Flexible and Biocompatible Physical Unclonable Function Anti‐Counterfeiting Label
Optical physical unclonable functions (PUFs) have been proven to be one of the most effective anti‐counterfeiting strategies. However, optical PUFs endowed with flexibility and biocompatibility have not been developed, limiting their application scenarios. Herein, biocompatible and flexible optical...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 34 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optical physical unclonable functions (PUFs) have been proven to be one of the most effective anti‐counterfeiting strategies. However, optical PUFs endowed with flexibility and biocompatibility have not been developed, limiting their application scenarios. Herein, biocompatible and flexible optical PUF labels are developed by randomly embedding microdiamonds in silk fibroin films. The PUF labels can be conformally attached onto the surface of complex shaped objects, providing the desired protection against fake and interior products. In this system, silk fibroin films serve as a flexible and biocompatible substrate, while the Raman signal of the microdiamonds serves as response of the excitation. The extremely high stability and random distribution of the microdiamonds ensure the performance of PUFs, and the maximum encoding capability of 210000 is finally realized. The cytotoxicity analysis results also verify the biosafety of the PUF system. In addition, the as‐prepared PUF labels are attached onto the surface of polyethylene material, and human skin, and even have been implanted under chicken skin tissue, promising their practical applications.
Flexible and biocompatible physical unclonable function labels are designed and demonstrated by using microdiamonds as the response of the excitation and silk fibroin films as a flexible and biocompatible substrate, which have been applied for protection against fake objects with complex shapes. |
---|---|
AbstractList | Optical physical unclonable functions (PUFs) have been proven to be one of the most effective anti‐counterfeiting strategies. However, optical PUFs endowed with flexibility and biocompatibility have not been developed, limiting their application scenarios. Herein, biocompatible and flexible optical PUF labels are developed by randomly embedding microdiamonds in silk fibroin films. The PUF labels can be conformally attached onto the surface of complex shaped objects, providing the desired protection against fake and interior products. In this system, silk fibroin films serve as a flexible and biocompatible substrate, while the Raman signal of the microdiamonds serves as response of the excitation. The extremely high stability and random distribution of the microdiamonds ensure the performance of PUFs, and the maximum encoding capability of 210000 is finally realized. The cytotoxicity analysis results also verify the biosafety of the PUF system. In addition, the as‐prepared PUF labels are attached onto the surface of polyethylene material, and human skin, and even have been implanted under chicken skin tissue, promising their practical applications.
Flexible and biocompatible physical unclonable function labels are designed and demonstrated by using microdiamonds as the response of the excitation and silk fibroin films as a flexible and biocompatible substrate, which have been applied for protection against fake objects with complex shapes. Optical physical unclonable functions (PUFs) have been proven to be one of the most effective anti‐counterfeiting strategies. However, optical PUFs endowed with flexibility and biocompatibility have not been developed, limiting their application scenarios. Herein, biocompatible and flexible optical PUF labels are developed by randomly embedding microdiamonds in silk fibroin films. The PUF labels can be conformally attached onto the surface of complex shaped objects, providing the desired protection against fake and interior products. In this system, silk fibroin films serve as a flexible and biocompatible substrate, while the Raman signal of the microdiamonds serves as response of the excitation. The extremely high stability and random distribution of the microdiamonds ensure the performance of PUFs, and the maximum encoding capability of 2 10000 is finally realized. The cytotoxicity analysis results also verify the biosafety of the PUF system. In addition, the as‐prepared PUF labels are attached onto the surface of polyethylene material, and human skin, and even have been implanted under chicken skin tissue, promising their practical applications. Optical physical unclonable functions (PUFs) have been proven to be one of the most effective anti‐counterfeiting strategies. However, optical PUFs endowed with flexibility and biocompatibility have not been developed, limiting their application scenarios. Herein, biocompatible and flexible optical PUF labels are developed by randomly embedding microdiamonds in silk fibroin films. The PUF labels can be conformally attached onto the surface of complex shaped objects, providing the desired protection against fake and interior products. In this system, silk fibroin films serve as a flexible and biocompatible substrate, while the Raman signal of the microdiamonds serves as response of the excitation. The extremely high stability and random distribution of the microdiamonds ensure the performance of PUFs, and the maximum encoding capability of 210000 is finally realized. The cytotoxicity analysis results also verify the biosafety of the PUF system. In addition, the as‐prepared PUF labels are attached onto the surface of polyethylene material, and human skin, and even have been implanted under chicken skin tissue, promising their practical applications. |
Author | Sun, Yuan Wang, Chun‐Feng Liu, Kai‐Kai Dong, Lin Lv, Chao‐Fan Jiao, Fu‐Hang Liang, Ya‐Chuan Zhang, Tai‐Ping Zhao, Wen‐Bo Shan, Chong‐Xin Li, Lei Hu, Yan‐Wei |
Author_xml | – sequence: 1 givenname: Yan‐Wei surname: Hu fullname: Hu, Yan‐Wei organization: Zhengzhou University – sequence: 2 givenname: Tai‐Ping surname: Zhang fullname: Zhang, Tai‐Ping organization: CAEP – sequence: 3 givenname: Chun‐Feng surname: Wang fullname: Wang, Chun‐Feng organization: Shenzhen University – sequence: 4 givenname: Kai‐Kai orcidid: 0000-0003-4923-3836 surname: Liu fullname: Liu, Kai‐Kai email: liukaikai@zzu.edu.cn organization: Zhengzhou University – sequence: 5 givenname: Yuan surname: Sun fullname: Sun, Yuan organization: Zhengzhou University – sequence: 6 givenname: Lei surname: Li fullname: Li, Lei organization: Zhengzhou University – sequence: 7 givenname: Chao‐Fan surname: Lv fullname: Lv, Chao‐Fan organization: Zhengzhou University – sequence: 8 givenname: Ya‐Chuan surname: Liang fullname: Liang, Ya‐Chuan organization: Zhengzhou University – sequence: 9 givenname: Fu‐Hang surname: Jiao fullname: Jiao, Fu‐Hang organization: Zhengzhou University – sequence: 10 givenname: Wen‐Bo surname: Zhao fullname: Zhao, Wen‐Bo organization: Zhengzhou University – sequence: 11 givenname: Lin surname: Dong fullname: Dong, Lin email: ldong@zzu.edu.cn organization: Zhengzhou University – sequence: 12 givenname: Chong‐Xin surname: Shan fullname: Shan, Chong‐Xin email: cxshan@zzu.edu.cn organization: Zhengzhou University |
BookMark | eNqFkM9KAzEQxoNUsK1ePS943pp_u9k91uqqUFHQgreQZhNNSZOazaK9-Qg-o09i14qCIMLADB_fb4b5BqDnvFMAHCI4QhDiY1Hr5QhDjLoqdkAf5ShPCcRF73tG93tg0DQLCBFjhPbBbWXVi5lblQhXJyfGS79cifip3DyuGyOFTWZOWu9Ep1Wtk9F4l4xdNO-vbxPfuqiCViYa95BMxVzZfbCrhW3UwVcfgll1dje5SKfX55eT8TSVBLEiZUhrQQpaZ7oktMxorRlkSmkkhCCQzAUmWVnrTMtC5hmpidJUMlViQqiUlAzB0XbvKvinVjWRL3wb3OYkx1mOiwzRHG5cdOuSwTdNUJpLE0X3QwzCWI4g7-LjXXz8O74NNvqFrYJZirD-Gyi3wLOxav2Pm49Pq6sf9gMKhoZ0 |
CitedBy_id | crossref_primary_10_1021_jacs_2c13108 crossref_primary_10_1007_s00371_023_02909_8 crossref_primary_10_1016_j_optcom_2024_131273 crossref_primary_10_1021_acsami_4c16881 crossref_primary_10_1016_j_nanoen_2024_110358 crossref_primary_10_1021_acsnano_4c17883 crossref_primary_10_1007_s12274_023_6337_z crossref_primary_10_3390_s23020795 crossref_primary_10_1038_s41467_024_55014_2 crossref_primary_10_1038_s41467_024_47479_y crossref_primary_10_1002_smll_202500878 crossref_primary_10_1039_D3NA00707C crossref_primary_10_1002_ange_202313971 crossref_primary_10_1002_adfm_202211762 crossref_primary_10_1186_s40580_023_00366_6 crossref_primary_10_1002_smll_202405110 crossref_primary_10_1021_acsami_2c17870 crossref_primary_10_3390_app13148101 crossref_primary_10_1016_j_cej_2024_154823 crossref_primary_10_1038_s41565_023_01405_3 crossref_primary_10_1002_adom_202201549 crossref_primary_10_1038_s41467_024_51756_1 crossref_primary_10_1002_advs_202401983 crossref_primary_10_1002_adma_202212294 crossref_primary_10_1002_advs_202400693 crossref_primary_10_3390_electronics13020309 crossref_primary_10_1039_D4CC03178D crossref_primary_10_1063_5_0146648 crossref_primary_10_1038_s41598_022_05098_x crossref_primary_10_1039_D3TC00794D crossref_primary_10_1002_adfm_202108675 crossref_primary_10_1021_acsami_3c02193 crossref_primary_10_1002_adfm_202417673 crossref_primary_10_1016_j_mseb_2023_116880 crossref_primary_10_1021_acsnano_4c03136 crossref_primary_10_1021_acsami_3c09386 crossref_primary_10_1002_lpor_202301006 crossref_primary_10_1021_acsanm_2c03055 crossref_primary_10_1016_j_mtchem_2023_101423 crossref_primary_10_1021_acsami_2c18737 crossref_primary_10_1002_adfm_202424079 crossref_primary_10_1021_acsami_3c18270 crossref_primary_10_1364_PRJ_489700 crossref_primary_10_1021_acsami_4c20440 crossref_primary_10_1002_adma_202306728 crossref_primary_10_1002_adfm_202405239 crossref_primary_10_1021_acsaelm_2c01533 crossref_primary_10_1117_1_APN_4_1_016003 crossref_primary_10_1021_acsami_1c20803 crossref_primary_10_1002_smll_202408574 crossref_primary_10_1021_acsami_3c09035 crossref_primary_10_1016_j_cej_2025_161538 crossref_primary_10_1063_5_0091213 crossref_primary_10_1002_adfm_202205859 crossref_primary_10_1016_j_cej_2022_135601 crossref_primary_10_1002_adma_202306003 crossref_primary_10_1002_adem_202101701 crossref_primary_10_1002_adma_202210621 crossref_primary_10_1021_acsnano_3c08740 crossref_primary_10_1021_acsami_4c01534 crossref_primary_10_3390_mi14091678 crossref_primary_10_1021_acsaom_3c00402 crossref_primary_10_1021_acsapm_2c00803 crossref_primary_10_1002_adma_202109055 crossref_primary_10_37188_lam_2024_024 crossref_primary_10_1021_acsnano_3c12432 crossref_primary_10_1002_adma_202409170 crossref_primary_10_1002_anie_202313971 crossref_primary_10_1109_JSTQE_2023_3345178 crossref_primary_10_1364_OE_441941 crossref_primary_10_1002_advs_202308337 crossref_primary_10_1039_D4AN00665H crossref_primary_10_1002_adfm_202304648 crossref_primary_10_1002_adpr_202200281 crossref_primary_10_1021_acsami_4c06515 crossref_primary_10_1002_adma_202102586 crossref_primary_10_1021_acsanm_4c04614 crossref_primary_10_1002_adfm_202112479 crossref_primary_10_1002_mabi_202300091 crossref_primary_10_1007_s12652_022_04321_x |
Cites_doi | 10.1126/science.1074376 10.1109/TIFS.2020.3021917 10.1002/adfm.201503989 10.1007/s12274-020-2710-3 10.1021/acsnano.8b03943 10.1038/s41570-017-0031 10.1021/acsnano.5b04066 10.1038/s41563-019-0560-8 10.1038/s41467-019-14066-5 10.1038/s41467-019-10406-7 10.1038/s41467-019-14070-9 10.1039/C3CS60235D 10.1039/C7NR06561B 10.1002/adfm.201605657 10.1088/1674-1056/abad1c 10.1002/adma.202070287 10.1002/advs.202003433 10.1126/sciadv.1701384 10.1126/science.abc4174 10.1038/nmat4942 10.1109/JPROC.2014.2335155 10.1080/14740338.2017.1313227 10.1016/j.carbon.2020.11.013 10.1002/smtd.202000274 10.1021/acsnano.7b03119 10.1038/s41586-020-2718-6 10.1021/acsami.8b17403 10.1016/j.orgel.2017.08.022 10.1021/acsnano.7b07568 10.1021/bm200062a 10.1109/JIOT.2018.2874626 10.1021/acsami.0c11103 10.1038/s41928-020-0372-5 10.1021/acsnano.7b06658 10.1002/adom.201800068 10.1002/aenm.201502329 10.1038/nnano.2016.1 10.1021/acsami.8b11663 10.1002/adma.201405483 10.1109/JPROC.2014.2320516 10.1038/nprot.2011.379 10.1021/acs.nanolett.8b03338 10.1021/acsami.7b06436 10.1109/JIOT.2018.2864594 10.1002/adma.201304248 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202102108 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202102108 ADFM202102108 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11974317 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3178-71ffa384d5f934954df707eef1aaa303ba2359df5fc8c653d3ef4c7e92334cc43 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 04:26:01 EDT 2025 Tue Jul 01 04:12:33 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Wed Jan 22 16:29:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3178-71ffa384d5f934954df707eef1aaa303ba2359df5fc8c653d3ef4c7e92334cc43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4923-3836 |
PQID | 2562851460 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2562851460 crossref_citationtrail_10_1002_adfm_202102108 crossref_primary_10_1002_adfm_202102108 wiley_primary_10_1002_adfm_202102108_ADFM202102108 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2017; 1 2019; 6 2002; 297 2019; 11 2019; 10 2017; 27 2014; 26 2020; 13 2020; 585 2020; 12 2011; 12 2020; 11 2020; 32 2015; 9 2011; 6 2017; 9 2020; 19 2014; 43 2016; 11 2017; 51 2018; 6 2018; 18 2016; 6 2021; 16 2020; 4 2020; 3 2015; 27 2018; 4 2017; 16 2017; 11 2021; 173 2021; 371 2018; 12 2018; 10 2016; 26 2014; 102 2020; 29 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 11 start-page: 6475 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 2083 year: 2015 publication-title: Adv. Mater. – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 102 year: 2020 publication-title: Nat. Mater. – volume: 16 start-page: 756 year: 2021 publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 9 year: 2015 publication-title: ACS Nano – volume: 18 start-page: 7211 year: 2018 publication-title: Nano Lett. – volume: 10 start-page: 2409 year: 2019 publication-title: Nat. Commun. – volume: 51 start-page: 137 year: 2017 publication-title: Org. Electron. – volume: 26 start-page: 1336 year: 2014 publication-title: Adv. Mater. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 29 year: 2020 publication-title: Chin. Phys. B – volume: 11 start-page: 516 year: 2020 publication-title: Nat. Commun. – volume: 297 start-page: 2026 year: 2002 publication-title: Science – volume: 11 start-page: 559 year: 2016 publication-title: Nat. Nanotechnol. – volume: 12 start-page: 1686 year: 2011 publication-title: Biomacromolecules – volume: 1 start-page: 0031 year: 2017 publication-title: Nat. Rev. Chem. – volume: 6 start-page: 435 year: 2019 publication-title: IEEE Internet Things J. – volume: 16 start-page: 587 year: 2017 publication-title: Expert Opin. Drug Saf. – volume: 43 start-page: 588 year: 2014 publication-title: Chem. Soc. Rev. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 102 start-page: 1283 year: 2014 publication-title: Proc. IEEE – volume: 6 start-page: 1612 year: 2011 publication-title: Nat. Protoc. – volume: 173 start-page: 427 year: 2021 publication-title: Carbon – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 11 year: 2017 publication-title: ACS Nano – volume: 16 start-page: 938 year: 2017 publication-title: Nat. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 10 start-page: 2721 year: 2018 publication-title: Nanoscale – volume: 585 start-page: 524 year: 2020 publication-title: Nature – volume: 4 year: 2020 publication-title: Small Methods – volume: 102 start-page: 1126 year: 2014 publication-title: Proc. IEEE – volume: 11 start-page: 8178 year: 2017 publication-title: ACS Nano – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 26 start-page: 1315 year: 2016 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 328 year: 2020 publication-title: Nat. Commun. – volume: 13 start-page: 875 year: 2020 publication-title: Nano Res. – volume: 3 start-page: 81 year: 2020 publication-title: Nat. Electron. – volume: 371 start-page: 76 year: 2021 publication-title: Science – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 2770 year: 2019 publication-title: IEEE Internet Things J. – volume: 8 year: 2021 publication-title: Adv. Sci. – ident: e_1_2_9_11_1 doi: 10.1126/science.1074376 – ident: e_1_2_9_45_1 doi: 10.1109/TIFS.2020.3021917 – ident: e_1_2_9_22_1 doi: 10.1002/adfm.201503989 – ident: e_1_2_9_8_1 doi: 10.1007/s12274-020-2710-3 – ident: e_1_2_9_34_1 doi: 10.1021/acsnano.8b03943 – ident: e_1_2_9_5_1 doi: 10.1038/s41570-017-0031 – ident: e_1_2_9_17_1 doi: 10.1021/acsnano.5b04066 – ident: e_1_2_9_40_1 doi: 10.1038/s41563-019-0560-8 – ident: e_1_2_9_14_1 doi: 10.1038/s41467-019-14066-5 – ident: e_1_2_9_13_1 doi: 10.1038/s41467-019-10406-7 – ident: e_1_2_9_37_1 doi: 10.1038/s41467-019-14070-9 – ident: e_1_2_9_42_1 doi: 10.1039/C3CS60235D – ident: e_1_2_9_19_1 doi: 10.1039/C7NR06561B – ident: e_1_2_9_43_1 doi: 10.1002/adfm.201605657 – ident: e_1_2_9_32_1 doi: 10.1088/1674-1056/abad1c – ident: e_1_2_9_25_1 doi: 10.1002/adma.202070287 – ident: e_1_2_9_6_1 doi: 10.1002/advs.202003433 – ident: e_1_2_9_2_1 doi: 10.1126/sciadv.1701384 – ident: e_1_2_9_31_1 doi: 10.1126/science.abc4174 – ident: e_1_2_9_38_1 doi: 10.1038/nmat4942 – ident: e_1_2_9_1_1 doi: 10.1109/JPROC.2014.2335155 – ident: e_1_2_9_4_1 doi: 10.1080/14740338.2017.1313227 – ident: e_1_2_9_30_1 doi: 10.1016/j.carbon.2020.11.013 – ident: e_1_2_9_35_1 doi: 10.1002/smtd.202000274 – ident: e_1_2_9_41_1 doi: 10.1021/acsnano.7b03119 – ident: e_1_2_9_28_1 doi: 10.1038/s41586-020-2718-6 – ident: e_1_2_9_12_1 doi: 10.1021/acsami.8b17403 – ident: e_1_2_9_24_1 doi: 10.1016/j.orgel.2017.08.022 – ident: e_1_2_9_21_1 doi: 10.1021/acsnano.7b07568 – ident: e_1_2_9_44_1 doi: 10.1021/bm200062a – ident: e_1_2_9_3_1 doi: 10.1109/JIOT.2018.2874626 – ident: e_1_2_9_26_1 doi: 10.1021/acsami.0c11103 – ident: e_1_2_9_10_1 doi: 10.1038/s41928-020-0372-5 – ident: e_1_2_9_16_1 doi: 10.1021/acsnano.7b06658 – ident: e_1_2_9_29_1 doi: 10.1002/adom.201800068 – ident: e_1_2_9_39_1 doi: 10.1002/aenm.201502329 – ident: e_1_2_9_15_1 doi: 10.1038/nnano.2016.1 – ident: e_1_2_9_9_1 doi: 10.1021/acsami.8b11663 – ident: e_1_2_9_23_1 doi: 10.1002/adma.201405483 – ident: e_1_2_9_18_1 doi: 10.1109/JPROC.2014.2320516 – ident: e_1_2_9_33_1 doi: 10.1038/nprot.2011.379 – ident: e_1_2_9_20_1 doi: 10.1021/acs.nanolett.8b03338 – ident: e_1_2_9_7_1 doi: 10.1021/acsami.7b06436 – ident: e_1_2_9_27_1 doi: 10.1109/JIOT.2018.2864594 – ident: e_1_2_9_36_1 doi: 10.1002/adma.201304248 |
SSID | ssj0017734 |
Score | 2.604496 |
Snippet | Optical physical unclonable functions (PUFs) have been proven to be one of the most effective anti‐counterfeiting strategies. However, optical PUFs endowed... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Biocompatibility Complex shape objects Counterfeiting diamonds flexibility Labels Materials science Microdiamonds physical unclonable function Polyethylenes Silk fibroin Skin Substrates Toxicity |
Title | Flexible and Biocompatible Physical Unclonable Function Anti‐Counterfeiting Label |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202102108 https://www.proquest.com/docview/2562851460 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT4MwFG6MXvTgb-N0LhxMPLFRWsp2RCdZzGaMc8lupC1tskiYceziyT_Bv9G_xD5gbDMxJnoD0hboa_u-B9_7itAlodRYljh2LCg3AQrGtvAcalPGFGcxbVMMCc6De9Yb0buxN17J4i_0IaoPbjAz8vUaJjgXs9ZSNJTHGjLJIWTBebYvELYAFT1W-lHY94vfygwDwQuPF6qNjttar77ulZZQcxWw5h4n3EN88awF0eS5Oc9EU759k3H8z8vso90SjlpBMX4O0IZKD9HOikjhERqGoJkpEmXxNLauJ9Octp7lVx5KK1ujVCbTPA3LCo2nBGtbQZpNPt8_IOsd9sJWE2BYW30uVHKMRuHt003PLrdisKUBGG3bx1pz0qaxpzvExFQ01r7jK6Ux59x4QcFd4nViDYwwyTwSE6Wp9JWBj4RKSckJ2kynqTpFlpaYS7PcE1cx2pGMMymwaYNhibXrOzVkL0wRyVKnHLbLSKJCYdmNoLOiqrNq6Koq_1IodPxYsr6wbFTO1FlkIJ9rUCdl5sZubqJfWomCbjiozs7-UukcbcNxwSOso83sda4uDLbJRANtBd1Bf9jIx_EXXuPycA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RONAeyqNUpTzqQytOgfgRZ_fQw8ISLWUXIcpKewuOY0urrrJVCarKiZ_AX-lf6U_oL8GTFw8JVarEgWMsx0k8M_Y3zsw3AB-5EE6y3PfSRCjnoFDqJYEvPCGlUTIVLUExwXlwJHtD8WUUjGbgd50LU_JDNAduaBnFeo0GjgfSO7esoSq1mEqOPgv1W1Vc5aH59dN5beefD7pOxJ8Yi_ZP93peVVjA0267bHkhtVbxlkgD2-bOQxCpDf3QGEuVUm5NTxTjQTu1GN-kZcBTbqzQoXFgiAutBXfjvoA5LCOOdP3dk4axioZh-SNbUgwpo6OaJ9JnO_ff9_4-eAtu70LkYo-LFuBPPTtlaMu37Ys82daXD4gjn9X0LcLrCnGTTmkiSzBjsmV4dYeH8Q18jZAWNJkYorKU7I6nRWR-XrQcV4pMhpmeTItMMxI5MIAKTTpZPv57dY2J_Vju24wxiJz0VWImKzB8kq96C7PZNDPvgFhNlXY7GmdGiraWSuqEujEk1dSy0F8Fr5Z9rCsqdqwIMolLEmkWo3DiRjirsNX0_16SkDzac71WpbhajM5jh2qZA9ZCugezQif-MUrc6UaD5ur9_9z0AeZ7p4N-3D84OlyDl9hehk2uw2z-48JsOCiXJ5uF8RA4e2p1uwE7_1AI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB71R6rKoS2lVVNK2QOoJzfeH6-TA4dAsFqSRhElUm7uen-kqJETEVcITjwCj8Kr8Ao8SXf916YSQkLqgaNX65W9M7PzjT3zDcArypiVLPU9lTBhAxSMvSTwmcc414Ir1mLYFThfDPjZiH0YB-MV-FnVwhT8EPUHN2cZ-XntDHyuTPOONFQo4yrJXciC_VaZVtnTX7_YoG3x5rxrJfyakOj9p3dnXtlXwJPWW7a8EBsjaIupwLSpDRCYMqEfam2wEMIe6YkgNGgr49KbJA-ootowGWqLhSiTklG77iqsM-63XbOI7seasAqHYfEfm2OXUYbHFU2kT5rLz7vsBu-w7X2EnLu4aBt-VZtTZLZcn95kyan89oA38n_avR3YKvE26hQG8hRWdLoLT-6xMD6Dy8iRgiZTjUSq0NvJLM_Lz_KRYanGaJTK6SyvM0ORhQJOnVEnzSa_v_9wZf2u2beeuBRy1BeJnu7B6FHeah_W0lmqDwAZiYW0_owSzVlbcsFlgu0aHEtsSOg3wKtEH8uSiN31A5nGBYU0iZ1w4lo4DTip588LCpI_zjyqNCkuj6JFbDEtsbDaamsDSK4Sf1kl7nSji_rq8F9uegkbw24U988Hveew6YaLnMkjWMs-3-gXFsdlyXFuOgiuHlvbbgHeUU63 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+Biocompatible+Physical+Unclonable+Function+Anti%E2%80%90Counterfeiting+Label&rft.jtitle=Advanced+functional+materials&rft.au=Hu%2C+Yan%E2%80%90Wei&rft.au=Zhang%2C+Tai%E2%80%90Ping&rft.au=Wang%2C+Chun%E2%80%90Feng&rft.au=Liu%2C+Kai%E2%80%90Kai&rft.date=2021-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202102108&rft.externalDBID=10.1002%252Fadfm.202102108&rft.externalDocID=ADFM202102108 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |