Working Principles of Lithium Metal Anode in Pouch Cells

Lithium metal battery has been considered as one of the potential candidates for next‐generation energy storage systems. However, the dendrite growth issue in Li anodes results in low practical energy density, short lifespan, and poor safety performance. The strategies in suppressing Li dendrite gro...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 47
Main Authors Liu, He, Sun, Xin, Cheng, Xin‐Bing, Guo, Cong, Yu, Feng, Bao, Weizhai, Wang, Tao, Li, Jingfa, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium metal battery has been considered as one of the potential candidates for next‐generation energy storage systems. However, the dendrite growth issue in Li anodes results in low practical energy density, short lifespan, and poor safety performance. The strategies in suppressing Li dendrite growth are mostly conducted in materials‐level coin cells, while their validity in device‐level pouch cells is still under debate. It is imperative to address dendrite issues in pouch cells to realize the practical application of Li metal batteries. This review presents a comprehensive overview of the failure mechanism and regulation strategies of Li metal anodes in practical pouch cells. First, the gaps between the scientific findings in materials‐level coin cells and device‐level pouch cells are underscored. Specific attention is paid to the mechanistic understanding and quantitative discussion on the failure mechanisms of pouch‐type Li metal batteries. Subsequently, recently proposed strategies are reviewed to suppress dendrite growth in pouch cells. The state‐of‐the‐art electrochemical performance of pouch cells, especially the cell‐level energy density and lifespan, is critically concerned. The review concludes with an attempt to summarize the scientific and engineering understandings of pouch‐type Li metal anodes and propose some novel insights for the practical applications of Li metal batteries. This review presents a comprehensive overview of the gaps between the materials‐level coin cells and device‐level pouch cells, mechanistic understanding and quantitative discussion for failure mechanisms of pouch‐type Li metal anodes, and the recently proposed strategies to suppress dendrite growth in pouch cells.
AbstractList Lithium metal battery has been considered as one of the potential candidates for next‐generation energy storage systems. However, the dendrite growth issue in Li anodes results in low practical energy density, short lifespan, and poor safety performance. The strategies in suppressing Li dendrite growth are mostly conducted in materials‐level coin cells, while their validity in device‐level pouch cells is still under debate. It is imperative to address dendrite issues in pouch cells to realize the practical application of Li metal batteries. This review presents a comprehensive overview of the failure mechanism and regulation strategies of Li metal anodes in practical pouch cells. First, the gaps between the scientific findings in materials‐level coin cells and device‐level pouch cells are underscored. Specific attention is paid to the mechanistic understanding and quantitative discussion on the failure mechanisms of pouch‐type Li metal batteries. Subsequently, recently proposed strategies are reviewed to suppress dendrite growth in pouch cells. The state‐of‐the‐art electrochemical performance of pouch cells, especially the cell‐level energy density and lifespan, is critically concerned. The review concludes with an attempt to summarize the scientific and engineering understandings of pouch‐type Li metal anodes and propose some novel insights for the practical applications of Li metal batteries.
Lithium metal battery has been considered as one of the potential candidates for next‐generation energy storage systems. However, the dendrite growth issue in Li anodes results in low practical energy density, short lifespan, and poor safety performance. The strategies in suppressing Li dendrite growth are mostly conducted in materials‐level coin cells, while their validity in device‐level pouch cells is still under debate. It is imperative to address dendrite issues in pouch cells to realize the practical application of Li metal batteries. This review presents a comprehensive overview of the failure mechanism and regulation strategies of Li metal anodes in practical pouch cells. First, the gaps between the scientific findings in materials‐level coin cells and device‐level pouch cells are underscored. Specific attention is paid to the mechanistic understanding and quantitative discussion on the failure mechanisms of pouch‐type Li metal batteries. Subsequently, recently proposed strategies are reviewed to suppress dendrite growth in pouch cells. The state‐of‐the‐art electrochemical performance of pouch cells, especially the cell‐level energy density and lifespan, is critically concerned. The review concludes with an attempt to summarize the scientific and engineering understandings of pouch‐type Li metal anodes and propose some novel insights for the practical applications of Li metal batteries. This review presents a comprehensive overview of the gaps between the materials‐level coin cells and device‐level pouch cells, mechanistic understanding and quantitative discussion for failure mechanisms of pouch‐type Li metal anodes, and the recently proposed strategies to suppress dendrite growth in pouch cells.
Author Bao, Weizhai
Liu, He
Yu, Feng
Sun, Xin
Zhang, Qiang
Li, Jingfa
Cheng, Xin‐Bing
Guo, Cong
Wang, Tao
Author_xml – sequence: 1
  givenname: He
  surname: Liu
  fullname: Liu, He
  organization: Nanjing University of Information Science and Technology
– sequence: 2
  givenname: Xin
  surname: Sun
  fullname: Sun, Xin
  organization: Nanjing University of Information Science and Technology
– sequence: 3
  givenname: Xin‐Bing
  orcidid: 0000-0001-7567-1210
  surname: Cheng
  fullname: Cheng, Xin‐Bing
  email: chengxb@seu.edu.cn
  organization: Southeast University
– sequence: 4
  givenname: Cong
  surname: Guo
  fullname: Guo, Cong
  organization: Nanjing University of Information Science and Technology
– sequence: 5
  givenname: Feng
  surname: Yu
  fullname: Yu, Feng
  organization: Nanjing University of Information Science and Technology
– sequence: 6
  givenname: Weizhai
  surname: Bao
  fullname: Bao, Weizhai
  organization: Nanjing University of Information Science and Technology
– sequence: 7
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: Southeast University
– sequence: 8
  givenname: Jingfa
  surname: Li
  fullname: Li, Jingfa
  email: aplijf@nuist.edu.cn
  organization: Nanjing University of Information Science and Technology
– sequence: 9
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkM1LAzEQxYNUsNZePQc8b81nN3sspX5Aqz0oHkM2m7WpaVKTXUr_e7dUKgjizMDM4f3mwbsEPR-8AeAaoxFGiNwq4zcjgkg3HIsz0MdjzLKxYKh3uim5AMOU1qgrVmBEaR-ItxA_rH-Hy2i9tltnEgw1nNtmZdsNXJhGOTjxoTLQergMrV7BqXEuXYHzWrlkht97AF7vZi_Th2z-fP84ncwzTXEuMkKqsuSIo6KsKtY1VZRVulYFxQQxLpApi6LCOaa6zlUpNK8ZJlxwIZAgig7AzfHvNobP1qRGrkMbfWcpSc7ZmCBMaacaHVU6hpSiqeU22o2Ke4mRPAQkDwHJU0AdwH4B2jaqscE3UVn3N1YcsZ11Zv-PiZzMnhY_7BeKoHpp
CitedBy_id crossref_primary_10_1021_acsami_4c04859
crossref_primary_10_1002_smll_202401675
crossref_primary_10_1002_ange_202407064
crossref_primary_10_1016_j_jechem_2023_04_044
crossref_primary_10_1002_batt_202400544
crossref_primary_10_1093_nsr_nwaf016
crossref_primary_10_1002_ange_202303888
crossref_primary_10_3390_molecules29153624
crossref_primary_10_1021_acsami_3c12755
crossref_primary_10_34133_energymatadv_0084
crossref_primary_10_1039_D4EE03862B
crossref_primary_10_1021_acs_nanolett_3c02013
crossref_primary_10_1002_ange_202300771
crossref_primary_10_1002_aenm_202300798
crossref_primary_10_1002_anie_202217458
crossref_primary_10_1002_smll_202304786
crossref_primary_10_1021_acs_iecr_3c02202
crossref_primary_10_1039_D4EE00391H
crossref_primary_10_1002_smll_202409191
crossref_primary_10_1016_j_est_2023_107917
crossref_primary_10_1002_elt2_8
crossref_primary_10_1149_1945_7111_acb8e8
crossref_primary_10_23919_CHAIN_2024_000011
crossref_primary_10_1002_adfm_202214886
crossref_primary_10_1002_anie_202407064
crossref_primary_10_1002_adfm_202411171
crossref_primary_10_1039_D3TA02379F
crossref_primary_10_1016_j_est_2024_114620
crossref_primary_10_34133_energymatadv_0092
crossref_primary_10_1002_anie_202303888
crossref_primary_10_1002_advs_202301288
crossref_primary_10_1002_aenm_202302565
crossref_primary_10_1002_anie_202300771
crossref_primary_10_1002_aenm_202301477
crossref_primary_10_1039_D3EE04358D
crossref_primary_10_1002_cnl2_147
crossref_primary_10_1002_advs_202400466
crossref_primary_10_1002_aenm_202400397
crossref_primary_10_1002_aenm_202400035
crossref_primary_10_1002_eom2_12416
crossref_primary_10_1016_j_jmapro_2024_04_059
crossref_primary_10_1016_j_jechem_2023_10_016
crossref_primary_10_1002_adma_202307370
crossref_primary_10_1002_smll_202405453
crossref_primary_10_1016_j_est_2025_116307
crossref_primary_10_1007_s11705_022_2286_4
crossref_primary_10_1002_aenm_202302295
crossref_primary_10_1007_s12274_023_5937_y
crossref_primary_10_1002_smll_202304045
crossref_primary_10_1002_cey2_539
crossref_primary_10_1002_smll_202312132
crossref_primary_10_1002_adma_202415258
crossref_primary_10_1002_smll_202407395
crossref_primary_10_1007_s41918_024_00221_0
crossref_primary_10_1016_j_cej_2024_159047
crossref_primary_10_1177_09506608251318467
crossref_primary_10_1002_aenm_202405674
crossref_primary_10_1002_ange_202217458
crossref_primary_10_1002_adfm_202302661
crossref_primary_10_1002_adfm_202406080
crossref_primary_10_1016_j_ensm_2022_12_016
crossref_primary_10_1002_aenm_202302261
crossref_primary_10_1002_aenm_202403845
crossref_primary_10_1002_smll_202308678
crossref_primary_10_1021_acssuschemeng_3c00057
crossref_primary_10_1007_s40820_023_01120_7
crossref_primary_10_1007_s43979_023_00074_4
Cites_doi 10.1002/aenm.201903362
10.1002/adma.202100793
10.1016/j.nanoen.2021.106837
10.1021/acsaem.9b01175
10.1002/aenm.201900858
10.1002/adma.201804461
10.1021/acsami.1c17616
10.1002/sus2.37
10.1021/acs.chemrev.0c00275
10.1039/C9NR10966H
10.1002/adfm.202004189
10.1038/s41560-021-00839-0
10.1002/advs.202201147
10.1038/s41560-021-00783-z
10.1038/s41565-020-00797-w
10.1002/anie.202103303
10.1149/2.0091908jes
10.1039/C9CS00636B
10.1016/j.joule.2019.09.022
10.1002/adma.202107638
10.1007/s12598-020-01501-6
10.1021/acsenergylett.1c01395
10.1038/s41560-021-00792-y
10.1002/aenm.201501102
10.1039/D2TA02162E
10.1002/adma.202007428
10.1002/adma.201801213
10.1002/advs.202103786
10.1016/j.joule.2020.02.006
10.1016/j.electacta.2021.139249
10.1002/aenm.202002360
10.1021/acsaem.1c04001
10.1002/admi.202102283
10.1016/j.joule.2020.07.014
10.1039/D1TA02615A
10.1016/j.ensm.2022.04.026
10.1016/j.mtener.2021.100785
10.1021/acs.accounts.0c00412
10.1002/adma.201807131
10.1021/jacs.1c08606
10.1039/C9CS00838A
10.1038/nmat2460
10.1002/aenm.201801560
10.1021/acs.nanolett.1c00534
10.1038/s41467-018-06077-5
10.1007/s40820-020-00514-1
10.1002/adma.201906836
10.1016/j.ensm.2018.08.010
10.1039/D2TA00167E
10.1016/j.jechem.2022.01.019
10.1039/D0MH00067A
10.1002/smll.202105999
10.1002/anie.202017063
10.1002/anie.202115602
10.1002/aenm.202200190
10.1002/batt.202100341
10.1021/acsami.1c01849
10.1002/aenm.202200568
10.23919/IEN.2022.0003
10.1016/j.joule.2020.05.012
10.1002/adma.202004793
10.1002/anie.202114805
10.1002/aenm.201902254
10.1002/adfm.202002824
10.1002/smll.202101881
10.1039/C8EE01879K
10.1021/acsami.1c05966
10.1007/s12598-020-01432-2
10.1016/j.ensm.2022.01.037
10.1002/adma.202105329
10.1149/2.0271713jes
10.34133/2021/1205324
10.1021/acsami.1c06488
10.1021/acsenergylett.2c00232
10.1007/s12598-020-01429-x
10.1002/adma.202008619
10.1002/advs.202100684
10.1016/j.jpowsour.2021.229861
10.1002/eem2.12257
10.1002/eem2.12308
10.1038/s41560-020-0575-z
10.1016/j.partic.2020.12.003
10.1126/sciadv.abj3423
10.1021/acsami.0c06201
10.1002/anie.202101958
10.1021/jacs.7b13357
10.1149/1945-7111/ab6439
10.1021/acscentsci.0c00449
10.1002/sus2.4
10.1016/j.jpowsour.2021.230370
10.1016/j.joule.2019.02.004
10.1149/2.0701914jes
10.1038/s41560-021-00917-3
10.1002/anie.201707093
10.1038/s41467-019-09932-1
10.1002/adma.202102134
10.1149/MA2019-01/5/531
10.1038/s41467-022-29199-3
10.1002/anie.202116635
10.1002/smll.202202349
10.1002/anie.201911724
10.1002/batt.202000225
10.1039/C9EE00716D
10.1038/s41560-019-0351-0
10.1126/sciadv.aat3446
10.1021/acsami.9b00507
10.1149/2.0901811jes
10.1007/s12598-018-1049-3
10.1002/anie.201801513
10.1002/aenm.202003663
10.1016/j.jechem.2022.05.005
10.1002/aenm.202200139
10.1021/acs.nanolett.1c04775
10.1038/s41565-019-0371-8
10.3389/fenrg.2019.00123
10.1021/acs.jpclett.5b01814
10.1038/s41560-019-0428-9
10.1002/ente.202000094
10.1021/acsenergylett.6b00353
10.1021/acsaem.1c02158
10.1038/s41560-019-0338-x
10.1002/anie.202101627
10.1038/s41565-022-01107-2
10.1002/anie.202201406
10.1149/1945-7111/ac39e3
10.1021/acsenergylett.0c01905
10.1021/acsami.1c19158
10.1016/j.joule.2019.09.003
10.1002/aenm.202003416
10.1126/sciadv.abn4372
10.1016/j.jechem.2021.12.049
10.1016/j.jechem.2021.07.010
10.1002/aenm.202003709
10.1021/acsaem.8b00132
10.1002/anie.201807034
10.1016/j.ensm.2017.03.008
10.1038/s41467-018-06126-z
10.1021/acsami.2c02038
10.1016/j.jechem.2020.08.029
10.1021/acs.chemmater.0c04537
10.1039/C6EE00789A
10.1016/j.nanoen.2018.06.003
10.1002/anie.202104671
10.1038/s41467-022-30112-1
10.1002/anie.202103850
10.1038/s41560-020-0634-5
10.1002/adfm.202009925
10.1039/D0CC06849G
10.1002/adfm.202009961
10.1002/adfm.202200682
10.1039/D0EE02714F
10.34133/2021/9204217
10.1038/s41565-018-0061-y
10.1002/aenm.202200412
10.1021/acsaem.0c00935
10.1021/acs.chemmater.9b04550
10.1002/adfm.202201861
10.1038/s41560-021-00852-3
10.1002/anie.202116214
10.1039/D1TA07660D
10.1021/jacs.1c11315
10.1007/s12598-022-01994-3
10.1016/j.ensm.2021.12.046
10.1016/j.jechem.2018.11.016
10.1016/j.ceramint.2019.01.031
10.1038/s41467-017-00519-2
10.1038/s41560-022-01001-0
10.1002/aenm.202100748
10.1016/j.isci.2021.103490
10.1038/s41560-019-0390-6
10.1016/0022-4596(79)90189-0
10.1002/aenm.201903253
10.1021/acsenergylett.0c02351
10.34133/2021/1932952
10.1016/j.mtener.2021.100663
10.1002/aenm.202003746
10.1002/anie.202103470
10.1002/aenm.202103503
10.1016/j.nanoen.2020.105481
10.1021/acsenergylett.1c01368
10.1073/pnas.1803634115
10.1002/adma.202004128
10.1002/aenm.202103204
10.1002/adfm.202001607
10.1002/anie.202004853
10.1016/j.ensm.2016.09.003
10.1016/j.jpowsour.2020.228690
10.1016/j.mtener.2020.100519
10.1016/j.esci.2021.08.001
10.1002/adfm.202201136
10.1038/s41586-019-1481-z
10.1016/j.jechem.2020.02.047
10.1039/D1EE00508A
10.1039/D2EE00842D
10.1002/ente.201900111
10.1016/j.mtener.2022.100949
10.1002/inf2.12292
10.1039/D1EE02959B
10.1002/adma.201902785
10.1038/s41565-019-0427-9
10.1002/aenm.202103048
10.1016/j.mtener.2021.100841
10.1002/aenm.201402290
10.1149/1945-7111/ac5345
10.1002/adma.202201555
10.1002/adma.202201981
10.1021/acsaem.0c01946
10.1021/acsami.1c10756
10.1016/j.mattod.2019.09.018
10.1021/jacs.2c01996
10.1002/ente.202000348
10.1021/jacs.1c08425
10.1016/j.jpowsour.2009.11.139
10.1016/j.isci.2021.103394
10.1016/j.nanoen.2021.106805
10.1016/j.joule.2018.02.001
10.1016/j.nanoen.2022.107122
10.1016/j.nanoen.2020.105098
10.1016/j.ensm.2019.12.028
10.1002/adma.202006323
10.1007/s11434-015-0783-2
10.1016/j.nanoen.2022.107102
10.1002/sus2.74
10.1021/ja312241y
10.1016/j.jpowsour.2020.228180
10.1039/C7CS00863E
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202202518
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202202518
AENM202202518
Genre reviewArticle
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2242022R10082
– fundername: National Natural Science Foundation of China
  funderid: 22179070; U1932220
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20220073
– fundername: Jiangsu Specially Appointed Professor program
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3178-22dbb50509bdd4d4d3a34dcfa931204580eb99d1713cf7ab8c5f41258588082a3
ISSN 1614-6832
IngestDate Fri Jul 25 12:11:52 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Tue Jul 01 01:43:47 EDT 2025
Wed Jan 22 16:25:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3178-22dbb50509bdd4d4d3a34dcfa931204580eb99d1713cf7ab8c5f41258588082a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3929-1541
0000-0001-7567-1210
PQID 2754620133
PQPubID 886389
PageCount 25
ParticipantIDs proquest_journals_2754620133
crossref_primary_10_1002_aenm_202202518
crossref_citationtrail_10_1002_aenm_202202518
wiley_primary_10_1002_aenm_202202518_AENM202202518
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 165
2021; 168
2019; 11
2019; 10
2019; 12
2019; 14
2022; 24
2022; 25
2019; 18
2020; 167
2020; 12
2020; 10
2022; 22
2019; 166
2020; 18
2021; 79
2018; 9
1979; 29
2018; 8
2018; 2
2018; 4
2018; 1
2022; 34
2018; 30
2010; 195
2017; 164
2022; 32
2021; 397
2018; 37
2021; 2021
2022; 169
2019; 7
2019; 9
2019; 4
2019; 3
2019; 31
2022; 93
2019; 2
2019; 37
2020; 39
2020; 33
2021; 143
2020; 32
2021; 57
2016; 1
2021; 56
2015; 60
2020; 30
2022; 4
2022; 5
2022; 7
2019; 45
2022; 8
2022; 9
2018; 115
2017; 56
2022; 12
2022; 13
2020; 26
2022; 14
2022; 15
2022; 96
2022; 10
2022; 1
2021; 496
2022; 2
2021; 60
2018; 10
2016; 9
2022; 17
2022; 18
2018; 13
2019; 572
2017; 6
2021; 24
2017; 8
2021; 21
2021; 20
2022; 72
2020; 120
2022; 69
2020; 59
2022; 66
2020; 8
2020; 7
2020; 6
2020; 5
2020; 4
2021; 31
2020; 3
2021; 33
2020; 53
2020; 49
2020; 48
2021; 40
2021; 9
2021; 8
2021; 7
2021; 6
2015; 6
2015; 5
2021; 509
2021; 4
2018; 140
2019; MA2019‐01
2022; 45
2022; 48
2022; 41
2020; 463
2020; 77
2021; 1
2022; 49
2021; 14
2022; 144
2021; 13
2021; 16
2021; 11
2022; 61
2021; 17
2009; 8
2013; 135
2020; 475
2018; 50
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_226_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_215_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_216_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_220_1
e_1_2_8_205_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_217_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_27_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_16_1
e_1_2_8_218_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_200_1
e_1_2_8_223_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 11
  start-page: 8717
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 41
  start-page: 2800
  year: 2022
  publication-title: Rare Met.
– volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 764
  year: 2018
  publication-title: Joule
– volume: 72
  start-page: 158
  year: 2022
  publication-title: J. Energy Chem.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 5301
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 144
  start-page: 212
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 337
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 3
  start-page: 1094
  year: 2019
  publication-title: Joule
– volume: 496
  year: 2021
  publication-title: J. Power Sources
– volume: 6
  start-page: 3261
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 1095
  year: 2020
  publication-title: ACS Cent. Sci.
– volume: 2021
  year: 2021
  publication-title: Energy Mater. Adv.
– volume: 14
  start-page: 643
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 73
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 1
  start-page: 44
  year: 2021
  publication-title: eScience
– volume: 49
  start-page: 1569
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 4581
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 777
  year: 2022
  publication-title: Energy Environ. Mater.
– volume: 33
  start-page: 2378
  year: 2021
  publication-title: Chem. Mater.
– volume: 53
  start-page: 1992
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 37
  start-page: 449
  year: 2018
  publication-title: Rare Met.
– volume: 12
  start-page: 5483
  year: 2020
  publication-title: Nanoscale
– volume: 13
  start-page: 2541
  year: 2022
  publication-title: Nat. Commun.
– volume: 144
  start-page: 8267
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 9
  year: 2022
  publication-title: Adv. Mater. Interfaces
– volume: 4
  start-page: 683
  year: 2019
  publication-title: Nat. Energy
– volume: 7
  start-page: 1937
  year: 2020
  publication-title: Mater. Horiz.
– volume: 397
  year: 2021
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 123
  year: 2019
  publication-title: Front. Energy Res.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 3656
  year: 2018
  publication-title: Nat. Commun.
– volume: 169
  year: 2022
  publication-title: J. Electrochem. Soc.
– volume: 93
  year: 2022
  publication-title: Nano Energy
– volume: 16
  start-page: 166
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 653
  year: 2021
  publication-title: Nat. Energy
– volume: 5
  start-page: 3468
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 18
  start-page: 414
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 3
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 4
  start-page: 262
  year: 2020
  publication-title: Joule
– volume: 6
  start-page: 3287
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 1
  start-page: 1674
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 6
  start-page: 987
  year: 2021
  publication-title: Nat. Energy
– volume: 32
  start-page: 2341
  year: 2020
  publication-title: Chem. Mater.
– volume: 12
  start-page: 2174
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 200
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 500
  year: 2009
  publication-title: Nat. Mater.
– volume: 45
  start-page: 941
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 79
  year: 2021
  publication-title: Nano Energy
– volume: 509
  year: 2021
  publication-title: J. Power Sources
– volume: 4
  start-page: 539
  year: 2020
  publication-title: Joule
– volume: 168
  year: 2021
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 526
  year: 2020
  publication-title: Nat. Energy
– volume: 17
  year: 2021
  publication-title: Small
– volume: 48
  start-page: 114
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 50
  start-page: 659
  year: 2018
  publication-title: Nano Energy
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 2575
  year: 2022
  publication-title: Nat. Commun.
– volume: 77
  year: 2020
  publication-title: Nano Energy
– volume: 4
  start-page: 374
  year: 2019
  publication-title: Nat. Energy
– volume: 15
  start-page: 1840
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 96
  year: 2022
  publication-title: Nano Energy
– volume: 4
  start-page: 445
  year: 2021
  publication-title: Batteries Supercaps
– volume: 6
  start-page: 18
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 4
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 8
  year: 2020
  publication-title: Energy Technol.
– volume: 66
  start-page: 24
  year: 2022
  publication-title: J. Energy Chem.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 5
  start-page: 299
  year: 2020
  publication-title: Nat. Energy
– volume: 49
  start-page: 5407
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 3729
  year: 2018
  publication-title: Nat. Commun.
– volume: 120
  year: 2020
  publication-title: Chem. Rev.
– volume: 49
  start-page: 3040
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 303
  year: 2021
  publication-title: Nat. Energy
– volume: 14
  start-page: 4115
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 135
  start-page: 4450
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 8344
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 14
  start-page: 594
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 4
  year: 2022
  publication-title: InfoMat
– volume: 48
  start-page: 424
  year: 2020
  publication-title: J. Energy Chem.
– volume: 8
  start-page: 336
  year: 2017
  publication-title: Nat. Commun.
– volume: 15
  start-page: 2435
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 37
  start-page: 29
  year: 2019
  publication-title: J. Energy Chem.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 60
  start-page: 8289
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 495
  year: 2021
  publication-title: Nat. Energy
– volume: 9
  start-page: 2603
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: MA2019‐01
  start-page: 531
  year: 2019
  publication-title: ECS Meet. Abstr.
– volume: 39
  start-page: 616
  year: 2020
  publication-title: Rare Met.
– volume: 1
  start-page: 72
  year: 2022
  publication-title: iEnergy
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 5
  start-page: 2484
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 165
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 38
  year: 2021
  publication-title: SusMat
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 981
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 312
  year: 2022
  publication-title: Nat. Energy
– volume: 25
  year: 2022
  publication-title: iScience
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 24
  year: 2021
  publication-title: iScience
– volume: 20
  year: 2021
  publication-title: Mater. Today Energy
– volume: 21
  start-page: 3245
  year: 2021
  publication-title: Nano Lett.
– volume: 1
  start-page: 506
  year: 2021
  publication-title: SusMat
– volume: 7
  start-page: 1338
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 39
  start-page: 743
  year: 2020
  publication-title: Rare Met.
– volume: 6
  start-page: 115
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 1896
  year: 2019
  publication-title: Nat. Commun.
– volume: 29
  start-page: 323
  year: 1979
  publication-title: J. Solid State Chem.
– volume: 17
  start-page: 613
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 33
  start-page: 56
  year: 2020
  publication-title: Mater. Today
– volume: 69
  start-page: 205
  year: 2022
  publication-title: J. Energy Chem.
– volume: 57
  start-page: 56
  year: 2021
  publication-title: Particuology
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 463
  year: 2020
  publication-title: J. Power Sources
– volume: 3
  start-page: 2647
  year: 2019
  publication-title: Joule
– volume: 49
  start-page: 299
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 475
  year: 2020
  publication-title: J. Power Sources
– volume: 18
  year: 2020
  publication-title: Mater. Today Energy
– volume: 195
  start-page: 3715
  year: 2010
  publication-title: J. Power Sources
– volume: 6
  start-page: 723
  year: 2021
  publication-title: Nat. Energy
– volume: 12
  start-page: 176
  year: 2020
  publication-title: Nano‐Micro Lett.
– volume: 115
  start-page: 5676
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 60
  start-page: 975
  year: 2015
  publication-title: Sci. Bull.
– volume: 140
  start-page: 1608
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 5
  year: 2022
  publication-title: Batteries Supercaps
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 40
  start-page: 409
  year: 2021
  publication-title: Rare Met.
– volume: 10
  start-page: 199
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 69
  start-page: 70
  year: 2022
  publication-title: J. Energy Chem.
– volume: 5
  year: 2022
  publication-title: Energy Environ. Mater.
– volume: 10
  start-page: 9670
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 21
  year: 2021
  publication-title: Mater. Today Energy
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 24
  year: 2022
  publication-title: Mater. Today Energy
– volume: 4
  start-page: 1445
  year: 2020
  publication-title: Joule
– volume: 2
  start-page: 435
  year: 2022
  publication-title: SusMat
– volume: 2
  start-page: 6655
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 22
  start-page: 1374
  year: 2022
  publication-title: Nano Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 572
  start-page: 511
  year: 2019
  publication-title: Nature
– volume: 57
  start-page: 840
  year: 2021
  publication-title: Chem. Commun.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 12
  start-page: 177
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 56
  start-page: 391
  year: 2021
  publication-title: J. Energy Chem.
– volume: 4
  start-page: 2017
  year: 2020
  publication-title: Joule
– volume: 45
  start-page: 8045
  year: 2019
  publication-title: Ceram. Int.
– volume: 4
  start-page: 180
  year: 2019
  publication-title: Nat. Energy
– volume: 7
  year: 2019
  publication-title: Energy Technol.
– volume: 59
  start-page: 3252
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 551
  year: 2019
  publication-title: Nat. Energy
– volume: 166
  year: 2019
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_8_95_1
  doi: 10.1002/aenm.201903362
– ident: e_1_2_8_200_1
  doi: 10.1002/adma.202100793
– ident: e_1_2_8_167_1
  doi: 10.1016/j.nanoen.2021.106837
– ident: e_1_2_8_192_1
  doi: 10.1021/acsaem.9b01175
– ident: e_1_2_8_156_1
  doi: 10.1002/aenm.201900858
– ident: e_1_2_8_124_1
  doi: 10.1002/adma.201804461
– ident: e_1_2_8_188_1
  doi: 10.1021/acsami.1c17616
– ident: e_1_2_8_68_1
  doi: 10.1002/sus2.37
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.chemrev.0c00275
– ident: e_1_2_8_201_1
  doi: 10.1039/C9NR10966H
– ident: e_1_2_8_25_1
  doi: 10.1002/adfm.202004189
– ident: e_1_2_8_105_1
  doi: 10.1038/s41560-021-00839-0
– ident: e_1_2_8_160_1
  doi: 10.1002/advs.202201147
– ident: e_1_2_8_1_1
  doi: 10.1038/s41560-021-00783-z
– ident: e_1_2_8_7_1
  doi: 10.1038/s41565-020-00797-w
– ident: e_1_2_8_147_1
  doi: 10.1002/anie.202103303
– ident: e_1_2_8_57_1
  doi: 10.1149/2.0091908jes
– ident: e_1_2_8_27_1
  doi: 10.1039/C9CS00636B
– ident: e_1_2_8_125_1
  doi: 10.1016/j.joule.2019.09.022
– ident: e_1_2_8_199_1
  doi: 10.1002/adma.202107638
– ident: e_1_2_8_219_1
  doi: 10.1007/s12598-020-01501-6
– ident: e_1_2_8_70_1
  doi: 10.1021/acsenergylett.1c01395
– ident: e_1_2_8_139_1
  doi: 10.1038/s41560-021-00792-y
– ident: e_1_2_8_36_1
  doi: 10.1002/aenm.201501102
– ident: e_1_2_8_115_1
  doi: 10.1039/D2TA02162E
– ident: e_1_2_8_86_1
  doi: 10.1002/adma.202007428
– ident: e_1_2_8_173_1
  doi: 10.1002/adma.201801213
– ident: e_1_2_8_224_1
  doi: 10.1002/advs.202103786
– ident: e_1_2_8_32_1
  doi: 10.1016/j.joule.2020.02.006
– ident: e_1_2_8_221_1
  doi: 10.1016/j.electacta.2021.139249
– ident: e_1_2_8_47_1
  doi: 10.1002/aenm.202002360
– ident: e_1_2_8_220_1
  doi: 10.1021/acsaem.1c04001
– ident: e_1_2_8_20_1
  doi: 10.1002/admi.202102283
– ident: e_1_2_8_80_1
  doi: 10.1016/j.joule.2020.07.014
– ident: e_1_2_8_122_1
  doi: 10.1039/D1TA02615A
– ident: e_1_2_8_215_1
  doi: 10.1016/j.ensm.2022.04.026
– ident: e_1_2_8_217_1
  doi: 10.1016/j.mtener.2021.100785
– ident: e_1_2_8_136_1
  doi: 10.1021/acs.accounts.0c00412
– ident: e_1_2_8_178_1
  doi: 10.1002/adma.201807131
– ident: e_1_2_8_181_1
  doi: 10.1021/jacs.1c08606
– ident: e_1_2_8_29_1
  doi: 10.1039/C9CS00838A
– ident: e_1_2_8_34_1
  doi: 10.1038/nmat2460
– ident: e_1_2_8_123_1
  doi: 10.1002/aenm.201801560
– ident: e_1_2_8_176_1
  doi: 10.1021/acs.nanolett.1c00534
– ident: e_1_2_8_130_1
  doi: 10.1038/s41467-018-06077-5
– ident: e_1_2_8_141_1
  doi: 10.1007/s40820-020-00514-1
– ident: e_1_2_8_197_1
  doi: 10.1002/adma.201906836
– ident: e_1_2_8_108_1
  doi: 10.1016/j.ensm.2018.08.010
– ident: e_1_2_8_111_1
  doi: 10.1039/D2TA00167E
– ident: e_1_2_8_164_1
  doi: 10.1016/j.jechem.2022.01.019
– ident: e_1_2_8_53_1
  doi: 10.1039/D0MH00067A
– ident: e_1_2_8_186_1
  doi: 10.1002/smll.202105999
– ident: e_1_2_8_15_1
  doi: 10.1002/anie.202017063
– ident: e_1_2_8_93_1
  doi: 10.1002/anie.202115602
– ident: e_1_2_8_171_1
  doi: 10.1002/aenm.202200190
– ident: e_1_2_8_180_1
  doi: 10.1002/batt.202100341
– ident: e_1_2_8_193_1
  doi: 10.1021/acsami.1c01849
– ident: e_1_2_8_161_1
  doi: 10.1002/aenm.202200568
– ident: e_1_2_8_132_1
  doi: 10.23919/IEN.2022.0003
– ident: e_1_2_8_46_1
  doi: 10.1016/j.joule.2020.05.012
– ident: e_1_2_8_182_1
  doi: 10.1002/adma.202004793
– ident: e_1_2_8_211_1
  doi: 10.1002/anie.202114805
– ident: e_1_2_8_90_1
  doi: 10.1002/aenm.201902254
– ident: e_1_2_8_31_1
  doi: 10.1002/adfm.202002824
– ident: e_1_2_8_196_1
  doi: 10.1002/smll.202101881
– ident: e_1_2_8_198_1
  doi: 10.1039/C8EE01879K
– ident: e_1_2_8_151_1
  doi: 10.1021/acsami.1c05966
– ident: e_1_2_8_6_1
  doi: 10.1007/s12598-020-01432-2
– ident: e_1_2_8_185_1
  doi: 10.1016/j.ensm.2022.01.037
– ident: e_1_2_8_51_1
  doi: 10.1002/adma.202105329
– ident: e_1_2_8_40_1
  doi: 10.1149/2.0271713jes
– ident: e_1_2_8_5_1
  doi: 10.34133/2021/1205324
– ident: e_1_2_8_63_1
  doi: 10.1021/acsami.1c06488
– ident: e_1_2_8_101_1
  doi: 10.1021/acsenergylett.2c00232
– ident: e_1_2_8_24_1
  doi: 10.1007/s12598-020-01429-x
– ident: e_1_2_8_127_1
  doi: 10.1002/adma.202008619
– ident: e_1_2_8_85_1
  doi: 10.1002/advs.202100684
– ident: e_1_2_8_210_1
  doi: 10.1016/j.jpowsour.2021.229861
– ident: e_1_2_8_3_1
  doi: 10.1002/eem2.12257
– ident: e_1_2_8_87_1
  doi: 10.1002/eem2.12308
– ident: e_1_2_8_226_1
  doi: 10.1038/s41560-020-0575-z
– ident: e_1_2_8_75_1
  doi: 10.1016/j.partic.2020.12.003
– ident: e_1_2_8_49_1
  doi: 10.1126/sciadv.abj3423
– ident: e_1_2_8_67_1
  doi: 10.1021/acsami.0c06201
– ident: e_1_2_8_162_1
  doi: 10.1002/anie.202101958
– ident: e_1_2_8_84_1
  doi: 10.1021/jacs.7b13357
– ident: e_1_2_8_60_1
  doi: 10.1149/1945-7111/ab6439
– ident: e_1_2_8_73_1
  doi: 10.1021/acscentsci.0c00449
– ident: e_1_2_8_52_1
  doi: 10.1002/sus2.4
– ident: e_1_2_8_128_1
  doi: 10.1016/j.jpowsour.2021.230370
– ident: e_1_2_8_42_1
  doi: 10.1016/j.joule.2019.02.004
– ident: e_1_2_8_44_1
  doi: 10.1149/2.0701914jes
– ident: e_1_2_8_62_1
  doi: 10.1038/s41560-021-00917-3
– ident: e_1_2_8_134_1
  doi: 10.1002/anie.201707093
– ident: e_1_2_8_183_1
  doi: 10.1038/s41467-019-09932-1
– ident: e_1_2_8_103_1
  doi: 10.1002/adma.202102134
– ident: e_1_2_8_45_1
  doi: 10.1149/MA2019-01/5/531
– ident: e_1_2_8_119_1
  doi: 10.1038/s41467-022-29199-3
– ident: e_1_2_8_152_1
  doi: 10.1002/anie.202116635
– ident: e_1_2_8_144_1
  doi: 10.1002/smll.202202349
– ident: e_1_2_8_100_1
  doi: 10.1002/anie.201911724
– ident: e_1_2_8_159_1
  doi: 10.1002/batt.202000225
– ident: e_1_2_8_154_1
  doi: 10.1039/C9EE00716D
– ident: e_1_2_8_148_1
  doi: 10.1038/s41560-019-0351-0
– ident: e_1_2_8_191_1
  doi: 10.1126/sciadv.aat3446
– ident: e_1_2_8_150_1
  doi: 10.1021/acsami.9b00507
– ident: e_1_2_8_69_1
  doi: 10.1149/2.0901811jes
– ident: e_1_2_8_175_1
  doi: 10.1007/s12598-018-1049-3
– ident: e_1_2_8_131_1
  doi: 10.1002/anie.201801513
– ident: e_1_2_8_184_1
  doi: 10.1002/aenm.202003663
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jechem.2022.05.005
– ident: e_1_2_8_118_1
  doi: 10.1002/aenm.202200139
– ident: e_1_2_8_168_1
  doi: 10.1021/acs.nanolett.1c04775
– ident: e_1_2_8_54_1
  doi: 10.1038/s41565-019-0371-8
– ident: e_1_2_8_55_1
  doi: 10.3389/fenrg.2019.00123
– ident: e_1_2_8_38_1
  doi: 10.1021/acs.jpclett.5b01814
– ident: e_1_2_8_56_1
  doi: 10.1038/s41560-019-0428-9
– ident: e_1_2_8_202_1
  doi: 10.1002/ente.202000094
– ident: e_1_2_8_77_1
  doi: 10.1021/acsenergylett.6b00353
– ident: e_1_2_8_133_1
  doi: 10.1021/acsaem.1c02158
– ident: e_1_2_8_2_1
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_8_92_1
  doi: 10.1002/anie.202101627
– ident: e_1_2_8_163_1
  doi: 10.1038/s41565-022-01107-2
– ident: e_1_2_8_99_1
  doi: 10.1002/anie.202201406
– ident: e_1_2_8_117_1
  doi: 10.1149/1945-7111/ac39e3
– ident: e_1_2_8_216_1
  doi: 10.1021/acsenergylett.0c01905
– ident: e_1_2_8_149_1
  doi: 10.1021/acsami.1c19158
– ident: e_1_2_8_213_1
  doi: 10.1016/j.joule.2019.09.003
– ident: e_1_2_8_65_1
  doi: 10.1002/aenm.202003416
– ident: e_1_2_8_225_1
  doi: 10.1126/sciadv.abn4372
– ident: e_1_2_8_78_1
  doi: 10.1016/j.jechem.2021.12.049
– ident: e_1_2_8_88_1
  doi: 10.1016/j.jechem.2021.07.010
– ident: e_1_2_8_114_1
  doi: 10.1002/aenm.202003709
– ident: e_1_2_8_158_1
  doi: 10.1021/acsaem.8b00132
– ident: e_1_2_8_140_1
  doi: 10.1002/anie.201807034
– ident: e_1_2_8_155_1
  doi: 10.1016/j.ensm.2017.03.008
– ident: e_1_2_8_189_1
  doi: 10.1038/s41467-018-06126-z
– ident: e_1_2_8_218_1
  doi: 10.1021/acsami.2c02038
– ident: e_1_2_8_165_1
  doi: 10.1016/j.jechem.2020.08.029
– ident: e_1_2_8_79_1
  doi: 10.1021/acs.chemmater.0c04537
– ident: e_1_2_8_98_1
  doi: 10.1039/C6EE00789A
– ident: e_1_2_8_58_1
  doi: 10.1016/j.nanoen.2018.06.003
– ident: e_1_2_8_102_1
  doi: 10.1002/anie.202104671
– ident: e_1_2_8_74_1
  doi: 10.1038/s41467-022-30112-1
– ident: e_1_2_8_116_1
  doi: 10.1002/anie.202103850
– ident: e_1_2_8_129_1
  doi: 10.1038/s41560-020-0634-5
– ident: e_1_2_8_72_1
  doi: 10.1002/adfm.202009925
– ident: e_1_2_8_135_1
  doi: 10.1039/D0CC06849G
– ident: e_1_2_8_17_1
  doi: 10.1002/adfm.202009961
– ident: e_1_2_8_170_1
  doi: 10.1002/adfm.202200682
– ident: e_1_2_8_208_1
  doi: 10.1039/D0EE02714F
– ident: e_1_2_8_13_1
  doi: 10.34133/2021/9204217
– ident: e_1_2_8_21_1
  doi: 10.1038/s41565-018-0061-y
– ident: e_1_2_8_206_1
  doi: 10.1002/aenm.202200412
– ident: e_1_2_8_222_1
  doi: 10.1021/acsaem.0c00935
– ident: e_1_2_8_97_1
  doi: 10.1021/acs.chemmater.9b04550
– ident: e_1_2_8_212_1
  doi: 10.1002/adfm.202201861
– ident: e_1_2_8_48_1
  doi: 10.1038/s41560-021-00852-3
– ident: e_1_2_8_106_1
  doi: 10.1002/anie.202116214
– ident: e_1_2_8_113_1
  doi: 10.1039/D1TA07660D
– ident: e_1_2_8_91_1
  doi: 10.1021/jacs.1c11315
– ident: e_1_2_8_187_1
  doi: 10.1007/s12598-022-01994-3
– ident: e_1_2_8_194_1
  doi: 10.1016/j.ensm.2021.12.046
– ident: e_1_2_8_190_1
  doi: 10.1016/j.jechem.2018.11.016
– ident: e_1_2_8_166_1
  doi: 10.1016/j.ceramint.2019.01.031
– ident: e_1_2_8_145_1
  doi: 10.1038/s41467-017-00519-2
– ident: e_1_2_8_8_1
  doi: 10.1038/s41560-022-01001-0
– ident: e_1_2_8_203_1
  doi: 10.1002/aenm.202100748
– ident: e_1_2_8_138_1
  doi: 10.1016/j.isci.2021.103490
– ident: e_1_2_8_43_1
  doi: 10.1038/s41560-019-0390-6
– ident: e_1_2_8_33_1
  doi: 10.1016/0022-4596(79)90189-0
– ident: e_1_2_8_66_1
  doi: 10.1002/aenm.201903253
– ident: e_1_2_8_107_1
  doi: 10.1021/acsenergylett.0c02351
– ident: e_1_2_8_23_1
  doi: 10.34133/2021/1932952
– ident: e_1_2_8_174_1
  doi: 10.1016/j.mtener.2021.100663
– ident: e_1_2_8_4_1
  doi: 10.1002/aenm.202003746
– ident: e_1_2_8_104_1
  doi: 10.1002/anie.202103470
– ident: e_1_2_8_153_1
  doi: 10.1002/aenm.202103503
– ident: e_1_2_8_195_1
  doi: 10.1016/j.nanoen.2020.105481
– ident: e_1_2_8_223_1
  doi: 10.1021/acsenergylett.1c01368
– ident: e_1_2_8_142_1
  doi: 10.1073/pnas.1803634115
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.202004128
– ident: e_1_2_8_172_1
  doi: 10.1002/aenm.202103204
– ident: e_1_2_8_157_1
  doi: 10.1002/adfm.202001607
– ident: e_1_2_8_143_1
  doi: 10.1002/anie.202004853
– ident: e_1_2_8_39_1
  doi: 10.1016/j.ensm.2016.09.003
– ident: e_1_2_8_83_1
  doi: 10.1016/j.jpowsour.2020.228690
– ident: e_1_2_8_10_1
  doi: 10.1016/j.mtener.2020.100519
– ident: e_1_2_8_50_1
  doi: 10.1016/j.esci.2021.08.001
– ident: e_1_2_8_207_1
  doi: 10.1002/adfm.202201136
– ident: e_1_2_8_94_1
  doi: 10.1038/s41586-019-1481-z
– ident: e_1_2_8_89_1
  doi: 10.1016/j.jechem.2020.02.047
– ident: e_1_2_8_109_1
  doi: 10.1039/D1EE00508A
– ident: e_1_2_8_22_1
  doi: 10.1039/D2EE00842D
– ident: e_1_2_8_76_1
  doi: 10.1002/ente.201900111
– ident: e_1_2_8_169_1
  doi: 10.1016/j.mtener.2022.100949
– ident: e_1_2_8_214_1
  doi: 10.1002/inf2.12292
– ident: e_1_2_8_137_1
  doi: 10.1039/D1EE02959B
– ident: e_1_2_8_41_1
  doi: 10.1002/adma.201902785
– ident: e_1_2_8_19_1
  doi: 10.1038/s41565-019-0427-9
– ident: e_1_2_8_64_1
  doi: 10.1002/aenm.202103048
– ident: e_1_2_8_11_1
  doi: 10.1016/j.mtener.2021.100841
– ident: e_1_2_8_37_1
  doi: 10.1002/aenm.201402290
– ident: e_1_2_8_81_1
  doi: 10.1149/1945-7111/ac5345
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.202201555
– ident: e_1_2_8_205_1
  doi: 10.1002/adma.202201981
– ident: e_1_2_8_18_1
  doi: 10.1021/acsaem.0c01946
– ident: e_1_2_8_120_1
  doi: 10.1021/acsami.1c10756
– ident: e_1_2_8_30_1
  doi: 10.1016/j.mattod.2019.09.018
– ident: e_1_2_8_204_1
  doi: 10.1021/jacs.2c01996
– ident: e_1_2_8_126_1
  doi: 10.1002/ente.202000348
– ident: e_1_2_8_209_1
  doi: 10.1021/jacs.1c08425
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jpowsour.2009.11.139
– ident: e_1_2_8_71_1
  doi: 10.1016/j.isci.2021.103394
– ident: e_1_2_8_177_1
  doi: 10.1016/j.nanoen.2021.106805
– ident: e_1_2_8_179_1
  doi: 10.1016/j.joule.2018.02.001
– ident: e_1_2_8_96_1
  doi: 10.1016/j.nanoen.2022.107122
– ident: e_1_2_8_59_1
  doi: 10.1016/j.nanoen.2020.105098
– ident: e_1_2_8_112_1
  doi: 10.1016/j.ensm.2019.12.028
– ident: e_1_2_8_110_1
  doi: 10.1002/adma.202006323
– ident: e_1_2_8_82_1
  doi: 10.1007/s11434-015-0783-2
– ident: e_1_2_8_121_1
  doi: 10.1016/j.nanoen.2022.107102
– ident: e_1_2_8_12_1
  doi: 10.1002/sus2.74
– ident: e_1_2_8_146_1
  doi: 10.1021/ja312241y
– ident: e_1_2_8_61_1
  doi: 10.1016/j.jpowsour.2020.228180
– ident: e_1_2_8_28_1
  doi: 10.1039/C7CS00863E
SSID ssj0000491033
Score 2.6224022
SecondaryResourceType review_article
Snippet Lithium metal battery has been considered as one of the potential candidates for next‐generation energy storage systems. However, the dendrite growth issue in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
dendrites
Dendritic structure
Electrochemical analysis
Energy storage
Failure mechanisms
Life span
Lithium batteries
lithium metal anodes
pouch cells
pressure
solid electrolyte interphase
Storage systems
Title Working Principles of Lithium Metal Anode in Pouch Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202202518
https://www.proquest.com/docview/2754620133
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZp-7I-jF42lrUreijsIXizJct2HrOspZSmFNZCnmosSyaG1BlL_NJf36OLZYeuVwImKIovOp_OzUefEDomVLIkiiOPxUXsgf_vezzi0tPMKlEoGZEqoT-5jM5uwvMpm_Z6t52qpXrFf-T3_11X8h6pQhvIVa2SfYNk3UmhAb6DfOEIEobjq2RsM92DqyZjrusyLsrVrKzvBhOpFjpCfC80McjVos5ng7Gcz5ddj3TUFAFIswoQPFhz665Up6yNfWrfH2lNNS0drsYzaVQGtLnqiV-NUVTVPbXJyC5sk00zENIp2TCaEey4FyU2GSm7bYZvyalT0oGNYdO0ltXZnUdq29DAZrJS3ACEqLgnaQ1U81Le9WTP9zV0vieXE_f7BtoiEEaAHtwa_Z5c_HFZOIiPAp_qVRjN8zXMnj75uX6Rdc-lDUe6QY32Sq530EcbTuCRwcYu6slqD213SCb3UWJRgluU4EWBLUqwRgnWKMFlhTVKsEbJJ3RzenI9PvPsfhleDl4gTA0iOGeK0IcLEcKHZjQUeZENaaB2HUh8yYdDEcQBzYs440nOihAc3ISBEk9IRj-jzWpRyS8Ix2HGmQDvmuVRGGScQ1xJ_LgQvvD9gog-8pqxSHNLJq_2NJmnhgabpGrsUjd2ffTd9f9raFSe7HnYDG1qp9oyJTELI3BVKe0joof7hbOka-L_-p4_HaAP7Tw4RJurf7X8Bg7oih9ZFD0A8ph3tw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Working+Principles+of+Lithium+Metal+Anode+in+Pouch+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Liu%2C+He&rft.au=Sun%2C+Xin&rft.au=Cheng%2C+Xin%E2%80%90Bing&rft.au=Guo%2C+Cong&rft.date=2022-12-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=47&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202202518&rft.externalDBID=10.1002%252Faenm.202202518&rft.externalDocID=AENM202202518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon