
– ident: e_1_2_7_7_4
  doi: 10.1016/j.ensm.2018.04.006
– ident: e_1_2_7_22_2
  doi: 10.1016/j.jpowsour.2013.01.051
– ident: e_1_2_7_24_3
  doi: 10.1002/adfm.201808468
– ident: e_1_2_7_16_2
  doi: 10.1002/adma.201706216
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.201908874
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.202000375
– ident: e_1_2_7_24_5
  doi: 10.1021/acsnano.9b03784
– ident: e_1_2_7_23_1
  doi: 10.1016/j.ensm.2019.06.019
– ident: e_1_2_7_26_2
  doi: 10.1002/adfm.202009605
– ident: e_1_2_7_7_5
  doi: 10.1002/adma.201805654
– ident: e_1_2_7_4_1
  doi: 10.1038/s41560-019-0390-6
– ident: e_1_2_7_28_2
  doi: 10.1038/s41560-019-0413-3
– ident: e_1_2_7_3_6
  doi: 10.1039/C9EE02558H
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.201905251
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201700783
– ident: e_1_2_7_12_2
  doi: 10.1016/j.nanoen.2017.10.065
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jpowsour.2020.228157
– ident: e_1_2_7_14_1
  doi: 10.1002/aenm.201902056
– ident: e_1_2_7_3_4
  doi: 10.1038/s41467-020-14505-8
– ident: e_1_2_7_11_1
  doi: 10.1021/acsaem.8b00961
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.201800564
– ident: e_1_2_7_11_3
  doi: 10.1016/j.ensm.2017.10.016
– ident: e_1_2_7_13_1
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_7_5_3
  doi: 10.1038/s41586-020-1972-y
– ident: e_1_2_7_6_1
  doi: 10.1002/adfm.201808756
– ident: e_1_2_7_1_2
  doi: 10.1038/s41578-019-0165-5
– ident: e_1_2_7_25_2
  doi: 10.1038/s41560-019-0474-3
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201700389
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.nanolett.6b04755
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201706216
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201601409
– ident: e_1_2_7_19_1
  doi: 10.1038/ncomms8436
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201700007
– ident: e_1_2_7_11_2
  doi: 10.1016/j.joule.2018.02.001
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201702714
– ident: e_1_2_7_10_1
  doi: 10.1002/anie.201814324
– ident: e_1_2_7_7_2
  doi: 10.1039/C9TA09502K
– ident: e_1_2_7_2_2
  doi: 10.1038/s41560-019-0464-5
– ident: e_1_2_7_13_2
  doi: 10.1016/j.joule.2017.11.004
– ident: e_1_2_7_20_2
  doi: 10.1002/anie.202004284
– ident: e_1_2_7_24_4
  doi: 10.1016/j.nanoen.2019.104443
SSID ssj0017734
Score 2.5524473
Snippet 3D carbon hosts can enable low‐stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li+ flux and large...
3D carbon hosts can enable low‐stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li + flux and large...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Carbon
Concentration gradient
Electrode polarization
Electrolytes
Electrolytic cells
Interface stability
Life span
Lithium
lithium metal anodes
Low temperature
Low voltage
Materials science
Nucleation
parallel‐aligned patterns
porous carbon fibers
Rechargeable batteries
Scaffolds
Solid electrolytes
Structural stability
temperature tolerance
uniform Li + flux
Title Homogeneous Li+ Flux Distribution Enables Highly Stable and Temperature‐Tolerant Lithium Anode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202102158
https://www.proquest.com/docview/2559690296
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFLcmuIwDfzYQZVD5MInDlDZxYic-VpSqQu0OrEi9ZXZsi4o2mdZE2nbiI_AZ-SQ8J2lakBASu-VJtpXYfu_9nvPezwh9BRfGpMu1Y9mpbIAiHBEp31GAvRPweMSUB_rj72x4E1xN6XSjir_ih2gO3KxmlPbaKriQy-6aNFQoYyvJbcjiUVvtaxO2LCq6bvijvDCsfiszzyZ4edMVa6NLus-7P_dKa6i5CVhLjzPYQ2L1rlWiyV2nyGUn-feCxvF_PmYf7dZwFPeq_XOAPuj0E9rZICn8jH4Os0UG20xnxRKPZt_wYF78wX1LuFvflYUvywKsJbZJI_O_GAAsiFikCk80wPKKtvnx_mGSzUFIcxgmv50VC9xLM6UP0c3gcnIxdOp7GZwE0AbYx4RzQiMTcTcBBAdmihlj_MAYGpAg9FnkhspoTTmVgO-kEJRqABY01J7RnPpHaCvNUn2MMJdEau0TIwKINJkSAB8FiXQkJFOKBi3krNYlTmrScnt3xjyu6JZJbGcubmauhc6b9r8quo5XW56uljmu1XYZ2_iKcZdw1kKkXK83Rol7_cG4kU7e0-kL-mifq6TCU7SV_y70GQCdXLbRdq8_Hv1ol5v6CXcB9do
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5V5QAc-EcsFPABxAGlTbyxEx84rNiutnS3B7SV9pY6sS0qtgliE0E58Qi8Cq_CI_AkzOSvLRJCQuqBo6PESuz5PN84428AnqELk6mvrEfqVBSgaE_HZugZ5N4Zejzu6g39-YGcHoZvlmK5Ad-7szCNPkS_4UbIqNdrAjhtSO-cqYZq4-goOcUsgYjbvMp9e_oJo7b1q70xTvFzzie7i9dTry0s4GXoLhHgmVJcxC5WfoYUBHEmnXPD0DkR8jAaytiPjLNWKJEiQUm1FsKiZxSRDZxVVCgCV_0rVEac5PrHb3vFqiCKmh_ZMqCUsmDZ6UT6fOfi-170g2fk9jxFrn3c5Cb86EanSW15v12V6Xb25TfhyP9q-G7BjZZxs1EDkduwYfM7cP2cDuNdOJoWJwUiyRbVms2OX7LJqvrMxqQp3JYDY7v1GbM1o7yY1SlDjo5NpnPDFhYjj0aZ-ufXb4tihY28xG7Kd8fVCRvlhbH34PBSPvE-bOZFbh8AUylPrR1yp0MMpqXRyJA1j22sU2mMCAfgdYaQZK0uO5UHWSWNojRPaKaSfqYG8KK__0OjSPLHO7c6u0ralWmdUAgplc-VHACvDeQvvSSj8WTetx7-y0NP4ep0MZ8ls72D_Udwja43OZRbsFl-rOxj5HVl-qRGEoOjy7a9X1lTT_0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qilTBAigPMaW0XlCxQGkTT-zECxYj0mhKH6rQVJpd6sS2qJgmVScRlBWfwKfwK_wCX8J1Xn1ICAmpiy4dJVZi3-N7rnN9LsBrdGE8dYV2rDqVDVCkI0M1dBRy7ww9HjX1hv7-AR8f-R-mbLoAP7uzMI0-RL_hZpFRr9cW4GfKbF2Khkpl7ElyG7J4LGzTKnf1xRcM2ubvdiKc4Q1K4-3J-7HT1hVwMvSWiO9MCMpCEwo3QwaCMOPGmKFvDPOpHwx56AbKaM0ES5GfpFIyptExskB7RgtbJwIX_Xs-d4UtFhF97AWrvCBo_mNzz2aUedNOJtKlW9ff97obvOS2Vxly7eLiR_CrG5wms-XzZlWmm9m3G7qRd2n0HsPDlm-TUQOQZVjQ-RN4cEWF8Skcj4vTAnGki2pO9k7eknhWfSWRVRRui4GR7fqE2ZzYrJjZBUGGjk0ic0UmGuOORpf69_cfk2KGjbzEbspPJ9UpGeWF0s_g6FY-8Tks5kWuXwARKU21HlIjfQyluZLIjyUNdShTrhTzB-B0dpBkrSq7LQ4ySxo9aZrYmUr6mRrAm_7-s0aP5K93rnZmlbTr0jyxASQXLhV8ALS2j3_0koyieL9vrfzPQ-uwdBjFyd7Owe5LuG8vNwmUq7BYnlf6FZK6Ml2rcUTg-LZN7w_vLU6s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homogeneous+Li%2B+Flux+Distribution+Enables+Highly+Stable+and+Temperature%E2%80%90Tolerant+Lithium+Anode&rft.jtitle=Advanced+functional+materials&rft.au=Fan%2C+Chao%E2%80%90Ying&rft.au=Xie%2C+Dan&rft.au=Zhang%2C+Xiao%E2%80%90Hua&rft.au=Diao%2C+Wan%E2%80%90Yue&rft.date=2021-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202102158&rft.externalDBID=10.1002%252Fadfm.202102158&rft.externalDocID=ADFM202102158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon