Polymer‐Mediated Electron Tunneling Towards Solar Water Oxidation
Exploiting emerging artificial photosystems with regulated vectorial charge transfer pathways is retarded by the difficulties in precise interface modulation at the nanoscale level, deficiency of suitable assembly methodologies, and ultra‐short charge lifetime. Herein, it is first conceptually demon...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 7 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exploiting emerging artificial photosystems with regulated vectorial charge transfer pathways is retarded by the difficulties in precise interface modulation at the nanoscale level, deficiency of suitable assembly methodologies, and ultra‐short charge lifetime. Herein, it is first conceptually demonstrated the general design of transition metal chalcogenides quantum dots (TMCs QDs)‐insulating polymer‐metal oxides (MOs) electron‐tunneling photosystems, wherein TMCs QDs are controllably layer‐by‐layer self‐assembled on the MOs substrates assisted by an ultrathin insulating polymer interim layer. It is ascertained that electrons photoexcited over TMCs QDs in spatially highly ordered MOs/(TMCs QDs/polymer)n multilayered heterostructures can be unidirectionally extracted and tunneled to the MOs substrates across the intermediate insulating polymer layer by engendering the tandem charge transfer to accelerate the interfacial charge migration kinetics, thereby triggering the significantly boosted net efficiency of solar‐driven photoelectrochemical water oxidation. This study would spark new inspirations for designing novel electron‐tunneling photosystems for fine carrier modulation towards solar energy harvesting and conversion.
In these conceptually novel MOs/(TMCs QDs/PSS)n multilayered photosystems, periodically intercalated insulating PSS layer enables the unexpected electron tunneling over TMC QDs‐PSS‐MOs photoanodes with electrons photoexcited from TMCs QDs directionally flowing to the MOs matrixes across the intermediate insulating PSS layer, contributing to the tandem charge transport and leading to significantly enhanced net efficiency of photoelectrochemical water oxidation performances. |
---|---|
AbstractList | Exploiting emerging artificial photosystems with regulated vectorial charge transfer pathways is retarded by the difficulties in precise interface modulation at the nanoscale level, deficiency of suitable assembly methodologies, and ultra‐short charge lifetime. Herein, it is first conceptually demonstrated the general design of transition metal chalcogenides quantum dots (TMCs QDs)‐insulating polymer‐metal oxides (MOs) electron‐tunneling photosystems, wherein TMCs QDs are controllably layer‐by‐layer self‐assembled on the MOs substrates assisted by an ultrathin insulating polymer interim layer. It is ascertained that electrons photoexcited over TMCs QDs in spatially highly ordered MOs/(TMCs QDs/polymer)
n
multilayered heterostructures can be unidirectionally extracted and tunneled to the MOs substrates across the intermediate insulating polymer layer by engendering the tandem charge transfer to accelerate the interfacial charge migration kinetics, thereby triggering the significantly boosted net efficiency of solar‐driven photoelectrochemical water oxidation. This study would spark new inspirations for designing novel electron‐tunneling photosystems for fine carrier modulation towards solar energy harvesting and conversion. Exploiting emerging artificial photosystems with regulated vectorial charge transfer pathways is retarded by the difficulties in precise interface modulation at the nanoscale level, deficiency of suitable assembly methodologies, and ultra‐short charge lifetime. Herein, it is first conceptually demonstrated the general design of transition metal chalcogenides quantum dots (TMCs QDs)‐insulating polymer‐metal oxides (MOs) electron‐tunneling photosystems, wherein TMCs QDs are controllably layer‐by‐layer self‐assembled on the MOs substrates assisted by an ultrathin insulating polymer interim layer. It is ascertained that electrons photoexcited over TMCs QDs in spatially highly ordered MOs/(TMCs QDs/polymer)n multilayered heterostructures can be unidirectionally extracted and tunneled to the MOs substrates across the intermediate insulating polymer layer by engendering the tandem charge transfer to accelerate the interfacial charge migration kinetics, thereby triggering the significantly boosted net efficiency of solar‐driven photoelectrochemical water oxidation. This study would spark new inspirations for designing novel electron‐tunneling photosystems for fine carrier modulation towards solar energy harvesting and conversion. In these conceptually novel MOs/(TMCs QDs/PSS)n multilayered photosystems, periodically intercalated insulating PSS layer enables the unexpected electron tunneling over TMC QDs‐PSS‐MOs photoanodes with electrons photoexcited from TMCs QDs directionally flowing to the MOs matrixes across the intermediate insulating PSS layer, contributing to the tandem charge transport and leading to significantly enhanced net efficiency of photoelectrochemical water oxidation performances. Exploiting emerging artificial photosystems with regulated vectorial charge transfer pathways is retarded by the difficulties in precise interface modulation at the nanoscale level, deficiency of suitable assembly methodologies, and ultra‐short charge lifetime. Herein, it is first conceptually demonstrated the general design of transition metal chalcogenides quantum dots (TMCs QDs)‐insulating polymer‐metal oxides (MOs) electron‐tunneling photosystems, wherein TMCs QDs are controllably layer‐by‐layer self‐assembled on the MOs substrates assisted by an ultrathin insulating polymer interim layer. It is ascertained that electrons photoexcited over TMCs QDs in spatially highly ordered MOs/(TMCs QDs/polymer)n multilayered heterostructures can be unidirectionally extracted and tunneled to the MOs substrates across the intermediate insulating polymer layer by engendering the tandem charge transfer to accelerate the interfacial charge migration kinetics, thereby triggering the significantly boosted net efficiency of solar‐driven photoelectrochemical water oxidation. This study would spark new inspirations for designing novel electron‐tunneling photosystems for fine carrier modulation towards solar energy harvesting and conversion. |
Author | Zhu, Shi‐Cheng Xiao, Fang‐Xing Wu, Gao Wei, Zhi‐Quan Hou, Shuo Xiao, Yang |
Author_xml | – sequence: 1 givenname: Zhi‐Quan surname: Wei fullname: Wei, Zhi‐Quan organization: Fuzhou University – sequence: 2 givenname: Shuo surname: Hou fullname: Hou, Shuo organization: Fuzhou University – sequence: 3 givenname: Shi‐Cheng surname: Zhu fullname: Zhu, Shi‐Cheng organization: Fuzhou University – sequence: 4 givenname: Yang surname: Xiao fullname: Xiao, Yang organization: Fuzhou University – sequence: 5 givenname: Gao surname: Wu fullname: Wu, Gao organization: Fuzhou University – sequence: 6 givenname: Fang‐Xing orcidid: 0000-0001-5673-5362 surname: Xiao fullname: Xiao, Fang‐Xing email: fxxiao@fzu.edu.cn organization: Fuzhou University |
BookMark | eNqFkM9KAzEQh4NUsK1ePS943jrZ7Ca7x1LrH2ip4ILeQppNJCVNanZL7c1H8Bl9ErdWKggigckcvm9m-PVQx3mnEDrHMMAAyaWo9HKQQIKBEpIfoS6mmMYEkrxz6PHTCerV9QIAM0bSLhrde7tdqvDx9j5VlRGNqqKxVbIJ3kXl2jlljXuOSr8RoaqjB29FiB5bLESzV1OJxnh3io61sLU6-_77qLwel6PbeDK7uRsNJ7EkmOVxJtJMaT1XqdTprqY4A51nWQJEJExSoUlFChCpLIimROeYSKbmBcNUASN9dLEfuwr-Za3qhi_8Orh2I09o-wAXObRUuqdk8HUdlObSNF9nNkEYyzHwXVp8lxY_pNVqg1_aKpilCNu_hWIvbIxV239oPry6nv64n81ugAo |
CitedBy_id | crossref_primary_10_1021_acscatal_2c05401 crossref_primary_10_1021_acs_inorgchem_3c03888 crossref_primary_10_1002_adfm_202110848 crossref_primary_10_1021_acs_inorgchem_3c02951 crossref_primary_10_1016_j_jece_2024_112051 crossref_primary_10_1039_D3SC05761E crossref_primary_10_1016_j_apsusc_2022_155762 crossref_primary_10_1021_acs_inorgchem_3c02857 crossref_primary_10_1016_j_jallcom_2022_166667 crossref_primary_10_1016_j_ccr_2023_215285 crossref_primary_10_1016_j_cjsc_2023_100173 crossref_primary_10_1021_acs_inorgchem_3c00295 crossref_primary_10_1016_j_ccr_2022_214948 crossref_primary_10_1021_acs_inorgchem_3c03283 crossref_primary_10_1002_adfm_202417139 crossref_primary_10_1038_s41377_025_01742_z crossref_primary_10_1002_smll_202300804 crossref_primary_10_1039_D4TA06083K crossref_primary_10_1021_acsanm_4c00769 crossref_primary_10_1039_D3TA01154B crossref_primary_10_1021_acs_inorgchem_3c02700 crossref_primary_10_1016_j_jphotochem_2023_114649 crossref_primary_10_1039_D4SC02313G crossref_primary_10_1002_smll_202302372 crossref_primary_10_1039_D3QI00472D crossref_primary_10_1021_acsanm_3c05964 crossref_primary_10_1039_D4NR01040J crossref_primary_10_1002_adfm_202312729 crossref_primary_10_1002_smll_202409513 crossref_primary_10_1002_smll_202406551 crossref_primary_10_1038_s43246_023_00415_x crossref_primary_10_1021_acs_inorgchem_3c04083 crossref_primary_10_1039_D4SC06256F crossref_primary_10_1016_j_apsusc_2022_153984 crossref_primary_10_1021_acsami_4c06932 crossref_primary_10_1021_acscatal_2c01667 crossref_primary_10_1039_D2CY00830K crossref_primary_10_1016_j_ces_2022_118402 crossref_primary_10_1021_acscatal_4c04795 crossref_primary_10_1016_j_jcat_2023_07_011 |
Cites_doi | 10.1021/acs.jpclett.6b00227 10.1002/anie.201905981 10.1038/srep23451 10.1021/acs.jpcc.9b10132 10.1039/C6SC03707K 10.1021/acsami.8b05477 10.1021/acsami.6b05489 10.1021/acs.jpcc.6b06929 10.1021/jacs.5b13464 10.1021/acs.jpcc.9b01403 10.1016/j.matlet.2016.05.020 10.1039/C7TX00137A 10.1021/acs.jpcc.5b01392 10.1021/acscatal.9b02171 10.1021/acs.jpcc.7b08454 10.1021/ja411651e 10.1021/acssuschemeng.6b01520 10.1038/nenergy.2017.21 10.1038/ncomms3651 10.1016/j.jcat.2018.12.021 10.1021/acs.inorgchem.9b03073 10.1002/adma.201804872 10.1016/j.nanoen.2015.01.001 10.1039/c2jm33199c 10.1039/D0TA05297C 10.1016/j.mseb.2011.03.007 10.1039/C7CS00406K 10.1021/cr900289f 10.1039/C9CC04562G 10.1021/ja207348x 10.1021/acs.inorgchem.0c00780 10.1002/app.1995.070560605 10.1039/C9TA11579J 10.1039/C9TA08107K 10.1038/238037a0 10.1021/nl500022z 10.1016/j.cej.2014.06.020 10.1021/nn900324q 10.1021/jacs.5b06323 10.1039/C5TA06978E 10.1002/advs.201902235 10.1039/D0NR00004C 10.1039/C7CP01383C 10.1039/C9EE02766A 10.1021/acsami.8b18261 10.1016/j.cplett.2019.136764 10.1002/anie.201901267 10.1038/ncomms3695 10.1039/C6CS00306K 10.1016/j.nanoen.2018.03.014 10.1002/slct.201901985 10.1021/jacs.0c11057 10.1039/b915139g 10.1016/j.electacta.2013.03.123 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202106338 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202106338 ADFM202106338 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21703038; 22072025 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3178-5a45effbe4cf4be4c4150f855203a27c6af3d390a4c93f63f813c7eb9716e073 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 05:23:06 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Tue Jul 01 04:12:37 EDT 2025 Wed Jan 22 16:27:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3178-5a45effbe4cf4be4c4150f855203a27c6af3d390a4c93f63f813c7eb9716e073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5673-5362 |
PQID | 2626201980 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2626201980 crossref_citationtrail_10_1002_adfm_202106338 crossref_primary_10_1002_adfm_202106338 wiley_primary_10_1002_adfm_202106338_ADFM202106338 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2017 2019 2016 2019; 19 735 179 4 2013; 4 2019; 11 2019; 58 2016 2015 2016 2015; 7 12 138 119 2020; 59 2013; 102 2020; 12 2016; 120 2014 2018 2020; 136 47 142 2019; 123 2018; 47 2017 2020 1972; 46 8 238 2020; 8 2020; 7 2009 2016; 3 4 2019 2010 2017; 55 110 2 2016; 6 2017 2014; 6 256 2013 2010 2019; 4 39 31 2011 2020; 176 13 2014 2011; 14 133 2019 2019; 9 58 2017 1995; 121 56 2015 2020 2017 2019 2020 2016; 137 124 8 11 59 4 2012; 22 2019; 370 2016; 8 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_28_2 e_1_2_7_25_1 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_2_5 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_2_6 e_1_2_7_4_4 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_8_4 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_22_1 e_1_2_7_20_1 |
References_xml | – volume: 4 39 31 start-page: 2695 4326 year: 2013 2010 2019 publication-title: Nat. Commun. Chem. Soc. Rev. Adv. Mater. – volume: 121 56 start-page: 677 year: 2017 1995 publication-title: J. Phys. Chem. C J. Appl. Polym. Sci. – volume: 7 12 138 119 start-page: 1173 347 3183 year: 2016 2015 2016 2015 publication-title: J. Phys. Chem. Lett Nano Energy J. Am. Chem. Soc. J. Phys. Chem. C – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 4 start-page: 2651 year: 2013 publication-title: Nat. Commun. – volume: 136 47 142 start-page: 1559 5061 year: 2014 2018 2020 publication-title: J. Am. Chem. Soc. Chem. Soc. Rev. J. Am. Chem. Soc. – volume: 6 256 start-page: 693 85 year: 2017 2014 publication-title: Toxicol. Res. Chem. Eng. J. – volume: 12 start-page: 4302 year: 2020 publication-title: Nanoscale – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 123 start-page: 9721 year: 2019 publication-title: J. Phys. Chem. C – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 102 start-page: 358 year: 2013 publication-title: Electrochim. Acta – volume: 22 year: 2012 publication-title: J. Mater. Chem. – volume: 47 start-page: 463 year: 2018 publication-title: Nano Energy – volume: 11 start-page: 889 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 19 735 179 4 start-page: 134 9476 year: 2017 2019 2016 2019 publication-title: Phys. Chem. Chem. Phys. Chem. Phys. Lett. Mater. Lett. ChemistrySelect – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 177 year: 2020 publication-title: J. Mater. Chem. A – volume: 59 start-page: 7325 year: 2020 publication-title: Inorg. Chem. – volume: 14 133 start-page: 1099 year: 2014 2011 publication-title: Nano Lett. J. Am. Chem. Soc. – volume: 176 13 start-page: 1556 221 year: 2011 2020 publication-title: Sci. Eng. B Energy Environ. Sci. – volume: 9 58 start-page: 8443 year: 2019 2019 publication-title: ACS Catal. Angew. Chem., Int. Ed. – volume: 137 124 8 11 59 4 start-page: 4989 91 5623 1364 2986 year: 2015 2020 2017 2019 2020 2016 publication-title: J. Am. Chem. Soc. J. Phys. Chem. C Chem. Sci. ACS Appl. Mater. Interfaces Inorg. Chem. J. Mater. Chem. A – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 3 4 start-page: 1467 6653 year: 2009 2016 publication-title: ACS Nano ACS Sustainable Chem. Eng. – volume: 370 start-page: 176 year: 2019 publication-title: J. Catal. – volume: 46 8 238 start-page: 4645 37 year: 2017 2020 1972 publication-title: Chem. Soc. Rev. J. Mater. Chem. A Nature – volume: 55 110 2 start-page: 6873 year: 2019 2010 2017 publication-title: Chem. Commun. Chem. Rev. Nat. Energy – volume: 58 year: 2019 publication-title: Angew. Chem. – ident: e_1_2_7_8_1 doi: 10.1021/acs.jpclett.6b00227 – ident: e_1_2_7_22_1 doi: 10.1002/anie.201905981 – ident: e_1_2_7_14_1 doi: 10.1038/srep23451 – ident: e_1_2_7_2_2 doi: 10.1021/acs.jpcc.9b10132 – ident: e_1_2_7_2_3 doi: 10.1039/C6SC03707K – ident: e_1_2_7_2_4 doi: 10.1021/acsami.8b05477 – ident: e_1_2_7_25_1 doi: 10.1021/acsami.6b05489 – ident: e_1_2_7_19_1 doi: 10.1021/acs.jpcc.6b06929 – ident: e_1_2_7_8_3 doi: 10.1021/jacs.5b13464 – ident: e_1_2_7_15_1 doi: 10.1021/acs.jpcc.9b01403 – ident: e_1_2_7_4_3 doi: 10.1016/j.matlet.2016.05.020 – ident: e_1_2_7_13_1 doi: 10.1039/C7TX00137A – ident: e_1_2_7_8_4 doi: 10.1021/acs.jpcc.5b01392 – ident: e_1_2_7_6_1 doi: 10.1021/acscatal.9b02171 – ident: e_1_2_7_16_1 doi: 10.1021/acs.jpcc.7b08454 – ident: e_1_2_7_7_1 doi: 10.1021/ja411651e – ident: e_1_2_7_28_2 doi: 10.1021/acssuschemeng.6b01520 – ident: e_1_2_7_3_3 doi: 10.1038/nenergy.2017.21 – ident: e_1_2_7_23_1 doi: 10.1038/ncomms3651 – ident: e_1_2_7_26_1 doi: 10.1016/j.jcat.2018.12.021 – ident: e_1_2_7_2_5 doi: 10.1021/acs.inorgchem.9b03073 – ident: e_1_2_7_5_3 doi: 10.1002/adma.201804872 – ident: e_1_2_7_8_2 doi: 10.1016/j.nanoen.2015.01.001 – ident: e_1_2_7_9_1 doi: 10.1039/c2jm33199c – ident: e_1_2_7_1_2 doi: 10.1039/D0TA05297C – ident: e_1_2_7_10_1 doi: 10.1016/j.mseb.2011.03.007 – ident: e_1_2_7_7_2 doi: 10.1039/C7CS00406K – ident: e_1_2_7_3_2 doi: 10.1021/cr900289f – ident: e_1_2_7_3_1 doi: 10.1039/C9CC04562G – ident: e_1_2_7_24_2 doi: 10.1021/ja207348x – ident: e_1_2_7_27_1 doi: 10.1021/acs.inorgchem.0c00780 – ident: e_1_2_7_16_2 doi: 10.1002/app.1995.070560605 – ident: e_1_2_7_18_1 doi: 10.1039/C9TA11579J – ident: e_1_2_7_29_1 doi: 10.1039/C9TA08107K – ident: e_1_2_7_1_3 doi: 10.1038/238037a0 – ident: e_1_2_7_24_1 doi: 10.1021/nl500022z – ident: e_1_2_7_13_2 doi: 10.1016/j.cej.2014.06.020 – ident: e_1_2_7_28_1 doi: 10.1021/nn900324q – ident: e_1_2_7_2_1 doi: 10.1021/jacs.5b06323 – ident: e_1_2_7_2_6 doi: 10.1039/C5TA06978E – ident: e_1_2_7_21_1 doi: 10.1002/advs.201902235 – ident: e_1_2_7_17_1 doi: 10.1039/D0NR00004C – ident: e_1_2_7_4_1 doi: 10.1039/C7CP01383C – ident: e_1_2_7_10_2 doi: 10.1039/C9EE02766A – ident: e_1_2_7_11_1 doi: 10.1021/acsami.8b18261 – ident: e_1_2_7_4_2 doi: 10.1016/j.cplett.2019.136764 – ident: e_1_2_7_6_2 doi: 10.1002/anie.201901267 – ident: e_1_2_7_5_1 doi: 10.1038/ncomms3695 – ident: e_1_2_7_1_1 doi: 10.1039/C6CS00306K – ident: e_1_2_7_20_1 doi: 10.1016/j.nanoen.2018.03.014 – ident: e_1_2_7_4_4 doi: 10.1002/slct.201901985 – ident: e_1_2_7_7_3 doi: 10.1021/jacs.0c11057 – ident: e_1_2_7_5_2 doi: 10.1039/b915139g – ident: e_1_2_7_12_1 doi: 10.1016/j.electacta.2013.03.123 |
SSID | ssj0017734 |
Score | 2.5499465 |
Snippet | Exploiting emerging artificial photosystems with regulated vectorial charge transfer pathways is retarded by the difficulties in precise interface modulation... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Charge transfer Electron tunneling electron‐tunneling photosystems Energy harvesting Heterostructures layer‐by‐layer assemblies Materials science Metal oxides metal‐oxide Modulation Oxidation photoelectrochemical water oxidation Polymers Quantum dots Solar energy conversion Substrates transition metal chalcogenides quantum dots Transition metal compounds |
Title | Polymer‐Mediated Electron Tunneling Towards Solar Water Oxidation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202106338 https://www.proquest.com/docview/2626201980 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWkoPgKbrZ3WySY-mDIlbFVuwt7BNErdIHqCd_gr_RX-LuJk1bQQS9BAKzIZndmf1mM_MNAEcy0JBqqX0omfKJgMxnxFHuQ8ypRBK7Np2dC9q-IWf9sD9XxZ_xQxQHbtYynL-2Bs746HRGGsqktpXkJmShJswyTtgmbFlUdF3wRwVRlP1WpoFN8Ar6U9ZGiE4Xhy_uSjOoOQ9Y3Y7TWgds-q5Zosn9yWTMT8TbNxrH_3zMBljL4ahXy9bPJlhSgy2wOkdSuA3qV08Pr49q-Pn-0XF9PZT0mnnzHK83sXkyRs7rufzbkde1sbJ3a8SG3uXLXdayaQf0Ws1eve3nrRd8YQBF7IeMhEprrojQxF7NPg91HIYIYoYiQZnGEieQEZFgTbGOAywixS0hlTJeYxeUBk8DtQc8qgMT9PBQw0iQBPMEMS6TUJjgOCZSoDLwp5pPRU5LbrtjPKQZoTJKrW7SQjdlcFzIP2eEHD9KVqYTmeaGOUoRtQz8QRLDMkBuRn55SlprtDrF3f5fBh2AFWSLJlyudwWUxsOJOjRQZsyrYLnW6Jx3q27ZfgEnX-yb |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOJQeeKMuLCWHSpwCju04yRHBrrawS6s2FdwiPyUELNWyKxVO_Qn9jfwSbOexUAkhwSVSpHGUjD2eGWfm-wC-qMggZpQJkeI6pBLxkFMPuY-IYAor4mk6B6es94sen8d1NaHrhSnxIZoDN2cZfr92Bu4OpPenqKFcGddKbnMWZvOsWZh3tN4-q_rRIEhFSVL-WGaRK_GKzmvcRoT3n49_7pemwebTkNX7nO4SiPpty1KTy73JWOzJ-_-AHN_1OcuwWEWkwUG5hFZgRg9X4eMTnMI1OPx-c3V3rUcPf_8NPLWHVkGn4s8J8okrlbFyQe5LcG-Dny5dDs6s2Cj49ueiZG1ah7zbyQ97YcW-EEobU6RhzGmsjRGaSkPd1bp6ZNI4xohwnEjGDVEkQ5zKjBhGTBoRmWjhMKm03Tg2YG54M9SfIGAmsnmPiA1KJM2IyDAXKoulzY9TqiRuQVirvpAVMrkjyLgqSkxlXDjdFI1uWrDbyP8uMTlelGzXM1lUtnlbYOZA-KMsRS3AfkpeeUpxcNQdNHebbxm0Ax96-aBf9L-enmzBAnY9FL70uw1z49FEb9vIZiw--7X7CIVG7yI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gOjBt7i6ag-Cp2qapGl7lF0XX6uiK-6tpHmAqKusu6Ce_An-Rn-JSdqtqyCCXgqFSWknM8lMOvN9AJsy0IhpqX0kufKpQNzn1EHuI5IxiSVxNJ3NE7Z_SQ_bYXuoiz_HhygP3KxnuPXaOviD1DufoKFcattJblIWZtKsURinDMXWruvnJYBUEEX5f2UW2AqvoD2AbUR45-v4r9vSZ6w5HLG6LacxA3zwsnmlyc12v5dti5dvOI7_-ZpZmC7iUW83N6A5GFGdeZgaQilcgNrZ_e3zneq-v741HbGHkt5ewZ7jtfq2UMbIeS1XgPvoXdhk2bsyYl3v9Ok652xahFZjr1Xb9wvuBV-YiCL2Q05DpXWmqNDUXs1Gj3QchhgRjiPBuCaSJIhTkRDNiI4DIiKVWUQqZZaNJRjr3HfUMnhMBybryUKNIkETkiWYZzIJhcmOYyoFroA_0HwqClxyS49xm-aIyji1uklL3VRgq5R_yBE5fpSsDiYyLTzzMcXMQvAHSYwqgN2M_PKUdLfeaJZ3K38ZtAETZ_VGenxwcrQKk9g2ULi67yqM9bp9tWbCml627iz3A9lP7do |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymer%E2%80%90Mediated+Electron+Tunneling+Towards+Solar+Water+Oxidation&rft.jtitle=Advanced+functional+materials&rft.au=Wei%2C+Zhi%E2%80%90Quan&rft.au=Hou%2C+Shuo&rft.au=Zhu%2C+Shi%E2%80%90Cheng&rft.au=Xiao%2C+Yang&rft.date=2022-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202106338&rft.externalDBID=10.1002%252Fadfm.202106338&rft.externalDocID=ADFM202106338 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |