Data‐Driven Screening of Pivotal Subunits in Edge‐Anchored Single Atom Catalysts for Oxygen Reactions
Oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are key reactions in diverse energy conversion devices, highlighting the importance of efficient catalysts. Edge‐anchored single atom catalysts (E‐SACs) emerge as a special class of atomic structure, but the detailed configurati...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 28 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are key reactions in diverse energy conversion devices, highlighting the importance of efficient catalysts. Edge‐anchored single atom catalysts (E‐SACs) emerge as a special class of atomic structure, but the detailed configuration and its correlation with catalytic activity remain little explored. Herein, a total of 78 E‐SACs (E‐TM‐Nx‐C) have been constructed based on 26 transition metal (TM) species with three coordination patterns. Using structural stability and ORR/OER catalytic activity as the evaluation criteria, a few catalytic structures comparable to Pt (111) for ORR and IrO2 (110) for OER are screened based on high‐throughput calculations. The screening results unveil that the E‐Rh‐N4‐C configuration exhibits most efficient bifunctional activity for both ORR and OER with an overpotential of 0.38 and 0.61 V, respectively. Electronic structure analysis confirms the distinctive edge effects on the electronic properties of TM and N species, and the feature importance derived from machine learning illustrates the efficacy of E‐TM‐Nx subunit configuration in determining the catalytic activity of E‐SACs. Finally, the trained Gradient Boosting Regression (GBR) model exhibits acceptable accuracy in predicting the OH intermediates adsorption strength for E‐SACs, thereby paving the way for expanding catalytic structures based on E‐SACs.
A data‐driven strategy is formulated to accelerate the discovery of Edge‐SACs by predicting the reactivity trends and structure‐activity relationships. A few outstanding E‐SACs structures on graphene for ORR and OER are screened out. It is shown that edge effects together with coordinated patterns govern their catalytic activity. |
---|---|
AbstractList | Oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are key reactions in diverse energy conversion devices, highlighting the importance of efficient catalysts. Edge‐anchored single atom catalysts (E‐SACs) emerge as a special class of atomic structure, but the detailed configuration and its correlation with catalytic activity remain little explored. Herein, a total of 78 E‐SACs (E‐TM‐Nx‐C) have been constructed based on 26 transition metal (TM) species with three coordination patterns. Using structural stability and ORR/OER catalytic activity as the evaluation criteria, a few catalytic structures comparable to Pt (111) for ORR and IrO2 (110) for OER are screened based on high‐throughput calculations. The screening results unveil that the E‐Rh‐N4‐C configuration exhibits most efficient bifunctional activity for both ORR and OER with an overpotential of 0.38 and 0.61 V, respectively. Electronic structure analysis confirms the distinctive edge effects on the electronic properties of TM and N species, and the feature importance derived from machine learning illustrates the efficacy of E‐TM‐Nx subunit configuration in determining the catalytic activity of E‐SACs. Finally, the trained Gradient Boosting Regression (GBR) model exhibits acceptable accuracy in predicting the OH intermediates adsorption strength for E‐SACs, thereby paving the way for expanding catalytic structures based on E‐SACs.
A data‐driven strategy is formulated to accelerate the discovery of Edge‐SACs by predicting the reactivity trends and structure‐activity relationships. A few outstanding E‐SACs structures on graphene for ORR and OER are screened out. It is shown that edge effects together with coordinated patterns govern their catalytic activity. Oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are key reactions in diverse energy conversion devices, highlighting the importance of efficient catalysts. Edge‐anchored single atom catalysts (E‐SACs) emerge as a special class of atomic structure, but the detailed configuration and its correlation with catalytic activity remain little explored. Herein, a total of 78 E‐SACs (E‐TM‐Nx‐C) have been constructed based on 26 transition metal (TM) species with three coordination patterns. Using structural stability and ORR/OER catalytic activity as the evaluation criteria, a few catalytic structures comparable to Pt (111) for ORR and IrO2 (110) for OER are screened based on high‐throughput calculations. The screening results unveil that the E‐Rh‐N4‐C configuration exhibits most efficient bifunctional activity for both ORR and OER with an overpotential of 0.38 and 0.61 V, respectively. Electronic structure analysis confirms the distinctive edge effects on the electronic properties of TM and N species, and the feature importance derived from machine learning illustrates the efficacy of E‐TM‐Nx subunit configuration in determining the catalytic activity of E‐SACs. Finally, the trained Gradient Boosting Regression (GBR) model exhibits acceptable accuracy in predicting the OH intermediates adsorption strength for E‐SACs, thereby paving the way for expanding catalytic structures based on E‐SACs. Oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are key reactions in diverse energy conversion devices, highlighting the importance of efficient catalysts. Edge‐anchored single atom catalysts (E‐SACs) emerge as a special class of atomic structure, but the detailed configuration and its correlation with catalytic activity remain little explored. Herein, a total of 78 E‐SACs (E‐TM‐N x ‐C) have been constructed based on 26 transition metal (TM) species with three coordination patterns. Using structural stability and ORR/OER catalytic activity as the evaluation criteria, a few catalytic structures comparable to Pt (111) for ORR and IrO 2 (110) for OER are screened based on high‐throughput calculations. The screening results unveil that the E‐Rh‐N 4 ‐C configuration exhibits most efficient bifunctional activity for both ORR and OER with an overpotential of 0.38 and 0.61 V, respectively. Electronic structure analysis confirms the distinctive edge effects on the electronic properties of TM and N species, and the feature importance derived from machine learning illustrates the efficacy of E‐TM‐N x subunit configuration in determining the catalytic activity of E‐SACs. Finally, the trained Gradient Boosting Regression (GBR) model exhibits acceptable accuracy in predicting the OH intermediates adsorption strength for E‐SACs, thereby paving the way for expanding catalytic structures based on E‐SACs. |
Author | Yi, Xingxing Ye, Qitong Wang, Cai‐Zhuang Liu, Yipu Lin, Shiwei Fan, Hong Jin Zhang, Tao |
Author_xml | – sequence: 1 givenname: Qitong surname: Ye fullname: Ye, Qitong organization: Hainan University – sequence: 2 givenname: Xingxing surname: Yi fullname: Yi, Xingxing organization: Hainan University – sequence: 3 givenname: Cai‐Zhuang surname: Wang fullname: Wang, Cai‐Zhuang organization: Iowa State University – sequence: 4 givenname: Tao surname: Zhang fullname: Zhang, Tao organization: Nanyang Technological University – sequence: 5 givenname: Yipu orcidid: 0000-0003-0265-1491 surname: Liu fullname: Liu, Yipu email: liuyp@hainanu.edu.cn organization: Hainan University – sequence: 6 givenname: Shiwei surname: Lin fullname: Lin, Shiwei email: linsw@hainanu.edu.cn organization: Hainan University – sequence: 7 givenname: Hong Jin orcidid: 0000-0003-1237-4555 surname: Fan fullname: Fan, Hong Jin email: fanhj@ntu.edu.sg organization: Nanyang Technological University |
BookMark | eNqFkMtKAzEUhoNUsK1uXQdct-Yyncty6EWFSsUquBvSzJmaMk1qMlOdnY_gM_okplQqCOIqCXzfn3P-DmppowGhc0r6lBB2KfJi3WeEBYRQEh2hNg1p2OOExa3DnT6doI5zK49EEQ_aSI1EJT7fP0ZWbUHjubQAWuklNgW-U1tTiRLP60WtVeWw0nicL8HjqZbPxkKO554tAaeVWeOhjyob58HCWDx7a5Y-8R6ErJTR7hQdF6J0cPZ9dtHjZPwwvO5NZ1c3w3Tak9zP1CtCLkDGAPmAFWLBgAYJAPcbhSBJIQPCkijkJGQLyCWTgkVExjGRlAaxf_Euutjnbqx5qcFV2crUVvsvM04ir7IBSTwV7ClpjXMWikyqSuwGraxQZUZJtis125WaHUr1Wv-XtrFqLWzzt5DshVdVQvMPnaWjye2P-wWcmY6- |
CitedBy_id | crossref_primary_10_1002_advs_202413379 crossref_primary_10_1016_j_apsusc_2025_162482 crossref_primary_10_1039_D4TA06642A crossref_primary_10_1016_j_ensm_2024_103985 crossref_primary_10_1039_D4GC04687K crossref_primary_10_1016_j_cej_2024_155736 crossref_primary_10_3390_ma17102265 |
Cites_doi | 10.1038/376238a0 10.1021/acsami.1c22309 10.1038/s41929-022-00810-6 10.1016/j.mtener.2023.101364 10.1016/j.mtener.2023.101352 10.1002/adfm.202300405 10.1016/j.mtener.2020.100537 10.1016/j.chemphys.2005.05.038 10.1021/acsnano.3c01287 10.1002/anie.202311113 10.1126/science.aad0832 10.1002/anie.202311174 10.1039/D1EE00154J 10.1002/adfm.202304468 10.1016/j.jelechem.2006.11.008 10.1016/0013-4686(84)85004-5 10.1002/adma.202004900 10.1002/aenm.202000882 10.1021/jp047349j 10.1038/s41929-018-0063-z 10.1002/adma.202000966 10.1088/0953-8984/16/8/001 10.1002/anie.202213296 10.1002/adma.202303243 10.1039/D2TA02050E 10.1021/jacs.1c02186 10.1073/pnas.1800771115 10.1002/adma.202102801 10.1021/acsanm.3c00851 10.1021/acs.chemrev.7b00689 10.1002/adma.201800588 10.1021/acscatal.9b02778 10.1021/acsenergylett.0c02484 10.1002/adfm.202110748 10.1002/adfm.202000570 10.1038/s41467-020-16381-8 10.1016/j.apcatb.2018.10.046 10.1016/j.electacta.2007.02.082 10.1016/j.ensm.2022.01.040 10.1039/C8EE02679C 10.1039/D0NR05511E 10.1021/acsnano.3c02521 10.1038/s41467-019-09596-x 10.1038/s41467-023-36380-9 10.1002/aenm.201700544 10.1002/cctc.201000397 10.1021/acs.chemrev.7b00488 10.1038/nature11475 10.1186/1471-2105-7-3 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202400107 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202400107 ADFM202400107 |
Genre | article |
GrantInformation_xml | – fundername: Scientific Research Starting Foundation of Hainan University funderid: Grant No. KYQD(ZR)−22022 – fundername: Hainan Provincial Natural Science Foundation of China funderid: Grant No. 223QN185 – fundername: Innovation Platform for Academicians of Hainan Province funderid: YSPTZX202123 – fundername: National Natural Science Foundation of China funderid: 22369003; 52001306; 22005116 – fundername: Collaborative Innovation Center project of Hainan University funderid: XTCX2022XXB01 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3177-f63aec8eed52fab2e149ee31076ec0fc4029763062bedc2ca270c880c1148ca23 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sat Jul 26 03:35:46 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Tue Jul 01 00:30:56 EDT 2025 Wed Jan 22 17:17:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3177-f63aec8eed52fab2e149ee31076ec0fc4029763062bedc2ca270c880c1148ca23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1237-4555 0000-0003-0265-1491 |
PQID | 3077632509 |
PQPubID | 2045204 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3077632509 crossref_citationtrail_10_1002_adfm_202400107 crossref_primary_10_1002_adfm_202400107 wiley_primary_10_1002_adfm_202400107_ADFM202400107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2021; 6 2019; 9 2023; 35 2023; 14 2023; 36 2023; 33 2023; 17 2023; 6 2019; 10 2019; 12 2006; 7 2022; 46 2005; 319 1984; 29 2020; 12 2020; 11 1995; 376 2020; 32 2020; 10 2007; 52 2021; 143 2012; 488 2011; 3 2004; 108 2007; 607 2019; 243 2022; 28 2020; 18 2021; 14 2023; 62 2021; 33 2023 2020; 30 2022; 5 2022; 61 2004; 16 2018; 1 2018; 118 2018; 115 2024; 63 2022; 14 2018; 30 2022; 10 2022; 32 2016; 351 1967 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Gnanamuthu D. S. (e_1_2_7_8_1) 1967 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_18_1 Tao Zhang Y.‐P. L. (e_1_2_7_13_1) 2022; 28 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_48_1 Liang X. (e_1_2_7_12_1) 2022; 28 e_1_2_7_27_1 Wu L. (e_1_2_7_46_1) 2022; 32 e_1_2_7_29_1 Balamurugan J. (e_1_2_7_15_1) 2023 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 118 start-page: 6337 year: 2018 publication-title: Chem. Rev. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 115 start-page: 6626 year: 2018 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 14 start-page: 1249 year: 2022 publication-title: ACS Appl. Mater. Interfaces. – volume: 14 start-page: 3455 year: 2021 publication-title: Energy Environ. Sci. – volume: 12 start-page: 727 year: 2019 publication-title: Energy Environ. Sci. – volume: 351 start-page: 361 year: 2016 publication-title: Science. – volume: 3 start-page: 1159 year: 2011 publication-title: ChemCatChem. – volume: 32 start-page: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 3 year: 2006 publication-title: BMC Bioinform. – volume: 376 start-page: 238 year: 1995 publication-title: Nature. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – start-page: 35 year: 2023 publication-title: Adv. Mater. – volume: 46 start-page: 553 year: 2022 publication-title: Energy Stor. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 6 start-page: 7694 year: 2023 publication-title: ACS Appl. Nano Mater. – volume: 10 start-page: 1657 year: 2019 publication-title: Nat. Commun. – volume: 14 start-page: 843 year: 2023 publication-title: Nat. Commun. – volume: 29 start-page: 1503 year: 1984 publication-title: Electrochim. Acta. – volume: 10 year: 2022 publication-title: J. Mater. Chem. A. – volume: 118 start-page: 2302 year: 2018 publication-title: Chem. Rev. – volume: 488 start-page: 294 year: 2012 publication-title: Nature. – volume: 17 start-page: 9565 year: 2023 publication-title: ACS Nano. – volume: 36 year: 2023 publication-title: Mater. Today Energy. – volume: 6 start-page: 379 year: 2021 publication-title: ACS Energy Lett. – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 2455 year: 2020 publication-title: Nat. Commun. – start-page: 114. 1036 year: 1967 publication-title: J. Electrochem. Soc. – volume: 16 start-page: 1141 year: 2004 publication-title: J. Phys. Condens. Matter. – volume: 52 start-page: 5829 year: 2007 publication-title: Electrochim. Acta. – volume: 143 start-page: 9423 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 607 start-page: 83 year: 2007 publication-title: J. Electroanal. Chem. – volume: 18 year: 2020 publication-title: Mater. Today Energy. – volume: 243 start-page: 294 year: 2019 publication-title: Appl. Catal. B. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 9 year: 2019 publication-title: ACS Catal. – volume: 28 year: 2022 publication-title: J. Electrochem. – volume: 17 start-page: 8622 year: 2023 publication-title: ACS Nano. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 1 start-page: 339 year: 2018 publication-title: Nat. Catal. – volume: 319 start-page: 178 year: 2005 publication-title: Chem. Phys. – volume: 5 start-page: 615 year: 2022 publication-title: Nat. Catal. – volume: 12 year: 2020 publication-title: Nanoscale. – volume: 108 year: 2004 publication-title: J. Phys. Chem. B. – ident: e_1_2_7_47_1 doi: 10.1038/376238a0 – ident: e_1_2_7_54_1 doi: 10.1021/acsami.1c22309 – ident: e_1_2_7_10_1 doi: 10.1038/s41929-022-00810-6 – ident: e_1_2_7_49_1 doi: 10.1016/j.mtener.2023.101364 – ident: e_1_2_7_51_1 doi: 10.1016/j.mtener.2023.101352 – ident: e_1_2_7_14_1 doi: 10.1002/adfm.202300405 – ident: e_1_2_7_50_1 doi: 10.1016/j.mtener.2020.100537 – ident: e_1_2_7_39_1 doi: 10.1016/j.chemphys.2005.05.038 – ident: e_1_2_7_18_1 doi: 10.1021/acsnano.3c01287 – ident: e_1_2_7_43_1 doi: 10.1002/anie.202311113 – ident: e_1_2_7_5_1 doi: 10.1126/science.aad0832 – ident: e_1_2_7_32_1 doi: 10.1002/anie.202311174 – ident: e_1_2_7_31_1 doi: 10.1039/D1EE00154J – ident: e_1_2_7_33_1 doi: 10.1002/adfm.202304468 – start-page: 35 year: 2023 ident: e_1_2_7_15_1 publication-title: Adv. Mater. – ident: e_1_2_7_40_1 doi: 10.1016/j.jelechem.2006.11.008 – volume: 28 year: 2022 ident: e_1_2_7_13_1 publication-title: J. Electrochem. – ident: e_1_2_7_9_1 doi: 10.1016/0013-4686(84)85004-5 – ident: e_1_2_7_28_1 doi: 10.1002/adma.202004900 – ident: e_1_2_7_26_1 doi: 10.1002/aenm.202000882 – ident: e_1_2_7_38_1 doi: 10.1021/jp047349j – ident: e_1_2_7_45_1 doi: 10.1038/s41929-018-0063-z – ident: e_1_2_7_23_1 doi: 10.1002/adma.202000966 – ident: e_1_2_7_42_1 doi: 10.1088/0953-8984/16/8/001 – ident: e_1_2_7_27_1 doi: 10.1002/anie.202213296 – ident: e_1_2_7_16_1 doi: 10.1002/adma.202303243 – ident: e_1_2_7_34_1 doi: 10.1039/D2TA02050E – ident: e_1_2_7_44_1 doi: 10.1021/jacs.1c02186 – ident: e_1_2_7_21_1 doi: 10.1073/pnas.1800771115 – start-page: 114. 1036 year: 1967 ident: e_1_2_7_8_1 publication-title: J. Electrochem. Soc. – ident: e_1_2_7_24_1 doi: 10.1002/adma.202102801 – volume: 28 year: 2022 ident: e_1_2_7_12_1 publication-title: J. Electrochem. – ident: e_1_2_7_52_1 doi: 10.1021/acsanm.3c00851 – ident: e_1_2_7_37_1 doi: 10.1021/acs.chemrev.7b00689 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201800588 – ident: e_1_2_7_35_1 doi: 10.1021/acscatal.9b02778 – ident: e_1_2_7_17_1 doi: 10.1021/acsenergylett.0c02484 – ident: e_1_2_7_48_1 doi: 10.1002/adfm.202110748 – ident: e_1_2_7_11_1 doi: 10.1002/adfm.202000570 – ident: e_1_2_7_22_1 doi: 10.1038/s41467-020-16381-8 – ident: e_1_2_7_30_1 doi: 10.1016/j.apcatb.2018.10.046 – ident: e_1_2_7_36_1 doi: 10.1016/j.electacta.2007.02.082 – ident: e_1_2_7_19_1 doi: 10.1016/j.ensm.2022.01.040 – ident: e_1_2_7_3_1 doi: 10.1039/C8EE02679C – ident: e_1_2_7_6_1 doi: 10.1039/D0NR05511E – ident: e_1_2_7_25_1 doi: 10.1021/acsnano.3c02521 – ident: e_1_2_7_29_1 doi: 10.1038/s41467-019-09596-x – ident: e_1_2_7_2_1 doi: 10.1038/s41467-023-36380-9 – ident: e_1_2_7_4_1 doi: 10.1002/aenm.201700544 – ident: e_1_2_7_7_1 doi: 10.1002/cctc.201000397 – volume: 32 start-page: 32 year: 2022 ident: e_1_2_7_46_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_41_1 doi: 10.1021/acs.chemrev.7b00488 – ident: e_1_2_7_1_1 doi: 10.1038/nature11475 – ident: e_1_2_7_53_1 doi: 10.1186/1471-2105-7-3 |
SSID | ssj0017734 |
Score | 2.532209 |
Snippet | Oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are key reactions in diverse energy conversion devices, highlighting the importance of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Atomic structure Catalytic activity Catalytic converters Chemical reduction Configurations data‐driven screening Edge effect edge‐anchored single‐atom catalysts Electronic properties Electronic structure Energy conversion high‐throughput calculations Machine learning Oxygen evolution reactions oxygen reaction Oxygen reduction reactions Regression models Screening Single atom catalysts Stability criteria Structural analysis Structural stability Transition metals |
Title | Data‐Driven Screening of Pivotal Subunits in Edge‐Anchored Single Atom Catalysts for Oxygen Reactions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202400107 https://www.proquest.com/docview/3077632509 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQXODAjihL5QMSp0BjZ-sxolQIUUAtSL1FjhdUASlqUgSc-AS-kS9hJmnTFgkhwS1WxlHsscdv7JlnQg6Er0w95sIC7OFYeLJnCa-uLCFcrj1f80Bg7nDr0ju7dc67bncqi7_ghyg33HBm5PYaJ7iI0-MJaahQBjPJMQbSztPJMWALUVG75I-yfb84VvZsDPCyu2PWxho7nq0-uypNoOY0YM1XnOYKEeN_LQJN7o-GWXwk377ROP6nMatkeQRHaViMnzUyp5N1sjRFUrhBeg2Ric_3j8YADSPtSIzUgTe0b-h177kP6J2C-RmCbUhpL6Gn6k6DeJiAYR1oRTsg-6BpmPUf6QluFr2mIAhYmV69vMLwpW1dJFekm-S2eXpzcmaNLmiwJMAO3zIeF1oGsMy6zIiYaXC3tAbA6Hta1ox08GYsD5wSFmslmRTMr0kwGBKdMCjxLTKf9BO9TagT80Aq8JZt5TgOiBrl1ANXK2YC4ypeIdZYQZEcsZfjJRoPUcG7zCLswqjswgo5LOWfCt6OHyX3xvqORvM3jTiyHHGAh_UKYbnifvlKFDaarbK085dKu2QRn4tY4D0ynw2Geh8QTxZXyULYaF10qvno_gJ6wfuY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5ROLQcKH2J8Gj30KonQ7LrVw49RJgoFEIrHlJu7nofVQQ4KHag6ak_oX-lf6U_gV_SmfgBVKoqVeLQo-3xyt6d5-7MNwCvZaBtOxHSQd_Ddehkz5F-WztSesL4gRGhpNrh_oHfO3HfD7zBHPyoamEKfIh6w40kY6avScBpQ3rrBjVUakul5JQEiTFMmVe5Z6ZXGLVl73YjXOI3nHd3jrd7TtlYwFFoLgPH-kIaFaJ58LiVCTcYJhiDjk7gG9W0yqWOTj460zwxWnEledBUyOiKgge8EjjuA1igNuIE1x8d1ohVOHpxkO23KKWsNahwIpt86-733rWDN87tbRd5ZuO6j-FnNTtFasvp5iRPNtXX34Aj_6vpW4al0uNmnUJEnsCcSZ_C4i0cxmcwjGQur799j8ak-9mRomQkfMJGln0cXo4wQGGoYSeo_jI2TNmO_myQvJOi7RgbzY6Q9sywTj46Z9u0HzbNkBDDAfbhyxQllB2aon4kew4n9_KvL2A-HaVmBZibiFDpUAQt7bouklrttkPPaG5D62nRAKfiiFiVAO3UJ-QsLqCleUxLFtdL1oC3Nf1FAU3yR8r1isHiUkVlsSAgJ4EecLsBfMYpfxkl7kTdfn21-i8vvYKHveP-fry_e7C3Bo_ofpH6vA7z-XhiNtDBy5OXM5Fi8Om-mfAX615Yvg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE4UH7FQgEfQJzS7trO36GHVdNVS2mpWirtLTj2GK3aZqtNFtie-gg8Cq_CK_AkjDc_bZEQElIPHJNMrMSeX3vmG4BXKjQ2zoTyyPeQnjvZ81QQG08pX2AQooiUqx3e2Q02D-XboT9cgO9NLUyFD9FuuDnJmOtrJ-Cnxq5egIYqY10lucuBpBCmTqvcxtkXCtqKta2EVvg154OND-ubXt1XwNNkLUPPBkKhjsg6-NyqjCNFCYjk54QB6q7V0jV0CsiX5hkazbXiYVcTn2sXO9CVoHFvwE0ZdGPXLCLZbwGraPTqHDvouYyy3rCBiezy1avfe9UMXvi2lz3kuYkbLMGPZnKqzJajlWmZreiz33Aj_6fZuwd3a3-b9SsBuQ8LmD-AO5dQGB_CKFGl-nn-LZk4zc8OtEtFoidsbNne6POYwhNG-nVKyq9go5xtmE9I5P2cLMcEDTsg2mNk_XJ8wtbdbtisIEIKBtj7rzOST7aPVfVI8QgOr-VfH8NiPs7xCTCZiUibSIQ9I6UkUmtkHPlouI2sb0QHvIYhUl3Ds7suIcdpBSzNU7dkabtkHXjT0p9WwCR_pFxu-CutFVSRCgfjJMj_jTvA54zyl1HSfjLYaa-e_stLL-HWXjJI323tbj-D2-52lfe8DIvlZIrPybsrsxdzgWLw8bp58Bdt1Vdt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data%E2%80%90Driven+Screening+of+Pivotal+Subunits+in+Edge%E2%80%90Anchored+Single+Atom+Catalysts+for+Oxygen+Reactions&rft.jtitle=Advanced+functional+materials&rft.au=Ye%2C+Qitong&rft.au=Yi%2C+Xingxing&rft.au=Wang%2C+Cai%E2%80%90Zhuang&rft.au=Zhang%2C+Tao&rft.date=2024-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=28&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202400107&rft.externalDBID=10.1002%252Fadfm.202400107&rft.externalDocID=ADFM202400107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |