Molecular‐level Designed Polymer Electrolyte for High‐Voltage Lithium–Metal Solid‐State Batteries
In solid polymer electrolytes (SPEs) based Li–metal batteries, the inhomogeneous migration of dual‐ion in the cell results in large concentration polarization and reduces interfacial stability during cycling. A special molecular‐level designed polymer electrolyte (MDPE) is proposed by embedding a sp...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 3 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In solid polymer electrolytes (SPEs) based Li–metal batteries, the inhomogeneous migration of dual‐ion in the cell results in large concentration polarization and reduces interfacial stability during cycling. A special molecular‐level designed polymer electrolyte (MDPE) is proposed by embedding a special functional group (4‐vinylbenzotrifluoride) in the polycarbonate base. In MDPE, the polymer matrix obtained by copolymerization of vinylidene carbonate and 4‐vinylbenzotrifluoride is coupled with the anion of lithium‐salt by hydrogen bonding and the “σ‐hole” effect of the CF bond. This intermolecular interaction limits the migration of the anion and increases the ionic transfer number of MDPE (tLi+ = 0.76). The mechanisms of the enhanced tLi+ of MDPE are profoundly understood by conducting first‐principles density functional theory calculation. Furthermore, MDPE has an electrochemical stability window (4.9 V) and excellent electrochemical stability with Li–metal due to the CO group and trifluoromethylbenzene (ph‐CF3) of the polymer matrix. Benefited from these merits, LiNi0.8Co0.1Mn0.1O2‐based solid‐state cells with the MDPE as both the electrolyte host and electrode binder exhibit good rate and cycling performance. This study demonstrates that polymer electrolytes designed at the molecular level can provide a broader platform for the high‐performance design needs of lithium batteries.
Molecular‐level designed polymer electrolyte with high ionic transfer number and wide electrochemical window is developed by molecular level design and used as a binder for the cathode active material of lithium‐ion batteries. The all‐solid‐state lithium metal battery with high reversible capacity and low interfacial impedance is prepared by the coating process that improved the cycle capability and energy density of the full battery. |
---|---|
AbstractList | In solid polymer electrolytes (SPEs) based Li–metal batteries, the inhomogeneous migration of dual‐ion in the cell results in large concentration polarization and reduces interfacial stability during cycling. A special molecular‐level designed polymer electrolyte (MDPE) is proposed by embedding a special functional group (4‐vinylbenzotrifluoride) in the polycarbonate base. In MDPE, the polymer matrix obtained by copolymerization of vinylidene carbonate and 4‐vinylbenzotrifluoride is coupled with the anion of lithium‐salt by hydrogen bonding and the “σ‐hole” effect of the CF bond. This intermolecular interaction limits the migration of the anion and increases the ionic transfer number of MDPE (tLi+ = 0.76). The mechanisms of the enhanced tLi+ of MDPE are profoundly understood by conducting first‐principles density functional theory calculation. Furthermore, MDPE has an electrochemical stability window (4.9 V) and excellent electrochemical stability with Li–metal due to the CO group and trifluoromethylbenzene (ph‐CF3) of the polymer matrix. Benefited from these merits, LiNi0.8Co0.1Mn0.1O2‐based solid‐state cells with the MDPE as both the electrolyte host and electrode binder exhibit good rate and cycling performance. This study demonstrates that polymer electrolytes designed at the molecular level can provide a broader platform for the high‐performance design needs of lithium batteries. In solid polymer electrolytes (SPEs) based Li–metal batteries, the inhomogeneous migration of dual‐ion in the cell results in large concentration polarization and reduces interfacial stability during cycling. A special molecular‐level designed polymer electrolyte (MDPE) is proposed by embedding a special functional group (4‐vinylbenzotrifluoride) in the polycarbonate base. In MDPE, the polymer matrix obtained by copolymerization of vinylidene carbonate and 4‐vinylbenzotrifluoride is coupled with the anion of lithium‐salt by hydrogen bonding and the “σ‐hole” effect of the CF bond. This intermolecular interaction limits the migration of the anion and increases the ionic transfer number of MDPE ( t Li + = 0.76). The mechanisms of the enhanced t Li + of MDPE are profoundly understood by conducting first‐principles density functional theory calculation. Furthermore, MDPE has an electrochemical stability window (4.9 V) and excellent electrochemical stability with Li–metal due to the CO group and trifluoromethylbenzene (ph‐CF 3 ) of the polymer matrix. Benefited from these merits, LiNi 0.8 Co 0.1 Mn 0.1 O 2 ‐based solid‐state cells with the MDPE as both the electrolyte host and electrode binder exhibit good rate and cycling performance. This study demonstrates that polymer electrolytes designed at the molecular level can provide a broader platform for the high‐performance design needs of lithium batteries. In solid polymer electrolytes (SPEs) based Li–metal batteries, the inhomogeneous migration of dual‐ion in the cell results in large concentration polarization and reduces interfacial stability during cycling. A special molecular‐level designed polymer electrolyte (MDPE) is proposed by embedding a special functional group (4‐vinylbenzotrifluoride) in the polycarbonate base. In MDPE, the polymer matrix obtained by copolymerization of vinylidene carbonate and 4‐vinylbenzotrifluoride is coupled with the anion of lithium‐salt by hydrogen bonding and the “σ‐hole” effect of the CF bond. This intermolecular interaction limits the migration of the anion and increases the ionic transfer number of MDPE (tLi+ = 0.76). The mechanisms of the enhanced tLi+ of MDPE are profoundly understood by conducting first‐principles density functional theory calculation. Furthermore, MDPE has an electrochemical stability window (4.9 V) and excellent electrochemical stability with Li–metal due to the CO group and trifluoromethylbenzene (ph‐CF3) of the polymer matrix. Benefited from these merits, LiNi0.8Co0.1Mn0.1O2‐based solid‐state cells with the MDPE as both the electrolyte host and electrode binder exhibit good rate and cycling performance. This study demonstrates that polymer electrolytes designed at the molecular level can provide a broader platform for the high‐performance design needs of lithium batteries. Molecular‐level designed polymer electrolyte with high ionic transfer number and wide electrochemical window is developed by molecular level design and used as a binder for the cathode active material of lithium‐ion batteries. The all‐solid‐state lithium metal battery with high reversible capacity and low interfacial impedance is prepared by the coating process that improved the cycle capability and energy density of the full battery. |
Author | Liang, Yuhao Chen, Jiaxin Gao, Lei Wang, Chao Li, Dabing Fan, Li‐Zhen Zhao, Xiaoxue Huang, Weiwei Liu, Hong |
Author_xml | – sequence: 1 givenname: Chao surname: Wang fullname: Wang, Chao organization: University of Science and Technology Beijing – sequence: 2 givenname: Hong surname: Liu fullname: Liu, Hong organization: University of Science and Technology Beijing – sequence: 3 givenname: Yuhao surname: Liang fullname: Liang, Yuhao organization: University of Science and Technology Beijing – sequence: 4 givenname: Dabing surname: Li fullname: Li, Dabing organization: University of Science and Technology Beijing – sequence: 5 givenname: Xiaoxue surname: Zhao fullname: Zhao, Xiaoxue organization: University of Science and Technology Beijing – sequence: 6 givenname: Jiaxin surname: Chen fullname: Chen, Jiaxin organization: University of Science and Technology Beijing – sequence: 7 givenname: Weiwei surname: Huang fullname: Huang, Weiwei organization: University of Science and Technology Beijing – sequence: 8 givenname: Lei surname: Gao fullname: Gao, Lei organization: University of Science and Technology Beijing – sequence: 9 givenname: Li‐Zhen orcidid: 0000-0003-2270-4458 surname: Fan fullname: Fan, Li‐Zhen email: fanlizhen@ustb.edu.cn organization: University of Science and Technology Beijing |
BookMark | eNqFkE1Lw0AQhhepYFu9eg54Tt2PJpscaz-s0KJQFW9hk0zaLZts3WyV3voTBP9hf4lbKhUE8TQzzPvMy7wt1Kh0BQhdEtwhGNNrkRdlh2JKcRzR6AQ1SUhCn2EaNY49eTlDrbpeYkw4Z90mklOtIFsrYXbbDwVvoLwB1HJeQe49aLUpwXhDp7DGDRa8QhtvLOcLp37Wyoo5eBNpF3Jd7rafU7BCeTOtZO72MysccCOsBSOhPkenhVA1XHzXNnoaDR_7Y39yf3vX7038jBEe-YynIXAMeRzkJGcZpGnEoxincZh3ARMcA2FZQEHEHIJCBGHBGYYuTRlLIxGxNro63F0Z_bqG2iZLvTaVs0woD0NGwoDGTtU5qDKj69pAkayMLIXZJAQn-ziTfZzJMU4HdH8BmXQPSl1ZI6T6G4sP2LtUsPnHJOkNRtMf9gv7dJGI |
CitedBy_id | crossref_primary_10_1021_acs_macromol_4c00132 crossref_primary_10_1002_smll_202411062 crossref_primary_10_1002_smll_202409680 crossref_primary_10_1016_j_jcis_2024_03_058 crossref_primary_10_1002_batt_202200502 crossref_primary_10_1002_ange_202400960 crossref_primary_10_1002_smll_202302818 crossref_primary_10_1002_adma_202500079 crossref_primary_10_1002_ange_202317856 crossref_primary_10_1016_j_cej_2024_151780 crossref_primary_10_1039_D3PY01311A crossref_primary_10_1360_SSC_2023_0047 crossref_primary_10_1002_adfm_202311848 crossref_primary_10_1021_acsami_2c20884 crossref_primary_10_1039_D4CC06443G crossref_primary_10_1007_s11426_024_2399_2 crossref_primary_10_1039_D3QM00759F crossref_primary_10_1002_adfm_202303668 crossref_primary_10_1002_idm2_12108 crossref_primary_10_1039_D4SC04454A crossref_primary_10_1002_aenm_202300414 crossref_primary_10_1016_j_cej_2024_149781 crossref_primary_10_1016_j_etran_2023_100264 crossref_primary_10_1002_cssc_202400840 crossref_primary_10_1002_inf2_70012 crossref_primary_10_1002_ange_202412280 crossref_primary_10_1002_wene_544 crossref_primary_10_1002_smtd_202300228 crossref_primary_10_1039_D3QM00662J crossref_primary_10_1002_inf2_12606 crossref_primary_10_1002_smll_202309160 crossref_primary_10_1002_anie_202317856 crossref_primary_10_1016_j_ensm_2025_104077 crossref_primary_10_1002_adfm_202303574 crossref_primary_10_1039_D4EE02208D crossref_primary_10_1021_acs_jpclett_3c03072 crossref_primary_10_1002_adfm_202415464 crossref_primary_10_1039_D3QM00736G crossref_primary_10_1002_anie_202400960 crossref_primary_10_1016_j_jcis_2025_01_198 crossref_primary_10_20517_energymater_2023_130 crossref_primary_10_1021_acsnano_4c11205 crossref_primary_10_1002_anie_202412280 crossref_primary_10_1007_s11426_023_1559_9 crossref_primary_10_1002_adfm_202310084 crossref_primary_10_1002_adfm_202502613 crossref_primary_10_1039_D3EE01173A crossref_primary_10_3390_gels10090563 |
Cites_doi | 10.1002/adfm.201805301 10.1002/adfm.201909392 10.1002/cssc.202100061 10.1039/C6TA00828C 10.1016/j.progpolymsci.2020.101220 10.1002/jctb.5010030205 10.1002/adma.202202143 10.1021/acsami.8b02240 10.1016/j.nanoen.2019.104309 10.1002/advs.201903088 10.1016/j.ensm.2020.10.006 10.1021/jacs.2c02389 10.1021/acsami.1c19554 10.1021/acsenergylett.6b00216 10.1021/acsenergylett.6b00609 10.1002/aenm.201501008 10.1021/acs.chemmater.0c02398 10.1016/j.electacta.2013.09.138 10.1038/s41565-022-01148-7 10.1021/acsenergylett.7b00792 10.1016/j.nanoen.2022.107105 10.1039/C7EE03365F 10.1016/j.cej.2022.136436 10.1038/35104644 10.1021/acsami.1c11489 10.1002/adfm.202006289 10.1039/C6CS00491A 10.1016/j.ensm.2021.04.020 10.1038/s41563-019-0305-8 10.1021/acsenergylett.8b02483 10.1038/s41586-021-03772-0 10.1021/acsenergylett.1c02756 10.1016/j.joule.2021.03.024 10.1016/j.joule.2019.07.025 10.1021/jacs.2c02260 10.1016/j.jpowsour.2013.08.051 10.1039/c0ee00699h 10.1038/s41560-020-0575-z 10.1126/science.aai8625 10.1002/adfm.202106680 10.1016/0263-7855(96)00018-5 10.1002/aenm.202002387 10.1002/jcc.22885 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202209828 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202209828 ADFM202209828 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: SQ2022YFB3800005 – fundername: National Natural Science Foundation of China funderid: U21A2080 – fundername: Beijing Natural Science Foundation funderid: Z200011 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3178-37b6e70ed95d1d3cebb87890b96d4e0109e13c52ea97e5fa56f730e42b33b8a83 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 06:07:32 EDT 2025 Tue Jul 01 00:30:36 EDT 2025 Thu Apr 24 23:09:41 EDT 2025 Wed Jan 22 16:18:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3178-37b6e70ed95d1d3cebb87890b96d4e0109e13c52ea97e5fa56f730e42b33b8a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2270-4458 |
PQID | 2766316529 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2766316529 crossref_primary_10_1002_adfm_202209828 crossref_citationtrail_10_1002_adfm_202209828 wiley_primary_10_1002_adfm_202209828_ADFM202209828 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 5 2019; 4 2017; 2 2019; 3 2015; 5 2017; 46 1953; 3 2019; 18 2020; 103 2020; 32 1996; 14 2011; 4 2012; 33 2017; 358 2021; 14 2022; 144 2016; 4 2020; 7 2021; 13 2020; 5 2016; 1 2021; 34 2021; 11 2021; 597 2020; 30 2022; 7 2021; 39 2022; 34 2022; 14 2013; 114 2019; 29 2022; 96 2020; 67 2022; 32 2018; 11 2018; 10 2022; 445 2022; 17 2014; 247 2001; 414 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 1 start-page: 678 year: 2016 publication-title: ACS Energy Lett. – volume: 3 start-page: 71 year: 1953 publication-title: J. Appl. Chem. – volume: 144 start-page: 7583 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 384 year: 2019 publication-title: Nat. Mater. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 797 year: 2017 publication-title: Chem. Soc. Rev. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 134 year: 2017 publication-title: ACS Energy Lett. – volume: 67 year: 2020 publication-title: Nano Energy – volume: 39 start-page: 186 year: 2021 publication-title: Energy Storage Mater. – volume: 597 start-page: 57 year: 2021 publication-title: Nature – volume: 247 start-page: 1 year: 2014 publication-title: J. Power Sources – volume: 32 start-page: 7796 year: 2020 publication-title: Chem. Mater. – volume: 34 start-page: 282 year: 2021 publication-title: Energy Storage Mater. – volume: 7 start-page: 1092 year: 2022 publication-title: ACS Energy Lett. – volume: 2 start-page: 2563 year: 2017 publication-title: ACS Energy Lett. – volume: 11 start-page: 1197 year: 2018 publication-title: Energy Environ. Sci. – volume: 144 start-page: 9806 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 861 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 start-page: 580 year: 2012 publication-title: J. Comput. Chem. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 103 year: 2020 publication-title: Prog. Polym. Sci. – volume: 14 start-page: 2067 year: 2021 publication-title: ChemSusChem – volume: 5 start-page: 1119 year: 2021 publication-title: Joule – volume: 445 year: 2022 publication-title: Chem. Eng. J. – volume: 96 year: 2022 publication-title: Nano Energy – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 358 start-page: 206 year: 2017 publication-title: Science – volume: 4 start-page: 2682 year: 2011 publication-title: Energy Environ. Sci. – volume: 14 start-page: 33 year: 1996 publication-title: J. Mol. Graphics – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 5 start-page: 299 year: 2020 publication-title: Nat. Energy – volume: 4 start-page: 5191 year: 2016 publication-title: J. Mater. Chem. A – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 4 start-page: 644 year: 2019 publication-title: ACS Energy Lett. – volume: 17 start-page: 768 year: 2022 publication-title: Nat. Nanotechnol. – volume: 114 start-page: 21 year: 2013 publication-title: Electrochim. Acta – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 2761 year: 2019 publication-title: Joule – ident: e_1_2_7_8_1 doi: 10.1002/adfm.201805301 – ident: e_1_2_7_26_1 doi: 10.1002/adfm.201909392 – ident: e_1_2_7_10_1 doi: 10.1002/cssc.202100061 – ident: e_1_2_7_42_1 doi: 10.1039/C6TA00828C – ident: e_1_2_7_17_1 doi: 10.1016/j.progpolymsci.2020.101220 – ident: e_1_2_7_34_1 doi: 10.1002/jctb.5010030205 – ident: e_1_2_7_19_1 doi: 10.1002/adma.202202143 – ident: e_1_2_7_24_1 doi: 10.1021/acsami.8b02240 – ident: e_1_2_7_43_1 doi: 10.1016/j.nanoen.2019.104309 – ident: e_1_2_7_12_1 doi: 10.1002/advs.201903088 – ident: e_1_2_7_14_1 doi: 10.1016/j.ensm.2020.10.006 – ident: e_1_2_7_16_1 doi: 10.1021/jacs.2c02389 – ident: e_1_2_7_28_1 doi: 10.1021/acsami.1c19554 – ident: e_1_2_7_18_1 doi: 10.1021/acsenergylett.6b00216 – ident: e_1_2_7_5_1 doi: 10.1021/acsenergylett.6b00609 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.201501008 – ident: e_1_2_7_44_1 doi: 10.1021/acs.chemmater.0c02398 – ident: e_1_2_7_36_1 doi: 10.1016/j.electacta.2013.09.138 – ident: e_1_2_7_3_1 doi: 10.1038/s41565-022-01148-7 – ident: e_1_2_7_15_1 doi: 10.1021/acsenergylett.7b00792 – ident: e_1_2_7_31_1 doi: 10.1016/j.nanoen.2022.107105 – ident: e_1_2_7_22_1 doi: 10.1039/C7EE03365F – ident: e_1_2_7_13_1 doi: 10.1016/j.cej.2022.136436 – ident: e_1_2_7_1_1 doi: 10.1038/35104644 – ident: e_1_2_7_40_1 doi: 10.1021/acsami.1c11489 – ident: e_1_2_7_6_1 doi: 10.1002/adfm.202006289 – ident: e_1_2_7_7_1 doi: 10.1002/adfm.201909392 – ident: e_1_2_7_25_1 doi: 10.1039/C6CS00491A – ident: e_1_2_7_21_1 doi: 10.1016/j.ensm.2021.04.020 – ident: e_1_2_7_38_1 doi: 10.1038/s41563-019-0305-8 – ident: e_1_2_7_39_1 doi: 10.1021/acsenergylett.8b02483 – ident: e_1_2_7_2_1 doi: 10.1038/s41586-021-03772-0 – ident: e_1_2_7_30_1 doi: 10.1021/acsenergylett.1c02756 – ident: e_1_2_7_37_1 doi: 10.1016/j.joule.2021.03.024 – ident: e_1_2_7_20_1 doi: 10.1016/j.joule.2019.07.025 – ident: e_1_2_7_23_1 doi: 10.1021/jacs.2c02260 – ident: e_1_2_7_27_1 doi: 10.1016/j.jpowsour.2013.08.051 – ident: e_1_2_7_41_1 doi: 10.1039/c0ee00699h – ident: e_1_2_7_4_1 doi: 10.1038/s41560-020-0575-z – ident: e_1_2_7_35_1 doi: 10.1126/science.aai8625 – ident: e_1_2_7_9_1 doi: 10.1002/adfm.202106680 – ident: e_1_2_7_33_1 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_2_7_11_1 doi: 10.1002/aenm.202002387 – ident: e_1_2_7_32_1 doi: 10.1002/jcc.22885 |
SSID | ssj0017734 |
Score | 2.6313925 |
Snippet | In solid polymer electrolytes (SPEs) based Li–metal batteries, the inhomogeneous migration of dual‐ion in the cell results in large concentration polarization... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anions Copolymerization Cycles Density functional theory Electrode polarization Electrolytes Electrolytic cells Functional groups Hydrogen bonding Interface stability Lithium Lithium batteries Materials science Molten salt electrolytes Polymers Solid electrolytes solid polymer electrolytes solid‐state lithium metal batteries Vinylidene |
Title | Molecular‐level Designed Polymer Electrolyte for High‐Voltage Lithium–Metal Solid‐State Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202209828 https://www.proquest.com/docview/2766316529 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQXODAa1lRXvIBaU-Bxo4d51hRKoQIQsuCeov8mGgrQosgPcCJn4DEP-SXYMdNKEgICY5RbCvxeMbf2DPfILRrHR3GdJQHiikIIk5NIITRgVDUOmK6TbRwicLpKT-6iI77rD-Vxe_5IZoDN6cZlb12Ci7V3f4baag0ucskJ6SdWK_BGmEXsOVQ0d-GPyqMY3-tzEMX4BX2a9bGNtl_3_39rvQGNacBa7Xj9JaQrL_VB5pc7Y1LtacfPtA4_uRnltHiBI7ijl8_K2gGhqtoYYqk8BcapHUF3ZfHp8LFGOFuFfYBBp-NivtruMWHvphOcV8CtigYu-gR2_pyVJTWXuGTQfl_ML5-eXxOwYJ9fD4qBsa-r5Au9hSf1mNfQxe9w38HR8GkQEOgLewQ1jgpDnEbTMJMaKgGpYRLrFUJNxG4SzcIqWYEZBIDyyXjuTUoEBFFqRJS0N9odjgawjrCXHIJxORJnkOkFRUyl8pR00hFZBTRFgpqAWV6wl7uimgUmeddJpmbwqyZwhb607S_8bwdn7bcquWdTfT3LiOxRWIhZyRpIVIJ7otRsk63lzZPG9_ptInmXS17f76zhWbL2zFsW8RTqh001-mmJ-c71ep-BXF5_xY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_FcsFPABxCntxk4c58Ch6na1pZsKQYv2FvwzERHpLupmhZZTHwGJJ-FVeIQ-Se38tUVCSEg9cEziWIk9Y38znvkG4IU1dMJQB5mnQoVewJnxhDDaE4pZQ0z3qRYuUTjZ56PD4M0knKzAzzYXpuaH6BxuTjOq9dopuHNIb56zhkqTuVRySvuxNRuauMo9XH61Vtv89e7ATvFLSoc7B9sjryks4Gm7XQqrVIpj1EcTh8Y3TKNSwiWEqpibAN1hEfpMhxRlHGGYyZBnVhEwoIoxJaRgtt9rcN2VEXd0_YN3HWOVH0X1QTb3XUiZP2l5Ivt08_L3Xt4Hz8HtRYhc7XHDO_CrHZ06tOXzxqJUG_rbb8SR_9Xw3YXbDeImW7WK3IMVnN6HWxd4GB9AnrRFgk9PvhcujIoMqsgWNOTtrFge4THZqesFFcsSiQX6xAXI2NYfZkVpl2QyzstP-eLo9ORHgtaeIe9nRW7s8wrMk5rFNMf5Qzi8kn9dg9XpbIqPgHDJJVKTxVmGgVZMyEwqx74jFZVBwHrgtRKR6oag3dUJKdKaWpqmbsrSbsp68Kpr_6WmJvljy_VWwNJmiZqnNLJg0-chjXtAK0n5Sy_p1mCYdFeP_-Wl53BjdJCM0_Hu_t4TuGnvs9qdtQ6r5fECn1qAV6pnlUoR-HjVQngGd-JbiA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48I_YUsAHEKe0iZ04yYFDRbpqabeqgKK9Bf-MRdR0t-pmhZZTHwGJF-FVeIU-CXb-2iIhJKQeOCaZWIk9Y39jz3wD8MI6OlGkQuPJSKIXcqa9JNHKSySzjpjyqUpcovBoj28dhG_H0XgJfnS5MA0_RL_h5iyjnq-dgR9rs35OGiq0cZnklPqp9RrasModXHyxTtvs9XZmR_glpcPND2-2vLaugKfsaplYm5IcYx91GulAM4VSJi4fVKZch-jOijBgKqIo0hgjIyJurB1gSCVjMhEJs-1eg-sh91NXLCJ71xNWBXHcnGPzwEWUBeOOJtKn65e_9_IyeI5tLyLkeokb3oGfXec0kS2Ha_NKrqmvv_FG_k-9dxdut3ibbDQGcg-WcHIfbl1gYXwAxagrEXx2-q10QVQkq-NaUJP9abk4whOy2VQLKhcVEgvziQuPsdIfp2VlJ2SyW1Sfi_nR2en3EVpvhryfloW2z2soTxoO0wJnD-HgSv71ESxPphN8DIQLLpBqkxqDoZIsEUZIx70jJBVhyAbgdQqRq5ae3VUJKfOGWJrmbsjyfsgG8KqXP26ISf4oudrpV95OULOcxhZqBjyi6QBorSh_aSXfyIaj_mrlX156Djf2s2G-u7238wRu2tus2ctaheXqZI5PLbqr5LPaoAh8umod_AX3wVo3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular%E2%80%90level+Designed+Polymer+Electrolyte+for+High%E2%80%90Voltage+Lithium%E2%80%93Metal+Solid%E2%80%90State+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Chao&rft.au=Liu%2C+Hong&rft.au=Liang%2C+Yuhao&rft.au=Li%2C+Dabing&rft.date=2023-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=3&rft_id=info:doi/10.1002%2Fadfm.202209828&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |