Interfacial Molecule Control Enables Efficient Perovskite Light‐Emitting Diodes
Perovskite light‐emitting diodes (PeLEDs) are emerging as promising candidates for new‐generation high‐definition displays with excellent color purity and low power consumption. Nevertheless, the massive defects at grain boundaries and severe interfacial exciton quenching are critical challenges tha...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 52 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Perovskite light‐emitting diodes (PeLEDs) are emerging as promising candidates for new‐generation high‐definition displays with excellent color purity and low power consumption. Nevertheless, the massive defects at grain boundaries and severe interfacial exciton quenching are critical challenges that hinder the commercialization process of PeLEDs. Herein, a novel and feasible strategy of interfacial molecule control is demonstrated by employing a bifunctional material with abundant phosphine oxide groups to induce strong interaction and exciton management between the perovskite and electron‐transport layers (ETLs). This modification layer is capable of passivating the surface crystal defects and blocking the interfacial exciton transfer simultaneously, contributing to minimized energy loss at the interface. Consequently, the modified PeLEDs with green (at 513 nm), blue (at 488 nm), and red (at 666 nm) emissions achieve maximum external quantum efficiencies of 18.8%, 12.6%, and 12.3%, respectively. This study reveals the importance of interfacial molecule control for reducing the energy loss in PeLEDs.
A rational interface engineering is demonstrated by regulating the molecular characteristics between perovskite and electron‐transport layers for suppressing the trap‐mediated nonradiative recombination and undesirable exciton quenching, yielding green, blue, and red light‐emitting diodes with external quantum efficiencies of 18.8%, 12.6%, and 12.3%, respectively. |
---|---|
AbstractList | Perovskite light‐emitting diodes (PeLEDs) are emerging as promising candidates for new‐generation high‐definition displays with excellent color purity and low power consumption. Nevertheless, the massive defects at grain boundaries and severe interfacial exciton quenching are critical challenges that hinder the commercialization process of PeLEDs. Herein, a novel and feasible strategy of interfacial molecule control is demonstrated by employing a bifunctional material with abundant phosphine oxide groups to induce strong interaction and exciton management between the perovskite and electron‐transport layers (ETLs). This modification layer is capable of passivating the surface crystal defects and blocking the interfacial exciton transfer simultaneously, contributing to minimized energy loss at the interface. Consequently, the modified PeLEDs with green (at 513 nm), blue (at 488 nm), and red (at 666 nm) emissions achieve maximum external quantum efficiencies of 18.8%, 12.6%, and 12.3%, respectively. This study reveals the importance of interfacial molecule control for reducing the energy loss in PeLEDs.
A rational interface engineering is demonstrated by regulating the molecular characteristics between perovskite and electron‐transport layers for suppressing the trap‐mediated nonradiative recombination and undesirable exciton quenching, yielding green, blue, and red light‐emitting diodes with external quantum efficiencies of 18.8%, 12.6%, and 12.3%, respectively. Perovskite light‐emitting diodes (PeLEDs) are emerging as promising candidates for new‐generation high‐definition displays with excellent color purity and low power consumption. Nevertheless, the massive defects at grain boundaries and severe interfacial exciton quenching are critical challenges that hinder the commercialization process of PeLEDs. Herein, a novel and feasible strategy of interfacial molecule control is demonstrated by employing a bifunctional material with abundant phosphine oxide groups to induce strong interaction and exciton management between the perovskite and electron‐transport layers (ETLs). This modification layer is capable of passivating the surface crystal defects and blocking the interfacial exciton transfer simultaneously, contributing to minimized energy loss at the interface. Consequently, the modified PeLEDs with green (at 513 nm), blue (at 488 nm), and red (at 666 nm) emissions achieve maximum external quantum efficiencies of 18.8%, 12.6%, and 12.3%, respectively. This study reveals the importance of interfacial molecule control for reducing the energy loss in PeLEDs. Perovskite light‐emitting diodes (PeLEDs) are emerging as promising candidates for new‐generation high‐definition displays with excellent color purity and low power consumption. Nevertheless, the massive defects at grain boundaries and severe interfacial exciton quenching are critical challenges that hinder the commercialization process of PeLEDs. Herein, a novel and feasible strategy of interfacial molecule control is demonstrated by employing a bifunctional material with abundant phosphine oxide groups to induce strong interaction and exciton management between the perovskite and electron‐transport layers (ETLs). This modification layer is capable of passivating the surface crystal defects and blocking the interfacial exciton transfer simultaneously, contributing to minimized energy loss at the interface. Consequently, the modified PeLEDs with green (at 513 nm), blue (at 488 nm), and red (at 666 nm) emissions achieve maximum external quantum efficiencies of 18.8%, 12.6%, and 12.3%, respectively. This study reveals the importance of interfacial molecule control for reducing the energy loss in PeLEDs. |
Author | Ye, Yong‐Chun Shen, Yang Feng, Shi‐Chi Li, Yan‐Qing Wang, Jiang‐Ying Zhou, Wei Tang, Jian‐Xin |
Author_xml | – sequence: 1 givenname: Yong‐Chun surname: Ye fullname: Ye, Yong‐Chun organization: China Jiliang University – sequence: 2 givenname: Yang surname: Shen fullname: Shen, Yang email: yangshen@suda.edu.cn organization: Soochow University – sequence: 3 givenname: Wei surname: Zhou fullname: Zhou, Wei organization: Soochow University – sequence: 4 givenname: Shi‐Chi surname: Feng fullname: Feng, Shi‐Chi organization: Soochow University – sequence: 5 givenname: Jiang‐Ying surname: Wang fullname: Wang, Jiang‐Ying organization: China Jiliang University – sequence: 6 givenname: Yan‐Qing surname: Li fullname: Li, Yan‐Qing email: yqli@phy.ecnu.edu.cn organization: East China Normal University – sequence: 7 givenname: Jian‐Xin orcidid: 0000-0002-6813-0448 surname: Tang fullname: Tang, Jian‐Xin email: jxtang@suda.edu.cn organization: Soochow University |
BookMark | eNqFkM1OAjEURhuDiYBuXU_iGuzPQKdLAoOSQNREE3dNp3OLxWGKbdGw8xF8Rp9ECAYTE-Pq3sV3vpt7WqhRuxoQOie4SzCml6o0yy7FlGGekewINUmf9DsM06xx2MnjCWqFsMCYcM7SJrqb1BG8UdqqKpm5CvS6gmTo6uhdleS1KioISW6M1RbqmNyCd6_h2UZIpnb-FD_fP_KljdHW82RkXQnhFB0bVQU4-55t9DDO74fXnenN1WQ4mHY0IzzrMCJYKbDug-ppxU2vwDrVinKhFbACMqJFQaGnSVkKAKNKzLkQRBvNKWeatdHFvnfl3csaQpQLt_b19qSkAqcZSVmabVPpPqW9C8GDkdpGFe3uQWUrSbDcyZM7efIgb4t1f2Erb5fKb_4GxB54sxVs_knLwWg8-2G_AHudhqU |
CitedBy_id | crossref_primary_10_1002_adma_202410535 crossref_primary_10_1002_ange_202419746 crossref_primary_10_1039_D4TC02975E crossref_primary_10_1002_anie_202419746 crossref_primary_10_1016_j_cej_2024_150435 crossref_primary_10_1021_acsami_3c19394 crossref_primary_10_1126_sciadv_adp8473 crossref_primary_10_1002_ange_202406140 crossref_primary_10_1021_acsaelm_4c00294 crossref_primary_10_1002_anie_202406140 crossref_primary_10_1021_acs_nanolett_4c02910 crossref_primary_10_1002_adom_202302664 crossref_primary_10_1002_adom_202302961 crossref_primary_10_1002_adom_202402290 crossref_primary_10_3788_CJL241067 crossref_primary_10_1002_adfm_202412894 crossref_primary_10_1002_adom_202402996 crossref_primary_10_1016_j_nanoen_2024_109339 crossref_primary_10_1063_5_0239423 crossref_primary_10_1021_acsami_4c05803 crossref_primary_10_1021_acsnano_4c11367 crossref_primary_10_1002_adom_202402597 |
Cites_doi | 10.1038/s41586-022-05486-3 10.1002/adma.201405217 10.1038/s41586-021-03997-z 10.1021/acsami.9b10186 10.1038/nature25147 10.1021/acsenergylett.0c01036 10.1038/nphoton.2016.185 10.1021/acsami.8b07438 10.1038/nnano.2014.149 10.1002/advs.202102213 10.1002/adom.202101602 10.1002/adma.201901517 10.1002/adma.202204460 10.1039/D0NR07677E 10.1002/adfm.202105813 10.1126/science.aaa2725 10.1002/adma.202007169 10.1038/ncomms15640 10.1002/adfm.202301425 10.1021/acsnano.0c01908 10.1038/s41467-018-02978-7 10.1038/s41566-019-0545-9 10.1021/acs.jpclett.1c03518 10.1002/adfm.201402707 10.1002/adma.201800251 10.1021/acs.nanolett.2c00276 10.1038/s41566-019-0505-4 10.1002/adma.201803515 10.1021/acsnano.0c03765 10.1002/adma.202005570 10.1126/sciadv.abg8458 10.1021/nl5048779 10.1002/adfm.202006736 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202307818 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202307818 ADFM202307818 |
Genre | article |
GrantInformation_xml | – fundername: Jiangsu Provincial Department of Science and Technology funderid: BZ2022054 – fundername: National Natural Science Foundation of China funderid: 62320106004; 62075061; 62274117 – fundername: Science and Technology Innovation Plan Of Shanghai Science and Technology Commission funderid: 22520760600 – fundername: Natural Science Foundation of Zhejiang Province funderid: LGG22F010001 – fundername: Fundo para o Desenvolvimento das Ciências e da Tecnologia funderid: 0018/2022/A1 – fundername: National Key Research and Development Program of China funderid: 2022YFE0108900 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3178-3193d90c6ea5ca7f5b0c4ca279cae3be81c9b2e5c1dd9eefad077991cfc7273c3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 08:32:53 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 Tue Jul 01 00:30:49 EDT 2025 Wed Jan 22 16:16:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3178-3193d90c6ea5ca7f5b0c4ca279cae3be81c9b2e5c1dd9eefad077991cfc7273c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6813-0448 |
PQID | 2904814348 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2904814348 crossref_citationtrail_10_1002_adfm_202307818 crossref_primary_10_1002_adfm_202307818 wiley_primary_10_1002_adfm_202307818_ADFM202307818 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2015; 15 2021; 7 2017; 8 2023; 33 2015; 347 2019; 31 2019; 13 2016; 10 2020; 14 2020; 12 2022; 22 2022; 612 2021; 13 2018; 9 2020; 5 2015; 25 2015; 27 2021; 31 2021; 12 2021; 33 2021; 599 2018; 553 2022; 34 2018; 30 2022; 10 2014; 9 2018; 10 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 Guo M.‐L. (e_1_2_8_14_1) 2022; 10 Dong Q. (e_1_2_8_3_1) 2015; 347 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 347 year: 2015 publication-title: Science – volume: 14 start-page: 6107 year: 2020 publication-title: ACS Nano – volume: 14 start-page: 70 year: 2020 publication-title: Nat. Photonics – volume: 347 start-page: 519 year: 2015 publication-title: Science – volume: 599 start-page: 594 year: 2021 publication-title: Nature – volume: 12 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 15 start-page: 3692 year: 2015 publication-title: Nano Lett. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 553 start-page: 189 year: 2018 publication-title: Nature – volume: 27 start-page: 2311 year: 2015 publication-title: Adv. Mater. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 13 start-page: 760 year: 2019 publication-title: Nat. Photonics – volume: 5 start-page: 2191 year: 2020 publication-title: ACS Energy Lett. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 22 start-page: 2490 year: 2022 publication-title: Nano Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 9 start-page: 687 year: 2014 publication-title: Nat. Nanotechnol. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 2998 year: 2022 publication-title: J. Mater. Chem. – volume: 9 start-page: 570 year: 2018 publication-title: Nat. Commun. – volume: 12 start-page: 1721 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 699 year: 2016 publication-title: Nat. Photonics – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 340 year: 2021 publication-title: Nanoscale – volume: 612 start-page: 679 year: 2022 publication-title: Nature – volume: 25 start-page: 361 year: 2015 publication-title: Adv. Funct. Mater. – volume: 8 year: 2021 publication-title: Adv. Sci. – ident: e_1_2_8_7_1 doi: 10.1038/s41586-022-05486-3 – ident: e_1_2_8_12_1 doi: 10.1002/adma.201405217 – ident: e_1_2_8_5_1 doi: 10.1038/s41586-021-03997-z – volume: 10 start-page: 2998 year: 2022 ident: e_1_2_8_14_1 publication-title: J. Mater. Chem. – ident: e_1_2_8_30_1 doi: 10.1021/acsami.9b10186 – ident: e_1_2_8_33_1 doi: 10.1038/nature25147 – ident: e_1_2_8_15_1 doi: 10.1021/acsenergylett.0c01036 – ident: e_1_2_8_9_1 doi: 10.1038/nphoton.2016.185 – ident: e_1_2_8_23_1 doi: 10.1021/acsami.8b07438 – ident: e_1_2_8_1_1 doi: 10.1038/nnano.2014.149 – ident: e_1_2_8_25_1 doi: 10.1002/advs.202102213 – ident: e_1_2_8_31_1 doi: 10.1002/adom.202101602 – ident: e_1_2_8_16_1 doi: 10.1002/adma.201901517 – ident: e_1_2_8_8_1 doi: 10.1002/adma.202204460 – ident: e_1_2_8_29_1 doi: 10.1039/D0NR07677E – ident: e_1_2_8_18_1 doi: 10.1002/adfm.202105813 – ident: e_1_2_8_2_1 doi: 10.1126/science.aaa2725 – volume: 347 year: 2015 ident: e_1_2_8_3_1 publication-title: Science – ident: e_1_2_8_27_1 doi: 10.1002/adma.202007169 – ident: e_1_2_8_22_1 doi: 10.1038/ncomms15640 – ident: e_1_2_8_6_1 doi: 10.1002/adfm.202301425 – ident: e_1_2_8_13_1 doi: 10.1021/acsnano.0c01908 – ident: e_1_2_8_28_1 doi: 10.1038/s41467-018-02978-7 – ident: e_1_2_8_32_1 doi: 10.1038/s41566-019-0545-9 – ident: e_1_2_8_34_1 doi: 10.1021/acs.jpclett.1c03518 – ident: e_1_2_8_35_1 doi: 10.1002/adfm.201402707 – ident: e_1_2_8_20_1 doi: 10.1002/adma.201800251 – ident: e_1_2_8_24_1 doi: 10.1021/acs.nanolett.2c00276 – ident: e_1_2_8_26_1 doi: 10.1038/s41566-019-0505-4 – ident: e_1_2_8_19_1 doi: 10.1002/adma.201803515 – ident: e_1_2_8_10_1 doi: 10.1021/acsnano.0c03765 – ident: e_1_2_8_11_1 doi: 10.1002/adma.202005570 – ident: e_1_2_8_17_1 doi: 10.1126/sciadv.abg8458 – ident: e_1_2_8_4_1 doi: 10.1021/nl5048779 – ident: e_1_2_8_21_1 doi: 10.1002/adfm.202006736 |
SSID | ssj0017734 |
Score | 2.5580938 |
Snippet | Perovskite light‐emitting diodes (PeLEDs) are emerging as promising candidates for new‐generation high‐definition displays with excellent color purity and low... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Commercialization Crystal defects defect passivation exciton quenching Excitons Grain boundaries interfacial engineering Light emitting diodes Materials science perovskite light‐emitting diodes Perovskites Phosphine oxide Power consumption Quantum efficiency triplet energy level |
Title | Interfacial Molecule Control Enables Efficient Perovskite Light‐Emitting Diodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202307818 https://www.proquest.com/docview/2904814348 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWDgjSiUygMSU9o8nXqs2lQVahCvSt0ix3GkCmhR0zIw8RP4jfwSfHaStkgICbZEsa3EZ_u-u9x9h9CF6SVUEGobKUukgdLiqpA7BZuHENeijBDIRg6vSX_oXo280UoWv-aHKB1usDPUeQ0bnMVZc0kaypIUMskhkFkqHXkIQ8AWoKK7kj_K8n39W5lYEOBljQrWRtNurndf10pLqLkKWJXG6e0iVryrDjR5bCzmcYO_faNx_M_H7KGdHI7itl4_-2hDTA7Q9gpJ4SG6VU7DlIFvHYe6mq7AHR3ijgOVe5XhQFFRSA2Gb8Rs-pqBUxgPwPL_fP8InscqvBp3x9NEZEdo2AseOn0jL8RgcAkvwH9KnYSanAjmceanXmxylzPbp5wJJxYti9PYFh63Eil5IcVu-r4EnjzlAI-4c4wqk-lEnCAslWFMaQp2XEsuBYcKm3Aqx0ik0pBYsoqMQhARz1nKoVjGU6T5le0Ipioqp6qKLsv2L5qf48eWtUKuUb5Ps8imwJfjOq58bCsB_TJK1O72wvLu9C-dztAWXOuYmBqqzGcLcS6RzTyuo812Nxzc19Uq_gILzvIQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagDMDAP6JQwAMSU0p-nXqs2lQFmgpQK3WLEseRKqBFTcvAxCPwjDwJPjtJWySEBGMS24p9du67y913CF3oTkw5oaaWhLEwUGpMFnKnYPMQYhs0JASykf0uafftm4GTRxNCLozihygcbnAy5PcaDjg4pK_mrKFhnEAqOUQyC62zitagrLe0qh4KBinDddWPZWJAiJcxyHkbdfNquf-yXpqDzUXIKnVOaxtF-duqUJPH6mwaVdnbNyLHf01nB21liBTX1RbaRSt8tIc2F3gK99G99BsmIbjXsa8K6nLcUFHu2JPpVyn2JBuFUGL4jk_Gryn4hXEHjP_P9w_veSgjrHFzOI55eoD6La_XaGtZLQaNCYQBLlRqxVRnhIcOC93EiXRms9B0KQu5FfGawWhkcocZsRA-F5LXXVdgT5YwQEjMOkSl0XjEjxAW-jCiNAFTriZ2g0W5SRgVY8RCbwg4WUZaLomAZUTlUC_jKVAUy2YASxUUS1VGl0X7F0XR8WPLSi7YIDuqaWBSoMyxLVs8NqWEfhklqDdbfnF1_JdO52i93fM7Qee6e3uCNuC-CpGpoNJ0MuOnAuhMozO5lb8AjpL0lw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oJkYPvo0o6h5MPAF9btkjoTSoQNBIwq3ZbrcJUYHw8ODJn-Bv9Je4s0sLmBgTPbbdbdqd2c4305lvELoy3JgKQq1iwmLpoFS4auROwechxDEpIwSqkVtt0ug6tz23t1TFr_khsoAb7Az1vYYNPoqT8oI0lMUJVJJDIrM0OutowyFGBfTaf8gIpEzP0_-ViQkZXmYvpW00rPLq_FWztMCay4hVmZxgF7H0YXWmyVNpNo1K_O0bj-N_3mYP7czxKK5qBdpHa2JwgLaXWAoP0b2KGiYMguu4pdvpClzTOe64roqvJriuuCikCcMdMR6-TiAqjJvg-n--f9Rf-iq_Gvv9YSwmR6gb1B9rjeK8E0ORS3wBAVRqx9TgRDCXMy9xI4M7nFke5UzYkaiYnEaWcLkZS9ELKXfD8yTy5AkHfMTtY5QbDAfiBGFpDSNKE3DkKlIXbCoswqm8RyythgSTeVRMBRHyOU05dMt4DjXBshXCUoXZUuXRdTZ-pAk6fhxZSOUazjfqJLQoEOY4tiMvW0pAv9wlrPpBKzs6_cukS7TZ8YOwedO-O0NbcFrnxxRQbjqeiXOJcqbRhVLkL9Eo808 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+Molecule+Control+Enables+Efficient+Perovskite+Light%E2%80%90Emitting+Diodes&rft.jtitle=Advanced+functional+materials&rft.au=Yong%E2%80%90Chun+Ye&rft.au=Shen%2C+Yang&rft.au=Zhou%2C+Wei&rft.au=Shi%E2%80%90Chi+Feng&rft.date=2023-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=52&rft_id=info:doi/10.1002%2Fadfm.202307818&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |