Molecular‐level Designed Polymer Electrolyte for High‐Voltage Lithium–Metal Solid‐State Batteries

In solid polymer electrolytes (SPEs) based Li–metal batteries, the inhomogeneous migration of dual‐ion in the cell results in large concentration polarization and reduces interfacial stability during cycling. A special molecular‐level designed polymer electrolyte (MDPE) is proposed by embedding a sp...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 3
Main Authors Wang, Chao, Liu, Hong, Liang, Yuhao, Li, Dabing, Zhao, Xiaoxue, Chen, Jiaxin, Huang, Weiwei, Gao, Lei, Fan, Li‐Zhen
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In solid polymer electrolytes (SPEs) based Li–metal batteries, the inhomogeneous migration of dual‐ion in the cell results in large concentration polarization and reduces interfacial stability during cycling. A special molecular‐level designed polymer electrolyte (MDPE) is proposed by embedding a special functional group (4‐vinylbenzotrifluoride) in the polycarbonate base. In MDPE, the polymer matrix obtained by copolymerization of vinylidene carbonate and 4‐vinylbenzotrifluoride is coupled with the anion of lithium‐salt by hydrogen bonding and the “σ‐hole” effect of the CF bond. This intermolecular interaction limits the migration of the anion and increases the ionic transfer number of MDPE (tLi+ = 0.76). The mechanisms of the enhanced tLi+ of MDPE are profoundly understood by conducting first‐principles density functional theory calculation. Furthermore, MDPE has an electrochemical stability window (4.9 V) and excellent electrochemical stability with Li–metal due to the CO group and trifluoromethylbenzene (ph‐CF3) of the polymer matrix. Benefited from these merits, LiNi0.8Co0.1Mn0.1O2‐based solid‐state cells with the MDPE as both the electrolyte host and electrode binder exhibit good rate and cycling performance. This study demonstrates that polymer electrolytes designed at the molecular level can provide a broader platform for the high‐performance design needs of lithium batteries. Molecular‐level designed polymer electrolyte with high ionic transfer number and wide electrochemical window is developed by molecular level design and used as a binder for the cathode active material of lithium‐ion batteries. The all‐solid‐state lithium metal battery with high reversible capacity and low interfacial impedance is prepared by the coating process that improved the cycle capability and energy density of the full battery.
AbstractList In solid polymer electrolytes (SPEs) based Li–metal batteries, the inhomogeneous migration of dual‐ion in the cell results in large concentration polarization and reduces interfacial stability during cycling. A special molecular‐level designed polymer electrolyte (MDPE) is proposed by embedding a special functional group (4‐vinylbenzotrifluoride) in the polycarbonate base. In MDPE, the polymer matrix obtained by copolymerization of vinylidene carbonate and 4‐vinylbenzotrifluoride is coupled with the anion of lithium‐salt by hydrogen bonding and the “σ‐hole” effect of the CF bond. This intermolecular interaction limits the migration of the anion and increases the ionic transfer number of MDPE (tLi+ = 0.76). The mechanisms of the enhanced tLi+ of MDPE are profoundly understood by conducting first‐principles density functional theory calculation. Furthermore, MDPE has an electrochemical stability window (4.9 V) and excellent electrochemical stability with Li–metal due to the CO group and trifluoromethylbenzene (ph‐CF3) of the polymer matrix. Benefited from these merits, LiNi0.8Co0.1Mn0.1O2‐based solid‐state cells with the MDPE as both the electrolyte host and electrode binder exhibit good rate and cycling performance. This study demonstrates that polymer electrolytes designed at the molecular level can provide a broader platform for the high‐performance design needs of lithium batteries.
In solid polymer electrolytes (SPEs) based Li–metal batteries, the inhomogeneous migration of dual‐ion in the cell results in large concentration polarization and reduces interfacial stability during cycling. A special molecular‐level designed polymer electrolyte (MDPE) is proposed by embedding a special functional group (4‐vinylbenzotrifluoride) in the polycarbonate base. In MDPE, the polymer matrix obtained by copolymerization of vinylidene carbonate and 4‐vinylbenzotrifluoride is coupled with the anion of lithium‐salt by hydrogen bonding and the “σ‐hole” effect of the CF bond. This intermolecular interaction limits the migration of the anion and increases the ionic transfer number of MDPE ( t Li +  = 0.76). The mechanisms of the enhanced t Li + of MDPE are profoundly understood by conducting first‐principles density functional theory calculation. Furthermore, MDPE has an electrochemical stability window (4.9 V) and excellent electrochemical stability with Li–metal due to the CO group and trifluoromethylbenzene (ph‐CF 3 ) of the polymer matrix. Benefited from these merits, LiNi 0.8 Co 0.1 Mn 0.1 O 2 ‐based solid‐state cells with the MDPE as both the electrolyte host and electrode binder exhibit good rate and cycling performance. This study demonstrates that polymer electrolytes designed at the molecular level can provide a broader platform for the high‐performance design needs of lithium batteries.
In solid polymer electrolytes (SPEs) based Li–metal batteries, the inhomogeneous migration of dual‐ion in the cell results in large concentration polarization and reduces interfacial stability during cycling. A special molecular‐level designed polymer electrolyte (MDPE) is proposed by embedding a special functional group (4‐vinylbenzotrifluoride) in the polycarbonate base. In MDPE, the polymer matrix obtained by copolymerization of vinylidene carbonate and 4‐vinylbenzotrifluoride is coupled with the anion of lithium‐salt by hydrogen bonding and the “σ‐hole” effect of the CF bond. This intermolecular interaction limits the migration of the anion and increases the ionic transfer number of MDPE (tLi+ = 0.76). The mechanisms of the enhanced tLi+ of MDPE are profoundly understood by conducting first‐principles density functional theory calculation. Furthermore, MDPE has an electrochemical stability window (4.9 V) and excellent electrochemical stability with Li–metal due to the CO group and trifluoromethylbenzene (ph‐CF3) of the polymer matrix. Benefited from these merits, LiNi0.8Co0.1Mn0.1O2‐based solid‐state cells with the MDPE as both the electrolyte host and electrode binder exhibit good rate and cycling performance. This study demonstrates that polymer electrolytes designed at the molecular level can provide a broader platform for the high‐performance design needs of lithium batteries. Molecular‐level designed polymer electrolyte with high ionic transfer number and wide electrochemical window is developed by molecular level design and used as a binder for the cathode active material of lithium‐ion batteries. The all‐solid‐state lithium metal battery with high reversible capacity and low interfacial impedance is prepared by the coating process that improved the cycle capability and energy density of the full battery.
Author Liang, Yuhao
Chen, Jiaxin
Gao, Lei
Wang, Chao
Li, Dabing
Fan, Li‐Zhen
Zhao, Xiaoxue
Huang, Weiwei
Liu, Hong
Author_xml – sequence: 1
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: University of Science and Technology Beijing
– sequence: 2
  givenname: Hong
  surname: Liu
  fullname: Liu, Hong
  organization: University of Science and Technology Beijing
– sequence: 3
  givenname: Yuhao
  surname: Liang
  fullname: Liang, Yuhao
  organization: University of Science and Technology Beijing
– sequence: 4
  givenname: Dabing
  surname: Li
  fullname: Li, Dabing
  organization: University of Science and Technology Beijing
– sequence: 5
  givenname: Xiaoxue
  surname: Zhao
  fullname: Zhao, Xiaoxue
  organization: University of Science and Technology Beijing
– sequence: 6
  givenname: Jiaxin
  surname: Chen
  fullname: Chen, Jiaxin
  organization: University of Science and Technology Beijing
– sequence: 7
  givenname: Weiwei
  surname: Huang
  fullname: Huang, Weiwei
  organization: University of Science and Technology Beijing
– sequence: 8
  givenname: Lei
  surname: Gao
  fullname: Gao, Lei
  organization: University of Science and Technology Beijing
– sequence: 9
  givenname: Li‐Zhen
  orcidid: 0000-0003-2270-4458
  surname: Fan
  fullname: Fan, Li‐Zhen
  email: fanlizhen@ustb.edu.cn
  organization: University of Science and Technology Beijing
BookMark eNqFkE1Lw0AQhhepYFu9eg54Tt2PJpscaz-s0KJQFW9hk0zaLZts3WyV3voTBP9hf4lbKhUE8TQzzPvMy7wt1Kh0BQhdEtwhGNNrkRdlh2JKcRzR6AQ1SUhCn2EaNY49eTlDrbpeYkw4Z90mklOtIFsrYXbbDwVvoLwB1HJeQe49aLUpwXhDp7DGDRa8QhtvLOcLp37Wyoo5eBNpF3Jd7rafU7BCeTOtZO72MysccCOsBSOhPkenhVA1XHzXNnoaDR_7Y39yf3vX7038jBEe-YynIXAMeRzkJGcZpGnEoxincZh3ARMcA2FZQEHEHIJCBGHBGYYuTRlLIxGxNro63F0Z_bqG2iZLvTaVs0woD0NGwoDGTtU5qDKj69pAkayMLIXZJAQn-ziTfZzJMU4HdH8BmXQPSl1ZI6T6G4sP2LtUsPnHJOkNRtMf9gv7dJGI
CitedBy_id crossref_primary_10_1021_acs_macromol_4c00132
crossref_primary_10_1002_smll_202411062
crossref_primary_10_1002_smll_202409680
crossref_primary_10_1016_j_jcis_2024_03_058
crossref_primary_10_1002_batt_202200502
crossref_primary_10_1002_ange_202400960
crossref_primary_10_1002_smll_202302818
crossref_primary_10_1002_adma_202500079
crossref_primary_10_1002_ange_202317856
crossref_primary_10_1016_j_cej_2024_151780
crossref_primary_10_1039_D3PY01311A
crossref_primary_10_1360_SSC_2023_0047
crossref_primary_10_1002_adfm_202311848
crossref_primary_10_1021_acsami_2c20884
crossref_primary_10_1039_D4CC06443G
crossref_primary_10_1007_s11426_024_2399_2
crossref_primary_10_1039_D3QM00759F
crossref_primary_10_1002_adfm_202303668
crossref_primary_10_1002_idm2_12108
crossref_primary_10_1039_D4SC04454A
crossref_primary_10_1002_aenm_202300414
crossref_primary_10_1016_j_cej_2024_149781
crossref_primary_10_1016_j_etran_2023_100264
crossref_primary_10_1002_cssc_202400840
crossref_primary_10_1002_inf2_70012
crossref_primary_10_1002_ange_202412280
crossref_primary_10_1002_wene_544
crossref_primary_10_1002_smtd_202300228
crossref_primary_10_1039_D3QM00662J
crossref_primary_10_1002_inf2_12606
crossref_primary_10_1002_smll_202309160
crossref_primary_10_1002_anie_202317856
crossref_primary_10_1016_j_ensm_2025_104077
crossref_primary_10_1002_adfm_202303574
crossref_primary_10_1039_D4EE02208D
crossref_primary_10_1021_acs_jpclett_3c03072
crossref_primary_10_1002_adfm_202415464
crossref_primary_10_1039_D3QM00736G
crossref_primary_10_1002_anie_202400960
crossref_primary_10_1016_j_jcis_2025_01_198
crossref_primary_10_20517_energymater_2023_130
crossref_primary_10_1021_acsnano_4c11205
crossref_primary_10_1002_anie_202412280
crossref_primary_10_1007_s11426_023_1559_9
crossref_primary_10_1002_adfm_202310084
crossref_primary_10_1002_adfm_202502613
crossref_primary_10_1039_D3EE01173A
crossref_primary_10_3390_gels10090563
Cites_doi 10.1002/adfm.201805301
10.1002/adfm.201909392
10.1002/cssc.202100061
10.1039/C6TA00828C
10.1016/j.progpolymsci.2020.101220
10.1002/jctb.5010030205
10.1002/adma.202202143
10.1021/acsami.8b02240
10.1016/j.nanoen.2019.104309
10.1002/advs.201903088
10.1016/j.ensm.2020.10.006
10.1021/jacs.2c02389
10.1021/acsami.1c19554
10.1021/acsenergylett.6b00216
10.1021/acsenergylett.6b00609
10.1002/aenm.201501008
10.1021/acs.chemmater.0c02398
10.1016/j.electacta.2013.09.138
10.1038/s41565-022-01148-7
10.1021/acsenergylett.7b00792
10.1016/j.nanoen.2022.107105
10.1039/C7EE03365F
10.1016/j.cej.2022.136436
10.1038/35104644
10.1021/acsami.1c11489
10.1002/adfm.202006289
10.1039/C6CS00491A
10.1016/j.ensm.2021.04.020
10.1038/s41563-019-0305-8
10.1021/acsenergylett.8b02483
10.1038/s41586-021-03772-0
10.1021/acsenergylett.1c02756
10.1016/j.joule.2021.03.024
10.1016/j.joule.2019.07.025
10.1021/jacs.2c02260
10.1016/j.jpowsour.2013.08.051
10.1039/c0ee00699h
10.1038/s41560-020-0575-z
10.1126/science.aai8625
10.1002/adfm.202106680
10.1016/0263-7855(96)00018-5
10.1002/aenm.202002387
10.1002/jcc.22885
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202209828
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202209828
ADFM202209828
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: SQ2022YFB3800005
– fundername: National Natural Science Foundation of China
  funderid: U21A2080
– fundername: Beijing Natural Science Foundation
  funderid: Z200011
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3178-37b6e70ed95d1d3cebb87890b96d4e0109e13c52ea97e5fa56f730e42b33b8a83
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 06:07:32 EDT 2025
Tue Jul 01 00:30:36 EDT 2025
Thu Apr 24 23:09:41 EDT 2025
Wed Jan 22 16:18:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3178-37b6e70ed95d1d3cebb87890b96d4e0109e13c52ea97e5fa56f730e42b33b8a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2270-4458
PQID 2766316529
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2766316529
crossref_primary_10_1002_adfm_202209828
crossref_citationtrail_10_1002_adfm_202209828
wiley_primary_10_1002_adfm_202209828_ADFM202209828
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 5
2019; 4
2017; 2
2019; 3
2015; 5
2017; 46
1953; 3
2019; 18
2020; 103
2020; 32
1996; 14
2011; 4
2012; 33
2017; 358
2021; 14
2022; 144
2016; 4
2020; 7
2021; 13
2020; 5
2016; 1
2021; 34
2021; 11
2021; 597
2020; 30
2022; 7
2021; 39
2022; 34
2022; 14
2013; 114
2019; 29
2022; 96
2020; 67
2022; 32
2018; 11
2018; 10
2022; 445
2022; 17
2014; 247
2001; 414
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 1
  start-page: 678
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 71
  year: 1953
  publication-title: J. Appl. Chem.
– volume: 144
  start-page: 7583
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 384
  year: 2019
  publication-title: Nat. Mater.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 797
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 134
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 67
  year: 2020
  publication-title: Nano Energy
– volume: 39
  start-page: 186
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 597
  start-page: 57
  year: 2021
  publication-title: Nature
– volume: 247
  start-page: 1
  year: 2014
  publication-title: J. Power Sources
– volume: 32
  start-page: 7796
  year: 2020
  publication-title: Chem. Mater.
– volume: 34
  start-page: 282
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 7
  start-page: 1092
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 2563
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 1197
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 144
  start-page: 9806
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 861
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  start-page: 580
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 103
  year: 2020
  publication-title: Prog. Polym. Sci.
– volume: 14
  start-page: 2067
  year: 2021
  publication-title: ChemSusChem
– volume: 5
  start-page: 1119
  year: 2021
  publication-title: Joule
– volume: 445
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 96
  year: 2022
  publication-title: Nano Energy
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 358
  start-page: 206
  year: 2017
  publication-title: Science
– volume: 4
  start-page: 2682
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 33
  year: 1996
  publication-title: J. Mol. Graphics
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 299
  year: 2020
  publication-title: Nat. Energy
– volume: 4
  start-page: 5191
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 4
  start-page: 644
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 17
  start-page: 768
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 114
  start-page: 21
  year: 2013
  publication-title: Electrochim. Acta
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 2761
  year: 2019
  publication-title: Joule
– ident: e_1_2_7_8_1
  doi: 10.1002/adfm.201805301
– ident: e_1_2_7_26_1
  doi: 10.1002/adfm.201909392
– ident: e_1_2_7_10_1
  doi: 10.1002/cssc.202100061
– ident: e_1_2_7_42_1
  doi: 10.1039/C6TA00828C
– ident: e_1_2_7_17_1
  doi: 10.1016/j.progpolymsci.2020.101220
– ident: e_1_2_7_34_1
  doi: 10.1002/jctb.5010030205
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.202202143
– ident: e_1_2_7_24_1
  doi: 10.1021/acsami.8b02240
– ident: e_1_2_7_43_1
  doi: 10.1016/j.nanoen.2019.104309
– ident: e_1_2_7_12_1
  doi: 10.1002/advs.201903088
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ensm.2020.10.006
– ident: e_1_2_7_16_1
  doi: 10.1021/jacs.2c02389
– ident: e_1_2_7_28_1
  doi: 10.1021/acsami.1c19554
– ident: e_1_2_7_18_1
  doi: 10.1021/acsenergylett.6b00216
– ident: e_1_2_7_5_1
  doi: 10.1021/acsenergylett.6b00609
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.201501008
– ident: e_1_2_7_44_1
  doi: 10.1021/acs.chemmater.0c02398
– ident: e_1_2_7_36_1
  doi: 10.1016/j.electacta.2013.09.138
– ident: e_1_2_7_3_1
  doi: 10.1038/s41565-022-01148-7
– ident: e_1_2_7_15_1
  doi: 10.1021/acsenergylett.7b00792
– ident: e_1_2_7_31_1
  doi: 10.1016/j.nanoen.2022.107105
– ident: e_1_2_7_22_1
  doi: 10.1039/C7EE03365F
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cej.2022.136436
– ident: e_1_2_7_1_1
  doi: 10.1038/35104644
– ident: e_1_2_7_40_1
  doi: 10.1021/acsami.1c11489
– ident: e_1_2_7_6_1
  doi: 10.1002/adfm.202006289
– ident: e_1_2_7_7_1
  doi: 10.1002/adfm.201909392
– ident: e_1_2_7_25_1
  doi: 10.1039/C6CS00491A
– ident: e_1_2_7_21_1
  doi: 10.1016/j.ensm.2021.04.020
– ident: e_1_2_7_38_1
  doi: 10.1038/s41563-019-0305-8
– ident: e_1_2_7_39_1
  doi: 10.1021/acsenergylett.8b02483
– ident: e_1_2_7_2_1
  doi: 10.1038/s41586-021-03772-0
– ident: e_1_2_7_30_1
  doi: 10.1021/acsenergylett.1c02756
– ident: e_1_2_7_37_1
  doi: 10.1016/j.joule.2021.03.024
– ident: e_1_2_7_20_1
  doi: 10.1016/j.joule.2019.07.025
– ident: e_1_2_7_23_1
  doi: 10.1021/jacs.2c02260
– ident: e_1_2_7_27_1
  doi: 10.1016/j.jpowsour.2013.08.051
– ident: e_1_2_7_41_1
  doi: 10.1039/c0ee00699h
– ident: e_1_2_7_4_1
  doi: 10.1038/s41560-020-0575-z
– ident: e_1_2_7_35_1
  doi: 10.1126/science.aai8625
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.202106680
– ident: e_1_2_7_33_1
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_2_7_11_1
  doi: 10.1002/aenm.202002387
– ident: e_1_2_7_32_1
  doi: 10.1002/jcc.22885
SSID ssj0017734
Score 2.6313925
Snippet In solid polymer electrolytes (SPEs) based Li–metal batteries, the inhomogeneous migration of dual‐ion in the cell results in large concentration polarization...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anions
Copolymerization
Cycles
Density functional theory
Electrode polarization
Electrolytes
Electrolytic cells
Functional groups
Hydrogen bonding
Interface stability
Lithium
Lithium batteries
Materials science
Molten salt electrolytes
Polymers
Solid electrolytes
solid polymer electrolytes
solid‐state lithium metal batteries
Vinylidene
Title Molecular‐level Designed Polymer Electrolyte for High‐Voltage Lithium–Metal Solid‐State Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202209828
https://www.proquest.com/docview/2766316529
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQXODAa1lRXvIBaU-Bxo4d51hRKoQIQsuCeov8mGgrQosgPcCJn4DEP-SXYMdNKEgICY5RbCvxeMbf2DPfILRrHR3GdJQHiikIIk5NIITRgVDUOmK6TbRwicLpKT-6iI77rD-Vxe_5IZoDN6cZlb12Ci7V3f4baag0ucskJ6SdWK_BGmEXsOVQ0d-GPyqMY3-tzEMX4BX2a9bGNtl_3_39rvQGNacBa7Xj9JaQrL_VB5pc7Y1LtacfPtA4_uRnltHiBI7ijl8_K2gGhqtoYYqk8BcapHUF3ZfHp8LFGOFuFfYBBp-NivtruMWHvphOcV8CtigYu-gR2_pyVJTWXuGTQfl_ML5-eXxOwYJ9fD4qBsa-r5Au9hSf1mNfQxe9w38HR8GkQEOgLewQ1jgpDnEbTMJMaKgGpYRLrFUJNxG4SzcIqWYEZBIDyyXjuTUoEBFFqRJS0N9odjgawjrCXHIJxORJnkOkFRUyl8pR00hFZBTRFgpqAWV6wl7uimgUmeddJpmbwqyZwhb607S_8bwdn7bcquWdTfT3LiOxRWIhZyRpIVIJ7otRsk63lzZPG9_ptInmXS17f76zhWbL2zFsW8RTqh001-mmJ-c71ep-BXF5_xY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_FcsFPABxCntxk4c58Ch6na1pZsKQYv2FvwzERHpLupmhZZTHwGJJ-FVeIQ-Se38tUVCSEg9cEziWIk9Y38znvkG4IU1dMJQB5mnQoVewJnxhDDaE4pZQ0z3qRYuUTjZ56PD4M0knKzAzzYXpuaH6BxuTjOq9dopuHNIb56zhkqTuVRySvuxNRuauMo9XH61Vtv89e7ATvFLSoc7B9sjryks4Gm7XQqrVIpj1EcTh8Y3TKNSwiWEqpibAN1hEfpMhxRlHGGYyZBnVhEwoIoxJaRgtt9rcN2VEXd0_YN3HWOVH0X1QTb3XUiZP2l5Ivt08_L3Xt4Hz8HtRYhc7XHDO_CrHZ06tOXzxqJUG_rbb8SR_9Xw3YXbDeImW7WK3IMVnN6HWxd4GB9AnrRFgk9PvhcujIoMqsgWNOTtrFge4THZqesFFcsSiQX6xAXI2NYfZkVpl2QyzstP-eLo9ORHgtaeIe9nRW7s8wrMk5rFNMf5Qzi8kn9dg9XpbIqPgHDJJVKTxVmGgVZMyEwqx74jFZVBwHrgtRKR6oag3dUJKdKaWpqmbsrSbsp68Kpr_6WmJvljy_VWwNJmiZqnNLJg0-chjXtAK0n5Sy_p1mCYdFeP_-Wl53BjdJCM0_Hu_t4TuGnvs9qdtQ6r5fECn1qAV6pnlUoR-HjVQngGd-JbiA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48I_YUsAHEKe0iZ04yYFDRbpqabeqgKK9Bf-MRdR0t-pmhZZTHwGJF-FVeIU-CXb-2iIhJKQeOCaZWIk9Y39jz3wD8MI6OlGkQuPJSKIXcqa9JNHKSySzjpjyqUpcovBoj28dhG_H0XgJfnS5MA0_RL_h5iyjnq-dgR9rs35OGiq0cZnklPqp9RrasModXHyxTtvs9XZmR_glpcPND2-2vLaugKfsaplYm5IcYx91GulAM4VSJi4fVKZch-jOijBgKqIo0hgjIyJurB1gSCVjMhEJs-1eg-sh91NXLCJ71xNWBXHcnGPzwEWUBeOOJtKn65e_9_IyeI5tLyLkeokb3oGfXec0kS2Ha_NKrqmvv_FG_k-9dxdut3ibbDQGcg-WcHIfbl1gYXwAxagrEXx2-q10QVQkq-NaUJP9abk4whOy2VQLKhcVEgvziQuPsdIfp2VlJ2SyW1Sfi_nR2en3EVpvhryfloW2z2soTxoO0wJnD-HgSv71ESxPphN8DIQLLpBqkxqDoZIsEUZIx70jJBVhyAbgdQqRq5ae3VUJKfOGWJrmbsjyfsgG8KqXP26ISf4oudrpV95OULOcxhZqBjyi6QBorSh_aSXfyIaj_mrlX156Djf2s2G-u7238wRu2tus2ctaheXqZI5PLbqr5LPaoAh8umod_AX3wVo3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular%E2%80%90level+Designed+Polymer+Electrolyte+for+High%E2%80%90Voltage+Lithium%E2%80%93Metal+Solid%E2%80%90State+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Chao&rft.au=Liu%2C+Hong&rft.au=Liang%2C+Yuhao&rft.au=Li%2C+Dabing&rft.date=2023-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=3&rft_id=info:doi/10.1002%2Fadfm.202209828&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon