Flexible and Biocompatible Physical Unclonable Function Anti‐Counterfeiting Label

Optical physical unclonable functions (PUFs) have been proven to be one of the most effective anti‐counterfeiting strategies. However, optical PUFs endowed with flexibility and biocompatibility have not been developed, limiting their application scenarios. Herein, biocompatible and flexible optical...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 34
Main Authors Hu, Yan‐Wei, Zhang, Tai‐Ping, Wang, Chun‐Feng, Liu, Kai‐Kai, Sun, Yuan, Li, Lei, Lv, Chao‐Fan, Liang, Ya‐Chuan, Jiao, Fu‐Hang, Zhao, Wen‐Bo, Dong, Lin, Shan, Chong‐Xin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optical physical unclonable functions (PUFs) have been proven to be one of the most effective anti‐counterfeiting strategies. However, optical PUFs endowed with flexibility and biocompatibility have not been developed, limiting their application scenarios. Herein, biocompatible and flexible optical PUF labels are developed by randomly embedding microdiamonds in silk fibroin films. The PUF labels can be conformally attached onto the surface of complex shaped objects, providing the desired protection against fake and interior products. In this system, silk fibroin films serve as a flexible and biocompatible substrate, while the Raman signal of the microdiamonds serves as response of the excitation. The extremely high stability and random distribution of the microdiamonds ensure the performance of PUFs, and the maximum encoding capability of 210000 is finally realized. The cytotoxicity analysis results also verify the biosafety of the PUF system. In addition, the as‐prepared PUF labels are attached onto the surface of polyethylene material, and human skin, and even have been implanted under chicken skin tissue, promising their practical applications. Flexible and biocompatible physical unclonable function labels are designed and demonstrated by using microdiamonds as the response of the excitation and silk fibroin films as a flexible and biocompatible substrate, which have been applied for protection against fake objects with complex shapes.
AbstractList Optical physical unclonable functions (PUFs) have been proven to be one of the most effective anti‐counterfeiting strategies. However, optical PUFs endowed with flexibility and biocompatibility have not been developed, limiting their application scenarios. Herein, biocompatible and flexible optical PUF labels are developed by randomly embedding microdiamonds in silk fibroin films. The PUF labels can be conformally attached onto the surface of complex shaped objects, providing the desired protection against fake and interior products. In this system, silk fibroin films serve as a flexible and biocompatible substrate, while the Raman signal of the microdiamonds serves as response of the excitation. The extremely high stability and random distribution of the microdiamonds ensure the performance of PUFs, and the maximum encoding capability of 210000 is finally realized. The cytotoxicity analysis results also verify the biosafety of the PUF system. In addition, the as‐prepared PUF labels are attached onto the surface of polyethylene material, and human skin, and even have been implanted under chicken skin tissue, promising their practical applications. Flexible and biocompatible physical unclonable function labels are designed and demonstrated by using microdiamonds as the response of the excitation and silk fibroin films as a flexible and biocompatible substrate, which have been applied for protection against fake objects with complex shapes.
Optical physical unclonable functions (PUFs) have been proven to be one of the most effective anti‐counterfeiting strategies. However, optical PUFs endowed with flexibility and biocompatibility have not been developed, limiting their application scenarios. Herein, biocompatible and flexible optical PUF labels are developed by randomly embedding microdiamonds in silk fibroin films. The PUF labels can be conformally attached onto the surface of complex shaped objects, providing the desired protection against fake and interior products. In this system, silk fibroin films serve as a flexible and biocompatible substrate, while the Raman signal of the microdiamonds serves as response of the excitation. The extremely high stability and random distribution of the microdiamonds ensure the performance of PUFs, and the maximum encoding capability of 2 10000 is finally realized. The cytotoxicity analysis results also verify the biosafety of the PUF system. In addition, the as‐prepared PUF labels are attached onto the surface of polyethylene material, and human skin, and even have been implanted under chicken skin tissue, promising their practical applications.
Optical physical unclonable functions (PUFs) have been proven to be one of the most effective anti‐counterfeiting strategies. However, optical PUFs endowed with flexibility and biocompatibility have not been developed, limiting their application scenarios. Herein, biocompatible and flexible optical PUF labels are developed by randomly embedding microdiamonds in silk fibroin films. The PUF labels can be conformally attached onto the surface of complex shaped objects, providing the desired protection against fake and interior products. In this system, silk fibroin films serve as a flexible and biocompatible substrate, while the Raman signal of the microdiamonds serves as response of the excitation. The extremely high stability and random distribution of the microdiamonds ensure the performance of PUFs, and the maximum encoding capability of 210000 is finally realized. The cytotoxicity analysis results also verify the biosafety of the PUF system. In addition, the as‐prepared PUF labels are attached onto the surface of polyethylene material, and human skin, and even have been implanted under chicken skin tissue, promising their practical applications.
Author Sun, Yuan
Wang, Chun‐Feng
Liu, Kai‐Kai
Dong, Lin
Lv, Chao‐Fan
Jiao, Fu‐Hang
Liang, Ya‐Chuan
Zhang, Tai‐Ping
Zhao, Wen‐Bo
Shan, Chong‐Xin
Li, Lei
Hu, Yan‐Wei
Author_xml – sequence: 1
  givenname: Yan‐Wei
  surname: Hu
  fullname: Hu, Yan‐Wei
  organization: Zhengzhou University
– sequence: 2
  givenname: Tai‐Ping
  surname: Zhang
  fullname: Zhang, Tai‐Ping
  organization: CAEP
– sequence: 3
  givenname: Chun‐Feng
  surname: Wang
  fullname: Wang, Chun‐Feng
  organization: Shenzhen University
– sequence: 4
  givenname: Kai‐Kai
  orcidid: 0000-0003-4923-3836
  surname: Liu
  fullname: Liu, Kai‐Kai
  email: liukaikai@zzu.edu.cn
  organization: Zhengzhou University
– sequence: 5
  givenname: Yuan
  surname: Sun
  fullname: Sun, Yuan
  organization: Zhengzhou University
– sequence: 6
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  organization: Zhengzhou University
– sequence: 7
  givenname: Chao‐Fan
  surname: Lv
  fullname: Lv, Chao‐Fan
  organization: Zhengzhou University
– sequence: 8
  givenname: Ya‐Chuan
  surname: Liang
  fullname: Liang, Ya‐Chuan
  organization: Zhengzhou University
– sequence: 9
  givenname: Fu‐Hang
  surname: Jiao
  fullname: Jiao, Fu‐Hang
  organization: Zhengzhou University
– sequence: 10
  givenname: Wen‐Bo
  surname: Zhao
  fullname: Zhao, Wen‐Bo
  organization: Zhengzhou University
– sequence: 11
  givenname: Lin
  surname: Dong
  fullname: Dong, Lin
  email: ldong@zzu.edu.cn
  organization: Zhengzhou University
– sequence: 12
  givenname: Chong‐Xin
  surname: Shan
  fullname: Shan, Chong‐Xin
  email: cxshan@zzu.edu.cn
  organization: Zhengzhou University
BookMark eNqFkM9KAzEQxoNUsK1ePS943pp_u9k91uqqUFHQgreQZhNNSZOazaK9-Qg-o09i14qCIMLADB_fb4b5BqDnvFMAHCI4QhDiY1Hr5QhDjLoqdkAf5ShPCcRF73tG93tg0DQLCBFjhPbBbWXVi5lblQhXJyfGS79cifip3DyuGyOFTWZOWu9Ep1Wtk9F4l4xdNO-vbxPfuqiCViYa95BMxVzZfbCrhW3UwVcfgll1dje5SKfX55eT8TSVBLEiZUhrQQpaZ7oktMxorRlkSmkkhCCQzAUmWVnrTMtC5hmpidJUMlViQqiUlAzB0XbvKvinVjWRL3wb3OYkx1mOiwzRHG5cdOuSwTdNUJpLE0X3QwzCWI4g7-LjXXz8O74NNvqFrYJZirD-Gyi3wLOxav2Pm49Pq6sf9gMKhoZ0
CitedBy_id crossref_primary_10_1021_jacs_2c13108
crossref_primary_10_1007_s00371_023_02909_8
crossref_primary_10_1016_j_optcom_2024_131273
crossref_primary_10_1021_acsami_4c16881
crossref_primary_10_1016_j_nanoen_2024_110358
crossref_primary_10_1021_acsnano_4c17883
crossref_primary_10_1007_s12274_023_6337_z
crossref_primary_10_3390_s23020795
crossref_primary_10_1038_s41467_024_55014_2
crossref_primary_10_1038_s41467_024_47479_y
crossref_primary_10_1002_smll_202500878
crossref_primary_10_1039_D3NA00707C
crossref_primary_10_1002_ange_202313971
crossref_primary_10_1002_adfm_202211762
crossref_primary_10_1186_s40580_023_00366_6
crossref_primary_10_1002_smll_202405110
crossref_primary_10_1021_acsami_2c17870
crossref_primary_10_3390_app13148101
crossref_primary_10_1016_j_cej_2024_154823
crossref_primary_10_1038_s41565_023_01405_3
crossref_primary_10_1002_adom_202201549
crossref_primary_10_1038_s41467_024_51756_1
crossref_primary_10_1002_advs_202401983
crossref_primary_10_1002_adma_202212294
crossref_primary_10_1002_advs_202400693
crossref_primary_10_3390_electronics13020309
crossref_primary_10_1039_D4CC03178D
crossref_primary_10_1063_5_0146648
crossref_primary_10_1038_s41598_022_05098_x
crossref_primary_10_1039_D3TC00794D
crossref_primary_10_1002_adfm_202108675
crossref_primary_10_1021_acsami_3c02193
crossref_primary_10_1002_adfm_202417673
crossref_primary_10_1016_j_mseb_2023_116880
crossref_primary_10_1021_acsnano_4c03136
crossref_primary_10_1021_acsami_3c09386
crossref_primary_10_1002_lpor_202301006
crossref_primary_10_1021_acsanm_2c03055
crossref_primary_10_1016_j_mtchem_2023_101423
crossref_primary_10_1021_acsami_2c18737
crossref_primary_10_1002_adfm_202424079
crossref_primary_10_1021_acsami_3c18270
crossref_primary_10_1364_PRJ_489700
crossref_primary_10_1021_acsami_4c20440
crossref_primary_10_1002_adma_202306728
crossref_primary_10_1002_adfm_202405239
crossref_primary_10_1021_acsaelm_2c01533
crossref_primary_10_1117_1_APN_4_1_016003
crossref_primary_10_1021_acsami_1c20803
crossref_primary_10_1002_smll_202408574
crossref_primary_10_1021_acsami_3c09035
crossref_primary_10_1016_j_cej_2025_161538
crossref_primary_10_1063_5_0091213
crossref_primary_10_1002_adfm_202205859
crossref_primary_10_1016_j_cej_2022_135601
crossref_primary_10_1002_adma_202306003
crossref_primary_10_1002_adem_202101701
crossref_primary_10_1002_adma_202210621
crossref_primary_10_1021_acsnano_3c08740
crossref_primary_10_1021_acsami_4c01534
crossref_primary_10_3390_mi14091678
crossref_primary_10_1021_acsaom_3c00402
crossref_primary_10_1021_acsapm_2c00803
crossref_primary_10_1002_adma_202109055
crossref_primary_10_37188_lam_2024_024
crossref_primary_10_1021_acsnano_3c12432
crossref_primary_10_1002_adma_202409170
crossref_primary_10_1002_anie_202313971
crossref_primary_10_1109_JSTQE_2023_3345178
crossref_primary_10_1364_OE_441941
crossref_primary_10_1002_advs_202308337
crossref_primary_10_1039_D4AN00665H
crossref_primary_10_1002_adfm_202304648
crossref_primary_10_1002_adpr_202200281
crossref_primary_10_1021_acsami_4c06515
crossref_primary_10_1002_adma_202102586
crossref_primary_10_1021_acsanm_4c04614
crossref_primary_10_1002_adfm_202112479
crossref_primary_10_1002_mabi_202300091
crossref_primary_10_1007_s12652_022_04321_x
Cites_doi 10.1126/science.1074376
10.1109/TIFS.2020.3021917
10.1002/adfm.201503989
10.1007/s12274-020-2710-3
10.1021/acsnano.8b03943
10.1038/s41570-017-0031
10.1021/acsnano.5b04066
10.1038/s41563-019-0560-8
10.1038/s41467-019-14066-5
10.1038/s41467-019-10406-7
10.1038/s41467-019-14070-9
10.1039/C3CS60235D
10.1039/C7NR06561B
10.1002/adfm.201605657
10.1088/1674-1056/abad1c
10.1002/adma.202070287
10.1002/advs.202003433
10.1126/sciadv.1701384
10.1126/science.abc4174
10.1038/nmat4942
10.1109/JPROC.2014.2335155
10.1080/14740338.2017.1313227
10.1016/j.carbon.2020.11.013
10.1002/smtd.202000274
10.1021/acsnano.7b03119
10.1038/s41586-020-2718-6
10.1021/acsami.8b17403
10.1016/j.orgel.2017.08.022
10.1021/acsnano.7b07568
10.1021/bm200062a
10.1109/JIOT.2018.2874626
10.1021/acsami.0c11103
10.1038/s41928-020-0372-5
10.1021/acsnano.7b06658
10.1002/adom.201800068
10.1002/aenm.201502329
10.1038/nnano.2016.1
10.1021/acsami.8b11663
10.1002/adma.201405483
10.1109/JPROC.2014.2320516
10.1038/nprot.2011.379
10.1021/acs.nanolett.8b03338
10.1021/acsami.7b06436
10.1109/JIOT.2018.2864594
10.1002/adma.201304248
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202102108
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202102108
ADFM202102108
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11974317
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3178-71ffa384d5f934954df707eef1aaa303ba2359df5fc8c653d3ef4c7e92334cc43
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:26:01 EDT 2025
Tue Jul 01 04:12:33 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Wed Jan 22 16:29:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3178-71ffa384d5f934954df707eef1aaa303ba2359df5fc8c653d3ef4c7e92334cc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4923-3836
PQID 2562851460
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2562851460
crossref_citationtrail_10_1002_adfm_202102108
crossref_primary_10_1002_adfm_202102108
wiley_primary_10_1002_adfm_202102108_ADFM202102108
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2017; 1
2019; 6
2002; 297
2019; 11
2019; 10
2017; 27
2014; 26
2020; 13
2020; 585
2020; 12
2011; 12
2020; 11
2020; 32
2015; 9
2011; 6
2017; 9
2020; 19
2014; 43
2016; 11
2017; 51
2018; 6
2018; 18
2016; 6
2021; 16
2020; 4
2020; 3
2015; 27
2018; 4
2017; 16
2017; 11
2021; 173
2021; 371
2018; 12
2018; 10
2016; 26
2014; 102
2020; 29
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 11
  start-page: 6475
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 2083
  year: 2015
  publication-title: Adv. Mater.
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 102
  year: 2020
  publication-title: Nat. Mater.
– volume: 16
  start-page: 756
  year: 2021
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 18
  start-page: 7211
  year: 2018
  publication-title: Nano Lett.
– volume: 10
  start-page: 2409
  year: 2019
  publication-title: Nat. Commun.
– volume: 51
  start-page: 137
  year: 2017
  publication-title: Org. Electron.
– volume: 26
  start-page: 1336
  year: 2014
  publication-title: Adv. Mater.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 29
  year: 2020
  publication-title: Chin. Phys. B
– volume: 11
  start-page: 516
  year: 2020
  publication-title: Nat. Commun.
– volume: 297
  start-page: 2026
  year: 2002
  publication-title: Science
– volume: 11
  start-page: 559
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 1686
  year: 2011
  publication-title: Biomacromolecules
– volume: 1
  start-page: 0031
  year: 2017
  publication-title: Nat. Rev. Chem.
– volume: 6
  start-page: 435
  year: 2019
  publication-title: IEEE Internet Things J.
– volume: 16
  start-page: 587
  year: 2017
  publication-title: Expert Opin. Drug Saf.
– volume: 43
  start-page: 588
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 102
  start-page: 1283
  year: 2014
  publication-title: Proc. IEEE
– volume: 6
  start-page: 1612
  year: 2011
  publication-title: Nat. Protoc.
– volume: 173
  start-page: 427
  year: 2021
  publication-title: Carbon
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 16
  start-page: 938
  year: 2017
  publication-title: Nat. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 2721
  year: 2018
  publication-title: Nanoscale
– volume: 585
  start-page: 524
  year: 2020
  publication-title: Nature
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 102
  start-page: 1126
  year: 2014
  publication-title: Proc. IEEE
– volume: 11
  start-page: 8178
  year: 2017
  publication-title: ACS Nano
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 26
  start-page: 1315
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 328
  year: 2020
  publication-title: Nat. Commun.
– volume: 13
  start-page: 875
  year: 2020
  publication-title: Nano Res.
– volume: 3
  start-page: 81
  year: 2020
  publication-title: Nat. Electron.
– volume: 371
  start-page: 76
  year: 2021
  publication-title: Science
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 2770
  year: 2019
  publication-title: IEEE Internet Things J.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– ident: e_1_2_9_11_1
  doi: 10.1126/science.1074376
– ident: e_1_2_9_45_1
  doi: 10.1109/TIFS.2020.3021917
– ident: e_1_2_9_22_1
  doi: 10.1002/adfm.201503989
– ident: e_1_2_9_8_1
  doi: 10.1007/s12274-020-2710-3
– ident: e_1_2_9_34_1
  doi: 10.1021/acsnano.8b03943
– ident: e_1_2_9_5_1
  doi: 10.1038/s41570-017-0031
– ident: e_1_2_9_17_1
  doi: 10.1021/acsnano.5b04066
– ident: e_1_2_9_40_1
  doi: 10.1038/s41563-019-0560-8
– ident: e_1_2_9_14_1
  doi: 10.1038/s41467-019-14066-5
– ident: e_1_2_9_13_1
  doi: 10.1038/s41467-019-10406-7
– ident: e_1_2_9_37_1
  doi: 10.1038/s41467-019-14070-9
– ident: e_1_2_9_42_1
  doi: 10.1039/C3CS60235D
– ident: e_1_2_9_19_1
  doi: 10.1039/C7NR06561B
– ident: e_1_2_9_43_1
  doi: 10.1002/adfm.201605657
– ident: e_1_2_9_32_1
  doi: 10.1088/1674-1056/abad1c
– ident: e_1_2_9_25_1
  doi: 10.1002/adma.202070287
– ident: e_1_2_9_6_1
  doi: 10.1002/advs.202003433
– ident: e_1_2_9_2_1
  doi: 10.1126/sciadv.1701384
– ident: e_1_2_9_31_1
  doi: 10.1126/science.abc4174
– ident: e_1_2_9_38_1
  doi: 10.1038/nmat4942
– ident: e_1_2_9_1_1
  doi: 10.1109/JPROC.2014.2335155
– ident: e_1_2_9_4_1
  doi: 10.1080/14740338.2017.1313227
– ident: e_1_2_9_30_1
  doi: 10.1016/j.carbon.2020.11.013
– ident: e_1_2_9_35_1
  doi: 10.1002/smtd.202000274
– ident: e_1_2_9_41_1
  doi: 10.1021/acsnano.7b03119
– ident: e_1_2_9_28_1
  doi: 10.1038/s41586-020-2718-6
– ident: e_1_2_9_12_1
  doi: 10.1021/acsami.8b17403
– ident: e_1_2_9_24_1
  doi: 10.1016/j.orgel.2017.08.022
– ident: e_1_2_9_21_1
  doi: 10.1021/acsnano.7b07568
– ident: e_1_2_9_44_1
  doi: 10.1021/bm200062a
– ident: e_1_2_9_3_1
  doi: 10.1109/JIOT.2018.2874626
– ident: e_1_2_9_26_1
  doi: 10.1021/acsami.0c11103
– ident: e_1_2_9_10_1
  doi: 10.1038/s41928-020-0372-5
– ident: e_1_2_9_16_1
  doi: 10.1021/acsnano.7b06658
– ident: e_1_2_9_29_1
  doi: 10.1002/adom.201800068
– ident: e_1_2_9_39_1
  doi: 10.1002/aenm.201502329
– ident: e_1_2_9_15_1
  doi: 10.1038/nnano.2016.1
– ident: e_1_2_9_9_1
  doi: 10.1021/acsami.8b11663
– ident: e_1_2_9_23_1
  doi: 10.1002/adma.201405483
– ident: e_1_2_9_18_1
  doi: 10.1109/JPROC.2014.2320516
– ident: e_1_2_9_33_1
  doi: 10.1038/nprot.2011.379
– ident: e_1_2_9_20_1
  doi: 10.1021/acs.nanolett.8b03338
– ident: e_1_2_9_7_1
  doi: 10.1021/acsami.7b06436
– ident: e_1_2_9_27_1
  doi: 10.1109/JIOT.2018.2864594
– ident: e_1_2_9_36_1
  doi: 10.1002/adma.201304248
SSID ssj0017734
Score 2.604496
Snippet Optical physical unclonable functions (PUFs) have been proven to be one of the most effective anti‐counterfeiting strategies. However, optical PUFs endowed...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Biocompatibility
Complex shape objects
Counterfeiting
diamonds
flexibility
Labels
Materials science
Microdiamonds
physical unclonable function
Polyethylenes
Silk fibroin
Skin
Substrates
Toxicity
Title Flexible and Biocompatible Physical Unclonable Function Anti‐Counterfeiting Label
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202102108
https://www.proquest.com/docview/2562851460
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT4MwFG6MXvTgb-N0LhxMPLFRWsp2RCdZzGaMc8lupC1tskiYceziyT_Bv9G_xD5gbDMxJnoD0hboa_u-B9_7itAlodRYljh2LCg3AQrGtvAcalPGFGcxbVMMCc6De9Yb0buxN17J4i_0IaoPbjAz8vUaJjgXs9ZSNJTHGjLJIWTBebYvELYAFT1W-lHY94vfygwDwQuPF6qNjttar77ulZZQcxWw5h4n3EN88awF0eS5Oc9EU759k3H8z8vso90SjlpBMX4O0IZKD9HOikjhERqGoJkpEmXxNLauJ9Octp7lVx5KK1ujVCbTPA3LCo2nBGtbQZpNPt8_IOsd9sJWE2BYW30uVHKMRuHt003PLrdisKUBGG3bx1pz0qaxpzvExFQ01r7jK6Ux59x4QcFd4nViDYwwyTwSE6Wp9JWBj4RKSckJ2kynqTpFlpaYS7PcE1cx2pGMMymwaYNhibXrOzVkL0wRyVKnHLbLSKJCYdmNoLOiqrNq6Koq_1IodPxYsr6wbFTO1FlkIJ9rUCdl5sZubqJfWomCbjiozs7-UukcbcNxwSOso83sda4uDLbJRANtBd1Bf9jIx_EXXuPycA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RONAeyqNUpTzqQytOgfgRZ_fQw8ISLWUXIcpKewuOY0urrrJVCarKiZ_AX-lf6U_oL8GTFw8JVarEgWMsx0k8M_Y3zsw3AB-5EE6y3PfSRCjnoFDqJYEvPCGlUTIVLUExwXlwJHtD8WUUjGbgd50LU_JDNAduaBnFeo0GjgfSO7esoSq1mEqOPgv1W1Vc5aH59dN5beefD7pOxJ8Yi_ZP93peVVjA0267bHkhtVbxlkgD2-bOQxCpDf3QGEuVUm5NTxTjQTu1GN-kZcBTbqzQoXFgiAutBXfjvoA5LCOOdP3dk4axioZh-SNbUgwpo6OaJ9JnO_ff9_4-eAtu70LkYo-LFuBPPTtlaMu37Ys82daXD4gjn9X0LcLrCnGTTmkiSzBjsmV4dYeH8Q18jZAWNJkYorKU7I6nRWR-XrQcV4pMhpmeTItMMxI5MIAKTTpZPv57dY2J_Vju24wxiJz0VWImKzB8kq96C7PZNDPvgFhNlXY7GmdGiraWSuqEujEk1dSy0F8Fr5Z9rCsqdqwIMolLEmkWo3DiRjirsNX0_16SkDzac71WpbhajM5jh2qZA9ZCugezQif-MUrc6UaD5ur9_9z0AeZ7p4N-3D84OlyDl9hehk2uw2z-48JsOCiXJ5uF8RA4e2p1uwE7_1AI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB71R6rKoS2lVVNK2QOoJzfeH6-TA4dAsFqSRhElUm7uen-kqJETEVcITjwCj8Kr8Ao8SXf916YSQkLqgaNX65W9M7PzjT3zDcArypiVLPU9lTBhAxSMvSTwmcc414Ir1mLYFThfDPjZiH0YB-MV-FnVwhT8EPUHN2cZ-XntDHyuTPOONFQo4yrJXciC_VaZVtnTX7_YoG3x5rxrJfyakOj9p3dnXtlXwJPWW7a8EBsjaIupwLSpDRCYMqEfam2wEMIe6YkgNGgr49KbJA-ootowGWqLhSiTklG77iqsM-63XbOI7seasAqHYfEfm2OXUYbHFU2kT5rLz7vsBu-w7X2EnLu4aBt-VZtTZLZcn95kyan89oA38n_avR3YKvE26hQG8hRWdLoLT-6xMD6Dy8iRgiZTjUSq0NvJLM_Lz_KRYanGaJTK6SyvM0ORhQJOnVEnzSa_v_9wZf2u2beeuBRy1BeJnu7B6FHeah_W0lmqDwAZiYW0_owSzVlbcsFlgu0aHEtsSOg3wKtEH8uSiN31A5nGBYU0iZ1w4lo4DTip588LCpI_zjyqNCkuj6JFbDEtsbDaamsDSK4Sf1kl7nSji_rq8F9uegkbw24U988Hveew6YaLnMkjWMs-3-gXFsdlyXFuOgiuHlvbbgHeUU63
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+Biocompatible+Physical+Unclonable+Function+Anti%E2%80%90Counterfeiting+Label&rft.jtitle=Advanced+functional+materials&rft.au=Hu%2C+Yan%E2%80%90Wei&rft.au=Zhang%2C+Tai%E2%80%90Ping&rft.au=Wang%2C+Chun%E2%80%90Feng&rft.au=Liu%2C+Kai%E2%80%90Kai&rft.date=2021-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202102108&rft.externalDBID=10.1002%252Fadfm.202102108&rft.externalDocID=ADFM202102108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon