High Air Stability and Excellent Li Metal Compatibility of Argyrodite‐Based Electrolyte Enabling Superior All‐Solid‐State Li Metal Batteries

Sulfide solid electrolytes (SSEs) for all‐solid‐state Li metal batteries (ASSLMBs) are attracting increasing attention due to their ultrahigh ionic conductivity and good machinability. However, current SSEs generally suffer from inferior Li metal compatibility and poor air‐stability, which severely...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 32
Main Authors Liu, Hong, Zhu, Qisi, Wang, Chao, Wang, Guoxu, Liang, Yuhao, Li, Dabing, Gao, Lei, Fan, Li‐Zhen
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sulfide solid electrolytes (SSEs) for all‐solid‐state Li metal batteries (ASSLMBs) are attracting increasing attention due to their ultrahigh ionic conductivity and good machinability. However, current SSEs generally suffer from inferior Li metal compatibility and poor air‐stability, which severely impede their practical applications for ASSLMBs. Herein, novel argyrodite‐based SSEs of Li6+2xP1−xBixS5−1.5xO1.5xCl are synthesized via the Bi, O co‐doping the Li6PS5Cl for the first time. By adjusting the concentrations of dopant, the optimized Li6.04P0.98Bi0.02S4.97O0.03Cl presents an ultrahigh ionic conductivity (3.4 × 10−3 S cm−1). Moreover, such electrolyte displays splendid structural stability after exposure to humid air and chlorobenzene, demonstrating admirable air‐stability and solvent‐stability. The mechanism of the enhanced air‐stability of oxide‐doped SSEs is profoundly understood by conducting first‐principles density functional theory calculations. In addition, the Li6.04P0.98Bi0.02S4.97O0.03Cl electrolyte triggers the generation of LiBi alloy at the anode interface, which plays a crucial role in reducing Li+ diffusion energy barriers and improving interfacial compatibility, leading to an ultrahigh critical current density of 1.1 mA cm−2 and splendid cyclic stability in Li symmetric cell. As a result, ASSLMBs equipped with either pristine or air‐exposed Li6.04P0.98Bi0.02S4.97O0.03Cl can deliver satisfying discharge specific capacity at room temperature. Argyrodite‐based electrolyte of Li6.04P0.98Bi0.02S4.97O0.03Cl is synthesized successfully via Bi, O co‐doping the Li6PS5Cl for the first time. As‐prepared electrolyte exhibits high ionic conductivity, high air stability, and good Li metal compatibility. Moreover, either pristine or air‐exposed Li6.04P0.98Bi0.02S4.97O0.03Cl can be used as a single electrolyte layer to enable all‐solid‐state Li metal batteries with superior electrochemical performance.
AbstractList Sulfide solid electrolytes (SSEs) for all‐solid‐state Li metal batteries (ASSLMBs) are attracting increasing attention due to their ultrahigh ionic conductivity and good machinability. However, current SSEs generally suffer from inferior Li metal compatibility and poor air‐stability, which severely impede their practical applications for ASSLMBs. Herein, novel argyrodite‐based SSEs of Li6+2xP1−xBixS5−1.5xO1.5xCl are synthesized via the Bi, O co‐doping the Li6PS5Cl for the first time. By adjusting the concentrations of dopant, the optimized Li6.04P0.98Bi0.02S4.97O0.03Cl presents an ultrahigh ionic conductivity (3.4 × 10−3 S cm−1). Moreover, such electrolyte displays splendid structural stability after exposure to humid air and chlorobenzene, demonstrating admirable air‐stability and solvent‐stability. The mechanism of the enhanced air‐stability of oxide‐doped SSEs is profoundly understood by conducting first‐principles density functional theory calculations. In addition, the Li6.04P0.98Bi0.02S4.97O0.03Cl electrolyte triggers the generation of LiBi alloy at the anode interface, which plays a crucial role in reducing Li+ diffusion energy barriers and improving interfacial compatibility, leading to an ultrahigh critical current density of 1.1 mA cm−2 and splendid cyclic stability in Li symmetric cell. As a result, ASSLMBs equipped with either pristine or air‐exposed Li6.04P0.98Bi0.02S4.97O0.03Cl can deliver satisfying discharge specific capacity at room temperature. Argyrodite‐based electrolyte of Li6.04P0.98Bi0.02S4.97O0.03Cl is synthesized successfully via Bi, O co‐doping the Li6PS5Cl for the first time. As‐prepared electrolyte exhibits high ionic conductivity, high air stability, and good Li metal compatibility. Moreover, either pristine or air‐exposed Li6.04P0.98Bi0.02S4.97O0.03Cl can be used as a single electrolyte layer to enable all‐solid‐state Li metal batteries with superior electrochemical performance.
Sulfide solid electrolytes (SSEs) for all‐solid‐state Li metal batteries (ASSLMBs) are attracting increasing attention due to their ultrahigh ionic conductivity and good machinability. However, current SSEs generally suffer from inferior Li metal compatibility and poor air‐stability, which severely impede their practical applications for ASSLMBs. Herein, novel argyrodite‐based SSEs of Li 6+2 x P 1− x Bi x S 5−1.5 x O 1.5 x Cl are synthesized via the Bi, O co‐doping the Li 6 PS 5 Cl for the first time. By adjusting the concentrations of dopant, the optimized Li 6.04 P 0.98 Bi 0.02 S 4.97 O 0.03 Cl presents an ultrahigh ionic conductivity (3.4 × 10 −3 S cm −1 ). Moreover, such electrolyte displays splendid structural stability after exposure to humid air and chlorobenzene, demonstrating admirable air‐stability and solvent‐stability. The mechanism of the enhanced air‐stability of oxide‐doped SSEs is profoundly understood by conducting first‐principles density functional theory calculations. In addition, the Li 6.04 P 0.98 Bi 0.02 S 4.97 O 0.03 Cl electrolyte triggers the generation of LiBi alloy at the anode interface, which plays a crucial role in reducing Li + diffusion energy barriers and improving interfacial compatibility, leading to an ultrahigh critical current density of 1.1 mA cm −2 and splendid cyclic stability in Li symmetric cell. As a result, ASSLMBs equipped with either pristine or air‐exposed Li 6.04 P 0.98 Bi 0.02 S 4.97 O 0.03 Cl can deliver satisfying discharge specific capacity at room temperature.
Sulfide solid electrolytes (SSEs) for all‐solid‐state Li metal batteries (ASSLMBs) are attracting increasing attention due to their ultrahigh ionic conductivity and good machinability. However, current SSEs generally suffer from inferior Li metal compatibility and poor air‐stability, which severely impede their practical applications for ASSLMBs. Herein, novel argyrodite‐based SSEs of Li6+2xP1−xBixS5−1.5xO1.5xCl are synthesized via the Bi, O co‐doping the Li6PS5Cl for the first time. By adjusting the concentrations of dopant, the optimized Li6.04P0.98Bi0.02S4.97O0.03Cl presents an ultrahigh ionic conductivity (3.4 × 10−3 S cm−1). Moreover, such electrolyte displays splendid structural stability after exposure to humid air and chlorobenzene, demonstrating admirable air‐stability and solvent‐stability. The mechanism of the enhanced air‐stability of oxide‐doped SSEs is profoundly understood by conducting first‐principles density functional theory calculations. In addition, the Li6.04P0.98Bi0.02S4.97O0.03Cl electrolyte triggers the generation of LiBi alloy at the anode interface, which plays a crucial role in reducing Li+ diffusion energy barriers and improving interfacial compatibility, leading to an ultrahigh critical current density of 1.1 mA cm−2 and splendid cyclic stability in Li symmetric cell. As a result, ASSLMBs equipped with either pristine or air‐exposed Li6.04P0.98Bi0.02S4.97O0.03Cl can deliver satisfying discharge specific capacity at room temperature.
Author Liang, Yuhao
Gao, Lei
Wang, Chao
Li, Dabing
Fan, Li‐Zhen
Zhu, Qisi
Liu, Hong
Wang, Guoxu
Author_xml – sequence: 1
  givenname: Hong
  surname: Liu
  fullname: Liu, Hong
  organization: University of Science and Technology Beijing
– sequence: 2
  givenname: Qisi
  surname: Zhu
  fullname: Zhu, Qisi
  organization: University of Science and Technology Beijing
– sequence: 3
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: University of Science and Technology Beijing
– sequence: 4
  givenname: Guoxu
  surname: Wang
  fullname: Wang, Guoxu
  organization: University of Science and Technology Beijing
– sequence: 5
  givenname: Yuhao
  surname: Liang
  fullname: Liang, Yuhao
  organization: University of Science and Technology Beijing
– sequence: 6
  givenname: Dabing
  surname: Li
  fullname: Li, Dabing
  organization: University of Science and Technology Beijing
– sequence: 7
  givenname: Lei
  surname: Gao
  fullname: Gao, Lei
  email: gaolei@ustb.edu.cn
  organization: University of Science and Technology Beijing
– sequence: 8
  givenname: Li‐Zhen
  orcidid: 0000-0003-2270-4458
  surname: Fan
  fullname: Fan, Li‐Zhen
  email: fanlizhen@ustb.edu.cn
  organization: University of Science and Technology Beijing
BookMark eNqFkM1OAjEURhuDiYBuXTdxDbbTzt9yQBATiAs0cTe5dDpYUqbYKdHZ-QjGR_RJLIFgYmJc3bs457u5Xwe1KlNJhC4p6VNCgmsoynU_IEFAWBImJ6hNIxr1GAmS1nGnT2eoU9crQmgcM95GnxO1fMaZsnjuYKG0cg2GqsCjNyG1lpXDU4Vn0oHGQ7PegFMHyJQ4s8vGmkI5-fX-MYBaek1L4azRjZN4VMFCq2qJ59uNtMpYnGntybnRqthNB546xg_AOY_J-hydlqBreXGYXfQ4Hj0MJ73p_e3dMJv2BKNx0mMJ8CgMi5gQwQPhK5ApUJ4EKfCS8ZBHgrEiCTkQJggVHGi4CPkiFlREBeGsi672uRtrXraydvnKbG3lT-ZBlKYJC6OYeqq_p4Q1dW1lmW-sWoNtckryXe_5rvf82LsX-C9BKP-pMpWzoPTfWrrXXpWWzT9H8uxmPPtxvwGqJZ1m
CitedBy_id crossref_primary_10_1002_aenm_202301338
crossref_primary_10_1021_acsenergylett_4c01639
crossref_primary_10_1016_j_cej_2024_157696
crossref_primary_10_1016_j_ensm_2024_103570
crossref_primary_10_1002_adfm_202412144
crossref_primary_10_1002_adfm_202313308
crossref_primary_10_1002_aenm_202203631
crossref_primary_10_1021_acs_energyfuels_4c02275
crossref_primary_10_1007_s11426_024_2275_2
crossref_primary_10_1002_adfm_202501573
crossref_primary_10_1002_adfm_202410008
crossref_primary_10_1002_adfm_202207978
crossref_primary_10_1002_sus2_218
crossref_primary_10_1002_tcr_202200086
crossref_primary_10_1021_acsami_4c06803
crossref_primary_10_1002_aenm_202402064
crossref_primary_10_1002_adma_202206013
crossref_primary_10_1016_j_cej_2024_158136
crossref_primary_10_1002_smtd_202301162
crossref_primary_10_1016_j_jiec_2024_01_053
crossref_primary_10_1021_acsenergylett_4c01882
crossref_primary_10_1016_j_pmatsci_2024_101339
crossref_primary_10_1021_acs_jpcc_4c05656
crossref_primary_10_1002_smll_202408824
crossref_primary_10_1002_smll_202412723
crossref_primary_10_1002_adfm_202314306
crossref_primary_10_1002_aenm_202500532
crossref_primary_10_1002_ente_202401420
crossref_primary_10_1021_acsnano_4c15706
crossref_primary_10_1016_j_nanoen_2024_109835
crossref_primary_10_1002_adfm_202315555
crossref_primary_10_1007_s11426_024_2055_4
crossref_primary_10_1021_acsaem_4c02036
crossref_primary_10_1016_j_cej_2023_143304
crossref_primary_10_1021_acsaem_4c00616
crossref_primary_10_1039_D4NJ05234J
crossref_primary_10_1002_batt_202400048
crossref_primary_10_1002_ange_202302655
crossref_primary_10_1016_j_ensm_2023_01_018
crossref_primary_10_34133_energymatadv_0021
crossref_primary_10_1016_j_jallcom_2023_172334
crossref_primary_10_1039_D3TA07453F
crossref_primary_10_1002_adma_202310356
crossref_primary_10_1002_aenm_202402929
crossref_primary_10_1038_s41467_024_46798_4
crossref_primary_10_1039_D3TA01955A
crossref_primary_10_1002_bte2_20220059
crossref_primary_10_1021_acs_energyfuels_3c04605
crossref_primary_10_1016_j_nanoen_2024_110127
crossref_primary_10_1021_accountsmr_4c00156
crossref_primary_10_1002_celc_202200923
crossref_primary_10_1002_inf2_12606
crossref_primary_10_1002_ente_202201291
crossref_primary_10_1007_s41918_024_00221_0
crossref_primary_10_1016_j_ssi_2025_116813
crossref_primary_10_1039_D4TA04835K
crossref_primary_10_1007_s12209_024_00394_1
crossref_primary_10_1016_j_cej_2024_157027
crossref_primary_10_1002_adfm_202408465
crossref_primary_10_1007_s11426_024_2515_2
crossref_primary_10_1002_anie_202302655
crossref_primary_10_1016_j_jpowsour_2025_236820
crossref_primary_10_1016_j_cej_2024_149575
crossref_primary_10_1002_est2_506
crossref_primary_10_1002_cssc_202401664
Cites_doi 10.1016/j.matt.2022.01.011
10.1021/acs.chemrev.9b00268
10.1016/0167-2738(88)90394-3
10.2109/jcersj2.122.552
10.1002/adfm.202101985
10.1016/j.jechem.2020.11.031
10.1002/anie.202007621
10.1016/j.cej.2020.125334
10.1016/j.nanoen.2021.105906
10.1016/j.nanoen.2021.105858
10.1038/nenergy.2017.119
10.1002/aenm.201900626
10.1038/s41598-017-05775-2
10.1016/j.jpowsour.2018.11.016
10.1002/aenm.201903422
10.1016/j.mattod.2019.09.018
10.1038/nenergy.2016.30
10.1002/adfm.202007198
10.1002/adma.202107346
10.1016/j.jallcom.2013.12.191
10.1016/j.elecom.2021.107058
10.1016/j.cej.2021.132991
10.1002/anie.201901739
10.1016/j.ssi.2017.07.005
10.1038/s41586-021-04209-4
10.1002/inf2.12248
10.1021/acsami.9b13313
10.1038/s41578-019-0157-5
10.1016/j.cej.2021.130535
10.1021/acsami.9b22968
10.1016/j.ensm.2020.01.006
10.1002/aenm.202101521
10.1002/adma.202100921
10.1021/acsami.5b07517
10.1002/adfm.202105776
10.1016/j.jnoncrysol.2012.12.044
10.1039/D0CC01552K
10.1016/j.cej.2020.127149
10.1021/cm5037524
10.1039/C3EE43357A
10.1002/adma.202006577
10.1016/j.snb.2020.129387
10.1021/acs.chemmater.9b04764
10.1134/S1087659610050056
10.1016/j.jpowsour.2018.04.021
10.1002/batt.201900218
10.1038/nmat3066
10.1002/aenm.201902123
10.1002/aenm.202002545
10.1038/s41578-021-00320-0
10.1016/j.jallcom.2019.05.303
10.1016/j.cej.2021.132411
10.1016/j.ssi.2016.11.029
10.1016/j.jpowsour.2017.01.037
10.1021/cm3011315
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202203858
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202203858
ADFM202203858
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: U21A2080; 51872027
– fundername: National Key Research and Development Program of China
  funderid: 2018YFB0704300
– fundername: Beijing Natural Science Foundation
  funderid: Z200011
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3178-38a4655d700c42c100e9a14829a4f34546c33d854a03c01c4a15b54b7c1c6d043
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 05:10:17 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
Tue Jul 01 00:30:29 EDT 2025
Wed Jan 22 16:25:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3178-38a4655d700c42c100e9a14829a4f34546c33d854a03c01c4a15b54b7c1c6d043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2270-4458
PQID 2699835671
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2699835671
crossref_primary_10_1002_adfm_202203858
crossref_citationtrail_10_1002_adfm_202203858
wiley_primary_10_1002_adfm_202203858_ADFM202203858
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 407
2017; 7
2017; 2
2020; 120
2019; 11
2021; 128
2019; 58
2013; 364
2020; 59
2011; 10
2020; 12
2020; 56
2020; 10
2020; 5
2021; 31
2020; 3
2021; 33
2022; 34
2019; 798
2022; 32
2021; 83
2012; 24
2014; 122
2022; 601
2014; 7
2021; 84
2022; 430
2021; 6
2019; 9
2010; 36
2021; 425
2018; 389
2014; 591
2020; 33
2020; 32
2015; 7
2021; 59
2016; 1
2015; 27
2021; 11
2020; 31
2022; 4
2022; 5
2020; 396
1988; 28
2020; 26
2019; 410
2018; 318
2022; 429
2021; 330
2017; 343
2017; 300
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 4
  year: 2022
  publication-title: InfoMat
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 407
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 128
  year: 2021
  publication-title: Electrochem. Commun.
– volume: 56
  year: 2020
  publication-title: Chem. Commun.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 364
  start-page: 57
  year: 2013
  publication-title: J. Non‐Cryst. Solids
– volume: 410
  start-page: 162
  year: 2019
  publication-title: J. Power Sources
– volume: 389
  start-page: 140
  year: 2018
  publication-title: J. Power Sources
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 396
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 28
  start-page: 1406
  year: 1988
  publication-title: Solid State Ionics
– volume: 7
  start-page: 5873
  year: 2017
  publication-title: Sci. Rep.
– volume: 343
  start-page: 119
  year: 2017
  publication-title: J. Power Sources
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 601
  start-page: 217
  year: 2022
  publication-title: Nature
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 300
  start-page: 78
  year: 2017
  publication-title: Solid State Ionics
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 120
  start-page: 6820
  year: 2020
  publication-title: Chem. Rev.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 798
  start-page: 741
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 318
  start-page: 102
  year: 2018
  publication-title: Solid State Ionics
– volume: 122
  start-page: 552
  year: 2014
  publication-title: J. Ceram. Soc. Jpn.
– volume: 27
  start-page: 189
  year: 2015
  publication-title: Chem. Mater.
– volume: 5
  start-page: 105
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 425
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 33
  start-page: 56
  year: 2020
  publication-title: Mater. Today
– volume: 7
  start-page: 1053
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 647
  year: 2020
  publication-title: Batteries Supercaps
– volume: 10
  start-page: 682
  year: 2011
  publication-title: Nat. Mater.
– volume: 58
  start-page: 7673
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 876
  year: 2022
  publication-title: Matter
– volume: 59
  start-page: 530
  year: 2021
  publication-title: J. Energy Chem.
– volume: 429
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 24
  start-page: 2211
  year: 2012
  publication-title: Chem. Mater.
– volume: 83
  year: 2021
  publication-title: Nano Energy
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 330
  year: 2021
  publication-title: Sens. Actuators B
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 591
  start-page: 247
  year: 2014
  publication-title: J. Alloys Compd.
– volume: 430
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 1003
  year: 2021
  publication-title: Nat. Rev. Mater.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  start-page: 2664
  year: 2020
  publication-title: Chem. Mater.
– volume: 84
  year: 2021
  publication-title: Nano Energy
– volume: 36
  start-page: 570
  year: 2010
  publication-title: Glass Phys. Chem.
– volume: 26
  start-page: 283
  year: 2020
  publication-title: Energy Storage Mater.
– ident: e_1_2_7_9_1
  doi: 10.1016/j.matt.2022.01.011
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.chemrev.9b00268
– ident: e_1_2_7_51_1
  doi: 10.1016/0167-2738(88)90394-3
– ident: e_1_2_7_54_1
  doi: 10.2109/jcersj2.122.552
– ident: e_1_2_7_3_1
  doi: 10.1002/adfm.202101985
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jechem.2020.11.031
– ident: e_1_2_7_11_1
  doi: 10.1002/anie.202007621
– ident: e_1_2_7_29_1
  doi: 10.1016/j.cej.2020.125334
– ident: e_1_2_7_43_1
  doi: 10.1016/j.nanoen.2021.105906
– ident: e_1_2_7_31_1
  doi: 10.1016/j.nanoen.2021.105858
– ident: e_1_2_7_50_1
  doi: 10.1038/nenergy.2017.119
– ident: e_1_2_7_55_1
  doi: 10.1002/aenm.201900626
– ident: e_1_2_7_53_1
  doi: 10.1038/s41598-017-05775-2
– ident: e_1_2_7_27_1
  doi: 10.1016/j.jpowsour.2018.11.016
– ident: e_1_2_7_12_1
  doi: 10.1002/aenm.201903422
– ident: e_1_2_7_18_1
  doi: 10.1016/j.mattod.2019.09.018
– ident: e_1_2_7_7_1
  doi: 10.1038/nenergy.2016.30
– ident: e_1_2_7_4_1
  doi: 10.1002/adfm.202007198
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.202107346
– ident: e_1_2_7_26_1
  doi: 10.1016/j.jallcom.2013.12.191
– ident: e_1_2_7_42_1
  doi: 10.1016/j.elecom.2021.107058
– ident: e_1_2_7_16_1
  doi: 10.1016/j.cej.2021.132991
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.201901739
– ident: e_1_2_7_34_1
  doi: 10.1016/j.ssi.2017.07.005
– ident: e_1_2_7_1_1
  doi: 10.1038/s41586-021-04209-4
– ident: e_1_2_7_10_1
  doi: 10.1002/inf2.12248
– ident: e_1_2_7_46_1
  doi: 10.1021/acsami.9b13313
– ident: e_1_2_7_49_1
  doi: 10.1038/s41578-019-0157-5
– ident: e_1_2_7_35_1
  doi: 10.1016/j.cej.2021.130535
– ident: e_1_2_7_36_1
  doi: 10.1021/acsami.9b22968
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ensm.2020.01.006
– ident: e_1_2_7_24_1
  doi: 10.1002/aenm.202101521
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.202100921
– ident: e_1_2_7_15_1
  doi: 10.1021/acsami.5b07517
– ident: e_1_2_7_17_1
  doi: 10.1002/adfm.202105776
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jnoncrysol.2012.12.044
– ident: e_1_2_7_47_1
  doi: 10.1039/D0CC01552K
– ident: e_1_2_7_37_1
  doi: 10.1016/j.cej.2020.127149
– ident: e_1_2_7_20_1
  doi: 10.1021/cm5037524
– ident: e_1_2_7_21_1
  doi: 10.1039/C3EE43357A
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.202006577
– ident: e_1_2_7_38_1
  doi: 10.1016/j.snb.2020.129387
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.chemmater.9b04764
– ident: e_1_2_7_52_1
  doi: 10.1134/S1087659610050056
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jpowsour.2018.04.021
– ident: e_1_2_7_33_1
  doi: 10.1002/batt.201900218
– ident: e_1_2_7_8_1
  doi: 10.1038/nmat3066
– ident: e_1_2_7_44_1
  doi: 10.1002/aenm.201902123
– ident: e_1_2_7_48_1
  doi: 10.1002/aenm.202002545
– ident: e_1_2_7_2_1
  doi: 10.1038/s41578-021-00320-0
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jallcom.2019.05.303
– ident: e_1_2_7_30_1
  doi: 10.1016/j.cej.2021.132411
– ident: e_1_2_7_40_1
  doi: 10.1016/j.ssi.2016.11.029
– ident: e_1_2_7_45_1
  doi: 10.1016/j.jpowsour.2017.01.037
– ident: e_1_2_7_19_1
  doi: 10.1021/cm3011315
SSID ssj0017734
Score 2.632749
Snippet Sulfide solid electrolytes (SSEs) for all‐solid‐state Li metal batteries (ASSLMBs) are attracting increasing attention due to their ultrahigh ionic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms air stability
all‐solid‐state Li metal batteries
Bismuth base alloys
Chlorobenzene
Compatibility
Critical current density
Density functional theory
Diffusion barriers
Electrolytes
Ion currents
Li metal compatibility
Lithium batteries
Machinability
Materials science
Molten salt electrolytes
Room temperature
Solid electrolytes
Structural stability
sulfide electrolytes
Title High Air Stability and Excellent Li Metal Compatibility of Argyrodite‐Based Electrolyte Enabling Superior All‐Solid‐State Li Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202203858
https://www.proquest.com/docview/2699835671
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6hcoEDb0RoqfaAxMmtvS_bR0MTVajhQKiUm7UvowjLqVJHIpz6ExA_kV_CjNdxUiSEBCfb0ux6XzP7ze7st4S8jnMPqF6aKIfOjgSreGR8lQOQS3MrlcmcQUdx-kGdX4r3cznfO8Uf-CGGBTfUjM5eo4Jrc326Iw3VrsKT5Ix1e1tghDFgC1HRx4E_KknTsK2sEgzwSuZb1saYnd5OfntW2kHNfcDazTiTh0RvyxoCTb6crFtzYr_9RuP4P5V5RB70cJQWYfw8Jnd884Tc3yMpfEp-YCgILRYrCsC0C6XdUN04Ov7aLfo3Lb1Y0KkHEE8749IueqFlBfl-3oCFBlj78-b7W5gwIVm4d6fetJ6O8eAW_ITO1ki4vFzRoq5BcrasFw6fiIR32QcuUHDtn5HLyfjTu_Oov8khsoBPsohnGnnaXBrHVjALlfa5RgbSXIuKCymU5dxlUuiY2zixQifSSGFSm1jlYsGfk4Nm2fgXhCIHWhYrnVbKCxFbzaRJlcmdls7zjI1ItO3J0vY053jbRl0GgmZWYluXQ1uPyJtB_ioQfPxR8mg7MMpe0a9LpsBf5VKlyYiwrof_kktZnE2mw9fLf0l0SO7hewhDPCIH7WrtXwE0as0xuVucTS9mx50a_AK2KwmX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKOUAP_CMWCvgA4pQ2cWwnOXBY2F1t6W4PtJX2FmzHQRFRttrNCpYTj4B4E16FR-BJmMnftkgICakHTlEiZxJ5PJ5v7PE3hDxzIwuoXmgnAmU7nKW-o20aAZALIiOkDhONgeL0SI5P-ZuZmG2R7-1ZmJofoltwQ8uo5ms0cFyQ3t-whqokxaPkjFWbW01e5aFdf4SobfnyYAAqfs7YaHjyeuw0hQUcA-4ydPxQIW1YEriu4cyAPBspJMSMFE99Lrg0vp-EgivXN65nuPKEFlwHxjMycbkPcq-Qq1hGHOn6B287xiovCOqNbOlhSpk3a3kiXbZ_8X8v-sENuD0PkSsfN7pJfrS9U6e2fNhblXrPfP6NOPK_6r5b5EaDuGm_NpHbZMsWd8jOOR7Gu-QbZrvQfraggL2rbOE1VUVCh5-qfY2ipJOMTi3EKbSaP8usaTRPQe77NTghQO4_v3x9BZgAXqtLC-Xr0tIhnk2Dj9DjFXJKzxe0n-fQ8nieZwleEexvxNd0p5ld3iOnl9Ip98l2MS_sA0KR5i10pQpSaTl3jWJCB1JHiRKJ9UPWI047dGLTMLljQZE8rjmoWYy6jTvd9siLrv1ZzWHyx5a77UiMm7lsGTMJIbkvZOD1CKuG1F-kxP3BaNrdPfyXl56Sa-OT6SSeHBwdPiLX8XmddblLtsvFyj4GJFjqJ5XtUfLuskfrL59-YgE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRAc-K9YKOADiFNax7Gd5NDDwu6qpd0KUSrtLfgvKCLKVrtZwXLqI1R9El6FV-BJGOdvWySEhNQDpyiRPYnsGc838fgbhF6Q2AKq58qLYbI9RtPAUzaNAciFseZCRUa5QHF8KHaP2dsJn6yh7-1ZmJofovvh5iyjWq-dgZ-YdHtFGipN6k6SU1rtbTVplft2-QWCtvnO3gBm-CWlo-GHN7teU1fA0-AtIy-IpGMNMyEhmlEN8mwsHR9mLFkaMM6EDgITcSZJoImvmfS54kyF2tfCEBaA3GvoOhMkdsUiBu87wio_DOt9bOG7jDJ_0tJEErp9-Xsvu8EVtr2IkCsXN7qDfrSDU2e2fN5alGpLf_uNN_J_Gr276HaDt3G_NpB7aM0W99GtCyyMD9C5y3XB_WyGAXlXucJLLAuDh1-rXY2ixAcZHluIUnC1epZZ02iagtxPS3BBgNt_np69BkQA3erCQvmytHjoTqbBS_DRwjFKT2e4n-fQ8miaZ8ZdHdRfia_JTjM7f4iOr2RQNtB6MS3sI4QdyVtEhAxTYRkjWlKuQqFiI7mxQUR7yGs1J9ENj7srJ5InNQM1TdzcJt3c9tCrrv1JzWDyx5abrSImzUo2T6iAgDzgIvR7iFYa9RcpSX8wGnd3j_-l03N0491glBzsHe4_QTfd4zrlchOtl7OFfQowsFTPKsvD6ONVK-sv8j9gsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Air+Stability+and+Excellent+Li+Metal+Compatibility+of+Argyrodite%E2%80%90Based+Electrolyte+Enabling+Superior+All%E2%80%90Solid%E2%80%90State+Li+Metal+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Liu%2C+Hong&rft.au=Zhu%2C+Qisi&rft.au=Wang%2C+Chao&rft.au=Wang%2C+Guoxu&rft.date=2022-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202203858&rft.externalDBID=10.1002%252Fadfm.202203858&rft.externalDocID=ADFM202203858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon