Single‐Atom Reversible Lithiophilic Sites toward Stable Lithium Anodes

Lithiophilic sites with high binding energy to Li have shown the capability to guide uniform Li deposition, however, the irreversible reaction between Li and lithiophilic sites causes a loss of lithiophilicity. Herein, the concept of using reversible lithiophilic sites, such as single‐atoms (SAs) do...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 8
Main Authors Yang, Zhilin, Dang, Yan, Zhai, Pengbo, Wei, Yi, Chen, Qian, Zuo, Jinghan, Gu, Xiaokang, Yao, Yong, Wang, Xingguo, Zhao, Feifei, Wang, Jinliang, Yang, Shubin, Tang, Peizhe, Gong, Yongji
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithiophilic sites with high binding energy to Li have shown the capability to guide uniform Li deposition, however, the irreversible reaction between Li and lithiophilic sites causes a loss of lithiophilicity. Herein, the concept of using reversible lithiophilic sites, such as single‐atoms (SAs) doped graphene, as a host, is systematically inspected in the context of Li metal battery (LMB) performance. Here, it is proposed that the binding energy to Li atoms should be within a certain threshold range, i.e., strong enough to inhibit Li dendrite growth and weak enough to avoid host structure collapse. Six kinds of SAs are utilized; doped 3D graphene, nitrogen‐doped 3D graphene, and pure 3D graphene, whose performance in LMBs are compared with each other. It is discovered that the SA‐Mn doped 3D graphene (SAMn@NG) has the most reversible lithiophilic site, in which adsorption strength with Li is suitable to guide uniform deposition and keep the structure stable. During Li plating/stripping, the changes of the atomic structures in SAMn@NG, such as change of bond length and bond angle around Mn atoms are much smaller than those on SAZr@NG, although its binding energy is higher, enabling a much‐improved battery performance in SAMn@NG. This work provides a new insight to design lithiophilic sites in LMBs. In this work, the concept of using reversible lithiophilic sites, such as single‐atoms doped graphene, as a host is systematically inspected in the context of lithium metal battery performance. The binding energy to lithium atoms should be within a certain threshold range, i.e. strong enough to inhibit lithium dendrite growth and weak enough to avoid host structure collapse.
AbstractList Lithiophilic sites with high binding energy to Li have shown the capability to guide uniform Li deposition, however, the irreversible reaction between Li and lithiophilic sites causes a loss of lithiophilicity. Herein, the concept of using reversible lithiophilic sites, such as single‐atoms (SAs) doped graphene, as a host, is systematically inspected in the context of Li metal battery (LMB) performance. Here, it is proposed that the binding energy to Li atoms should be within a certain threshold range, i.e., strong enough to inhibit Li dendrite growth and weak enough to avoid host structure collapse. Six kinds of SAs are utilized; doped 3D graphene, nitrogen‐doped 3D graphene, and pure 3D graphene, whose performance in LMBs are compared with each other. It is discovered that the SA‐Mn doped 3D graphene (SAMn@NG) has the most reversible lithiophilic site, in which adsorption strength with Li is suitable to guide uniform deposition and keep the structure stable. During Li plating/stripping, the changes of the atomic structures in SAMn@NG, such as change of bond length and bond angle around Mn atoms are much smaller than those on SAZr@NG, although its binding energy is higher, enabling a much‐improved battery performance in SAMn@NG. This work provides a new insight to design lithiophilic sites in LMBs. In this work, the concept of using reversible lithiophilic sites, such as single‐atoms doped graphene, as a host is systematically inspected in the context of lithium metal battery performance. The binding energy to lithium atoms should be within a certain threshold range, i.e. strong enough to inhibit lithium dendrite growth and weak enough to avoid host structure collapse.
Lithiophilic sites with high binding energy to Li have shown the capability to guide uniform Li deposition, however, the irreversible reaction between Li and lithiophilic sites causes a loss of lithiophilicity. Herein, the concept of using reversible lithiophilic sites, such as single‐atoms (SAs) doped graphene, as a host, is systematically inspected in the context of Li metal battery (LMB) performance. Here, it is proposed that the binding energy to Li atoms should be within a certain threshold range, i.e., strong enough to inhibit Li dendrite growth and weak enough to avoid host structure collapse. Six kinds of SAs are utilized; doped 3D graphene, nitrogen‐doped 3D graphene, and pure 3D graphene, whose performance in LMBs are compared with each other. It is discovered that the SA‐Mn doped 3D graphene (SAMn@NG) has the most reversible lithiophilic site, in which adsorption strength with Li is suitable to guide uniform deposition and keep the structure stable. During Li plating/stripping, the changes of the atomic structures in SAMn@NG, such as change of bond length and bond angle around Mn atoms are much smaller than those on SAZr@NG, although its binding energy is higher, enabling a much‐improved battery performance in SAMn@NG. This work provides a new insight to design lithiophilic sites in LMBs.
Author Wang, Xingguo
Zhai, Pengbo
Zuo, Jinghan
Wei, Yi
Gong, Yongji
Wang, Jinliang
Chen, Qian
Yang, Zhilin
Dang, Yan
Gu, Xiaokang
Yang, Shubin
Tang, Peizhe
Yao, Yong
Zhao, Feifei
Author_xml – sequence: 1
  givenname: Zhilin
  surname: Yang
  fullname: Yang, Zhilin
  organization: Beihang University
– sequence: 2
  givenname: Yan
  surname: Dang
  fullname: Dang, Yan
  organization: Beihang University
– sequence: 3
  givenname: Pengbo
  surname: Zhai
  fullname: Zhai, Pengbo
  organization: Qingdao University
– sequence: 4
  givenname: Yi
  surname: Wei
  fullname: Wei, Yi
  organization: Beijing University of Chemical Technology
– sequence: 5
  givenname: Qian
  surname: Chen
  fullname: Chen, Qian
  organization: Beihang University
– sequence: 6
  givenname: Jinghan
  surname: Zuo
  fullname: Zuo, Jinghan
  organization: Beihang University
– sequence: 7
  givenname: Xiaokang
  surname: Gu
  fullname: Gu, Xiaokang
  organization: Beihang University
– sequence: 8
  givenname: Yong
  surname: Yao
  fullname: Yao, Yong
  organization: Beihang University
– sequence: 9
  givenname: Xingguo
  surname: Wang
  fullname: Wang, Xingguo
  organization: Beihang University
– sequence: 10
  givenname: Feifei
  surname: Zhao
  fullname: Zhao, Feifei
  organization: Beihang University
– sequence: 11
  givenname: Jinliang
  surname: Wang
  fullname: Wang, Jinliang
  organization: Beihang University
– sequence: 12
  givenname: Shubin
  surname: Yang
  fullname: Yang, Shubin
  organization: Beihang University
– sequence: 13
  givenname: Peizhe
  orcidid: 0000-0002-6345-5809
  surname: Tang
  fullname: Tang, Peizhe
  email: peizhet@buaa.edu.cn
  organization: Max Planck Institute for the Structure and Dynamics of Matter
– sequence: 14
  givenname: Yongji
  orcidid: 0000-0003-1432-6813
  surname: Gong
  fullname: Gong, Yongji
  email: yongjigong@buaa.edu.cn
  organization: Beihang University
BookMark eNqFkM9KAzEQh4NUsNZePS943pp_prvHpVQrVAWr55DuTmzKblKT1NKbj-Az-iRuqVQQxJnDzOH7ZuB3ijrWWUDonOABwZheKrDNgGJKMGMiO0JdIghPRcZx57AzeoL6ISxxWzzfkV00mRn7UsPn-0cRXZM8whv4YOY1JFMTF8atFqY2ZTIzEUIS3Ub5KplFdQDWTVJYV0E4Q8da1QH637OHnq_HT6NJOn24uR0V07RkZJilROVaKC6qXAMMKw6EVEJzBTDnmVA6z2i7gCorTQmtFC_ZnOgMMGZta8J66GJ_d-Xd6xpClEu39rZ9KalgFAtO2FVL8T1VeheCBy1LE1U0zkavTC0JlrvY5C42eYit1Qa_tJU3jfLbv4V8L2xMDdt_aFmM7-9-3C_AWoNv
CitedBy_id crossref_primary_10_1002_celc_202400209
crossref_primary_10_1002_smll_202311750
crossref_primary_10_1002_smll_202207764
crossref_primary_10_1002_adma_202402792
crossref_primary_10_1021_acsanm_4c00190
crossref_primary_10_1016_j_cjche_2024_02_014
crossref_primary_10_1002_ente_202201084
crossref_primary_10_1002_smtd_202400503
crossref_primary_10_1021_acsami_4c04060
crossref_primary_10_1002_aenm_202203277
crossref_primary_10_1039_D4RA00333K
crossref_primary_10_1039_D4SC04385E
crossref_primary_10_1002_adfm_202310358
crossref_primary_10_1021_acsaem_3c00335
crossref_primary_10_1002_sstr_202300345
crossref_primary_10_1039_D2CP04032H
crossref_primary_10_1002_adfm_202315563
crossref_primary_10_1002_aenm_202304337
crossref_primary_10_1002_smll_202208095
crossref_primary_10_1126_sciadv_ads6483
crossref_primary_10_1002_adfm_202420382
crossref_primary_10_1021_acs_iecr_3c02202
crossref_primary_10_1002_ange_202310132
crossref_primary_10_1002_adfm_202421110
crossref_primary_10_1002_smll_202203231
crossref_primary_10_1002_ange_202420866
crossref_primary_10_1021_acsnano_2c08480
crossref_primary_10_1039_D4GC02590C
crossref_primary_10_1021_acs_nanolett_2c03090
crossref_primary_10_1007_s40820_022_00932_3
crossref_primary_10_1039_D3TA02347H
crossref_primary_10_1002_adfm_202313538
crossref_primary_10_1002_smll_202411838
crossref_primary_10_1039_D4EE03673E
crossref_primary_10_1007_s10853_024_10137_1
crossref_primary_10_1002_aenm_202302687
crossref_primary_10_1021_acs_nanolett_2c02159
crossref_primary_10_1002_idm2_12078
crossref_primary_10_1007_s40843_022_2457_4
crossref_primary_10_1002_anie_202420866
crossref_primary_10_1016_j_cej_2023_146612
crossref_primary_10_1002_smll_202306187
crossref_primary_10_1002_anie_202310132
crossref_primary_10_1021_acsnano_4c08831
crossref_primary_10_1002_idm2_12153
crossref_primary_10_1021_acsami_2c21558
crossref_primary_10_1016_j_jpowsour_2023_233468
crossref_primary_10_3389_fchem_2022_981623
crossref_primary_10_1021_acsami_2c18783
crossref_primary_10_1016_j_mtnano_2023_100321
crossref_primary_10_1002_ange_202405417
crossref_primary_10_1002_smll_202208277
crossref_primary_10_1002_adfm_202410742
crossref_primary_10_1002_aenm_202302730
crossref_primary_10_1016_j_nanoen_2025_110665
crossref_primary_10_1360_TB_2024_0223
crossref_primary_10_1002_adma_202302418
crossref_primary_10_1021_acsami_3c07105
crossref_primary_10_1016_j_ccr_2023_215493
crossref_primary_10_1016_j_cej_2024_159049
crossref_primary_10_20517_cs_2024_66
crossref_primary_10_1002_anie_202405417
crossref_primary_10_20517_energymater_2023_83
crossref_primary_10_1021_acsnano_2c10535
crossref_primary_10_1007_s12598_023_02360_7
crossref_primary_10_1002_cey2_423
crossref_primary_10_1002_eem2_12466
crossref_primary_10_1021_acsami_2c13425
crossref_primary_10_1002_adma_202210130
crossref_primary_10_1002_smll_202303266
crossref_primary_10_1002_aenm_202302862
crossref_primary_10_1039_D3TC04431A
Cites_doi 10.1016/j.jechem.2020.08.019
10.1021/jacs.7b06437
10.1039/D0CS00867B
10.1016/j.joule.2018.02.001
10.1039/C3EE40795K
10.1021/ja506553r
10.1039/c2jm16929k
10.1002/adma.202002325
10.1021/jacs.9b04907
10.1021/acs.chemrev.0c00275
10.1038/451652a
10.1002/adma.202006247
10.1021/jacs.7b10194
10.1016/j.ensm.2021.01.034
10.1002/aenm.201804019
10.1038/s41560-019-0338-x
10.1002/anie.201304762
10.1038/s41586-018-0397-3
10.1038/nenergy.2016.10
10.1039/C9CS00636B
10.1002/smtd.201800354
10.1002/adma.201703185
10.1126/sciadv.1500462
10.1016/j.cej.2020.124089
10.1002/smll.201905620
10.1016/j.nanoen.2020.105698
10.1002/aenm.201802918
10.1007/s12274-019-2567-7
10.1007/s41918-020-00076-1
10.1038/s41467-019-11960-w
10.1088/0022-3727/43/37/374002
10.1021/acs.chemrev.7b00115
10.1021/acs.chemrev.0c00576
10.1021/acsenergylett.0c00789
10.1007/s12598-020-01494-2
10.1002/adma.202105329
10.1016/j.jechem.2020.11.016
10.1002/anie.202101537
10.1038/nnano.2017.16
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202103368
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202103368
AENM202103368
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: B17002
– fundername: National Key Technologies R&D Program of China
  funderid: 2018YFA0306900
– fundername: Open Research Fund Program of the State Key Laboratory of Low‐Dimensional Quantum Physics in Tsinghua University,
– fundername: National Natural Science Foundation of China
  funderid: 51872012
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3178-1a9f6a46d9fee7d4e11d6f4aeeb486af982b48eacdf212da4c3b1f8e003030f13
ISSN 1614-6832
IngestDate Fri Jul 25 12:05:36 EDT 2025
Tue Jul 01 01:43:43 EDT 2025
Thu Apr 24 22:58:13 EDT 2025
Wed Jan 22 16:27:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3178-1a9f6a46d9fee7d4e11d6f4aeeb486af982b48eacdf212da4c3b1f8e003030f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6345-5809
0000-0003-1432-6813
PQID 2632064135
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2632064135
crossref_citationtrail_10_1002_aenm_202103368
crossref_primary_10_1002_aenm_202103368
wiley_primary_10_1002_aenm_202103368_AENM202103368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 560
2015; 1
2019; 9
2019; 4
2020; 120
2019; 10
2020; 16
2020; 387
2020; 13
2017; 29
2020; 33
2019; 141
2014; 136
2017; 117
2017; 139
2021; 36
2010; 43
2021; 59
2021; 37
2020; 5
2018; 3
2020; 3
2018; 2
2016; 1
2021; 56
2021; 33
2017; 12
2013; 52
2020; 49
2021; 82
2021; 60
2008; 451
2014; 7
2021; 40
2012; 22
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Que H. F. (e_1_2_7_17_1) 2021; 37
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 2
  start-page: 764
  year: 2018
  publication-title: Joule
– volume: 10
  start-page: 4244
  year: 2019
  publication-title: Nat. Commun.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 463
  year: 2021
  publication-title: J. Energy Chem.
– volume: 59
  start-page: 306
  year: 2021
  publication-title: J. Energy Chem.
– volume: 36
  start-page: 504
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 22
  start-page: 6402
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 33
  year: 2020
  publication-title: Adv. Mater.
– volume: 560
  start-page: 345
  year: 2018
  publication-title: Nature
– volume: 387
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 656
  year: 2020
  publication-title: Electrochem. Energy Rev.
– volume: 7
  start-page: 513
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 43
  year: 2010
  publication-title: J. Phys. D: Appl. Phys.
– volume: 37
  year: 2021
  publication-title: Acta Phys.‐Chim. Sin.
– volume: 117
  year: 2017
  publication-title: Chem. Rev.
– volume: 40
  start-page: 1357
  year: 2021
  publication-title: Rare Met.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 13
  start-page: 45
  year: 2020
  publication-title: Nano Res.
– volume: 3
  year: 2018
  publication-title: Small Methods
– volume: 5
  start-page: 2156
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 82
  year: 2021
  publication-title: Nano Energy
– volume: 49
  start-page: 5407
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 7284
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 52
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 120
  year: 2020
  publication-title: Chem. Rev.
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 4
  start-page: 180
  year: 2019
  publication-title: Nat. Energy
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jechem.2020.08.019
– ident: e_1_2_7_9_1
  doi: 10.1021/jacs.7b06437
– ident: e_1_2_7_24_1
  doi: 10.1039/D0CS00867B
– ident: e_1_2_7_25_1
  doi: 10.1016/j.joule.2018.02.001
– ident: e_1_2_7_5_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_7_35_1
  doi: 10.1021/ja506553r
– ident: e_1_2_7_37_1
  doi: 10.1039/c2jm16929k
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.202002325
– ident: e_1_2_7_34_1
  doi: 10.1021/jacs.9b04907
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.chemrev.0c00275
– ident: e_1_2_7_2_1
  doi: 10.1038/451652a
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.202006247
– ident: e_1_2_7_33_1
  doi: 10.1021/jacs.7b10194
– ident: e_1_2_7_15_1
  doi: 10.1016/j.ensm.2021.01.034
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.201804019
– ident: e_1_2_7_3_1
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.201304762
– ident: e_1_2_7_10_1
  doi: 10.1038/s41586-018-0397-3
– ident: e_1_2_7_27_1
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_7_6_1
  doi: 10.1039/C9CS00636B
– ident: e_1_2_7_30_1
  doi: 10.1002/smtd.201800354
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201703185
– ident: e_1_2_7_39_1
  doi: 10.1126/sciadv.1500462
– ident: e_1_2_7_22_1
  doi: 10.1016/j.cej.2020.124089
– ident: e_1_2_7_26_1
  doi: 10.1002/smll.201905620
– ident: e_1_2_7_14_1
  doi: 10.1016/j.nanoen.2020.105698
– ident: e_1_2_7_40_1
  doi: 10.1002/aenm.201802918
– ident: e_1_2_7_28_1
  doi: 10.1007/s12274-019-2567-7
– ident: e_1_2_7_23_1
  doi: 10.1007/s41918-020-00076-1
– ident: e_1_2_7_1_1
  doi: 10.1038/s41467-019-11960-w
– ident: e_1_2_7_36_1
  doi: 10.1088/0022-3727/43/37/374002
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_31_1
  doi: 10.1021/acs.chemrev.0c00576
– ident: e_1_2_7_21_1
  doi: 10.1021/acsenergylett.0c00789
– volume: 37
  year: 2021
  ident: e_1_2_7_17_1
  publication-title: Acta Phys.‐Chim. Sin.
– ident: e_1_2_7_18_1
  doi: 10.1007/s12598-020-01494-2
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.202105329
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jechem.2020.11.016
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.202101537
– ident: e_1_2_7_4_1
  doi: 10.1038/nnano.2017.16
SSID ssj0000491033
Score 2.6052616
Snippet Lithiophilic sites with high binding energy to Li have shown the capability to guide uniform Li deposition, however, the irreversible reaction between Li and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Binding energy
Chemical bonds
dendrite‐free deposition
Dendritic structure
Deposition
Graphene
Lithium
reversible lithiophilic sites
single‐atom
structural stability
Title Single‐Atom Reversible Lithiophilic Sites toward Stable Lithium Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202103368
https://www.proquest.com/docview/2632064135
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLegu8AB8VcUBvIBiQMKNLHjOseKDVVonZC6SdsukWM7rNJIJpZdOO0j7DPuk-y92HFSVMTgEqWO4yZ-v9q_9_r-EPKOGwO0QaeRYAZDcmITAUtgUSmmk6QQU7iKBv3Fvpgf8q9H6VFfs7WNLmmKj_rXxriS_5EqtIFcMUr2HyQbBoUGOAf5whEkDMc7yXgJ-86ZDf4Ks6b-gcZ-NIFhQNTeqjld1edoMtEflqumzeaAXrJIMUMHtNBXtfG-hF1C2s41wLrYQOC17oXCKuHtzCc4egDYjm897jF34gtef7PV96Lu_whqG49XQ6sDKKyT4MHhFkrY1iMhvW3SDttc-qWwuiYDFMmNi7ZLAqtshZkBQAVlzFXaWc-O_duuFXwJXd7lJMf783D_fbKVgOKQjMjWbGextwx2N9CIsAfq4d0rdLk8J8mn9YdY5yq9AjJUY1oecvCYPPIKBJ05NDwh92z1lDwcpJV8RuYOFzdX14gI2iOCDhFBW0RQhwjqEEE9IqhDxHNy-GX34PM88hUzIg08UEaxykqhuDBZae3UcBvHRpRcWVtwKVSZyQROYK81JVAWo7hmRVxKi0s9m5Qxe0FGVV3Zl4SqQiktU6BwseKM8wy5rzQ6llpnKcvGJOrmJtc-nTxWNTnLNwtkTN6H_ucukcofe253U537H9tFjmUFgD3HLB2TpJ3-v4ySz3b3F-HTqzt_-2vyoMf7Nhk1Py_tG-CdTfHWQ-kWhaR9qw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90Atom+Reversible+Lithiophilic+Sites+toward+Stable+Lithium+Anodes&rft.jtitle=Advanced+energy+materials&rft.au=Yang%2C+Zhilin&rft.au=Dang%2C+Yan&rft.au=Zhai%2C+Pengbo&rft.au=Wei%2C+Yi&rft.date=2022-02-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=8&rft_id=info:doi/10.1002%2Faenm.202103368&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202103368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon