Single‐Atom Reversible Lithiophilic Sites toward Stable Lithium Anodes
Lithiophilic sites with high binding energy to Li have shown the capability to guide uniform Li deposition, however, the irreversible reaction between Li and lithiophilic sites causes a loss of lithiophilicity. Herein, the concept of using reversible lithiophilic sites, such as single‐atoms (SAs) do...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 8 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithiophilic sites with high binding energy to Li have shown the capability to guide uniform Li deposition, however, the irreversible reaction between Li and lithiophilic sites causes a loss of lithiophilicity. Herein, the concept of using reversible lithiophilic sites, such as single‐atoms (SAs) doped graphene, as a host, is systematically inspected in the context of Li metal battery (LMB) performance. Here, it is proposed that the binding energy to Li atoms should be within a certain threshold range, i.e., strong enough to inhibit Li dendrite growth and weak enough to avoid host structure collapse. Six kinds of SAs are utilized; doped 3D graphene, nitrogen‐doped 3D graphene, and pure 3D graphene, whose performance in LMBs are compared with each other. It is discovered that the SA‐Mn doped 3D graphene (SAMn@NG) has the most reversible lithiophilic site, in which adsorption strength with Li is suitable to guide uniform deposition and keep the structure stable. During Li plating/stripping, the changes of the atomic structures in SAMn@NG, such as change of bond length and bond angle around Mn atoms are much smaller than those on SAZr@NG, although its binding energy is higher, enabling a much‐improved battery performance in SAMn@NG. This work provides a new insight to design lithiophilic sites in LMBs.
In this work, the concept of using reversible lithiophilic sites, such as single‐atoms doped graphene, as a host is systematically inspected in the context of lithium metal battery performance. The binding energy to lithium atoms should be within a certain threshold range, i.e. strong enough to inhibit lithium dendrite growth and weak enough to avoid host structure collapse. |
---|---|
AbstractList | Lithiophilic sites with high binding energy to Li have shown the capability to guide uniform Li deposition, however, the irreversible reaction between Li and lithiophilic sites causes a loss of lithiophilicity. Herein, the concept of using reversible lithiophilic sites, such as single‐atoms (SAs) doped graphene, as a host, is systematically inspected in the context of Li metal battery (LMB) performance. Here, it is proposed that the binding energy to Li atoms should be within a certain threshold range, i.e., strong enough to inhibit Li dendrite growth and weak enough to avoid host structure collapse. Six kinds of SAs are utilized; doped 3D graphene, nitrogen‐doped 3D graphene, and pure 3D graphene, whose performance in LMBs are compared with each other. It is discovered that the SA‐Mn doped 3D graphene (SAMn@NG) has the most reversible lithiophilic site, in which adsorption strength with Li is suitable to guide uniform deposition and keep the structure stable. During Li plating/stripping, the changes of the atomic structures in SAMn@NG, such as change of bond length and bond angle around Mn atoms are much smaller than those on SAZr@NG, although its binding energy is higher, enabling a much‐improved battery performance in SAMn@NG. This work provides a new insight to design lithiophilic sites in LMBs.
In this work, the concept of using reversible lithiophilic sites, such as single‐atoms doped graphene, as a host is systematically inspected in the context of lithium metal battery performance. The binding energy to lithium atoms should be within a certain threshold range, i.e. strong enough to inhibit lithium dendrite growth and weak enough to avoid host structure collapse. Lithiophilic sites with high binding energy to Li have shown the capability to guide uniform Li deposition, however, the irreversible reaction between Li and lithiophilic sites causes a loss of lithiophilicity. Herein, the concept of using reversible lithiophilic sites, such as single‐atoms (SAs) doped graphene, as a host, is systematically inspected in the context of Li metal battery (LMB) performance. Here, it is proposed that the binding energy to Li atoms should be within a certain threshold range, i.e., strong enough to inhibit Li dendrite growth and weak enough to avoid host structure collapse. Six kinds of SAs are utilized; doped 3D graphene, nitrogen‐doped 3D graphene, and pure 3D graphene, whose performance in LMBs are compared with each other. It is discovered that the SA‐Mn doped 3D graphene (SAMn@NG) has the most reversible lithiophilic site, in which adsorption strength with Li is suitable to guide uniform deposition and keep the structure stable. During Li plating/stripping, the changes of the atomic structures in SAMn@NG, such as change of bond length and bond angle around Mn atoms are much smaller than those on SAZr@NG, although its binding energy is higher, enabling a much‐improved battery performance in SAMn@NG. This work provides a new insight to design lithiophilic sites in LMBs. |
Author | Wang, Xingguo Zhai, Pengbo Zuo, Jinghan Wei, Yi Gong, Yongji Wang, Jinliang Chen, Qian Yang, Zhilin Dang, Yan Gu, Xiaokang Yang, Shubin Tang, Peizhe Yao, Yong Zhao, Feifei |
Author_xml | – sequence: 1 givenname: Zhilin surname: Yang fullname: Yang, Zhilin organization: Beihang University – sequence: 2 givenname: Yan surname: Dang fullname: Dang, Yan organization: Beihang University – sequence: 3 givenname: Pengbo surname: Zhai fullname: Zhai, Pengbo organization: Qingdao University – sequence: 4 givenname: Yi surname: Wei fullname: Wei, Yi organization: Beijing University of Chemical Technology – sequence: 5 givenname: Qian surname: Chen fullname: Chen, Qian organization: Beihang University – sequence: 6 givenname: Jinghan surname: Zuo fullname: Zuo, Jinghan organization: Beihang University – sequence: 7 givenname: Xiaokang surname: Gu fullname: Gu, Xiaokang organization: Beihang University – sequence: 8 givenname: Yong surname: Yao fullname: Yao, Yong organization: Beihang University – sequence: 9 givenname: Xingguo surname: Wang fullname: Wang, Xingguo organization: Beihang University – sequence: 10 givenname: Feifei surname: Zhao fullname: Zhao, Feifei organization: Beihang University – sequence: 11 givenname: Jinliang surname: Wang fullname: Wang, Jinliang organization: Beihang University – sequence: 12 givenname: Shubin surname: Yang fullname: Yang, Shubin organization: Beihang University – sequence: 13 givenname: Peizhe orcidid: 0000-0002-6345-5809 surname: Tang fullname: Tang, Peizhe email: peizhet@buaa.edu.cn organization: Max Planck Institute for the Structure and Dynamics of Matter – sequence: 14 givenname: Yongji orcidid: 0000-0003-1432-6813 surname: Gong fullname: Gong, Yongji email: yongjigong@buaa.edu.cn organization: Beihang University |
BookMark | eNqFkM9KAzEQh4NUsNZePS943pp_prvHpVQrVAWr55DuTmzKblKT1NKbj-Az-iRuqVQQxJnDzOH7ZuB3ijrWWUDonOABwZheKrDNgGJKMGMiO0JdIghPRcZx57AzeoL6ISxxWzzfkV00mRn7UsPn-0cRXZM8whv4YOY1JFMTF8atFqY2ZTIzEUIS3Ub5KplFdQDWTVJYV0E4Q8da1QH637OHnq_HT6NJOn24uR0V07RkZJilROVaKC6qXAMMKw6EVEJzBTDnmVA6z2i7gCorTQmtFC_ZnOgMMGZta8J66GJ_d-Xd6xpClEu39rZ9KalgFAtO2FVL8T1VeheCBy1LE1U0zkavTC0JlrvY5C42eYit1Qa_tJU3jfLbv4V8L2xMDdt_aFmM7-9-3C_AWoNv |
CitedBy_id | crossref_primary_10_1002_celc_202400209 crossref_primary_10_1002_smll_202311750 crossref_primary_10_1002_smll_202207764 crossref_primary_10_1002_adma_202402792 crossref_primary_10_1021_acsanm_4c00190 crossref_primary_10_1016_j_cjche_2024_02_014 crossref_primary_10_1002_ente_202201084 crossref_primary_10_1002_smtd_202400503 crossref_primary_10_1021_acsami_4c04060 crossref_primary_10_1002_aenm_202203277 crossref_primary_10_1039_D4RA00333K crossref_primary_10_1039_D4SC04385E crossref_primary_10_1002_adfm_202310358 crossref_primary_10_1021_acsaem_3c00335 crossref_primary_10_1002_sstr_202300345 crossref_primary_10_1039_D2CP04032H crossref_primary_10_1002_adfm_202315563 crossref_primary_10_1002_aenm_202304337 crossref_primary_10_1002_smll_202208095 crossref_primary_10_1126_sciadv_ads6483 crossref_primary_10_1002_adfm_202420382 crossref_primary_10_1021_acs_iecr_3c02202 crossref_primary_10_1002_ange_202310132 crossref_primary_10_1002_adfm_202421110 crossref_primary_10_1002_smll_202203231 crossref_primary_10_1002_ange_202420866 crossref_primary_10_1021_acsnano_2c08480 crossref_primary_10_1039_D4GC02590C crossref_primary_10_1021_acs_nanolett_2c03090 crossref_primary_10_1007_s40820_022_00932_3 crossref_primary_10_1039_D3TA02347H crossref_primary_10_1002_adfm_202313538 crossref_primary_10_1002_smll_202411838 crossref_primary_10_1039_D4EE03673E crossref_primary_10_1007_s10853_024_10137_1 crossref_primary_10_1002_aenm_202302687 crossref_primary_10_1021_acs_nanolett_2c02159 crossref_primary_10_1002_idm2_12078 crossref_primary_10_1007_s40843_022_2457_4 crossref_primary_10_1002_anie_202420866 crossref_primary_10_1016_j_cej_2023_146612 crossref_primary_10_1002_smll_202306187 crossref_primary_10_1002_anie_202310132 crossref_primary_10_1021_acsnano_4c08831 crossref_primary_10_1002_idm2_12153 crossref_primary_10_1021_acsami_2c21558 crossref_primary_10_1016_j_jpowsour_2023_233468 crossref_primary_10_3389_fchem_2022_981623 crossref_primary_10_1021_acsami_2c18783 crossref_primary_10_1016_j_mtnano_2023_100321 crossref_primary_10_1002_ange_202405417 crossref_primary_10_1002_smll_202208277 crossref_primary_10_1002_adfm_202410742 crossref_primary_10_1002_aenm_202302730 crossref_primary_10_1016_j_nanoen_2025_110665 crossref_primary_10_1360_TB_2024_0223 crossref_primary_10_1002_adma_202302418 crossref_primary_10_1021_acsami_3c07105 crossref_primary_10_1016_j_ccr_2023_215493 crossref_primary_10_1016_j_cej_2024_159049 crossref_primary_10_20517_cs_2024_66 crossref_primary_10_1002_anie_202405417 crossref_primary_10_20517_energymater_2023_83 crossref_primary_10_1021_acsnano_2c10535 crossref_primary_10_1007_s12598_023_02360_7 crossref_primary_10_1002_cey2_423 crossref_primary_10_1002_eem2_12466 crossref_primary_10_1021_acsami_2c13425 crossref_primary_10_1002_adma_202210130 crossref_primary_10_1002_smll_202303266 crossref_primary_10_1002_aenm_202302862 crossref_primary_10_1039_D3TC04431A |
Cites_doi | 10.1016/j.jechem.2020.08.019 10.1021/jacs.7b06437 10.1039/D0CS00867B 10.1016/j.joule.2018.02.001 10.1039/C3EE40795K 10.1021/ja506553r 10.1039/c2jm16929k 10.1002/adma.202002325 10.1021/jacs.9b04907 10.1021/acs.chemrev.0c00275 10.1038/451652a 10.1002/adma.202006247 10.1021/jacs.7b10194 10.1016/j.ensm.2021.01.034 10.1002/aenm.201804019 10.1038/s41560-019-0338-x 10.1002/anie.201304762 10.1038/s41586-018-0397-3 10.1038/nenergy.2016.10 10.1039/C9CS00636B 10.1002/smtd.201800354 10.1002/adma.201703185 10.1126/sciadv.1500462 10.1016/j.cej.2020.124089 10.1002/smll.201905620 10.1016/j.nanoen.2020.105698 10.1002/aenm.201802918 10.1007/s12274-019-2567-7 10.1007/s41918-020-00076-1 10.1038/s41467-019-11960-w 10.1088/0022-3727/43/37/374002 10.1021/acs.chemrev.7b00115 10.1021/acs.chemrev.0c00576 10.1021/acsenergylett.0c00789 10.1007/s12598-020-01494-2 10.1002/adma.202105329 10.1016/j.jechem.2020.11.016 10.1002/anie.202101537 10.1038/nnano.2017.16 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202103368 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202103368 AENM202103368 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: B17002 – fundername: National Key Technologies R&D Program of China funderid: 2018YFA0306900 – fundername: Open Research Fund Program of the State Key Laboratory of Low‐Dimensional Quantum Physics in Tsinghua University, – fundername: National Natural Science Foundation of China funderid: 51872012 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3178-1a9f6a46d9fee7d4e11d6f4aeeb486af982b48eacdf212da4c3b1f8e003030f13 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:05:36 EDT 2025 Tue Jul 01 01:43:43 EDT 2025 Thu Apr 24 22:58:13 EDT 2025 Wed Jan 22 16:27:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3178-1a9f6a46d9fee7d4e11d6f4aeeb486af982b48eacdf212da4c3b1f8e003030f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6345-5809 0000-0003-1432-6813 |
PQID | 2632064135 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2632064135 crossref_citationtrail_10_1002_aenm_202103368 crossref_primary_10_1002_aenm_202103368 wiley_primary_10_1002_aenm_202103368_AENM202103368 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 560 2015; 1 2019; 9 2019; 4 2020; 120 2019; 10 2020; 16 2020; 387 2020; 13 2017; 29 2020; 33 2019; 141 2014; 136 2017; 117 2017; 139 2021; 36 2010; 43 2021; 59 2021; 37 2020; 5 2018; 3 2020; 3 2018; 2 2016; 1 2021; 56 2021; 33 2017; 12 2013; 52 2020; 49 2021; 82 2021; 60 2008; 451 2014; 7 2021; 40 2012; 22 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 Que H. F. (e_1_2_7_17_1) 2021; 37 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 2 start-page: 764 year: 2018 publication-title: Joule – volume: 10 start-page: 4244 year: 2019 publication-title: Nat. Commun. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 463 year: 2021 publication-title: J. Energy Chem. – volume: 59 start-page: 306 year: 2021 publication-title: J. Energy Chem. – volume: 36 start-page: 504 year: 2021 publication-title: Energy Storage Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 22 start-page: 6402 year: 2012 publication-title: J. Mater. Chem. – volume: 33 year: 2020 publication-title: Adv. Mater. – volume: 560 start-page: 345 year: 2018 publication-title: Nature – volume: 387 year: 2020 publication-title: Chem. Eng. J. – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 656 year: 2020 publication-title: Electrochem. Energy Rev. – volume: 7 start-page: 513 year: 2014 publication-title: Energy Environ. Sci. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 43 year: 2010 publication-title: J. Phys. D: Appl. Phys. – volume: 37 year: 2021 publication-title: Acta Phys.‐Chim. Sin. – volume: 117 year: 2017 publication-title: Chem. Rev. – volume: 40 start-page: 1357 year: 2021 publication-title: Rare Met. – volume: 16 year: 2020 publication-title: Small – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 13 start-page: 45 year: 2020 publication-title: Nano Res. – volume: 3 year: 2018 publication-title: Small Methods – volume: 5 start-page: 2156 year: 2020 publication-title: ACS Energy Lett. – volume: 82 year: 2021 publication-title: Nano Energy – volume: 49 start-page: 5407 year: 2020 publication-title: Chem. Soc. Rev. – volume: 49 start-page: 7284 year: 2020 publication-title: Chem. Soc. Rev. – volume: 52 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 120 year: 2020 publication-title: Chem. Rev. – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 4 start-page: 180 year: 2019 publication-title: Nat. Energy – volume: 451 start-page: 652 year: 2008 publication-title: Nature – ident: e_1_2_7_32_1 doi: 10.1016/j.jechem.2020.08.019 – ident: e_1_2_7_9_1 doi: 10.1021/jacs.7b06437 – ident: e_1_2_7_24_1 doi: 10.1039/D0CS00867B – ident: e_1_2_7_25_1 doi: 10.1016/j.joule.2018.02.001 – ident: e_1_2_7_5_1 doi: 10.1039/C3EE40795K – ident: e_1_2_7_35_1 doi: 10.1021/ja506553r – ident: e_1_2_7_37_1 doi: 10.1039/c2jm16929k – ident: e_1_2_7_19_1 doi: 10.1002/adma.202002325 – ident: e_1_2_7_34_1 doi: 10.1021/jacs.9b04907 – ident: e_1_2_7_12_1 doi: 10.1021/acs.chemrev.0c00275 – ident: e_1_2_7_2_1 doi: 10.1038/451652a – ident: e_1_2_7_13_1 doi: 10.1002/adma.202006247 – ident: e_1_2_7_33_1 doi: 10.1021/jacs.7b10194 – ident: e_1_2_7_15_1 doi: 10.1016/j.ensm.2021.01.034 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.201804019 – ident: e_1_2_7_3_1 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_7_7_1 doi: 10.1002/anie.201304762 – ident: e_1_2_7_10_1 doi: 10.1038/s41586-018-0397-3 – ident: e_1_2_7_27_1 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_7_6_1 doi: 10.1039/C9CS00636B – ident: e_1_2_7_30_1 doi: 10.1002/smtd.201800354 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201703185 – ident: e_1_2_7_39_1 doi: 10.1126/sciadv.1500462 – ident: e_1_2_7_22_1 doi: 10.1016/j.cej.2020.124089 – ident: e_1_2_7_26_1 doi: 10.1002/smll.201905620 – ident: e_1_2_7_14_1 doi: 10.1016/j.nanoen.2020.105698 – ident: e_1_2_7_40_1 doi: 10.1002/aenm.201802918 – ident: e_1_2_7_28_1 doi: 10.1007/s12274-019-2567-7 – ident: e_1_2_7_23_1 doi: 10.1007/s41918-020-00076-1 – ident: e_1_2_7_1_1 doi: 10.1038/s41467-019-11960-w – ident: e_1_2_7_36_1 doi: 10.1088/0022-3727/43/37/374002 – ident: e_1_2_7_8_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_31_1 doi: 10.1021/acs.chemrev.0c00576 – ident: e_1_2_7_21_1 doi: 10.1021/acsenergylett.0c00789 – volume: 37 year: 2021 ident: e_1_2_7_17_1 publication-title: Acta Phys.‐Chim. Sin. – ident: e_1_2_7_18_1 doi: 10.1007/s12598-020-01494-2 – ident: e_1_2_7_20_1 doi: 10.1002/adma.202105329 – ident: e_1_2_7_11_1 doi: 10.1016/j.jechem.2020.11.016 – ident: e_1_2_7_16_1 doi: 10.1002/anie.202101537 – ident: e_1_2_7_4_1 doi: 10.1038/nnano.2017.16 |
SSID | ssj0000491033 |
Score | 2.6052616 |
Snippet | Lithiophilic sites with high binding energy to Li have shown the capability to guide uniform Li deposition, however, the irreversible reaction between Li and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Binding energy Chemical bonds dendrite‐free deposition Dendritic structure Deposition Graphene Lithium reversible lithiophilic sites single‐atom structural stability |
Title | Single‐Atom Reversible Lithiophilic Sites toward Stable Lithium Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202103368 https://www.proquest.com/docview/2632064135 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLegu8AB8VcUBvIBiQMKNLHjOseKDVVonZC6SdsukWM7rNJIJpZdOO0j7DPuk-y92HFSVMTgEqWO4yZ-v9q_9_r-EPKOGwO0QaeRYAZDcmITAUtgUSmmk6QQU7iKBv3Fvpgf8q9H6VFfs7WNLmmKj_rXxriS_5EqtIFcMUr2HyQbBoUGOAf5whEkDMc7yXgJ-86ZDf4Ks6b-gcZ-NIFhQNTeqjld1edoMtEflqumzeaAXrJIMUMHtNBXtfG-hF1C2s41wLrYQOC17oXCKuHtzCc4egDYjm897jF34gtef7PV96Lu_whqG49XQ6sDKKyT4MHhFkrY1iMhvW3SDttc-qWwuiYDFMmNi7ZLAqtshZkBQAVlzFXaWc-O_duuFXwJXd7lJMf783D_fbKVgOKQjMjWbGextwx2N9CIsAfq4d0rdLk8J8mn9YdY5yq9AjJUY1oecvCYPPIKBJ05NDwh92z1lDwcpJV8RuYOFzdX14gI2iOCDhFBW0RQhwjqEEE9IqhDxHNy-GX34PM88hUzIg08UEaxykqhuDBZae3UcBvHRpRcWVtwKVSZyQROYK81JVAWo7hmRVxKi0s9m5Qxe0FGVV3Zl4SqQiktU6BwseKM8wy5rzQ6llpnKcvGJOrmJtc-nTxWNTnLNwtkTN6H_ucukcofe253U537H9tFjmUFgD3HLB2TpJ3-v4ySz3b3F-HTqzt_-2vyoMf7Nhk1Py_tG-CdTfHWQ-kWhaR9qw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90Atom+Reversible+Lithiophilic+Sites+toward+Stable+Lithium+Anodes&rft.jtitle=Advanced+energy+materials&rft.au=Yang%2C+Zhilin&rft.au=Dang%2C+Yan&rft.au=Zhai%2C+Pengbo&rft.au=Wei%2C+Yi&rft.date=2022-02-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=8&rft_id=info:doi/10.1002%2Faenm.202103368&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202103368 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |