Working Principles of Lithium Metal Anode in Pouch Cells
Lithium metal battery has been considered as one of the potential candidates for next‐generation energy storage systems. However, the dendrite growth issue in Li anodes results in low practical energy density, short lifespan, and poor safety performance. The strategies in suppressing Li dendrite gro...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 47 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium metal battery has been considered as one of the potential candidates for next‐generation energy storage systems. However, the dendrite growth issue in Li anodes results in low practical energy density, short lifespan, and poor safety performance. The strategies in suppressing Li dendrite growth are mostly conducted in materials‐level coin cells, while their validity in device‐level pouch cells is still under debate. It is imperative to address dendrite issues in pouch cells to realize the practical application of Li metal batteries. This review presents a comprehensive overview of the failure mechanism and regulation strategies of Li metal anodes in practical pouch cells. First, the gaps between the scientific findings in materials‐level coin cells and device‐level pouch cells are underscored. Specific attention is paid to the mechanistic understanding and quantitative discussion on the failure mechanisms of pouch‐type Li metal batteries. Subsequently, recently proposed strategies are reviewed to suppress dendrite growth in pouch cells. The state‐of‐the‐art electrochemical performance of pouch cells, especially the cell‐level energy density and lifespan, is critically concerned. The review concludes with an attempt to summarize the scientific and engineering understandings of pouch‐type Li metal anodes and propose some novel insights for the practical applications of Li metal batteries.
This review presents a comprehensive overview of the gaps between the materials‐level coin cells and device‐level pouch cells, mechanistic understanding and quantitative discussion for failure mechanisms of pouch‐type Li metal anodes, and the recently proposed strategies to suppress dendrite growth in pouch cells. |
---|---|
AbstractList | Lithium metal battery has been considered as one of the potential candidates for next‐generation energy storage systems. However, the dendrite growth issue in Li anodes results in low practical energy density, short lifespan, and poor safety performance. The strategies in suppressing Li dendrite growth are mostly conducted in materials‐level coin cells, while their validity in device‐level pouch cells is still under debate. It is imperative to address dendrite issues in pouch cells to realize the practical application of Li metal batteries. This review presents a comprehensive overview of the failure mechanism and regulation strategies of Li metal anodes in practical pouch cells. First, the gaps between the scientific findings in materials‐level coin cells and device‐level pouch cells are underscored. Specific attention is paid to the mechanistic understanding and quantitative discussion on the failure mechanisms of pouch‐type Li metal batteries. Subsequently, recently proposed strategies are reviewed to suppress dendrite growth in pouch cells. The state‐of‐the‐art electrochemical performance of pouch cells, especially the cell‐level energy density and lifespan, is critically concerned. The review concludes with an attempt to summarize the scientific and engineering understandings of pouch‐type Li metal anodes and propose some novel insights for the practical applications of Li metal batteries. Lithium metal battery has been considered as one of the potential candidates for next‐generation energy storage systems. However, the dendrite growth issue in Li anodes results in low practical energy density, short lifespan, and poor safety performance. The strategies in suppressing Li dendrite growth are mostly conducted in materials‐level coin cells, while their validity in device‐level pouch cells is still under debate. It is imperative to address dendrite issues in pouch cells to realize the practical application of Li metal batteries. This review presents a comprehensive overview of the failure mechanism and regulation strategies of Li metal anodes in practical pouch cells. First, the gaps between the scientific findings in materials‐level coin cells and device‐level pouch cells are underscored. Specific attention is paid to the mechanistic understanding and quantitative discussion on the failure mechanisms of pouch‐type Li metal batteries. Subsequently, recently proposed strategies are reviewed to suppress dendrite growth in pouch cells. The state‐of‐the‐art electrochemical performance of pouch cells, especially the cell‐level energy density and lifespan, is critically concerned. The review concludes with an attempt to summarize the scientific and engineering understandings of pouch‐type Li metal anodes and propose some novel insights for the practical applications of Li metal batteries. This review presents a comprehensive overview of the gaps between the materials‐level coin cells and device‐level pouch cells, mechanistic understanding and quantitative discussion for failure mechanisms of pouch‐type Li metal anodes, and the recently proposed strategies to suppress dendrite growth in pouch cells. |
Author | Bao, Weizhai Liu, He Yu, Feng Sun, Xin Zhang, Qiang Li, Jingfa Cheng, Xin‐Bing Guo, Cong Wang, Tao |
Author_xml | – sequence: 1 givenname: He surname: Liu fullname: Liu, He organization: Nanjing University of Information Science and Technology – sequence: 2 givenname: Xin surname: Sun fullname: Sun, Xin organization: Nanjing University of Information Science and Technology – sequence: 3 givenname: Xin‐Bing orcidid: 0000-0001-7567-1210 surname: Cheng fullname: Cheng, Xin‐Bing email: chengxb@seu.edu.cn organization: Southeast University – sequence: 4 givenname: Cong surname: Guo fullname: Guo, Cong organization: Nanjing University of Information Science and Technology – sequence: 5 givenname: Feng surname: Yu fullname: Yu, Feng organization: Nanjing University of Information Science and Technology – sequence: 6 givenname: Weizhai surname: Bao fullname: Bao, Weizhai organization: Nanjing University of Information Science and Technology – sequence: 7 givenname: Tao surname: Wang fullname: Wang, Tao organization: Southeast University – sequence: 8 givenname: Jingfa surname: Li fullname: Li, Jingfa email: aplijf@nuist.edu.cn organization: Nanjing University of Information Science and Technology – sequence: 9 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkM1LAzEQxYNUsNZePQc8b81nN3sspX5Aqz0oHkM2m7WpaVKTXUr_e7dUKgjizMDM4f3mwbsEPR-8AeAaoxFGiNwq4zcjgkg3HIsz0MdjzLKxYKh3uim5AMOU1qgrVmBEaR-ItxA_rH-Hy2i9tltnEgw1nNtmZdsNXJhGOTjxoTLQergMrV7BqXEuXYHzWrlkht97AF7vZi_Th2z-fP84ncwzTXEuMkKqsuSIo6KsKtY1VZRVulYFxQQxLpApi6LCOaa6zlUpNK8ZJlxwIZAgig7AzfHvNobP1qRGrkMbfWcpSc7ZmCBMaacaHVU6hpSiqeU22o2Ke4mRPAQkDwHJU0AdwH4B2jaqscE3UVn3N1YcsZ11Zv-PiZzMnhY_7BeKoHpp |
CitedBy_id | crossref_primary_10_1021_acsami_4c04859 crossref_primary_10_1002_smll_202401675 crossref_primary_10_1002_ange_202407064 crossref_primary_10_1016_j_jechem_2023_04_044 crossref_primary_10_1002_batt_202400544 crossref_primary_10_1093_nsr_nwaf016 crossref_primary_10_1002_ange_202303888 crossref_primary_10_3390_molecules29153624 crossref_primary_10_1021_acsami_3c12755 crossref_primary_10_34133_energymatadv_0084 crossref_primary_10_1039_D4EE03862B crossref_primary_10_1021_acs_nanolett_3c02013 crossref_primary_10_1002_ange_202300771 crossref_primary_10_1002_aenm_202300798 crossref_primary_10_1002_anie_202217458 crossref_primary_10_1002_smll_202304786 crossref_primary_10_1021_acs_iecr_3c02202 crossref_primary_10_1039_D4EE00391H crossref_primary_10_1002_smll_202409191 crossref_primary_10_1016_j_est_2023_107917 crossref_primary_10_1002_elt2_8 crossref_primary_10_1149_1945_7111_acb8e8 crossref_primary_10_23919_CHAIN_2024_000011 crossref_primary_10_1002_adfm_202214886 crossref_primary_10_1002_anie_202407064 crossref_primary_10_1002_adfm_202411171 crossref_primary_10_1039_D3TA02379F crossref_primary_10_1016_j_est_2024_114620 crossref_primary_10_34133_energymatadv_0092 crossref_primary_10_1002_anie_202303888 crossref_primary_10_1002_advs_202301288 crossref_primary_10_1002_aenm_202302565 crossref_primary_10_1002_anie_202300771 crossref_primary_10_1002_aenm_202301477 crossref_primary_10_1039_D3EE04358D crossref_primary_10_1002_cnl2_147 crossref_primary_10_1002_advs_202400466 crossref_primary_10_1002_aenm_202400397 crossref_primary_10_1002_aenm_202400035 crossref_primary_10_1002_eom2_12416 crossref_primary_10_1016_j_jmapro_2024_04_059 crossref_primary_10_1016_j_jechem_2023_10_016 crossref_primary_10_1002_adma_202307370 crossref_primary_10_1002_smll_202405453 crossref_primary_10_1016_j_est_2025_116307 crossref_primary_10_1007_s11705_022_2286_4 crossref_primary_10_1002_aenm_202302295 crossref_primary_10_1007_s12274_023_5937_y crossref_primary_10_1002_smll_202304045 crossref_primary_10_1002_cey2_539 crossref_primary_10_1002_smll_202312132 crossref_primary_10_1002_adma_202415258 crossref_primary_10_1002_smll_202407395 crossref_primary_10_1007_s41918_024_00221_0 crossref_primary_10_1016_j_cej_2024_159047 crossref_primary_10_1177_09506608251318467 crossref_primary_10_1002_aenm_202405674 crossref_primary_10_1002_ange_202217458 crossref_primary_10_1002_adfm_202302661 crossref_primary_10_1002_adfm_202406080 crossref_primary_10_1016_j_ensm_2022_12_016 crossref_primary_10_1002_aenm_202302261 crossref_primary_10_1002_aenm_202403845 crossref_primary_10_1002_smll_202308678 crossref_primary_10_1021_acssuschemeng_3c00057 crossref_primary_10_1007_s40820_023_01120_7 crossref_primary_10_1007_s43979_023_00074_4 |
Cites_doi | 10.1002/aenm.201903362 10.1002/adma.202100793 10.1016/j.nanoen.2021.106837 10.1021/acsaem.9b01175 10.1002/aenm.201900858 10.1002/adma.201804461 10.1021/acsami.1c17616 10.1002/sus2.37 10.1021/acs.chemrev.0c00275 10.1039/C9NR10966H 10.1002/adfm.202004189 10.1038/s41560-021-00839-0 10.1002/advs.202201147 10.1038/s41560-021-00783-z 10.1038/s41565-020-00797-w 10.1002/anie.202103303 10.1149/2.0091908jes 10.1039/C9CS00636B 10.1016/j.joule.2019.09.022 10.1002/adma.202107638 10.1007/s12598-020-01501-6 10.1021/acsenergylett.1c01395 10.1038/s41560-021-00792-y 10.1002/aenm.201501102 10.1039/D2TA02162E 10.1002/adma.202007428 10.1002/adma.201801213 10.1002/advs.202103786 10.1016/j.joule.2020.02.006 10.1016/j.electacta.2021.139249 10.1002/aenm.202002360 10.1021/acsaem.1c04001 10.1002/admi.202102283 10.1016/j.joule.2020.07.014 10.1039/D1TA02615A 10.1016/j.ensm.2022.04.026 10.1016/j.mtener.2021.100785 10.1021/acs.accounts.0c00412 10.1002/adma.201807131 10.1021/jacs.1c08606 10.1039/C9CS00838A 10.1038/nmat2460 10.1002/aenm.201801560 10.1021/acs.nanolett.1c00534 10.1038/s41467-018-06077-5 10.1007/s40820-020-00514-1 10.1002/adma.201906836 10.1016/j.ensm.2018.08.010 10.1039/D2TA00167E 10.1016/j.jechem.2022.01.019 10.1039/D0MH00067A 10.1002/smll.202105999 10.1002/anie.202017063 10.1002/anie.202115602 10.1002/aenm.202200190 10.1002/batt.202100341 10.1021/acsami.1c01849 10.1002/aenm.202200568 10.23919/IEN.2022.0003 10.1016/j.joule.2020.05.012 10.1002/adma.202004793 10.1002/anie.202114805 10.1002/aenm.201902254 10.1002/adfm.202002824 10.1002/smll.202101881 10.1039/C8EE01879K 10.1021/acsami.1c05966 10.1007/s12598-020-01432-2 10.1016/j.ensm.2022.01.037 10.1002/adma.202105329 10.1149/2.0271713jes 10.34133/2021/1205324 10.1021/acsami.1c06488 10.1021/acsenergylett.2c00232 10.1007/s12598-020-01429-x 10.1002/adma.202008619 10.1002/advs.202100684 10.1016/j.jpowsour.2021.229861 10.1002/eem2.12257 10.1002/eem2.12308 10.1038/s41560-020-0575-z 10.1016/j.partic.2020.12.003 10.1126/sciadv.abj3423 10.1021/acsami.0c06201 10.1002/anie.202101958 10.1021/jacs.7b13357 10.1149/1945-7111/ab6439 10.1021/acscentsci.0c00449 10.1002/sus2.4 10.1016/j.jpowsour.2021.230370 10.1016/j.joule.2019.02.004 10.1149/2.0701914jes 10.1038/s41560-021-00917-3 10.1002/anie.201707093 10.1038/s41467-019-09932-1 10.1002/adma.202102134 10.1149/MA2019-01/5/531 10.1038/s41467-022-29199-3 10.1002/anie.202116635 10.1002/smll.202202349 10.1002/anie.201911724 10.1002/batt.202000225 10.1039/C9EE00716D 10.1038/s41560-019-0351-0 10.1126/sciadv.aat3446 10.1021/acsami.9b00507 10.1149/2.0901811jes 10.1007/s12598-018-1049-3 10.1002/anie.201801513 10.1002/aenm.202003663 10.1016/j.jechem.2022.05.005 10.1002/aenm.202200139 10.1021/acs.nanolett.1c04775 10.1038/s41565-019-0371-8 10.3389/fenrg.2019.00123 10.1021/acs.jpclett.5b01814 10.1038/s41560-019-0428-9 10.1002/ente.202000094 10.1021/acsenergylett.6b00353 10.1021/acsaem.1c02158 10.1038/s41560-019-0338-x 10.1002/anie.202101627 10.1038/s41565-022-01107-2 10.1002/anie.202201406 10.1149/1945-7111/ac39e3 10.1021/acsenergylett.0c01905 10.1021/acsami.1c19158 10.1016/j.joule.2019.09.003 10.1002/aenm.202003416 10.1126/sciadv.abn4372 10.1016/j.jechem.2021.12.049 10.1016/j.jechem.2021.07.010 10.1002/aenm.202003709 10.1021/acsaem.8b00132 10.1002/anie.201807034 10.1016/j.ensm.2017.03.008 10.1038/s41467-018-06126-z 10.1021/acsami.2c02038 10.1016/j.jechem.2020.08.029 10.1021/acs.chemmater.0c04537 10.1039/C6EE00789A 10.1016/j.nanoen.2018.06.003 10.1002/anie.202104671 10.1038/s41467-022-30112-1 10.1002/anie.202103850 10.1038/s41560-020-0634-5 10.1002/adfm.202009925 10.1039/D0CC06849G 10.1002/adfm.202009961 10.1002/adfm.202200682 10.1039/D0EE02714F 10.34133/2021/9204217 10.1038/s41565-018-0061-y 10.1002/aenm.202200412 10.1021/acsaem.0c00935 10.1021/acs.chemmater.9b04550 10.1002/adfm.202201861 10.1038/s41560-021-00852-3 10.1002/anie.202116214 10.1039/D1TA07660D 10.1021/jacs.1c11315 10.1007/s12598-022-01994-3 10.1016/j.ensm.2021.12.046 10.1016/j.jechem.2018.11.016 10.1016/j.ceramint.2019.01.031 10.1038/s41467-017-00519-2 10.1038/s41560-022-01001-0 10.1002/aenm.202100748 10.1016/j.isci.2021.103490 10.1038/s41560-019-0390-6 10.1016/0022-4596(79)90189-0 10.1002/aenm.201903253 10.1021/acsenergylett.0c02351 10.34133/2021/1932952 10.1016/j.mtener.2021.100663 10.1002/aenm.202003746 10.1002/anie.202103470 10.1002/aenm.202103503 10.1016/j.nanoen.2020.105481 10.1021/acsenergylett.1c01368 10.1073/pnas.1803634115 10.1002/adma.202004128 10.1002/aenm.202103204 10.1002/adfm.202001607 10.1002/anie.202004853 10.1016/j.ensm.2016.09.003 10.1016/j.jpowsour.2020.228690 10.1016/j.mtener.2020.100519 10.1016/j.esci.2021.08.001 10.1002/adfm.202201136 10.1038/s41586-019-1481-z 10.1016/j.jechem.2020.02.047 10.1039/D1EE00508A 10.1039/D2EE00842D 10.1002/ente.201900111 10.1016/j.mtener.2022.100949 10.1002/inf2.12292 10.1039/D1EE02959B 10.1002/adma.201902785 10.1038/s41565-019-0427-9 10.1002/aenm.202103048 10.1016/j.mtener.2021.100841 10.1002/aenm.201402290 10.1149/1945-7111/ac5345 10.1002/adma.202201555 10.1002/adma.202201981 10.1021/acsaem.0c01946 10.1021/acsami.1c10756 10.1016/j.mattod.2019.09.018 10.1021/jacs.2c01996 10.1002/ente.202000348 10.1021/jacs.1c08425 10.1016/j.jpowsour.2009.11.139 10.1016/j.isci.2021.103394 10.1016/j.nanoen.2021.106805 10.1016/j.joule.2018.02.001 10.1016/j.nanoen.2022.107122 10.1016/j.nanoen.2020.105098 10.1016/j.ensm.2019.12.028 10.1002/adma.202006323 10.1007/s11434-015-0783-2 10.1016/j.nanoen.2022.107102 10.1002/sus2.74 10.1021/ja312241y 10.1016/j.jpowsour.2020.228180 10.1039/C7CS00863E |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202202518 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202202518 AENM202202518 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 2242022R10082 – fundername: National Natural Science Foundation of China funderid: 22179070; U1932220 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20220073 – fundername: Jiangsu Specially Appointed Professor program |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3178-22dbb50509bdd4d4d3a34dcfa931204580eb99d1713cf7ab8c5f41258588082a3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:11:52 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Tue Jul 01 01:43:47 EDT 2025 Wed Jan 22 16:25:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3178-22dbb50509bdd4d4d3a34dcfa931204580eb99d1713cf7ab8c5f41258588082a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3929-1541 0000-0001-7567-1210 |
PQID | 2754620133 |
PQPubID | 886389 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2754620133 crossref_primary_10_1002_aenm_202202518 crossref_citationtrail_10_1002_aenm_202202518 wiley_primary_10_1002_aenm_202202518_AENM202202518 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 165 2021; 168 2019; 11 2019; 10 2019; 12 2019; 14 2022; 24 2022; 25 2019; 18 2020; 167 2020; 12 2020; 10 2022; 22 2019; 166 2020; 18 2021; 79 2018; 9 1979; 29 2018; 8 2018; 2 2018; 4 2018; 1 2022; 34 2018; 30 2010; 195 2017; 164 2022; 32 2021; 397 2018; 37 2021; 2021 2022; 169 2019; 7 2019; 9 2019; 4 2019; 3 2019; 31 2022; 93 2019; 2 2019; 37 2020; 39 2020; 33 2021; 143 2020; 32 2021; 57 2016; 1 2021; 56 2015; 60 2020; 30 2022; 4 2022; 5 2022; 7 2019; 45 2022; 8 2022; 9 2018; 115 2017; 56 2022; 12 2022; 13 2020; 26 2022; 14 2022; 15 2022; 96 2022; 10 2022; 1 2021; 496 2022; 2 2021; 60 2018; 10 2016; 9 2022; 17 2022; 18 2018; 13 2019; 572 2017; 6 2021; 24 2017; 8 2021; 21 2021; 20 2022; 72 2020; 120 2022; 69 2020; 59 2022; 66 2020; 8 2020; 7 2020; 6 2020; 5 2020; 4 2021; 31 2020; 3 2021; 33 2020; 53 2020; 49 2020; 48 2021; 40 2021; 9 2021; 8 2021; 7 2021; 6 2015; 6 2015; 5 2021; 509 2021; 4 2018; 140 2019; MA2019‐01 2022; 45 2022; 48 2022; 41 2020; 463 2020; 77 2021; 1 2022; 49 2021; 14 2022; 144 2021; 13 2021; 16 2021; 11 2022; 61 2021; 17 2009; 8 2013; 135 2020; 475 2018; 50 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_226_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_215_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_216_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_220_1 e_1_2_8_205_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_217_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_27_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_16_1 e_1_2_8_218_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 11 start-page: 8717 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 41 start-page: 2800 year: 2022 publication-title: Rare Met. – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 2 start-page: 764 year: 2018 publication-title: Joule – volume: 72 start-page: 158 year: 2022 publication-title: J. Energy Chem. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 5301 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 144 start-page: 212 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 337 year: 2018 publication-title: Nat. Nanotechnol. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 3 start-page: 1094 year: 2019 publication-title: Joule – volume: 496 year: 2021 publication-title: J. Power Sources – volume: 6 start-page: 3261 year: 2021 publication-title: ACS Energy Lett. – volume: 6 start-page: 1095 year: 2020 publication-title: ACS Cent. Sci. – volume: 2021 year: 2021 publication-title: Energy Mater. Adv. – volume: 14 start-page: 643 year: 2021 publication-title: Energy Environ. Sci. – volume: 26 start-page: 73 year: 2020 publication-title: Energy Storage Mater. – volume: 1 start-page: 44 year: 2021 publication-title: eScience – volume: 49 start-page: 1569 year: 2020 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 4581 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 777 year: 2022 publication-title: Energy Environ. Mater. – volume: 33 start-page: 2378 year: 2021 publication-title: Chem. Mater. – volume: 53 start-page: 1992 year: 2020 publication-title: Acc. Chem. Res. – volume: 37 start-page: 449 year: 2018 publication-title: Rare Met. – volume: 12 start-page: 5483 year: 2020 publication-title: Nanoscale – volume: 13 start-page: 2541 year: 2022 publication-title: Nat. Commun. – volume: 144 start-page: 8267 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 9 year: 2022 publication-title: Adv. Mater. Interfaces – volume: 4 start-page: 683 year: 2019 publication-title: Nat. Energy – volume: 7 start-page: 1937 year: 2020 publication-title: Mater. Horiz. – volume: 397 year: 2021 publication-title: Electrochim. Acta – volume: 7 start-page: 123 year: 2019 publication-title: Front. Energy Res. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 9 start-page: 3656 year: 2018 publication-title: Nat. Commun. – volume: 169 year: 2022 publication-title: J. Electrochem. Soc. – volume: 93 year: 2022 publication-title: Nano Energy – volume: 16 start-page: 166 year: 2021 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 653 year: 2021 publication-title: Nat. Energy – volume: 5 start-page: 3468 year: 2020 publication-title: ACS Energy Lett. – volume: 18 start-page: 414 year: 2019 publication-title: Energy Storage Mater. – volume: 3 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 4 start-page: 262 year: 2020 publication-title: Joule – volume: 6 start-page: 3287 year: 2021 publication-title: ACS Energy Lett. – volume: 1 start-page: 1674 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 6 start-page: 987 year: 2021 publication-title: Nat. Energy – volume: 32 start-page: 2341 year: 2020 publication-title: Chem. Mater. – volume: 12 start-page: 2174 year: 2019 publication-title: Energy Environ. Sci. – volume: 14 start-page: 200 year: 2019 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 500 year: 2009 publication-title: Nat. Mater. – volume: 45 start-page: 941 year: 2022 publication-title: Energy Storage Mater. – volume: 164 year: 2017 publication-title: J. Electrochem. Soc. – volume: 79 year: 2021 publication-title: Nano Energy – volume: 509 year: 2021 publication-title: J. Power Sources – volume: 4 start-page: 539 year: 2020 publication-title: Joule – volume: 168 year: 2021 publication-title: J. Electrochem. Soc. – volume: 5 start-page: 526 year: 2020 publication-title: Nat. Energy – volume: 17 year: 2021 publication-title: Small – volume: 48 start-page: 114 year: 2022 publication-title: Energy Storage Mater. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 50 start-page: 659 year: 2018 publication-title: Nano Energy – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 2575 year: 2022 publication-title: Nat. Commun. – volume: 77 year: 2020 publication-title: Nano Energy – volume: 4 start-page: 374 year: 2019 publication-title: Nat. Energy – volume: 15 start-page: 1840 year: 2022 publication-title: Energy Environ. Sci. – volume: 96 year: 2022 publication-title: Nano Energy – volume: 4 start-page: 445 year: 2021 publication-title: Batteries Supercaps – volume: 6 start-page: 18 year: 2017 publication-title: Energy Storage Mater. – volume: 4 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 8 year: 2020 publication-title: Energy Technol. – volume: 66 start-page: 24 year: 2022 publication-title: J. Energy Chem. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 5 start-page: 299 year: 2020 publication-title: Nat. Energy – volume: 49 start-page: 5407 year: 2020 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 3729 year: 2018 publication-title: Nat. Commun. – volume: 120 year: 2020 publication-title: Chem. Rev. – volume: 49 start-page: 3040 year: 2020 publication-title: Chem. Soc. Rev. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 303 year: 2021 publication-title: Nat. Energy – volume: 14 start-page: 4115 year: 2021 publication-title: Energy Environ. Sci. – volume: 135 start-page: 4450 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 8344 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 14 start-page: 594 year: 2019 publication-title: Nat. Nanotechnol. – volume: 4 year: 2022 publication-title: InfoMat – volume: 48 start-page: 424 year: 2020 publication-title: J. Energy Chem. – volume: 8 start-page: 336 year: 2017 publication-title: Nat. Commun. – volume: 15 start-page: 2435 year: 2022 publication-title: Energy Environ. Sci. – volume: 37 start-page: 29 year: 2019 publication-title: J. Energy Chem. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 60 start-page: 8289 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 495 year: 2021 publication-title: Nat. Energy – volume: 9 start-page: 2603 year: 2016 publication-title: Energy Environ. Sci. – volume: MA2019‐01 start-page: 531 year: 2019 publication-title: ECS Meet. Abstr. – volume: 39 start-page: 616 year: 2020 publication-title: Rare Met. – volume: 1 start-page: 72 year: 2022 publication-title: iEnergy – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 5 start-page: 2484 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 165 year: 2018 publication-title: J. Electrochem. Soc. – volume: 1 start-page: 38 year: 2021 publication-title: SusMat – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 1 start-page: 981 year: 2016 publication-title: ACS Energy Lett. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 7 start-page: 312 year: 2022 publication-title: Nat. Energy – volume: 25 year: 2022 publication-title: iScience – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 24 year: 2021 publication-title: iScience – volume: 20 year: 2021 publication-title: Mater. Today Energy – volume: 21 start-page: 3245 year: 2021 publication-title: Nano Lett. – volume: 1 start-page: 506 year: 2021 publication-title: SusMat – volume: 7 start-page: 1338 year: 2022 publication-title: ACS Energy Lett. – volume: 39 start-page: 743 year: 2020 publication-title: Rare Met. – volume: 6 start-page: 115 year: 2021 publication-title: ACS Energy Lett. – volume: 10 start-page: 1896 year: 2019 publication-title: Nat. Commun. – volume: 29 start-page: 323 year: 1979 publication-title: J. Solid State Chem. – volume: 17 start-page: 613 year: 2022 publication-title: Nat. Nanotechnol. – volume: 33 start-page: 56 year: 2020 publication-title: Mater. Today – volume: 69 start-page: 205 year: 2022 publication-title: J. Energy Chem. – volume: 57 start-page: 56 year: 2021 publication-title: Particuology – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 463 year: 2020 publication-title: J. Power Sources – volume: 3 start-page: 2647 year: 2019 publication-title: Joule – volume: 49 start-page: 299 year: 2022 publication-title: Energy Storage Mater. – volume: 475 year: 2020 publication-title: J. Power Sources – volume: 18 year: 2020 publication-title: Mater. Today Energy – volume: 195 start-page: 3715 year: 2010 publication-title: J. Power Sources – volume: 6 start-page: 723 year: 2021 publication-title: Nat. Energy – volume: 12 start-page: 176 year: 2020 publication-title: Nano‐Micro Lett. – volume: 115 start-page: 5676 year: 2018 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 60 start-page: 975 year: 2015 publication-title: Sci. Bull. – volume: 140 start-page: 1608 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 5 year: 2022 publication-title: Batteries Supercaps – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 40 start-page: 409 year: 2021 publication-title: Rare Met. – volume: 10 start-page: 199 year: 2018 publication-title: Energy Storage Mater. – volume: 69 start-page: 70 year: 2022 publication-title: J. Energy Chem. – volume: 5 year: 2022 publication-title: Energy Environ. Mater. – volume: 10 start-page: 9670 year: 2022 publication-title: J. Mater. Chem. A – volume: 21 year: 2021 publication-title: Mater. Today Energy – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 24 year: 2022 publication-title: Mater. Today Energy – volume: 4 start-page: 1445 year: 2020 publication-title: Joule – volume: 2 start-page: 435 year: 2022 publication-title: SusMat – volume: 2 start-page: 6655 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 22 start-page: 1374 year: 2022 publication-title: Nano Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 572 start-page: 511 year: 2019 publication-title: Nature – volume: 57 start-page: 840 year: 2021 publication-title: Chem. Commun. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 12 start-page: 177 year: 2019 publication-title: Energy Environ. Sci. – volume: 56 start-page: 391 year: 2021 publication-title: J. Energy Chem. – volume: 4 start-page: 2017 year: 2020 publication-title: Joule – volume: 45 start-page: 8045 year: 2019 publication-title: Ceram. Int. – volume: 4 start-page: 180 year: 2019 publication-title: Nat. Energy – volume: 7 year: 2019 publication-title: Energy Technol. – volume: 59 start-page: 3252 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 551 year: 2019 publication-title: Nat. Energy – volume: 166 year: 2019 publication-title: J. Electrochem. Soc. – ident: e_1_2_8_95_1 doi: 10.1002/aenm.201903362 – ident: e_1_2_8_200_1 doi: 10.1002/adma.202100793 – ident: e_1_2_8_167_1 doi: 10.1016/j.nanoen.2021.106837 – ident: e_1_2_8_192_1 doi: 10.1021/acsaem.9b01175 – ident: e_1_2_8_156_1 doi: 10.1002/aenm.201900858 – ident: e_1_2_8_124_1 doi: 10.1002/adma.201804461 – ident: e_1_2_8_188_1 doi: 10.1021/acsami.1c17616 – ident: e_1_2_8_68_1 doi: 10.1002/sus2.37 – ident: e_1_2_8_16_1 doi: 10.1021/acs.chemrev.0c00275 – ident: e_1_2_8_201_1 doi: 10.1039/C9NR10966H – ident: e_1_2_8_25_1 doi: 10.1002/adfm.202004189 – ident: e_1_2_8_105_1 doi: 10.1038/s41560-021-00839-0 – ident: e_1_2_8_160_1 doi: 10.1002/advs.202201147 – ident: e_1_2_8_1_1 doi: 10.1038/s41560-021-00783-z – ident: e_1_2_8_7_1 doi: 10.1038/s41565-020-00797-w – ident: e_1_2_8_147_1 doi: 10.1002/anie.202103303 – ident: e_1_2_8_57_1 doi: 10.1149/2.0091908jes – ident: e_1_2_8_27_1 doi: 10.1039/C9CS00636B – ident: e_1_2_8_125_1 doi: 10.1016/j.joule.2019.09.022 – ident: e_1_2_8_199_1 doi: 10.1002/adma.202107638 – ident: e_1_2_8_219_1 doi: 10.1007/s12598-020-01501-6 – ident: e_1_2_8_70_1 doi: 10.1021/acsenergylett.1c01395 – ident: e_1_2_8_139_1 doi: 10.1038/s41560-021-00792-y – ident: e_1_2_8_36_1 doi: 10.1002/aenm.201501102 – ident: e_1_2_8_115_1 doi: 10.1039/D2TA02162E – ident: e_1_2_8_86_1 doi: 10.1002/adma.202007428 – ident: e_1_2_8_173_1 doi: 10.1002/adma.201801213 – ident: e_1_2_8_224_1 doi: 10.1002/advs.202103786 – ident: e_1_2_8_32_1 doi: 10.1016/j.joule.2020.02.006 – ident: e_1_2_8_221_1 doi: 10.1016/j.electacta.2021.139249 – ident: e_1_2_8_47_1 doi: 10.1002/aenm.202002360 – ident: e_1_2_8_220_1 doi: 10.1021/acsaem.1c04001 – ident: e_1_2_8_20_1 doi: 10.1002/admi.202102283 – ident: e_1_2_8_80_1 doi: 10.1016/j.joule.2020.07.014 – ident: e_1_2_8_122_1 doi: 10.1039/D1TA02615A – ident: e_1_2_8_215_1 doi: 10.1016/j.ensm.2022.04.026 – ident: e_1_2_8_217_1 doi: 10.1016/j.mtener.2021.100785 – ident: e_1_2_8_136_1 doi: 10.1021/acs.accounts.0c00412 – ident: e_1_2_8_178_1 doi: 10.1002/adma.201807131 – ident: e_1_2_8_181_1 doi: 10.1021/jacs.1c08606 – ident: e_1_2_8_29_1 doi: 10.1039/C9CS00838A – ident: e_1_2_8_34_1 doi: 10.1038/nmat2460 – ident: e_1_2_8_123_1 doi: 10.1002/aenm.201801560 – ident: e_1_2_8_176_1 doi: 10.1021/acs.nanolett.1c00534 – ident: e_1_2_8_130_1 doi: 10.1038/s41467-018-06077-5 – ident: e_1_2_8_141_1 doi: 10.1007/s40820-020-00514-1 – ident: e_1_2_8_197_1 doi: 10.1002/adma.201906836 – ident: e_1_2_8_108_1 doi: 10.1016/j.ensm.2018.08.010 – ident: e_1_2_8_111_1 doi: 10.1039/D2TA00167E – ident: e_1_2_8_164_1 doi: 10.1016/j.jechem.2022.01.019 – ident: e_1_2_8_53_1 doi: 10.1039/D0MH00067A – ident: e_1_2_8_186_1 doi: 10.1002/smll.202105999 – ident: e_1_2_8_15_1 doi: 10.1002/anie.202017063 – ident: e_1_2_8_93_1 doi: 10.1002/anie.202115602 – ident: e_1_2_8_171_1 doi: 10.1002/aenm.202200190 – ident: e_1_2_8_180_1 doi: 10.1002/batt.202100341 – ident: e_1_2_8_193_1 doi: 10.1021/acsami.1c01849 – ident: e_1_2_8_161_1 doi: 10.1002/aenm.202200568 – ident: e_1_2_8_132_1 doi: 10.23919/IEN.2022.0003 – ident: e_1_2_8_46_1 doi: 10.1016/j.joule.2020.05.012 – ident: e_1_2_8_182_1 doi: 10.1002/adma.202004793 – ident: e_1_2_8_211_1 doi: 10.1002/anie.202114805 – ident: e_1_2_8_90_1 doi: 10.1002/aenm.201902254 – ident: e_1_2_8_31_1 doi: 10.1002/adfm.202002824 – ident: e_1_2_8_196_1 doi: 10.1002/smll.202101881 – ident: e_1_2_8_198_1 doi: 10.1039/C8EE01879K – ident: e_1_2_8_151_1 doi: 10.1021/acsami.1c05966 – ident: e_1_2_8_6_1 doi: 10.1007/s12598-020-01432-2 – ident: e_1_2_8_185_1 doi: 10.1016/j.ensm.2022.01.037 – ident: e_1_2_8_51_1 doi: 10.1002/adma.202105329 – ident: e_1_2_8_40_1 doi: 10.1149/2.0271713jes – ident: e_1_2_8_5_1 doi: 10.34133/2021/1205324 – ident: e_1_2_8_63_1 doi: 10.1021/acsami.1c06488 – ident: e_1_2_8_101_1 doi: 10.1021/acsenergylett.2c00232 – ident: e_1_2_8_24_1 doi: 10.1007/s12598-020-01429-x – ident: e_1_2_8_127_1 doi: 10.1002/adma.202008619 – ident: e_1_2_8_85_1 doi: 10.1002/advs.202100684 – ident: e_1_2_8_210_1 doi: 10.1016/j.jpowsour.2021.229861 – ident: e_1_2_8_3_1 doi: 10.1002/eem2.12257 – ident: e_1_2_8_87_1 doi: 10.1002/eem2.12308 – ident: e_1_2_8_226_1 doi: 10.1038/s41560-020-0575-z – ident: e_1_2_8_75_1 doi: 10.1016/j.partic.2020.12.003 – ident: e_1_2_8_49_1 doi: 10.1126/sciadv.abj3423 – ident: e_1_2_8_67_1 doi: 10.1021/acsami.0c06201 – ident: e_1_2_8_162_1 doi: 10.1002/anie.202101958 – ident: e_1_2_8_84_1 doi: 10.1021/jacs.7b13357 – ident: e_1_2_8_60_1 doi: 10.1149/1945-7111/ab6439 – ident: e_1_2_8_73_1 doi: 10.1021/acscentsci.0c00449 – ident: e_1_2_8_52_1 doi: 10.1002/sus2.4 – ident: e_1_2_8_128_1 doi: 10.1016/j.jpowsour.2021.230370 – ident: e_1_2_8_42_1 doi: 10.1016/j.joule.2019.02.004 – ident: e_1_2_8_44_1 doi: 10.1149/2.0701914jes – ident: e_1_2_8_62_1 doi: 10.1038/s41560-021-00917-3 – ident: e_1_2_8_134_1 doi: 10.1002/anie.201707093 – ident: e_1_2_8_183_1 doi: 10.1038/s41467-019-09932-1 – ident: e_1_2_8_103_1 doi: 10.1002/adma.202102134 – ident: e_1_2_8_45_1 doi: 10.1149/MA2019-01/5/531 – ident: e_1_2_8_119_1 doi: 10.1038/s41467-022-29199-3 – ident: e_1_2_8_152_1 doi: 10.1002/anie.202116635 – ident: e_1_2_8_144_1 doi: 10.1002/smll.202202349 – ident: e_1_2_8_100_1 doi: 10.1002/anie.201911724 – ident: e_1_2_8_159_1 doi: 10.1002/batt.202000225 – ident: e_1_2_8_154_1 doi: 10.1039/C9EE00716D – ident: e_1_2_8_148_1 doi: 10.1038/s41560-019-0351-0 – ident: e_1_2_8_191_1 doi: 10.1126/sciadv.aat3446 – ident: e_1_2_8_150_1 doi: 10.1021/acsami.9b00507 – ident: e_1_2_8_69_1 doi: 10.1149/2.0901811jes – ident: e_1_2_8_175_1 doi: 10.1007/s12598-018-1049-3 – ident: e_1_2_8_131_1 doi: 10.1002/anie.201801513 – ident: e_1_2_8_184_1 doi: 10.1002/aenm.202003663 – ident: e_1_2_8_14_1 doi: 10.1016/j.jechem.2022.05.005 – ident: e_1_2_8_118_1 doi: 10.1002/aenm.202200139 – ident: e_1_2_8_168_1 doi: 10.1021/acs.nanolett.1c04775 – ident: e_1_2_8_54_1 doi: 10.1038/s41565-019-0371-8 – ident: e_1_2_8_55_1 doi: 10.3389/fenrg.2019.00123 – ident: e_1_2_8_38_1 doi: 10.1021/acs.jpclett.5b01814 – ident: e_1_2_8_56_1 doi: 10.1038/s41560-019-0428-9 – ident: e_1_2_8_202_1 doi: 10.1002/ente.202000094 – ident: e_1_2_8_77_1 doi: 10.1021/acsenergylett.6b00353 – ident: e_1_2_8_133_1 doi: 10.1021/acsaem.1c02158 – ident: e_1_2_8_2_1 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_8_92_1 doi: 10.1002/anie.202101627 – ident: e_1_2_8_163_1 doi: 10.1038/s41565-022-01107-2 – ident: e_1_2_8_99_1 doi: 10.1002/anie.202201406 – ident: e_1_2_8_117_1 doi: 10.1149/1945-7111/ac39e3 – ident: e_1_2_8_216_1 doi: 10.1021/acsenergylett.0c01905 – ident: e_1_2_8_149_1 doi: 10.1021/acsami.1c19158 – ident: e_1_2_8_213_1 doi: 10.1016/j.joule.2019.09.003 – ident: e_1_2_8_65_1 doi: 10.1002/aenm.202003416 – ident: e_1_2_8_225_1 doi: 10.1126/sciadv.abn4372 – ident: e_1_2_8_78_1 doi: 10.1016/j.jechem.2021.12.049 – ident: e_1_2_8_88_1 doi: 10.1016/j.jechem.2021.07.010 – ident: e_1_2_8_114_1 doi: 10.1002/aenm.202003709 – ident: e_1_2_8_158_1 doi: 10.1021/acsaem.8b00132 – ident: e_1_2_8_140_1 doi: 10.1002/anie.201807034 – ident: e_1_2_8_155_1 doi: 10.1016/j.ensm.2017.03.008 – ident: e_1_2_8_189_1 doi: 10.1038/s41467-018-06126-z – ident: e_1_2_8_218_1 doi: 10.1021/acsami.2c02038 – ident: e_1_2_8_165_1 doi: 10.1016/j.jechem.2020.08.029 – ident: e_1_2_8_79_1 doi: 10.1021/acs.chemmater.0c04537 – ident: e_1_2_8_98_1 doi: 10.1039/C6EE00789A – ident: e_1_2_8_58_1 doi: 10.1016/j.nanoen.2018.06.003 – ident: e_1_2_8_102_1 doi: 10.1002/anie.202104671 – ident: e_1_2_8_74_1 doi: 10.1038/s41467-022-30112-1 – ident: e_1_2_8_116_1 doi: 10.1002/anie.202103850 – ident: e_1_2_8_129_1 doi: 10.1038/s41560-020-0634-5 – ident: e_1_2_8_72_1 doi: 10.1002/adfm.202009925 – ident: e_1_2_8_135_1 doi: 10.1039/D0CC06849G – ident: e_1_2_8_17_1 doi: 10.1002/adfm.202009961 – ident: e_1_2_8_170_1 doi: 10.1002/adfm.202200682 – ident: e_1_2_8_208_1 doi: 10.1039/D0EE02714F – ident: e_1_2_8_13_1 doi: 10.34133/2021/9204217 – ident: e_1_2_8_21_1 doi: 10.1038/s41565-018-0061-y – ident: e_1_2_8_206_1 doi: 10.1002/aenm.202200412 – ident: e_1_2_8_222_1 doi: 10.1021/acsaem.0c00935 – ident: e_1_2_8_97_1 doi: 10.1021/acs.chemmater.9b04550 – ident: e_1_2_8_212_1 doi: 10.1002/adfm.202201861 – ident: e_1_2_8_48_1 doi: 10.1038/s41560-021-00852-3 – ident: e_1_2_8_106_1 doi: 10.1002/anie.202116214 – ident: e_1_2_8_113_1 doi: 10.1039/D1TA07660D – ident: e_1_2_8_91_1 doi: 10.1021/jacs.1c11315 – ident: e_1_2_8_187_1 doi: 10.1007/s12598-022-01994-3 – ident: e_1_2_8_194_1 doi: 10.1016/j.ensm.2021.12.046 – ident: e_1_2_8_190_1 doi: 10.1016/j.jechem.2018.11.016 – ident: e_1_2_8_166_1 doi: 10.1016/j.ceramint.2019.01.031 – ident: e_1_2_8_145_1 doi: 10.1038/s41467-017-00519-2 – ident: e_1_2_8_8_1 doi: 10.1038/s41560-022-01001-0 – ident: e_1_2_8_203_1 doi: 10.1002/aenm.202100748 – ident: e_1_2_8_138_1 doi: 10.1016/j.isci.2021.103490 – ident: e_1_2_8_43_1 doi: 10.1038/s41560-019-0390-6 – ident: e_1_2_8_33_1 doi: 10.1016/0022-4596(79)90189-0 – ident: e_1_2_8_66_1 doi: 10.1002/aenm.201903253 – ident: e_1_2_8_107_1 doi: 10.1021/acsenergylett.0c02351 – ident: e_1_2_8_23_1 doi: 10.34133/2021/1932952 – ident: e_1_2_8_174_1 doi: 10.1016/j.mtener.2021.100663 – ident: e_1_2_8_4_1 doi: 10.1002/aenm.202003746 – ident: e_1_2_8_104_1 doi: 10.1002/anie.202103470 – ident: e_1_2_8_153_1 doi: 10.1002/aenm.202103503 – ident: e_1_2_8_195_1 doi: 10.1016/j.nanoen.2020.105481 – ident: e_1_2_8_223_1 doi: 10.1021/acsenergylett.1c01368 – ident: e_1_2_8_142_1 doi: 10.1073/pnas.1803634115 – ident: e_1_2_8_26_1 doi: 10.1002/adma.202004128 – ident: e_1_2_8_172_1 doi: 10.1002/aenm.202103204 – ident: e_1_2_8_157_1 doi: 10.1002/adfm.202001607 – ident: e_1_2_8_143_1 doi: 10.1002/anie.202004853 – ident: e_1_2_8_39_1 doi: 10.1016/j.ensm.2016.09.003 – ident: e_1_2_8_83_1 doi: 10.1016/j.jpowsour.2020.228690 – ident: e_1_2_8_10_1 doi: 10.1016/j.mtener.2020.100519 – ident: e_1_2_8_50_1 doi: 10.1016/j.esci.2021.08.001 – ident: e_1_2_8_207_1 doi: 10.1002/adfm.202201136 – ident: e_1_2_8_94_1 doi: 10.1038/s41586-019-1481-z – ident: e_1_2_8_89_1 doi: 10.1016/j.jechem.2020.02.047 – ident: e_1_2_8_109_1 doi: 10.1039/D1EE00508A – ident: e_1_2_8_22_1 doi: 10.1039/D2EE00842D – ident: e_1_2_8_76_1 doi: 10.1002/ente.201900111 – ident: e_1_2_8_169_1 doi: 10.1016/j.mtener.2022.100949 – ident: e_1_2_8_214_1 doi: 10.1002/inf2.12292 – ident: e_1_2_8_137_1 doi: 10.1039/D1EE02959B – ident: e_1_2_8_41_1 doi: 10.1002/adma.201902785 – ident: e_1_2_8_19_1 doi: 10.1038/s41565-019-0427-9 – ident: e_1_2_8_64_1 doi: 10.1002/aenm.202103048 – ident: e_1_2_8_11_1 doi: 10.1016/j.mtener.2021.100841 – ident: e_1_2_8_37_1 doi: 10.1002/aenm.201402290 – ident: e_1_2_8_81_1 doi: 10.1149/1945-7111/ac5345 – ident: e_1_2_8_9_1 doi: 10.1002/adma.202201555 – ident: e_1_2_8_205_1 doi: 10.1002/adma.202201981 – ident: e_1_2_8_18_1 doi: 10.1021/acsaem.0c01946 – ident: e_1_2_8_120_1 doi: 10.1021/acsami.1c10756 – ident: e_1_2_8_30_1 doi: 10.1016/j.mattod.2019.09.018 – ident: e_1_2_8_204_1 doi: 10.1021/jacs.2c01996 – ident: e_1_2_8_126_1 doi: 10.1002/ente.202000348 – ident: e_1_2_8_209_1 doi: 10.1021/jacs.1c08425 – ident: e_1_2_8_35_1 doi: 10.1016/j.jpowsour.2009.11.139 – ident: e_1_2_8_71_1 doi: 10.1016/j.isci.2021.103394 – ident: e_1_2_8_177_1 doi: 10.1016/j.nanoen.2021.106805 – ident: e_1_2_8_179_1 doi: 10.1016/j.joule.2018.02.001 – ident: e_1_2_8_96_1 doi: 10.1016/j.nanoen.2022.107122 – ident: e_1_2_8_59_1 doi: 10.1016/j.nanoen.2020.105098 – ident: e_1_2_8_112_1 doi: 10.1016/j.ensm.2019.12.028 – ident: e_1_2_8_110_1 doi: 10.1002/adma.202006323 – ident: e_1_2_8_82_1 doi: 10.1007/s11434-015-0783-2 – ident: e_1_2_8_121_1 doi: 10.1016/j.nanoen.2022.107102 – ident: e_1_2_8_12_1 doi: 10.1002/sus2.74 – ident: e_1_2_8_146_1 doi: 10.1021/ja312241y – ident: e_1_2_8_61_1 doi: 10.1016/j.jpowsour.2020.228180 – ident: e_1_2_8_28_1 doi: 10.1039/C7CS00863E |
SSID | ssj0000491033 |
Score | 2.6224022 |
SecondaryResourceType | review_article |
Snippet | Lithium metal battery has been considered as one of the potential candidates for next‐generation energy storage systems. However, the dendrite growth issue in... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes dendrites Dendritic structure Electrochemical analysis Energy storage Failure mechanisms Life span Lithium batteries lithium metal anodes pouch cells pressure solid electrolyte interphase Storage systems |
Title | Working Principles of Lithium Metal Anode in Pouch Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202202518 https://www.proquest.com/docview/2754620133 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZp-7I-jF42lrUreijsIXizJct2HrOspZSmFNZCnmosSyaG1BlL_NJf36OLZYeuVwImKIovOp_OzUefEDomVLIkiiOPxUXsgf_vezzi0tPMKlEoGZEqoT-5jM5uwvMpm_Z6t52qpXrFf-T3_11X8h6pQhvIVa2SfYNk3UmhAb6DfOEIEobjq2RsM92DqyZjrusyLsrVrKzvBhOpFjpCfC80McjVos5ng7Gcz5ddj3TUFAFIswoQPFhz665Up6yNfWrfH2lNNS0drsYzaVQGtLnqiV-NUVTVPbXJyC5sk00zENIp2TCaEey4FyU2GSm7bYZvyalT0oGNYdO0ltXZnUdq29DAZrJS3ACEqLgnaQ1U81Le9WTP9zV0vieXE_f7BtoiEEaAHtwa_Z5c_HFZOIiPAp_qVRjN8zXMnj75uX6Rdc-lDUe6QY32Sq530EcbTuCRwcYu6slqD213SCb3UWJRgluU4EWBLUqwRgnWKMFlhTVKsEbJJ3RzenI9PvPsfhleDl4gTA0iOGeK0IcLEcKHZjQUeZENaaB2HUh8yYdDEcQBzYs440nOihAc3ISBEk9IRj-jzWpRyS8Ix2HGmQDvmuVRGGScQ1xJ_LgQvvD9gog-8pqxSHNLJq_2NJmnhgabpGrsUjd2ffTd9f9raFSe7HnYDG1qp9oyJTELI3BVKe0joof7hbOka-L_-p4_HaAP7Tw4RJurf7X8Bg7oih9ZFD0A8ph3tw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Working+Principles+of+Lithium+Metal+Anode+in+Pouch+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Liu%2C+He&rft.au=Sun%2C+Xin&rft.au=Cheng%2C+Xin%E2%80%90Bing&rft.au=Guo%2C+Cong&rft.date=2022-12-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=47&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202202518&rft.externalDBID=10.1002%252Faenm.202202518&rft.externalDocID=AENM202202518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |