Interfacial Molecule Control Enables Efficient Perovskite Light‐Emitting Diodes

Perovskite light‐emitting diodes (PeLEDs) are emerging as promising candidates for new‐generation high‐definition displays with excellent color purity and low power consumption. Nevertheless, the massive defects at grain boundaries and severe interfacial exciton quenching are critical challenges tha...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 52
Main Authors Ye, Yong‐Chun, Shen, Yang, Zhou, Wei, Feng, Shi‐Chi, Wang, Jiang‐Ying, Li, Yan‐Qing, Tang, Jian‐Xin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Perovskite light‐emitting diodes (PeLEDs) are emerging as promising candidates for new‐generation high‐definition displays with excellent color purity and low power consumption. Nevertheless, the massive defects at grain boundaries and severe interfacial exciton quenching are critical challenges that hinder the commercialization process of PeLEDs. Herein, a novel and feasible strategy of interfacial molecule control is demonstrated by employing a bifunctional material with abundant phosphine oxide groups to induce strong interaction and exciton management between the perovskite and electron‐transport layers (ETLs). This modification layer is capable of passivating the surface crystal defects and blocking the interfacial exciton transfer simultaneously, contributing to minimized energy loss at the interface. Consequently, the modified PeLEDs with green (at 513 nm), blue (at 488 nm), and red (at 666 nm) emissions achieve maximum external quantum efficiencies of 18.8%, 12.6%, and 12.3%, respectively. This study reveals the importance of interfacial molecule control for reducing the energy loss in PeLEDs. A rational interface engineering is demonstrated by regulating the molecular characteristics between perovskite and electron‐transport layers for suppressing the trap‐mediated nonradiative recombination and undesirable exciton quenching, yielding green, blue, and red light‐emitting diodes with external quantum efficiencies of 18.8%, 12.6%, and 12.3%, respectively.
AbstractList Perovskite light‐emitting diodes (PeLEDs) are emerging as promising candidates for new‐generation high‐definition displays with excellent color purity and low power consumption. Nevertheless, the massive defects at grain boundaries and severe interfacial exciton quenching are critical challenges that hinder the commercialization process of PeLEDs. Herein, a novel and feasible strategy of interfacial molecule control is demonstrated by employing a bifunctional material with abundant phosphine oxide groups to induce strong interaction and exciton management between the perovskite and electron‐transport layers (ETLs). This modification layer is capable of passivating the surface crystal defects and blocking the interfacial exciton transfer simultaneously, contributing to minimized energy loss at the interface. Consequently, the modified PeLEDs with green (at 513 nm), blue (at 488 nm), and red (at 666 nm) emissions achieve maximum external quantum efficiencies of 18.8%, 12.6%, and 12.3%, respectively. This study reveals the importance of interfacial molecule control for reducing the energy loss in PeLEDs. A rational interface engineering is demonstrated by regulating the molecular characteristics between perovskite and electron‐transport layers for suppressing the trap‐mediated nonradiative recombination and undesirable exciton quenching, yielding green, blue, and red light‐emitting diodes with external quantum efficiencies of 18.8%, 12.6%, and 12.3%, respectively.
Perovskite light‐emitting diodes (PeLEDs) are emerging as promising candidates for new‐generation high‐definition displays with excellent color purity and low power consumption. Nevertheless, the massive defects at grain boundaries and severe interfacial exciton quenching are critical challenges that hinder the commercialization process of PeLEDs. Herein, a novel and feasible strategy of interfacial molecule control is demonstrated by employing a bifunctional material with abundant phosphine oxide groups to induce strong interaction and exciton management between the perovskite and electron‐transport layers (ETLs). This modification layer is capable of passivating the surface crystal defects and blocking the interfacial exciton transfer simultaneously, contributing to minimized energy loss at the interface. Consequently, the modified PeLEDs with green (at 513 nm), blue (at 488 nm), and red (at 666 nm) emissions achieve maximum external quantum efficiencies of 18.8%, 12.6%, and 12.3%, respectively. This study reveals the importance of interfacial molecule control for reducing the energy loss in PeLEDs.
Perovskite light‐emitting diodes (PeLEDs) are emerging as promising candidates for new‐generation high‐definition displays with excellent color purity and low power consumption. Nevertheless, the massive defects at grain boundaries and severe interfacial exciton quenching are critical challenges that hinder the commercialization process of PeLEDs. Herein, a novel and feasible strategy of interfacial molecule control is demonstrated by employing a bifunctional material with abundant phosphine oxide groups to induce strong interaction and exciton management between the perovskite and electron‐transport layers (ETLs). This modification layer is capable of passivating the surface crystal defects and blocking the interfacial exciton transfer simultaneously, contributing to minimized energy loss at the interface. Consequently, the modified PeLEDs with green (at 513 nm), blue (at 488 nm), and red (at 666 nm) emissions achieve maximum external quantum efficiencies of 18.8%, 12.6%, and 12.3%, respectively. This study reveals the importance of interfacial molecule control for reducing the energy loss in PeLEDs.
Author Ye, Yong‐Chun
Shen, Yang
Feng, Shi‐Chi
Li, Yan‐Qing
Wang, Jiang‐Ying
Zhou, Wei
Tang, Jian‐Xin
Author_xml – sequence: 1
  givenname: Yong‐Chun
  surname: Ye
  fullname: Ye, Yong‐Chun
  organization: China Jiliang University
– sequence: 2
  givenname: Yang
  surname: Shen
  fullname: Shen, Yang
  email: yangshen@suda.edu.cn
  organization: Soochow University
– sequence: 3
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
  organization: Soochow University
– sequence: 4
  givenname: Shi‐Chi
  surname: Feng
  fullname: Feng, Shi‐Chi
  organization: Soochow University
– sequence: 5
  givenname: Jiang‐Ying
  surname: Wang
  fullname: Wang, Jiang‐Ying
  organization: China Jiliang University
– sequence: 6
  givenname: Yan‐Qing
  surname: Li
  fullname: Li, Yan‐Qing
  email: yqli@phy.ecnu.edu.cn
  organization: East China Normal University
– sequence: 7
  givenname: Jian‐Xin
  orcidid: 0000-0002-6813-0448
  surname: Tang
  fullname: Tang, Jian‐Xin
  email: jxtang@suda.edu.cn
  organization: Soochow University
BookMark eNqFkM1OAjEURhuDiYBuXU_iGuzPQKdLAoOSQNREE3dNp3OLxWGKbdGw8xF8Rp9ECAYTE-Pq3sV3vpt7WqhRuxoQOie4SzCml6o0yy7FlGGekewINUmf9DsM06xx2MnjCWqFsMCYcM7SJrqb1BG8UdqqKpm5CvS6gmTo6uhdleS1KioISW6M1RbqmNyCd6_h2UZIpnb-FD_fP_KljdHW82RkXQnhFB0bVQU4-55t9DDO74fXnenN1WQ4mHY0IzzrMCJYKbDug-ppxU2vwDrVinKhFbACMqJFQaGnSVkKAKNKzLkQRBvNKWeatdHFvnfl3csaQpQLt_b19qSkAqcZSVmabVPpPqW9C8GDkdpGFe3uQWUrSbDcyZM7efIgb4t1f2Erb5fKb_4GxB54sxVs_knLwWg8-2G_AHudhqU
CitedBy_id crossref_primary_10_1002_adma_202410535
crossref_primary_10_1002_ange_202419746
crossref_primary_10_1039_D4TC02975E
crossref_primary_10_1002_anie_202419746
crossref_primary_10_1016_j_cej_2024_150435
crossref_primary_10_1021_acsami_3c19394
crossref_primary_10_1126_sciadv_adp8473
crossref_primary_10_1002_ange_202406140
crossref_primary_10_1021_acsaelm_4c00294
crossref_primary_10_1002_anie_202406140
crossref_primary_10_1021_acs_nanolett_4c02910
crossref_primary_10_1002_adom_202302664
crossref_primary_10_1002_adom_202302961
crossref_primary_10_1002_adom_202402290
crossref_primary_10_3788_CJL241067
crossref_primary_10_1002_adfm_202412894
crossref_primary_10_1002_adom_202402996
crossref_primary_10_1016_j_nanoen_2024_109339
crossref_primary_10_1063_5_0239423
crossref_primary_10_1021_acsami_4c05803
crossref_primary_10_1021_acsnano_4c11367
crossref_primary_10_1002_adom_202402597
Cites_doi 10.1038/s41586-022-05486-3
10.1002/adma.201405217
10.1038/s41586-021-03997-z
10.1021/acsami.9b10186
10.1038/nature25147
10.1021/acsenergylett.0c01036
10.1038/nphoton.2016.185
10.1021/acsami.8b07438
10.1038/nnano.2014.149
10.1002/advs.202102213
10.1002/adom.202101602
10.1002/adma.201901517
10.1002/adma.202204460
10.1039/D0NR07677E
10.1002/adfm.202105813
10.1126/science.aaa2725
10.1002/adma.202007169
10.1038/ncomms15640
10.1002/adfm.202301425
10.1021/acsnano.0c01908
10.1038/s41467-018-02978-7
10.1038/s41566-019-0545-9
10.1021/acs.jpclett.1c03518
10.1002/adfm.201402707
10.1002/adma.201800251
10.1021/acs.nanolett.2c00276
10.1038/s41566-019-0505-4
10.1002/adma.201803515
10.1021/acsnano.0c03765
10.1002/adma.202005570
10.1126/sciadv.abg8458
10.1021/nl5048779
10.1002/adfm.202006736
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202307818
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202307818
ADFM202307818
Genre article
GrantInformation_xml – fundername: Jiangsu Provincial Department of Science and Technology
  funderid: BZ2022054
– fundername: National Natural Science Foundation of China
  funderid: 62320106004; 62075061; 62274117
– fundername: Science and Technology Innovation Plan Of Shanghai Science and Technology Commission
  funderid: 22520760600
– fundername: Natural Science Foundation of Zhejiang Province
  funderid: LGG22F010001
– fundername: Fundo para o Desenvolvimento das Ciências e da Tecnologia
  funderid: 0018/2022/A1
– fundername: National Key Research and Development Program of China
  funderid: 2022YFE0108900
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3178-3193d90c6ea5ca7f5b0c4ca279cae3be81c9b2e5c1dd9eefad077991cfc7273c3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 08:32:53 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Tue Jul 01 00:30:49 EDT 2025
Wed Jan 22 16:16:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 52
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3178-3193d90c6ea5ca7f5b0c4ca279cae3be81c9b2e5c1dd9eefad077991cfc7273c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6813-0448
PQID 2904814348
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2904814348
crossref_citationtrail_10_1002_adfm_202307818
crossref_primary_10_1002_adfm_202307818
wiley_primary_10_1002_adfm_202307818_ADFM202307818
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2015; 15
2021; 7
2017; 8
2023; 33
2015; 347
2019; 31
2019; 13
2016; 10
2020; 14
2020; 12
2022; 22
2022; 612
2021; 13
2018; 9
2020; 5
2015; 25
2015; 27
2021; 31
2021; 12
2021; 33
2021; 599
2018; 553
2022; 34
2018; 30
2022; 10
2014; 9
2018; 10
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
Guo M.‐L. (e_1_2_8_14_1) 2022; 10
Dong Q. (e_1_2_8_3_1) 2015; 347
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 347
  year: 2015
  publication-title: Science
– volume: 14
  start-page: 6107
  year: 2020
  publication-title: ACS Nano
– volume: 14
  start-page: 70
  year: 2020
  publication-title: Nat. Photonics
– volume: 347
  start-page: 519
  year: 2015
  publication-title: Science
– volume: 599
  start-page: 594
  year: 2021
  publication-title: Nature
– volume: 12
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 15
  start-page: 3692
  year: 2015
  publication-title: Nano Lett.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 553
  start-page: 189
  year: 2018
  publication-title: Nature
– volume: 27
  start-page: 2311
  year: 2015
  publication-title: Adv. Mater.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 13
  start-page: 760
  year: 2019
  publication-title: Nat. Photonics
– volume: 5
  start-page: 2191
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 22
  start-page: 2490
  year: 2022
  publication-title: Nano Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 9
  start-page: 687
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 2998
  year: 2022
  publication-title: J. Mater. Chem.
– volume: 9
  start-page: 570
  year: 2018
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1721
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 699
  year: 2016
  publication-title: Nat. Photonics
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 340
  year: 2021
  publication-title: Nanoscale
– volume: 612
  start-page: 679
  year: 2022
  publication-title: Nature
– volume: 25
  start-page: 361
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– ident: e_1_2_8_7_1
  doi: 10.1038/s41586-022-05486-3
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201405217
– ident: e_1_2_8_5_1
  doi: 10.1038/s41586-021-03997-z
– volume: 10
  start-page: 2998
  year: 2022
  ident: e_1_2_8_14_1
  publication-title: J. Mater. Chem.
– ident: e_1_2_8_30_1
  doi: 10.1021/acsami.9b10186
– ident: e_1_2_8_33_1
  doi: 10.1038/nature25147
– ident: e_1_2_8_15_1
  doi: 10.1021/acsenergylett.0c01036
– ident: e_1_2_8_9_1
  doi: 10.1038/nphoton.2016.185
– ident: e_1_2_8_23_1
  doi: 10.1021/acsami.8b07438
– ident: e_1_2_8_1_1
  doi: 10.1038/nnano.2014.149
– ident: e_1_2_8_25_1
  doi: 10.1002/advs.202102213
– ident: e_1_2_8_31_1
  doi: 10.1002/adom.202101602
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.201901517
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.202204460
– ident: e_1_2_8_29_1
  doi: 10.1039/D0NR07677E
– ident: e_1_2_8_18_1
  doi: 10.1002/adfm.202105813
– ident: e_1_2_8_2_1
  doi: 10.1126/science.aaa2725
– volume: 347
  year: 2015
  ident: e_1_2_8_3_1
  publication-title: Science
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.202007169
– ident: e_1_2_8_22_1
  doi: 10.1038/ncomms15640
– ident: e_1_2_8_6_1
  doi: 10.1002/adfm.202301425
– ident: e_1_2_8_13_1
  doi: 10.1021/acsnano.0c01908
– ident: e_1_2_8_28_1
  doi: 10.1038/s41467-018-02978-7
– ident: e_1_2_8_32_1
  doi: 10.1038/s41566-019-0545-9
– ident: e_1_2_8_34_1
  doi: 10.1021/acs.jpclett.1c03518
– ident: e_1_2_8_35_1
  doi: 10.1002/adfm.201402707
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.201800251
– ident: e_1_2_8_24_1
  doi: 10.1021/acs.nanolett.2c00276
– ident: e_1_2_8_26_1
  doi: 10.1038/s41566-019-0505-4
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.201803515
– ident: e_1_2_8_10_1
  doi: 10.1021/acsnano.0c03765
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.202005570
– ident: e_1_2_8_17_1
  doi: 10.1126/sciadv.abg8458
– ident: e_1_2_8_4_1
  doi: 10.1021/nl5048779
– ident: e_1_2_8_21_1
  doi: 10.1002/adfm.202006736
SSID ssj0017734
Score 2.5580938
Snippet Perovskite light‐emitting diodes (PeLEDs) are emerging as promising candidates for new‐generation high‐definition displays with excellent color purity and low...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Commercialization
Crystal defects
defect passivation
exciton quenching
Excitons
Grain boundaries
interfacial engineering
Light emitting diodes
Materials science
perovskite light‐emitting diodes
Perovskites
Phosphine oxide
Power consumption
Quantum efficiency
triplet energy level
Title Interfacial Molecule Control Enables Efficient Perovskite Light‐Emitting Diodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202307818
https://www.proquest.com/docview/2904814348
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWDgjSiUygMSU9o8nXqs2lQVahCvSt0ix3GkCmhR0zIw8RP4jfwSfHaStkgICbZEsa3EZ_u-u9x9h9CF6SVUEGobKUukgdLiqpA7BZuHENeijBDIRg6vSX_oXo280UoWv-aHKB1usDPUeQ0bnMVZc0kaypIUMskhkFkqHXkIQ8AWoKK7kj_K8n39W5lYEOBljQrWRtNurndf10pLqLkKWJXG6e0iVryrDjR5bCzmcYO_faNx_M_H7KGdHI7itl4_-2hDTA7Q9gpJ4SG6VU7DlIFvHYe6mq7AHR3ijgOVe5XhQFFRSA2Gb8Rs-pqBUxgPwPL_fP8InscqvBp3x9NEZEdo2AseOn0jL8RgcAkvwH9KnYSanAjmceanXmxylzPbp5wJJxYti9PYFh63Eil5IcVu-r4EnjzlAI-4c4wqk-lEnCAslWFMaQp2XEsuBYcKm3Aqx0ik0pBYsoqMQhARz1nKoVjGU6T5le0Ipioqp6qKLsv2L5qf48eWtUKuUb5Ps8imwJfjOq58bCsB_TJK1O72wvLu9C-dztAWXOuYmBqqzGcLcS6RzTyuo812Nxzc19Uq_gILzvIQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagDMDAP6JQwAMSU0p-nXqs2lQFmgpQK3WLEseRKqBFTcvAxCPwjDwJPjtJWySEBGMS24p9du67y913CF3oTkw5oaaWhLEwUGpMFnKnYPMQYhs0JASykf0uafftm4GTRxNCLozihygcbnAy5PcaDjg4pK_mrKFhnEAqOUQyC62zitagrLe0qh4KBinDddWPZWJAiJcxyHkbdfNquf-yXpqDzUXIKnVOaxtF-duqUJPH6mwaVdnbNyLHf01nB21liBTX1RbaRSt8tIc2F3gK99G99BsmIbjXsa8K6nLcUFHu2JPpVyn2JBuFUGL4jk_Gryn4hXEHjP_P9w_veSgjrHFzOI55eoD6La_XaGtZLQaNCYQBLlRqxVRnhIcOC93EiXRms9B0KQu5FfGawWhkcocZsRA-F5LXXVdgT5YwQEjMOkSl0XjEjxAW-jCiNAFTriZ2g0W5SRgVY8RCbwg4WUZaLomAZUTlUC_jKVAUy2YASxUUS1VGl0X7F0XR8WPLSi7YIDuqaWBSoMyxLVs8NqWEfhklqDdbfnF1_JdO52i93fM7Qee6e3uCNuC-CpGpoNJ0MuOnAuhMozO5lb8AjpL0lw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oJkYPvo0o6h5MPAF9btkjoTSoQNBIwq3ZbrcJUYHw8ODJn-Bv9Je4s0sLmBgTPbbdbdqd2c4305lvELoy3JgKQq1iwmLpoFS4auROwechxDEpIwSqkVtt0ug6tz23t1TFr_khsoAb7Az1vYYNPoqT8oI0lMUJVJJDIrM0OutowyFGBfTaf8gIpEzP0_-ViQkZXmYvpW00rPLq_FWztMCay4hVmZxgF7H0YXWmyVNpNo1K_O0bj-N_3mYP7czxKK5qBdpHa2JwgLaXWAoP0b2KGiYMguu4pdvpClzTOe64roqvJriuuCikCcMdMR6-TiAqjJvg-n--f9Rf-iq_Gvv9YSwmR6gb1B9rjeK8E0ORS3wBAVRqx9TgRDCXMy9xI4M7nFke5UzYkaiYnEaWcLkZS9ELKXfD8yTy5AkHfMTtY5QbDAfiBGFpDSNKE3DkKlIXbCoswqm8RyythgSTeVRMBRHyOU05dMt4DjXBshXCUoXZUuXRdTZ-pAk6fhxZSOUazjfqJLQoEOY4tiMvW0pAv9wlrPpBKzs6_cukS7TZ8YOwedO-O0NbcFrnxxRQbjqeiXOJcqbRhVLkL9Eo808
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+Molecule+Control+Enables+Efficient+Perovskite+Light%E2%80%90Emitting+Diodes&rft.jtitle=Advanced+functional+materials&rft.au=Yong%E2%80%90Chun+Ye&rft.au=Shen%2C+Yang&rft.au=Zhou%2C+Wei&rft.au=Shi%E2%80%90Chi+Feng&rft.date=2023-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=52&rft_id=info:doi/10.1002%2Fadfm.202307818&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon