Polymer‐Mediated Electron Tunneling Towards Solar Water Oxidation

Exploiting emerging artificial photosystems with regulated vectorial charge transfer pathways is retarded by the difficulties in precise interface modulation at the nanoscale level, deficiency of suitable assembly methodologies, and ultra‐short charge lifetime. Herein, it is first conceptually demon...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 7
Main Authors Wei, Zhi‐Quan, Hou, Shuo, Zhu, Shi‐Cheng, Xiao, Yang, Wu, Gao, Xiao, Fang‐Xing
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exploiting emerging artificial photosystems with regulated vectorial charge transfer pathways is retarded by the difficulties in precise interface modulation at the nanoscale level, deficiency of suitable assembly methodologies, and ultra‐short charge lifetime. Herein, it is first conceptually demonstrated the general design of transition metal chalcogenides quantum dots (TMCs QDs)‐insulating polymer‐metal oxides (MOs) electron‐tunneling photosystems, wherein TMCs QDs are controllably layer‐by‐layer self‐assembled on the MOs substrates assisted by an ultrathin insulating polymer interim layer. It is ascertained that electrons photoexcited over TMCs QDs in spatially highly ordered MOs/(TMCs QDs/polymer)n multilayered heterostructures can be unidirectionally extracted and tunneled to the MOs substrates across the intermediate insulating polymer layer by engendering the tandem charge transfer to accelerate the interfacial charge migration kinetics, thereby triggering the significantly boosted net efficiency of solar‐driven photoelectrochemical water oxidation. This study would spark new inspirations for designing novel electron‐tunneling photosystems for fine carrier modulation towards solar energy harvesting and conversion. In these conceptually novel MOs/(TMCs QDs/PSS)n multilayered photosystems, periodically intercalated insulating PSS layer enables the unexpected electron tunneling over TMC QDs‐PSS‐MOs photoanodes with electrons photoexcited from TMCs QDs directionally flowing to the MOs matrixes across the intermediate insulating PSS layer, contributing to the tandem charge transport and leading to significantly enhanced net efficiency of photoelectrochemical water oxidation performances.
AbstractList Exploiting emerging artificial photosystems with regulated vectorial charge transfer pathways is retarded by the difficulties in precise interface modulation at the nanoscale level, deficiency of suitable assembly methodologies, and ultra‐short charge lifetime. Herein, it is first conceptually demonstrated the general design of transition metal chalcogenides quantum dots (TMCs QDs)‐insulating polymer‐metal oxides (MOs) electron‐tunneling photosystems, wherein TMCs QDs are controllably layer‐by‐layer self‐assembled on the MOs substrates assisted by an ultrathin insulating polymer interim layer. It is ascertained that electrons photoexcited over TMCs QDs in spatially highly ordered MOs/(TMCs QDs/polymer) n multilayered heterostructures can be unidirectionally extracted and tunneled to the MOs substrates across the intermediate insulating polymer layer by engendering the tandem charge transfer to accelerate the interfacial charge migration kinetics, thereby triggering the significantly boosted net efficiency of solar‐driven photoelectrochemical water oxidation. This study would spark new inspirations for designing novel electron‐tunneling photosystems for fine carrier modulation towards solar energy harvesting and conversion.
Exploiting emerging artificial photosystems with regulated vectorial charge transfer pathways is retarded by the difficulties in precise interface modulation at the nanoscale level, deficiency of suitable assembly methodologies, and ultra‐short charge lifetime. Herein, it is first conceptually demonstrated the general design of transition metal chalcogenides quantum dots (TMCs QDs)‐insulating polymer‐metal oxides (MOs) electron‐tunneling photosystems, wherein TMCs QDs are controllably layer‐by‐layer self‐assembled on the MOs substrates assisted by an ultrathin insulating polymer interim layer. It is ascertained that electrons photoexcited over TMCs QDs in spatially highly ordered MOs/(TMCs QDs/polymer)n multilayered heterostructures can be unidirectionally extracted and tunneled to the MOs substrates across the intermediate insulating polymer layer by engendering the tandem charge transfer to accelerate the interfacial charge migration kinetics, thereby triggering the significantly boosted net efficiency of solar‐driven photoelectrochemical water oxidation. This study would spark new inspirations for designing novel electron‐tunneling photosystems for fine carrier modulation towards solar energy harvesting and conversion. In these conceptually novel MOs/(TMCs QDs/PSS)n multilayered photosystems, periodically intercalated insulating PSS layer enables the unexpected electron tunneling over TMC QDs‐PSS‐MOs photoanodes with electrons photoexcited from TMCs QDs directionally flowing to the MOs matrixes across the intermediate insulating PSS layer, contributing to the tandem charge transport and leading to significantly enhanced net efficiency of photoelectrochemical water oxidation performances.
Exploiting emerging artificial photosystems with regulated vectorial charge transfer pathways is retarded by the difficulties in precise interface modulation at the nanoscale level, deficiency of suitable assembly methodologies, and ultra‐short charge lifetime. Herein, it is first conceptually demonstrated the general design of transition metal chalcogenides quantum dots (TMCs QDs)‐insulating polymer‐metal oxides (MOs) electron‐tunneling photosystems, wherein TMCs QDs are controllably layer‐by‐layer self‐assembled on the MOs substrates assisted by an ultrathin insulating polymer interim layer. It is ascertained that electrons photoexcited over TMCs QDs in spatially highly ordered MOs/(TMCs QDs/polymer)n multilayered heterostructures can be unidirectionally extracted and tunneled to the MOs substrates across the intermediate insulating polymer layer by engendering the tandem charge transfer to accelerate the interfacial charge migration kinetics, thereby triggering the significantly boosted net efficiency of solar‐driven photoelectrochemical water oxidation. This study would spark new inspirations for designing novel electron‐tunneling photosystems for fine carrier modulation towards solar energy harvesting and conversion.
Author Zhu, Shi‐Cheng
Xiao, Fang‐Xing
Wu, Gao
Wei, Zhi‐Quan
Hou, Shuo
Xiao, Yang
Author_xml – sequence: 1
  givenname: Zhi‐Quan
  surname: Wei
  fullname: Wei, Zhi‐Quan
  organization: Fuzhou University
– sequence: 2
  givenname: Shuo
  surname: Hou
  fullname: Hou, Shuo
  organization: Fuzhou University
– sequence: 3
  givenname: Shi‐Cheng
  surname: Zhu
  fullname: Zhu, Shi‐Cheng
  organization: Fuzhou University
– sequence: 4
  givenname: Yang
  surname: Xiao
  fullname: Xiao, Yang
  organization: Fuzhou University
– sequence: 5
  givenname: Gao
  surname: Wu
  fullname: Wu, Gao
  organization: Fuzhou University
– sequence: 6
  givenname: Fang‐Xing
  orcidid: 0000-0001-5673-5362
  surname: Xiao
  fullname: Xiao, Fang‐Xing
  email: fxxiao@fzu.edu.cn
  organization: Fuzhou University
BookMark eNqFkM9KAzEQh4NUsK1ePS943jrZ7Ca7x1LrH2ip4ILeQppNJCVNanZL7c1H8Bl9ErdWKggigckcvm9m-PVQx3mnEDrHMMAAyaWo9HKQQIKBEpIfoS6mmMYEkrxz6PHTCerV9QIAM0bSLhrde7tdqvDx9j5VlRGNqqKxVbIJ3kXl2jlljXuOSr8RoaqjB29FiB5bLESzV1OJxnh3io61sLU6-_77qLwel6PbeDK7uRsNJ7EkmOVxJtJMaT1XqdTprqY4A51nWQJEJExSoUlFChCpLIimROeYSKbmBcNUASN9dLEfuwr-Za3qhi_8Orh2I09o-wAXObRUuqdk8HUdlObSNF9nNkEYyzHwXVp8lxY_pNVqg1_aKpilCNu_hWIvbIxV239oPry6nv64n81ugAo
CitedBy_id crossref_primary_10_1021_acscatal_2c05401
crossref_primary_10_1021_acs_inorgchem_3c03888
crossref_primary_10_1002_adfm_202110848
crossref_primary_10_1021_acs_inorgchem_3c02951
crossref_primary_10_1016_j_jece_2024_112051
crossref_primary_10_1039_D3SC05761E
crossref_primary_10_1016_j_apsusc_2022_155762
crossref_primary_10_1021_acs_inorgchem_3c02857
crossref_primary_10_1016_j_jallcom_2022_166667
crossref_primary_10_1016_j_ccr_2023_215285
crossref_primary_10_1016_j_cjsc_2023_100173
crossref_primary_10_1021_acs_inorgchem_3c00295
crossref_primary_10_1016_j_ccr_2022_214948
crossref_primary_10_1021_acs_inorgchem_3c03283
crossref_primary_10_1002_adfm_202417139
crossref_primary_10_1038_s41377_025_01742_z
crossref_primary_10_1002_smll_202300804
crossref_primary_10_1039_D4TA06083K
crossref_primary_10_1021_acsanm_4c00769
crossref_primary_10_1039_D3TA01154B
crossref_primary_10_1021_acs_inorgchem_3c02700
crossref_primary_10_1016_j_jphotochem_2023_114649
crossref_primary_10_1039_D4SC02313G
crossref_primary_10_1002_smll_202302372
crossref_primary_10_1039_D3QI00472D
crossref_primary_10_1021_acsanm_3c05964
crossref_primary_10_1039_D4NR01040J
crossref_primary_10_1002_adfm_202312729
crossref_primary_10_1002_smll_202409513
crossref_primary_10_1002_smll_202406551
crossref_primary_10_1038_s43246_023_00415_x
crossref_primary_10_1021_acs_inorgchem_3c04083
crossref_primary_10_1039_D4SC06256F
crossref_primary_10_1016_j_apsusc_2022_153984
crossref_primary_10_1021_acsami_4c06932
crossref_primary_10_1021_acscatal_2c01667
crossref_primary_10_1039_D2CY00830K
crossref_primary_10_1016_j_ces_2022_118402
crossref_primary_10_1021_acscatal_4c04795
crossref_primary_10_1016_j_jcat_2023_07_011
Cites_doi 10.1021/acs.jpclett.6b00227
10.1002/anie.201905981
10.1038/srep23451
10.1021/acs.jpcc.9b10132
10.1039/C6SC03707K
10.1021/acsami.8b05477
10.1021/acsami.6b05489
10.1021/acs.jpcc.6b06929
10.1021/jacs.5b13464
10.1021/acs.jpcc.9b01403
10.1016/j.matlet.2016.05.020
10.1039/C7TX00137A
10.1021/acs.jpcc.5b01392
10.1021/acscatal.9b02171
10.1021/acs.jpcc.7b08454
10.1021/ja411651e
10.1021/acssuschemeng.6b01520
10.1038/nenergy.2017.21
10.1038/ncomms3651
10.1016/j.jcat.2018.12.021
10.1021/acs.inorgchem.9b03073
10.1002/adma.201804872
10.1016/j.nanoen.2015.01.001
10.1039/c2jm33199c
10.1039/D0TA05297C
10.1016/j.mseb.2011.03.007
10.1039/C7CS00406K
10.1021/cr900289f
10.1039/C9CC04562G
10.1021/ja207348x
10.1021/acs.inorgchem.0c00780
10.1002/app.1995.070560605
10.1039/C9TA11579J
10.1039/C9TA08107K
10.1038/238037a0
10.1021/nl500022z
10.1016/j.cej.2014.06.020
10.1021/nn900324q
10.1021/jacs.5b06323
10.1039/C5TA06978E
10.1002/advs.201902235
10.1039/D0NR00004C
10.1039/C7CP01383C
10.1039/C9EE02766A
10.1021/acsami.8b18261
10.1016/j.cplett.2019.136764
10.1002/anie.201901267
10.1038/ncomms3695
10.1039/C6CS00306K
10.1016/j.nanoen.2018.03.014
10.1002/slct.201901985
10.1021/jacs.0c11057
10.1039/b915139g
10.1016/j.electacta.2013.03.123
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202106338
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202106338
ADFM202106338
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21703038; 22072025
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3178-5a45effbe4cf4be4c4150f855203a27c6af3d390a4c93f63f813c7eb9716e073
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 05:23:06 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Tue Jul 01 04:12:37 EDT 2025
Wed Jan 22 16:27:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3178-5a45effbe4cf4be4c4150f855203a27c6af3d390a4c93f63f813c7eb9716e073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5673-5362
PQID 2626201980
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2626201980
crossref_citationtrail_10_1002_adfm_202106338
crossref_primary_10_1002_adfm_202106338
wiley_primary_10_1002_adfm_202106338_ADFM202106338
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2017 2019 2016 2019; 19 735 179 4
2013; 4
2019; 11
2019; 58
2016 2015 2016 2015; 7 12 138 119
2020; 59
2013; 102
2020; 12
2016; 120
2014 2018 2020; 136 47 142
2019; 123
2018; 47
2017 2020 1972; 46 8 238
2020; 8
2020; 7
2009 2016; 3 4
2019 2010 2017; 55 110 2
2016; 6
2017 2014; 6 256
2013 2010 2019; 4 39 31
2011 2020; 176 13
2014 2011; 14 133
2019 2019; 9 58
2017 1995; 121 56
2015 2020 2017 2019 2020 2016; 137 124 8 11 59 4
2012; 22
2019; 370
2016; 8
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_28_2
e_1_2_7_25_1
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_2_5
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_2_6
e_1_2_7_4_4
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_8_4
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_22_1
e_1_2_7_20_1
References_xml – volume: 4 39 31
  start-page: 2695 4326
  year: 2013 2010 2019
  publication-title: Nat. Commun. Chem. Soc. Rev. Adv. Mater.
– volume: 121 56
  start-page: 677
  year: 2017 1995
  publication-title: J. Phys. Chem. C J. Appl. Polym. Sci.
– volume: 7 12 138 119
  start-page: 1173 347 3183
  year: 2016 2015 2016 2015
  publication-title: J. Phys. Chem. Lett Nano Energy J. Am. Chem. Soc. J. Phys. Chem. C
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 2651
  year: 2013
  publication-title: Nat. Commun.
– volume: 136 47 142
  start-page: 1559 5061
  year: 2014 2018 2020
  publication-title: J. Am. Chem. Soc. Chem. Soc. Rev. J. Am. Chem. Soc.
– volume: 6 256
  start-page: 693 85
  year: 2017 2014
  publication-title: Toxicol. Res. Chem. Eng. J.
– volume: 12
  start-page: 4302
  year: 2020
  publication-title: Nanoscale
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 123
  start-page: 9721
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 102
  start-page: 358
  year: 2013
  publication-title: Electrochim. Acta
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 47
  start-page: 463
  year: 2018
  publication-title: Nano Energy
– volume: 11
  start-page: 889
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19 735 179 4
  start-page: 134 9476
  year: 2017 2019 2016 2019
  publication-title: Phys. Chem. Chem. Phys. Chem. Phys. Lett. Mater. Lett. ChemistrySelect
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 177
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 59
  start-page: 7325
  year: 2020
  publication-title: Inorg. Chem.
– volume: 14 133
  start-page: 1099
  year: 2014 2011
  publication-title: Nano Lett. J. Am. Chem. Soc.
– volume: 176 13
  start-page: 1556 221
  year: 2011 2020
  publication-title: Sci. Eng. B Energy Environ. Sci.
– volume: 9 58
  start-page: 8443
  year: 2019 2019
  publication-title: ACS Catal. Angew. Chem., Int. Ed.
– volume: 137 124 8 11 59 4
  start-page: 4989 91 5623 1364 2986
  year: 2015 2020 2017 2019 2020 2016
  publication-title: J. Am. Chem. Soc. J. Phys. Chem. C Chem. Sci. ACS Appl. Mater. Interfaces Inorg. Chem. J. Mater. Chem. A
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 3 4
  start-page: 1467 6653
  year: 2009 2016
  publication-title: ACS Nano ACS Sustainable Chem. Eng.
– volume: 370
  start-page: 176
  year: 2019
  publication-title: J. Catal.
– volume: 46 8 238
  start-page: 4645 37
  year: 2017 2020 1972
  publication-title: Chem. Soc. Rev. J. Mater. Chem. A Nature
– volume: 55 110 2
  start-page: 6873
  year: 2019 2010 2017
  publication-title: Chem. Commun. Chem. Rev. Nat. Energy
– volume: 58
  year: 2019
  publication-title: Angew. Chem.
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.jpclett.6b00227
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.201905981
– ident: e_1_2_7_14_1
  doi: 10.1038/srep23451
– ident: e_1_2_7_2_2
  doi: 10.1021/acs.jpcc.9b10132
– ident: e_1_2_7_2_3
  doi: 10.1039/C6SC03707K
– ident: e_1_2_7_2_4
  doi: 10.1021/acsami.8b05477
– ident: e_1_2_7_25_1
  doi: 10.1021/acsami.6b05489
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.jpcc.6b06929
– ident: e_1_2_7_8_3
  doi: 10.1021/jacs.5b13464
– ident: e_1_2_7_15_1
  doi: 10.1021/acs.jpcc.9b01403
– ident: e_1_2_7_4_3
  doi: 10.1016/j.matlet.2016.05.020
– ident: e_1_2_7_13_1
  doi: 10.1039/C7TX00137A
– ident: e_1_2_7_8_4
  doi: 10.1021/acs.jpcc.5b01392
– ident: e_1_2_7_6_1
  doi: 10.1021/acscatal.9b02171
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.jpcc.7b08454
– ident: e_1_2_7_7_1
  doi: 10.1021/ja411651e
– ident: e_1_2_7_28_2
  doi: 10.1021/acssuschemeng.6b01520
– ident: e_1_2_7_3_3
  doi: 10.1038/nenergy.2017.21
– ident: e_1_2_7_23_1
  doi: 10.1038/ncomms3651
– ident: e_1_2_7_26_1
  doi: 10.1016/j.jcat.2018.12.021
– ident: e_1_2_7_2_5
  doi: 10.1021/acs.inorgchem.9b03073
– ident: e_1_2_7_5_3
  doi: 10.1002/adma.201804872
– ident: e_1_2_7_8_2
  doi: 10.1016/j.nanoen.2015.01.001
– ident: e_1_2_7_9_1
  doi: 10.1039/c2jm33199c
– ident: e_1_2_7_1_2
  doi: 10.1039/D0TA05297C
– ident: e_1_2_7_10_1
  doi: 10.1016/j.mseb.2011.03.007
– ident: e_1_2_7_7_2
  doi: 10.1039/C7CS00406K
– ident: e_1_2_7_3_2
  doi: 10.1021/cr900289f
– ident: e_1_2_7_3_1
  doi: 10.1039/C9CC04562G
– ident: e_1_2_7_24_2
  doi: 10.1021/ja207348x
– ident: e_1_2_7_27_1
  doi: 10.1021/acs.inorgchem.0c00780
– ident: e_1_2_7_16_2
  doi: 10.1002/app.1995.070560605
– ident: e_1_2_7_18_1
  doi: 10.1039/C9TA11579J
– ident: e_1_2_7_29_1
  doi: 10.1039/C9TA08107K
– ident: e_1_2_7_1_3
  doi: 10.1038/238037a0
– ident: e_1_2_7_24_1
  doi: 10.1021/nl500022z
– ident: e_1_2_7_13_2
  doi: 10.1016/j.cej.2014.06.020
– ident: e_1_2_7_28_1
  doi: 10.1021/nn900324q
– ident: e_1_2_7_2_1
  doi: 10.1021/jacs.5b06323
– ident: e_1_2_7_2_6
  doi: 10.1039/C5TA06978E
– ident: e_1_2_7_21_1
  doi: 10.1002/advs.201902235
– ident: e_1_2_7_17_1
  doi: 10.1039/D0NR00004C
– ident: e_1_2_7_4_1
  doi: 10.1039/C7CP01383C
– ident: e_1_2_7_10_2
  doi: 10.1039/C9EE02766A
– ident: e_1_2_7_11_1
  doi: 10.1021/acsami.8b18261
– ident: e_1_2_7_4_2
  doi: 10.1016/j.cplett.2019.136764
– ident: e_1_2_7_6_2
  doi: 10.1002/anie.201901267
– ident: e_1_2_7_5_1
  doi: 10.1038/ncomms3695
– ident: e_1_2_7_1_1
  doi: 10.1039/C6CS00306K
– ident: e_1_2_7_20_1
  doi: 10.1016/j.nanoen.2018.03.014
– ident: e_1_2_7_4_4
  doi: 10.1002/slct.201901985
– ident: e_1_2_7_7_3
  doi: 10.1021/jacs.0c11057
– ident: e_1_2_7_5_2
  doi: 10.1039/b915139g
– ident: e_1_2_7_12_1
  doi: 10.1016/j.electacta.2013.03.123
SSID ssj0017734
Score 2.5499465
Snippet Exploiting emerging artificial photosystems with regulated vectorial charge transfer pathways is retarded by the difficulties in precise interface modulation...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Charge transfer
Electron tunneling
electron‐tunneling photosystems
Energy harvesting
Heterostructures
layer‐by‐layer assemblies
Materials science
Metal oxides
metal‐oxide
Modulation
Oxidation
photoelectrochemical water oxidation
Polymers
Quantum dots
Solar energy conversion
Substrates
transition metal chalcogenides quantum dots
Transition metal compounds
Title Polymer‐Mediated Electron Tunneling Towards Solar Water Oxidation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202106338
https://www.proquest.com/docview/2626201980
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWkoPgKbrZ3WySY-mDIlbFVuwt7BNErdIHqCd_gr_RX-LuJk1bQQS9BAKzIZndmf1mM_MNAEcy0JBqqX0omfKJgMxnxFHuQ8ypRBK7Np2dC9q-IWf9sD9XxZ_xQxQHbtYynL-2Bs746HRGGsqktpXkJmShJswyTtgmbFlUdF3wRwVRlP1WpoFN8Ar6U9ZGiE4Xhy_uSjOoOQ9Y3Y7TWgds-q5Zosn9yWTMT8TbNxrH_3zMBljL4ahXy9bPJlhSgy2wOkdSuA3qV08Pr49q-Pn-0XF9PZT0mnnzHK83sXkyRs7rufzbkde1sbJ3a8SG3uXLXdayaQf0Ws1eve3nrRd8YQBF7IeMhEprrojQxF7NPg91HIYIYoYiQZnGEieQEZFgTbGOAywixS0hlTJeYxeUBk8DtQc8qgMT9PBQw0iQBPMEMS6TUJjgOCZSoDLwp5pPRU5LbrtjPKQZoTJKrW7SQjdlcFzIP2eEHD9KVqYTmeaGOUoRtQz8QRLDMkBuRn55SlprtDrF3f5fBh2AFWSLJlyudwWUxsOJOjRQZsyrYLnW6Jx3q27ZfgEnX-yb
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOJQeeKMuLCWHSpwCju04yRHBrrawS6s2FdwiPyUELNWyKxVO_Qn9jfwSbOexUAkhwSVSpHGUjD2eGWfm-wC-qMggZpQJkeI6pBLxkFMPuY-IYAor4mk6B6es94sen8d1NaHrhSnxIZoDN2cZfr92Bu4OpPenqKFcGddKbnMWZvOsWZh3tN4-q_rRIEhFSVL-WGaRK_GKzmvcRoT3n49_7pemwebTkNX7nO4SiPpty1KTy73JWOzJ-_-AHN_1OcuwWEWkwUG5hFZgRg9X4eMTnMI1OPx-c3V3rUcPf_8NPLWHVkGn4s8J8okrlbFyQe5LcG-Dny5dDs6s2Cj49ueiZG1ah7zbyQ97YcW-EEobU6RhzGmsjRGaSkPd1bp6ZNI4xohwnEjGDVEkQ5zKjBhGTBoRmWjhMKm03Tg2YG54M9SfIGAmsnmPiA1KJM2IyDAXKoulzY9TqiRuQVirvpAVMrkjyLgqSkxlXDjdFI1uWrDbyP8uMTlelGzXM1lUtnlbYOZA-KMsRS3AfkpeeUpxcNQdNHebbxm0Ax96-aBf9L-enmzBAnY9FL70uw1z49FEb9vIZiw--7X7CIVG7yI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gOjBt7i6ag-Cp2qapGl7lF0XX6uiK-6tpHmAqKusu6Ce_An-Rn-JSdqtqyCCXgqFSWknM8lMOvN9AJsy0IhpqX0kufKpQNzn1EHuI5IxiSVxNJ3NE7Z_SQ_bYXuoiz_HhygP3KxnuPXaOviD1DufoKFcattJblIWZtKsURinDMXWruvnJYBUEEX5f2UW2AqvoD2AbUR45-v4r9vSZ6w5HLG6LacxA3zwsnmlyc12v5dti5dvOI7_-ZpZmC7iUW83N6A5GFGdeZgaQilcgNrZ_e3zneq-v741HbGHkt5ewZ7jtfq2UMbIeS1XgPvoXdhk2bsyYl3v9Ok652xahFZjr1Xb9wvuBV-YiCL2Q05DpXWmqNDUXs1Gj3QchhgRjiPBuCaSJIhTkRDNiI4DIiKVWUQqZZaNJRjr3HfUMnhMBybryUKNIkETkiWYZzIJhcmOYyoFroA_0HwqClxyS49xm-aIyji1uklL3VRgq5R_yBE5fpSsDiYyLTzzMcXMQvAHSYwqgN2M_PKUdLfeaJZ3K38ZtAETZ_VGenxwcrQKk9g2ULi67yqM9bp9tWbCml627iz3A9lP7do
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymer%E2%80%90Mediated+Electron+Tunneling+Towards+Solar+Water+Oxidation&rft.jtitle=Advanced+functional+materials&rft.au=Wei%2C+Zhi%E2%80%90Quan&rft.au=Hou%2C+Shuo&rft.au=Zhu%2C+Shi%E2%80%90Cheng&rft.au=Xiao%2C+Yang&rft.date=2022-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202106338&rft.externalDBID=10.1002%252Fadfm.202106338&rft.externalDocID=ADFM202106338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon