High Air Stability and Excellent Li Metal Compatibility of Argyrodite‐Based Electrolyte Enabling Superior All‐Solid‐State Li Metal Batteries
Sulfide solid electrolytes (SSEs) for all‐solid‐state Li metal batteries (ASSLMBs) are attracting increasing attention due to their ultrahigh ionic conductivity and good machinability. However, current SSEs generally suffer from inferior Li metal compatibility and poor air‐stability, which severely...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 32 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sulfide solid electrolytes (SSEs) for all‐solid‐state Li metal batteries (ASSLMBs) are attracting increasing attention due to their ultrahigh ionic conductivity and good machinability. However, current SSEs generally suffer from inferior Li metal compatibility and poor air‐stability, which severely impede their practical applications for ASSLMBs. Herein, novel argyrodite‐based SSEs of Li6+2xP1−xBixS5−1.5xO1.5xCl are synthesized via the Bi, O co‐doping the Li6PS5Cl for the first time. By adjusting the concentrations of dopant, the optimized Li6.04P0.98Bi0.02S4.97O0.03Cl presents an ultrahigh ionic conductivity (3.4 × 10−3 S cm−1). Moreover, such electrolyte displays splendid structural stability after exposure to humid air and chlorobenzene, demonstrating admirable air‐stability and solvent‐stability. The mechanism of the enhanced air‐stability of oxide‐doped SSEs is profoundly understood by conducting first‐principles density functional theory calculations. In addition, the Li6.04P0.98Bi0.02S4.97O0.03Cl electrolyte triggers the generation of LiBi alloy at the anode interface, which plays a crucial role in reducing Li+ diffusion energy barriers and improving interfacial compatibility, leading to an ultrahigh critical current density of 1.1 mA cm−2 and splendid cyclic stability in Li symmetric cell. As a result, ASSLMBs equipped with either pristine or air‐exposed Li6.04P0.98Bi0.02S4.97O0.03Cl can deliver satisfying discharge specific capacity at room temperature.
Argyrodite‐based electrolyte of Li6.04P0.98Bi0.02S4.97O0.03Cl is synthesized successfully via Bi, O co‐doping the Li6PS5Cl for the first time. As‐prepared electrolyte exhibits high ionic conductivity, high air stability, and good Li metal compatibility. Moreover, either pristine or air‐exposed Li6.04P0.98Bi0.02S4.97O0.03Cl can be used as a single electrolyte layer to enable all‐solid‐state Li metal batteries with superior electrochemical performance. |
---|---|
AbstractList | Sulfide solid electrolytes (SSEs) for all‐solid‐state Li metal batteries (ASSLMBs) are attracting increasing attention due to their ultrahigh ionic conductivity and good machinability. However, current SSEs generally suffer from inferior Li metal compatibility and poor air‐stability, which severely impede their practical applications for ASSLMBs. Herein, novel argyrodite‐based SSEs of Li6+2xP1−xBixS5−1.5xO1.5xCl are synthesized via the Bi, O co‐doping the Li6PS5Cl for the first time. By adjusting the concentrations of dopant, the optimized Li6.04P0.98Bi0.02S4.97O0.03Cl presents an ultrahigh ionic conductivity (3.4 × 10−3 S cm−1). Moreover, such electrolyte displays splendid structural stability after exposure to humid air and chlorobenzene, demonstrating admirable air‐stability and solvent‐stability. The mechanism of the enhanced air‐stability of oxide‐doped SSEs is profoundly understood by conducting first‐principles density functional theory calculations. In addition, the Li6.04P0.98Bi0.02S4.97O0.03Cl electrolyte triggers the generation of LiBi alloy at the anode interface, which plays a crucial role in reducing Li+ diffusion energy barriers and improving interfacial compatibility, leading to an ultrahigh critical current density of 1.1 mA cm−2 and splendid cyclic stability in Li symmetric cell. As a result, ASSLMBs equipped with either pristine or air‐exposed Li6.04P0.98Bi0.02S4.97O0.03Cl can deliver satisfying discharge specific capacity at room temperature.
Argyrodite‐based electrolyte of Li6.04P0.98Bi0.02S4.97O0.03Cl is synthesized successfully via Bi, O co‐doping the Li6PS5Cl for the first time. As‐prepared electrolyte exhibits high ionic conductivity, high air stability, and good Li metal compatibility. Moreover, either pristine or air‐exposed Li6.04P0.98Bi0.02S4.97O0.03Cl can be used as a single electrolyte layer to enable all‐solid‐state Li metal batteries with superior electrochemical performance. Sulfide solid electrolytes (SSEs) for all‐solid‐state Li metal batteries (ASSLMBs) are attracting increasing attention due to their ultrahigh ionic conductivity and good machinability. However, current SSEs generally suffer from inferior Li metal compatibility and poor air‐stability, which severely impede their practical applications for ASSLMBs. Herein, novel argyrodite‐based SSEs of Li 6+2 x P 1− x Bi x S 5−1.5 x O 1.5 x Cl are synthesized via the Bi, O co‐doping the Li 6 PS 5 Cl for the first time. By adjusting the concentrations of dopant, the optimized Li 6.04 P 0.98 Bi 0.02 S 4.97 O 0.03 Cl presents an ultrahigh ionic conductivity (3.4 × 10 −3 S cm −1 ). Moreover, such electrolyte displays splendid structural stability after exposure to humid air and chlorobenzene, demonstrating admirable air‐stability and solvent‐stability. The mechanism of the enhanced air‐stability of oxide‐doped SSEs is profoundly understood by conducting first‐principles density functional theory calculations. In addition, the Li 6.04 P 0.98 Bi 0.02 S 4.97 O 0.03 Cl electrolyte triggers the generation of LiBi alloy at the anode interface, which plays a crucial role in reducing Li + diffusion energy barriers and improving interfacial compatibility, leading to an ultrahigh critical current density of 1.1 mA cm −2 and splendid cyclic stability in Li symmetric cell. As a result, ASSLMBs equipped with either pristine or air‐exposed Li 6.04 P 0.98 Bi 0.02 S 4.97 O 0.03 Cl can deliver satisfying discharge specific capacity at room temperature. Sulfide solid electrolytes (SSEs) for all‐solid‐state Li metal batteries (ASSLMBs) are attracting increasing attention due to their ultrahigh ionic conductivity and good machinability. However, current SSEs generally suffer from inferior Li metal compatibility and poor air‐stability, which severely impede their practical applications for ASSLMBs. Herein, novel argyrodite‐based SSEs of Li6+2xP1−xBixS5−1.5xO1.5xCl are synthesized via the Bi, O co‐doping the Li6PS5Cl for the first time. By adjusting the concentrations of dopant, the optimized Li6.04P0.98Bi0.02S4.97O0.03Cl presents an ultrahigh ionic conductivity (3.4 × 10−3 S cm−1). Moreover, such electrolyte displays splendid structural stability after exposure to humid air and chlorobenzene, demonstrating admirable air‐stability and solvent‐stability. The mechanism of the enhanced air‐stability of oxide‐doped SSEs is profoundly understood by conducting first‐principles density functional theory calculations. In addition, the Li6.04P0.98Bi0.02S4.97O0.03Cl electrolyte triggers the generation of LiBi alloy at the anode interface, which plays a crucial role in reducing Li+ diffusion energy barriers and improving interfacial compatibility, leading to an ultrahigh critical current density of 1.1 mA cm−2 and splendid cyclic stability in Li symmetric cell. As a result, ASSLMBs equipped with either pristine or air‐exposed Li6.04P0.98Bi0.02S4.97O0.03Cl can deliver satisfying discharge specific capacity at room temperature. |
Author | Liang, Yuhao Gao, Lei Wang, Chao Li, Dabing Fan, Li‐Zhen Zhu, Qisi Liu, Hong Wang, Guoxu |
Author_xml | – sequence: 1 givenname: Hong surname: Liu fullname: Liu, Hong organization: University of Science and Technology Beijing – sequence: 2 givenname: Qisi surname: Zhu fullname: Zhu, Qisi organization: University of Science and Technology Beijing – sequence: 3 givenname: Chao surname: Wang fullname: Wang, Chao organization: University of Science and Technology Beijing – sequence: 4 givenname: Guoxu surname: Wang fullname: Wang, Guoxu organization: University of Science and Technology Beijing – sequence: 5 givenname: Yuhao surname: Liang fullname: Liang, Yuhao organization: University of Science and Technology Beijing – sequence: 6 givenname: Dabing surname: Li fullname: Li, Dabing organization: University of Science and Technology Beijing – sequence: 7 givenname: Lei surname: Gao fullname: Gao, Lei email: gaolei@ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 8 givenname: Li‐Zhen orcidid: 0000-0003-2270-4458 surname: Fan fullname: Fan, Li‐Zhen email: fanlizhen@ustb.edu.cn organization: University of Science and Technology Beijing |
BookMark | eNqFkM1OAjEURhuDiYBuXTdxDbbTzt9yQBATiAs0cTe5dDpYUqbYKdHZ-QjGR_RJLIFgYmJc3bs457u5Xwe1KlNJhC4p6VNCgmsoynU_IEFAWBImJ6hNIxr1GAmS1nGnT2eoU9crQmgcM95GnxO1fMaZsnjuYKG0cg2GqsCjNyG1lpXDU4Vn0oHGQ7PegFMHyJQ4s8vGmkI5-fX-MYBaek1L4azRjZN4VMFCq2qJ59uNtMpYnGntybnRqthNB546xg_AOY_J-hydlqBreXGYXfQ4Hj0MJ73p_e3dMJv2BKNx0mMJ8CgMi5gQwQPhK5ApUJ4EKfCS8ZBHgrEiCTkQJggVHGi4CPkiFlREBeGsi672uRtrXraydvnKbG3lT-ZBlKYJC6OYeqq_p4Q1dW1lmW-sWoNtckryXe_5rvf82LsX-C9BKP-pMpWzoPTfWrrXXpWWzT9H8uxmPPtxvwGqJZ1m |
CitedBy_id | crossref_primary_10_1002_aenm_202301338 crossref_primary_10_1021_acsenergylett_4c01639 crossref_primary_10_1016_j_cej_2024_157696 crossref_primary_10_1016_j_ensm_2024_103570 crossref_primary_10_1002_adfm_202412144 crossref_primary_10_1002_adfm_202313308 crossref_primary_10_1002_aenm_202203631 crossref_primary_10_1021_acs_energyfuels_4c02275 crossref_primary_10_1007_s11426_024_2275_2 crossref_primary_10_1002_adfm_202501573 crossref_primary_10_1002_adfm_202410008 crossref_primary_10_1002_adfm_202207978 crossref_primary_10_1002_sus2_218 crossref_primary_10_1002_tcr_202200086 crossref_primary_10_1021_acsami_4c06803 crossref_primary_10_1002_aenm_202402064 crossref_primary_10_1002_adma_202206013 crossref_primary_10_1016_j_cej_2024_158136 crossref_primary_10_1002_smtd_202301162 crossref_primary_10_1016_j_jiec_2024_01_053 crossref_primary_10_1021_acsenergylett_4c01882 crossref_primary_10_1016_j_pmatsci_2024_101339 crossref_primary_10_1021_acs_jpcc_4c05656 crossref_primary_10_1002_smll_202408824 crossref_primary_10_1002_smll_202412723 crossref_primary_10_1002_adfm_202314306 crossref_primary_10_1002_aenm_202500532 crossref_primary_10_1002_ente_202401420 crossref_primary_10_1021_acsnano_4c15706 crossref_primary_10_1016_j_nanoen_2024_109835 crossref_primary_10_1002_adfm_202315555 crossref_primary_10_1007_s11426_024_2055_4 crossref_primary_10_1021_acsaem_4c02036 crossref_primary_10_1016_j_cej_2023_143304 crossref_primary_10_1021_acsaem_4c00616 crossref_primary_10_1039_D4NJ05234J crossref_primary_10_1002_batt_202400048 crossref_primary_10_1002_ange_202302655 crossref_primary_10_1016_j_ensm_2023_01_018 crossref_primary_10_34133_energymatadv_0021 crossref_primary_10_1016_j_jallcom_2023_172334 crossref_primary_10_1039_D3TA07453F crossref_primary_10_1002_adma_202310356 crossref_primary_10_1002_aenm_202402929 crossref_primary_10_1038_s41467_024_46798_4 crossref_primary_10_1039_D3TA01955A crossref_primary_10_1002_bte2_20220059 crossref_primary_10_1021_acs_energyfuels_3c04605 crossref_primary_10_1016_j_nanoen_2024_110127 crossref_primary_10_1021_accountsmr_4c00156 crossref_primary_10_1002_celc_202200923 crossref_primary_10_1002_inf2_12606 crossref_primary_10_1002_ente_202201291 crossref_primary_10_1007_s41918_024_00221_0 crossref_primary_10_1016_j_ssi_2025_116813 crossref_primary_10_1039_D4TA04835K crossref_primary_10_1007_s12209_024_00394_1 crossref_primary_10_1016_j_cej_2024_157027 crossref_primary_10_1002_adfm_202408465 crossref_primary_10_1007_s11426_024_2515_2 crossref_primary_10_1002_anie_202302655 crossref_primary_10_1016_j_jpowsour_2025_236820 crossref_primary_10_1016_j_cej_2024_149575 crossref_primary_10_1002_est2_506 crossref_primary_10_1002_cssc_202401664 |
Cites_doi | 10.1016/j.matt.2022.01.011 10.1021/acs.chemrev.9b00268 10.1016/0167-2738(88)90394-3 10.2109/jcersj2.122.552 10.1002/adfm.202101985 10.1016/j.jechem.2020.11.031 10.1002/anie.202007621 10.1016/j.cej.2020.125334 10.1016/j.nanoen.2021.105906 10.1016/j.nanoen.2021.105858 10.1038/nenergy.2017.119 10.1002/aenm.201900626 10.1038/s41598-017-05775-2 10.1016/j.jpowsour.2018.11.016 10.1002/aenm.201903422 10.1016/j.mattod.2019.09.018 10.1038/nenergy.2016.30 10.1002/adfm.202007198 10.1002/adma.202107346 10.1016/j.jallcom.2013.12.191 10.1016/j.elecom.2021.107058 10.1016/j.cej.2021.132991 10.1002/anie.201901739 10.1016/j.ssi.2017.07.005 10.1038/s41586-021-04209-4 10.1002/inf2.12248 10.1021/acsami.9b13313 10.1038/s41578-019-0157-5 10.1016/j.cej.2021.130535 10.1021/acsami.9b22968 10.1016/j.ensm.2020.01.006 10.1002/aenm.202101521 10.1002/adma.202100921 10.1021/acsami.5b07517 10.1002/adfm.202105776 10.1016/j.jnoncrysol.2012.12.044 10.1039/D0CC01552K 10.1016/j.cej.2020.127149 10.1021/cm5037524 10.1039/C3EE43357A 10.1002/adma.202006577 10.1016/j.snb.2020.129387 10.1021/acs.chemmater.9b04764 10.1134/S1087659610050056 10.1016/j.jpowsour.2018.04.021 10.1002/batt.201900218 10.1038/nmat3066 10.1002/aenm.201902123 10.1002/aenm.202002545 10.1038/s41578-021-00320-0 10.1016/j.jallcom.2019.05.303 10.1016/j.cej.2021.132411 10.1016/j.ssi.2016.11.029 10.1016/j.jpowsour.2017.01.037 10.1021/cm3011315 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202203858 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202203858 ADFM202203858 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: U21A2080; 51872027 – fundername: National Key Research and Development Program of China funderid: 2018YFB0704300 – fundername: Beijing Natural Science Foundation funderid: Z200011 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3178-38a4655d700c42c100e9a14829a4f34546c33d854a03c01c4a15b54b7c1c6d043 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 05:10:17 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Tue Jul 01 00:30:29 EDT 2025 Wed Jan 22 16:25:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3178-38a4655d700c42c100e9a14829a4f34546c33d854a03c01c4a15b54b7c1c6d043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2270-4458 |
PQID | 2699835671 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2699835671 crossref_primary_10_1002_adfm_202203858 crossref_citationtrail_10_1002_adfm_202203858 wiley_primary_10_1002_adfm_202203858_ADFM202203858 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 407 2017; 7 2017; 2 2020; 120 2019; 11 2021; 128 2019; 58 2013; 364 2020; 59 2011; 10 2020; 12 2020; 56 2020; 10 2020; 5 2021; 31 2020; 3 2021; 33 2022; 34 2019; 798 2022; 32 2021; 83 2012; 24 2014; 122 2022; 601 2014; 7 2021; 84 2022; 430 2021; 6 2019; 9 2010; 36 2021; 425 2018; 389 2014; 591 2020; 33 2020; 32 2015; 7 2021; 59 2016; 1 2015; 27 2021; 11 2020; 31 2022; 4 2022; 5 2020; 396 1988; 28 2020; 26 2019; 410 2018; 318 2022; 429 2021; 330 2017; 343 2017; 300 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 4 year: 2022 publication-title: InfoMat – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 407 year: 2021 publication-title: Chem. Eng. J. – volume: 128 year: 2021 publication-title: Electrochem. Commun. – volume: 56 year: 2020 publication-title: Chem. Commun. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 364 start-page: 57 year: 2013 publication-title: J. Non‐Cryst. Solids – volume: 410 start-page: 162 year: 2019 publication-title: J. Power Sources – volume: 389 start-page: 140 year: 2018 publication-title: J. Power Sources – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 396 year: 2020 publication-title: Chem. Eng. J. – volume: 28 start-page: 1406 year: 1988 publication-title: Solid State Ionics – volume: 7 start-page: 5873 year: 2017 publication-title: Sci. Rep. – volume: 343 start-page: 119 year: 2017 publication-title: J. Power Sources – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 601 start-page: 217 year: 2022 publication-title: Nature – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 300 start-page: 78 year: 2017 publication-title: Solid State Ionics – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 120 start-page: 6820 year: 2020 publication-title: Chem. Rev. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 798 start-page: 741 year: 2019 publication-title: J. Alloys Compd. – volume: 318 start-page: 102 year: 2018 publication-title: Solid State Ionics – volume: 122 start-page: 552 year: 2014 publication-title: J. Ceram. Soc. Jpn. – volume: 27 start-page: 189 year: 2015 publication-title: Chem. Mater. – volume: 5 start-page: 105 year: 2020 publication-title: Nat. Rev. Mater. – volume: 425 year: 2021 publication-title: Chem. Eng. J. – volume: 33 start-page: 56 year: 2020 publication-title: Mater. Today – volume: 7 start-page: 1053 year: 2014 publication-title: Energy Environ. Sci. – volume: 3 start-page: 647 year: 2020 publication-title: Batteries Supercaps – volume: 10 start-page: 682 year: 2011 publication-title: Nat. Mater. – volume: 58 start-page: 7673 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 876 year: 2022 publication-title: Matter – volume: 59 start-page: 530 year: 2021 publication-title: J. Energy Chem. – volume: 429 year: 2022 publication-title: Chem. Eng. J. – volume: 24 start-page: 2211 year: 2012 publication-title: Chem. Mater. – volume: 83 year: 2021 publication-title: Nano Energy – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 330 year: 2021 publication-title: Sens. Actuators B – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 591 start-page: 247 year: 2014 publication-title: J. Alloys Compd. – volume: 430 year: 2022 publication-title: Chem. Eng. J. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 1003 year: 2021 publication-title: Nat. Rev. Mater. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 2664 year: 2020 publication-title: Chem. Mater. – volume: 84 year: 2021 publication-title: Nano Energy – volume: 36 start-page: 570 year: 2010 publication-title: Glass Phys. Chem. – volume: 26 start-page: 283 year: 2020 publication-title: Energy Storage Mater. – ident: e_1_2_7_9_1 doi: 10.1016/j.matt.2022.01.011 – ident: e_1_2_7_14_1 doi: 10.1021/acs.chemrev.9b00268 – ident: e_1_2_7_51_1 doi: 10.1016/0167-2738(88)90394-3 – ident: e_1_2_7_54_1 doi: 10.2109/jcersj2.122.552 – ident: e_1_2_7_3_1 doi: 10.1002/adfm.202101985 – ident: e_1_2_7_32_1 doi: 10.1016/j.jechem.2020.11.031 – ident: e_1_2_7_11_1 doi: 10.1002/anie.202007621 – ident: e_1_2_7_29_1 doi: 10.1016/j.cej.2020.125334 – ident: e_1_2_7_43_1 doi: 10.1016/j.nanoen.2021.105906 – ident: e_1_2_7_31_1 doi: 10.1016/j.nanoen.2021.105858 – ident: e_1_2_7_50_1 doi: 10.1038/nenergy.2017.119 – ident: e_1_2_7_55_1 doi: 10.1002/aenm.201900626 – ident: e_1_2_7_53_1 doi: 10.1038/s41598-017-05775-2 – ident: e_1_2_7_27_1 doi: 10.1016/j.jpowsour.2018.11.016 – ident: e_1_2_7_12_1 doi: 10.1002/aenm.201903422 – ident: e_1_2_7_18_1 doi: 10.1016/j.mattod.2019.09.018 – ident: e_1_2_7_7_1 doi: 10.1038/nenergy.2016.30 – ident: e_1_2_7_4_1 doi: 10.1002/adfm.202007198 – ident: e_1_2_7_6_1 doi: 10.1002/adma.202107346 – ident: e_1_2_7_26_1 doi: 10.1016/j.jallcom.2013.12.191 – ident: e_1_2_7_42_1 doi: 10.1016/j.elecom.2021.107058 – ident: e_1_2_7_16_1 doi: 10.1016/j.cej.2021.132991 – ident: e_1_2_7_23_1 doi: 10.1002/anie.201901739 – ident: e_1_2_7_34_1 doi: 10.1016/j.ssi.2017.07.005 – ident: e_1_2_7_1_1 doi: 10.1038/s41586-021-04209-4 – ident: e_1_2_7_10_1 doi: 10.1002/inf2.12248 – ident: e_1_2_7_46_1 doi: 10.1021/acsami.9b13313 – ident: e_1_2_7_49_1 doi: 10.1038/s41578-019-0157-5 – ident: e_1_2_7_35_1 doi: 10.1016/j.cej.2021.130535 – ident: e_1_2_7_36_1 doi: 10.1021/acsami.9b22968 – ident: e_1_2_7_5_1 doi: 10.1016/j.ensm.2020.01.006 – ident: e_1_2_7_24_1 doi: 10.1002/aenm.202101521 – ident: e_1_2_7_13_1 doi: 10.1002/adma.202100921 – ident: e_1_2_7_15_1 doi: 10.1021/acsami.5b07517 – ident: e_1_2_7_17_1 doi: 10.1002/adfm.202105776 – ident: e_1_2_7_25_1 doi: 10.1016/j.jnoncrysol.2012.12.044 – ident: e_1_2_7_47_1 doi: 10.1039/D0CC01552K – ident: e_1_2_7_37_1 doi: 10.1016/j.cej.2020.127149 – ident: e_1_2_7_20_1 doi: 10.1021/cm5037524 – ident: e_1_2_7_21_1 doi: 10.1039/C3EE43357A – ident: e_1_2_7_41_1 doi: 10.1002/adma.202006577 – ident: e_1_2_7_38_1 doi: 10.1016/j.snb.2020.129387 – ident: e_1_2_7_22_1 doi: 10.1021/acs.chemmater.9b04764 – ident: e_1_2_7_52_1 doi: 10.1134/S1087659610050056 – ident: e_1_2_7_28_1 doi: 10.1016/j.jpowsour.2018.04.021 – ident: e_1_2_7_33_1 doi: 10.1002/batt.201900218 – ident: e_1_2_7_8_1 doi: 10.1038/nmat3066 – ident: e_1_2_7_44_1 doi: 10.1002/aenm.201902123 – ident: e_1_2_7_48_1 doi: 10.1002/aenm.202002545 – ident: e_1_2_7_2_1 doi: 10.1038/s41578-021-00320-0 – ident: e_1_2_7_39_1 doi: 10.1016/j.jallcom.2019.05.303 – ident: e_1_2_7_30_1 doi: 10.1016/j.cej.2021.132411 – ident: e_1_2_7_40_1 doi: 10.1016/j.ssi.2016.11.029 – ident: e_1_2_7_45_1 doi: 10.1016/j.jpowsour.2017.01.037 – ident: e_1_2_7_19_1 doi: 10.1021/cm3011315 |
SSID | ssj0017734 |
Score | 2.632749 |
Snippet | Sulfide solid electrolytes (SSEs) for all‐solid‐state Li metal batteries (ASSLMBs) are attracting increasing attention due to their ultrahigh ionic... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | air stability all‐solid‐state Li metal batteries Bismuth base alloys Chlorobenzene Compatibility Critical current density Density functional theory Diffusion barriers Electrolytes Ion currents Li metal compatibility Lithium batteries Machinability Materials science Molten salt electrolytes Room temperature Solid electrolytes Structural stability sulfide electrolytes |
Title | High Air Stability and Excellent Li Metal Compatibility of Argyrodite‐Based Electrolyte Enabling Superior All‐Solid‐State Li Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202203858 https://www.proquest.com/docview/2699835671 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hcoEDb0RoqfaAxMmtvS_bR0MTVajhQKiUm7UvowjLqVJHIpz6ExA_kV_CjNdxUiSEBCfb0ux6XzP7ze7st4S8jnMPqF6aKIfOjgSreGR8lQOQS3MrlcmcQUdx-kGdX4r3cznfO8Uf-CGGBTfUjM5eo4Jrc326Iw3VrsKT5Ix1e1tghDFgC1HRx4E_KknTsK2sEgzwSuZb1saYnd5OfntW2kHNfcDazTiTh0RvyxoCTb6crFtzYr_9RuP4P5V5RB70cJQWYfw8Jnd884Tc3yMpfEp-YCgILRYrCsC0C6XdUN04Ov7aLfo3Lb1Y0KkHEE8749IueqFlBfl-3oCFBlj78-b7W5gwIVm4d6fetJ6O8eAW_ITO1ki4vFzRoq5BcrasFw6fiIR32QcuUHDtn5HLyfjTu_Oov8khsoBPsohnGnnaXBrHVjALlfa5RgbSXIuKCymU5dxlUuiY2zixQifSSGFSm1jlYsGfk4Nm2fgXhCIHWhYrnVbKCxFbzaRJlcmdls7zjI1ItO3J0vY053jbRl0GgmZWYluXQ1uPyJtB_ioQfPxR8mg7MMpe0a9LpsBf5VKlyYiwrof_kktZnE2mw9fLf0l0SO7hewhDPCIH7WrtXwE0as0xuVucTS9mx50a_AK2KwmX |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKOUAP_CMWCvgA4pQ2cWwnOXBY2F1t6W4PtJX2FmzHQRFRttrNCpYTj4B4E16FR-BJmMnftkgICakHTlEiZxJ5PJ5v7PE3hDxzIwuoXmgnAmU7nKW-o20aAZALIiOkDhONgeL0SI5P-ZuZmG2R7-1ZmJofoltwQ8uo5ms0cFyQ3t-whqokxaPkjFWbW01e5aFdf4SobfnyYAAqfs7YaHjyeuw0hQUcA-4ydPxQIW1YEriu4cyAPBspJMSMFE99Lrg0vp-EgivXN65nuPKEFlwHxjMycbkPcq-Qq1hGHOn6B287xiovCOqNbOlhSpk3a3kiXbZ_8X8v-sENuD0PkSsfN7pJfrS9U6e2fNhblXrPfP6NOPK_6r5b5EaDuGm_NpHbZMsWd8jOOR7Gu-QbZrvQfraggL2rbOE1VUVCh5-qfY2ipJOMTi3EKbSaP8usaTRPQe77NTghQO4_v3x9BZgAXqtLC-Xr0tIhnk2Dj9DjFXJKzxe0n-fQ8nieZwleEexvxNd0p5ld3iOnl9Ip98l2MS_sA0KR5i10pQpSaTl3jWJCB1JHiRKJ9UPWI047dGLTMLljQZE8rjmoWYy6jTvd9siLrv1ZzWHyx5a77UiMm7lsGTMJIbkvZOD1CKuG1F-kxP3BaNrdPfyXl56Sa-OT6SSeHBwdPiLX8XmddblLtsvFyj4GJFjqJ5XtUfLuskfrL59-YgE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRAc-K9YKOADiFNax7Gd5NDDwu6qpd0KUSrtLfgvKCLKVrtZwXLqI1R9El6FV-BJGOdvWySEhNQDpyiRPYnsGc838fgbhF6Q2AKq58qLYbI9RtPAUzaNAciFseZCRUa5QHF8KHaP2dsJn6yh7-1ZmJofovvh5iyjWq-dgZ-YdHtFGipN6k6SU1rtbTVplft2-QWCtvnO3gBm-CWlo-GHN7teU1fA0-AtIy-IpGMNMyEhmlEN8mwsHR9mLFkaMM6EDgITcSZJoImvmfS54kyF2tfCEBaA3GvoOhMkdsUiBu87wio_DOt9bOG7jDJ_0tJEErp9-Xsvu8EVtr2IkCsXN7qDfrSDU2e2fN5alGpLf_uNN_J_Gr276HaDt3G_NpB7aM0W99GtCyyMD9C5y3XB_WyGAXlXucJLLAuDh1-rXY2ixAcZHluIUnC1epZZ02iagtxPS3BBgNt_np69BkQA3erCQvmytHjoTqbBS_DRwjFKT2e4n-fQ8miaZ8ZdHdRfia_JTjM7f4iOr2RQNtB6MS3sI4QdyVtEhAxTYRkjWlKuQqFiI7mxQUR7yGs1J9ENj7srJ5InNQM1TdzcJt3c9tCrrv1JzWDyx5abrSImzUo2T6iAgDzgIvR7iFYa9RcpSX8wGnd3j_-l03N0491glBzsHe4_QTfd4zrlchOtl7OFfQowsFTPKsvD6ONVK-sv8j9gsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Air+Stability+and+Excellent+Li+Metal+Compatibility+of+Argyrodite%E2%80%90Based+Electrolyte+Enabling+Superior+All%E2%80%90Solid%E2%80%90State+Li+Metal+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Liu%2C+Hong&rft.au=Zhu%2C+Qisi&rft.au=Wang%2C+Chao&rft.au=Wang%2C+Guoxu&rft.date=2022-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202203858&rft.externalDBID=10.1002%252Fadfm.202203858&rft.externalDocID=ADFM202203858 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |