Data‐Driven Screening of Pivotal Subunits in Edge‐Anchored Single Atom Catalysts for Oxygen Reactions

Oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are key reactions in diverse energy conversion devices, highlighting the importance of efficient catalysts. Edge‐anchored single atom catalysts (E‐SACs) emerge as a special class of atomic structure, but the detailed configurati...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 28
Main Authors Ye, Qitong, Yi, Xingxing, Wang, Cai‐Zhuang, Zhang, Tao, Liu, Yipu, Lin, Shiwei, Fan, Hong Jin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are key reactions in diverse energy conversion devices, highlighting the importance of efficient catalysts. Edge‐anchored single atom catalysts (E‐SACs) emerge as a special class of atomic structure, but the detailed configuration and its correlation with catalytic activity remain little explored. Herein, a total of 78 E‐SACs (E‐TM‐Nx‐C) have been constructed based on 26 transition metal (TM) species with three coordination patterns. Using structural stability and ORR/OER catalytic activity as the evaluation criteria, a few catalytic structures comparable to Pt (111) for ORR and IrO2 (110) for OER are screened based on high‐throughput calculations. The screening results unveil that the E‐Rh‐N4‐C configuration exhibits most efficient bifunctional activity for both ORR and OER with an overpotential of 0.38 and 0.61 V, respectively. Electronic structure analysis confirms the distinctive edge effects on the electronic properties of TM and N species, and the feature importance derived from machine learning illustrates the efficacy of E‐TM‐Nx subunit configuration in determining the catalytic activity of E‐SACs. Finally, the trained Gradient Boosting Regression (GBR) model exhibits acceptable accuracy in predicting the OH intermediates adsorption strength for E‐SACs, thereby paving the way for expanding catalytic structures based on E‐SACs. A data‐driven strategy is formulated to accelerate the discovery of Edge‐SACs by predicting the reactivity trends and structure‐activity relationships. A few outstanding E‐SACs structures on graphene for ORR and OER are screened out. It is shown that edge effects together with coordinated patterns govern their catalytic activity.
AbstractList Oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are key reactions in diverse energy conversion devices, highlighting the importance of efficient catalysts. Edge‐anchored single atom catalysts (E‐SACs) emerge as a special class of atomic structure, but the detailed configuration and its correlation with catalytic activity remain little explored. Herein, a total of 78 E‐SACs (E‐TM‐Nx‐C) have been constructed based on 26 transition metal (TM) species with three coordination patterns. Using structural stability and ORR/OER catalytic activity as the evaluation criteria, a few catalytic structures comparable to Pt (111) for ORR and IrO2 (110) for OER are screened based on high‐throughput calculations. The screening results unveil that the E‐Rh‐N4‐C configuration exhibits most efficient bifunctional activity for both ORR and OER with an overpotential of 0.38 and 0.61 V, respectively. Electronic structure analysis confirms the distinctive edge effects on the electronic properties of TM and N species, and the feature importance derived from machine learning illustrates the efficacy of E‐TM‐Nx subunit configuration in determining the catalytic activity of E‐SACs. Finally, the trained Gradient Boosting Regression (GBR) model exhibits acceptable accuracy in predicting the OH intermediates adsorption strength for E‐SACs, thereby paving the way for expanding catalytic structures based on E‐SACs. A data‐driven strategy is formulated to accelerate the discovery of Edge‐SACs by predicting the reactivity trends and structure‐activity relationships. A few outstanding E‐SACs structures on graphene for ORR and OER are screened out. It is shown that edge effects together with coordinated patterns govern their catalytic activity.
Oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are key reactions in diverse energy conversion devices, highlighting the importance of efficient catalysts. Edge‐anchored single atom catalysts (E‐SACs) emerge as a special class of atomic structure, but the detailed configuration and its correlation with catalytic activity remain little explored. Herein, a total of 78 E‐SACs (E‐TM‐Nx‐C) have been constructed based on 26 transition metal (TM) species with three coordination patterns. Using structural stability and ORR/OER catalytic activity as the evaluation criteria, a few catalytic structures comparable to Pt (111) for ORR and IrO2 (110) for OER are screened based on high‐throughput calculations. The screening results unveil that the E‐Rh‐N4‐C configuration exhibits most efficient bifunctional activity for both ORR and OER with an overpotential of 0.38 and 0.61 V, respectively. Electronic structure analysis confirms the distinctive edge effects on the electronic properties of TM and N species, and the feature importance derived from machine learning illustrates the efficacy of E‐TM‐Nx subunit configuration in determining the catalytic activity of E‐SACs. Finally, the trained Gradient Boosting Regression (GBR) model exhibits acceptable accuracy in predicting the OH intermediates adsorption strength for E‐SACs, thereby paving the way for expanding catalytic structures based on E‐SACs.
Oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are key reactions in diverse energy conversion devices, highlighting the importance of efficient catalysts. Edge‐anchored single atom catalysts (E‐SACs) emerge as a special class of atomic structure, but the detailed configuration and its correlation with catalytic activity remain little explored. Herein, a total of 78 E‐SACs (E‐TM‐N x ‐C) have been constructed based on 26 transition metal (TM) species with three coordination patterns. Using structural stability and ORR/OER catalytic activity as the evaluation criteria, a few catalytic structures comparable to Pt (111) for ORR and IrO 2 (110) for OER are screened based on high‐throughput calculations. The screening results unveil that the E‐Rh‐N 4 ‐C configuration exhibits most efficient bifunctional activity for both ORR and OER with an overpotential of 0.38 and 0.61 V, respectively. Electronic structure analysis confirms the distinctive edge effects on the electronic properties of TM and N species, and the feature importance derived from machine learning illustrates the efficacy of E‐TM‐N x subunit configuration in determining the catalytic activity of E‐SACs. Finally, the trained Gradient Boosting Regression (GBR) model exhibits acceptable accuracy in predicting the OH intermediates adsorption strength for E‐SACs, thereby paving the way for expanding catalytic structures based on E‐SACs.
Author Yi, Xingxing
Ye, Qitong
Wang, Cai‐Zhuang
Liu, Yipu
Lin, Shiwei
Fan, Hong Jin
Zhang, Tao
Author_xml – sequence: 1
  givenname: Qitong
  surname: Ye
  fullname: Ye, Qitong
  organization: Hainan University
– sequence: 2
  givenname: Xingxing
  surname: Yi
  fullname: Yi, Xingxing
  organization: Hainan University
– sequence: 3
  givenname: Cai‐Zhuang
  surname: Wang
  fullname: Wang, Cai‐Zhuang
  organization: Iowa State University
– sequence: 4
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
  organization: Nanyang Technological University
– sequence: 5
  givenname: Yipu
  orcidid: 0000-0003-0265-1491
  surname: Liu
  fullname: Liu, Yipu
  email: liuyp@hainanu.edu.cn
  organization: Hainan University
– sequence: 6
  givenname: Shiwei
  surname: Lin
  fullname: Lin, Shiwei
  email: linsw@hainanu.edu.cn
  organization: Hainan University
– sequence: 7
  givenname: Hong Jin
  orcidid: 0000-0003-1237-4555
  surname: Fan
  fullname: Fan, Hong Jin
  email: fanhj@ntu.edu.sg
  organization: Nanyang Technological University
BookMark eNqFkMtKAzEUhoNUsK1uXQdct-Yyncty6EWFSsUquBvSzJmaMk1qMlOdnY_gM_okplQqCOIqCXzfn3P-DmppowGhc0r6lBB2KfJi3WeEBYRQEh2hNg1p2OOExa3DnT6doI5zK49EEQ_aSI1EJT7fP0ZWbUHjubQAWuklNgW-U1tTiRLP60WtVeWw0nicL8HjqZbPxkKO554tAaeVWeOhjyob58HCWDx7a5Y-8R6ErJTR7hQdF6J0cPZ9dtHjZPwwvO5NZ1c3w3Tak9zP1CtCLkDGAPmAFWLBgAYJAPcbhSBJIQPCkijkJGQLyCWTgkVExjGRlAaxf_Euutjnbqx5qcFV2crUVvsvM04ir7IBSTwV7ClpjXMWikyqSuwGraxQZUZJtis125WaHUr1Wv-XtrFqLWzzt5DshVdVQvMPnaWjye2P-wWcmY6-
CitedBy_id crossref_primary_10_1002_advs_202413379
crossref_primary_10_1016_j_apsusc_2025_162482
crossref_primary_10_1039_D4TA06642A
crossref_primary_10_1016_j_ensm_2024_103985
crossref_primary_10_1039_D4GC04687K
crossref_primary_10_1016_j_cej_2024_155736
crossref_primary_10_3390_ma17102265
Cites_doi 10.1038/376238a0
10.1021/acsami.1c22309
10.1038/s41929-022-00810-6
10.1016/j.mtener.2023.101364
10.1016/j.mtener.2023.101352
10.1002/adfm.202300405
10.1016/j.mtener.2020.100537
10.1016/j.chemphys.2005.05.038
10.1021/acsnano.3c01287
10.1002/anie.202311113
10.1126/science.aad0832
10.1002/anie.202311174
10.1039/D1EE00154J
10.1002/adfm.202304468
10.1016/j.jelechem.2006.11.008
10.1016/0013-4686(84)85004-5
10.1002/adma.202004900
10.1002/aenm.202000882
10.1021/jp047349j
10.1038/s41929-018-0063-z
10.1002/adma.202000966
10.1088/0953-8984/16/8/001
10.1002/anie.202213296
10.1002/adma.202303243
10.1039/D2TA02050E
10.1021/jacs.1c02186
10.1073/pnas.1800771115
10.1002/adma.202102801
10.1021/acsanm.3c00851
10.1021/acs.chemrev.7b00689
10.1002/adma.201800588
10.1021/acscatal.9b02778
10.1021/acsenergylett.0c02484
10.1002/adfm.202110748
10.1002/adfm.202000570
10.1038/s41467-020-16381-8
10.1016/j.apcatb.2018.10.046
10.1016/j.electacta.2007.02.082
10.1016/j.ensm.2022.01.040
10.1039/C8EE02679C
10.1039/D0NR05511E
10.1021/acsnano.3c02521
10.1038/s41467-019-09596-x
10.1038/s41467-023-36380-9
10.1002/aenm.201700544
10.1002/cctc.201000397
10.1021/acs.chemrev.7b00488
10.1038/nature11475
10.1186/1471-2105-7-3
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202400107
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202400107
ADFM202400107
Genre article
GrantInformation_xml – fundername: Scientific Research Starting Foundation of Hainan University
  funderid: Grant No. KYQD(ZR)−22022
– fundername: Hainan Provincial Natural Science Foundation of China
  funderid: Grant No. 223QN185
– fundername: Innovation Platform for Academicians of Hainan Province
  funderid: YSPTZX202123
– fundername: National Natural Science Foundation of China
  funderid: 22369003; 52001306; 22005116
– fundername: Collaborative Innovation Center project of Hainan University
  funderid: XTCX2022XXB01
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3177-f63aec8eed52fab2e149ee31076ec0fc4029763062bedc2ca270c880c1148ca23
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sat Jul 26 03:35:46 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Tue Jul 01 00:30:56 EDT 2025
Wed Jan 22 17:17:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-f63aec8eed52fab2e149ee31076ec0fc4029763062bedc2ca270c880c1148ca23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1237-4555
0000-0003-0265-1491
PQID 3077632509
PQPubID 2045204
PageCount 13
ParticipantIDs proquest_journals_3077632509
crossref_citationtrail_10_1002_adfm_202400107
crossref_primary_10_1002_adfm_202400107
wiley_primary_10_1002_adfm_202400107_ADFM202400107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2021; 6
2019; 9
2023; 35
2023; 14
2023; 36
2023; 33
2023; 17
2023; 6
2019; 10
2019; 12
2006; 7
2022; 46
2005; 319
1984; 29
2020; 12
2020; 11
1995; 376
2020; 32
2020; 10
2007; 52
2021; 143
2012; 488
2011; 3
2004; 108
2007; 607
2019; 243
2022; 28
2020; 18
2021; 14
2023; 62
2021; 33
2023
2020; 30
2022; 5
2022; 61
2004; 16
2018; 1
2018; 118
2018; 115
2024; 63
2022; 14
2018; 30
2022; 10
2022; 32
2016; 351
1967
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Gnanamuthu D. S. (e_1_2_7_8_1) 1967
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_18_1
Tao Zhang Y.‐P. L. (e_1_2_7_13_1) 2022; 28
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_48_1
Liang X. (e_1_2_7_12_1) 2022; 28
e_1_2_7_27_1
Wu L. (e_1_2_7_46_1) 2022; 32
e_1_2_7_29_1
Balamurugan J. (e_1_2_7_15_1) 2023
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 118
  start-page: 6337
  year: 2018
  publication-title: Chem. Rev.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 115
  start-page: 6626
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 14
  start-page: 1249
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 14
  start-page: 3455
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 727
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 351
  start-page: 361
  year: 2016
  publication-title: Science.
– volume: 3
  start-page: 1159
  year: 2011
  publication-title: ChemCatChem.
– volume: 32
  start-page: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 3
  year: 2006
  publication-title: BMC Bioinform.
– volume: 376
  start-page: 238
  year: 1995
  publication-title: Nature.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– start-page: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 46
  start-page: 553
  year: 2022
  publication-title: Energy Stor. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 6
  start-page: 7694
  year: 2023
  publication-title: ACS Appl. Nano Mater.
– volume: 10
  start-page: 1657
  year: 2019
  publication-title: Nat. Commun.
– volume: 14
  start-page: 843
  year: 2023
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1503
  year: 1984
  publication-title: Electrochim. Acta.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A.
– volume: 118
  start-page: 2302
  year: 2018
  publication-title: Chem. Rev.
– volume: 488
  start-page: 294
  year: 2012
  publication-title: Nature.
– volume: 17
  start-page: 9565
  year: 2023
  publication-title: ACS Nano.
– volume: 36
  year: 2023
  publication-title: Mater. Today Energy.
– volume: 6
  start-page: 379
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 2455
  year: 2020
  publication-title: Nat. Commun.
– start-page: 114. 1036
  year: 1967
  publication-title: J. Electrochem. Soc.
– volume: 16
  start-page: 1141
  year: 2004
  publication-title: J. Phys. Condens. Matter.
– volume: 52
  start-page: 5829
  year: 2007
  publication-title: Electrochim. Acta.
– volume: 143
  start-page: 9423
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 607
  start-page: 83
  year: 2007
  publication-title: J. Electroanal. Chem.
– volume: 18
  year: 2020
  publication-title: Mater. Today Energy.
– volume: 243
  start-page: 294
  year: 2019
  publication-title: Appl. Catal. B.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 9
  year: 2019
  publication-title: ACS Catal.
– volume: 28
  year: 2022
  publication-title: J. Electrochem.
– volume: 17
  start-page: 8622
  year: 2023
  publication-title: ACS Nano.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 1
  start-page: 339
  year: 2018
  publication-title: Nat. Catal.
– volume: 319
  start-page: 178
  year: 2005
  publication-title: Chem. Phys.
– volume: 5
  start-page: 615
  year: 2022
  publication-title: Nat. Catal.
– volume: 12
  year: 2020
  publication-title: Nanoscale.
– volume: 108
  year: 2004
  publication-title: J. Phys. Chem. B.
– ident: e_1_2_7_47_1
  doi: 10.1038/376238a0
– ident: e_1_2_7_54_1
  doi: 10.1021/acsami.1c22309
– ident: e_1_2_7_10_1
  doi: 10.1038/s41929-022-00810-6
– ident: e_1_2_7_49_1
  doi: 10.1016/j.mtener.2023.101364
– ident: e_1_2_7_51_1
  doi: 10.1016/j.mtener.2023.101352
– ident: e_1_2_7_14_1
  doi: 10.1002/adfm.202300405
– ident: e_1_2_7_50_1
  doi: 10.1016/j.mtener.2020.100537
– ident: e_1_2_7_39_1
  doi: 10.1016/j.chemphys.2005.05.038
– ident: e_1_2_7_18_1
  doi: 10.1021/acsnano.3c01287
– ident: e_1_2_7_43_1
  doi: 10.1002/anie.202311113
– ident: e_1_2_7_5_1
  doi: 10.1126/science.aad0832
– ident: e_1_2_7_32_1
  doi: 10.1002/anie.202311174
– ident: e_1_2_7_31_1
  doi: 10.1039/D1EE00154J
– ident: e_1_2_7_33_1
  doi: 10.1002/adfm.202304468
– start-page: 35
  year: 2023
  ident: e_1_2_7_15_1
  publication-title: Adv. Mater.
– ident: e_1_2_7_40_1
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 28
  year: 2022
  ident: e_1_2_7_13_1
  publication-title: J. Electrochem.
– ident: e_1_2_7_9_1
  doi: 10.1016/0013-4686(84)85004-5
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.202004900
– ident: e_1_2_7_26_1
  doi: 10.1002/aenm.202000882
– ident: e_1_2_7_38_1
  doi: 10.1021/jp047349j
– ident: e_1_2_7_45_1
  doi: 10.1038/s41929-018-0063-z
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.202000966
– ident: e_1_2_7_42_1
  doi: 10.1088/0953-8984/16/8/001
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.202213296
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.202303243
– ident: e_1_2_7_34_1
  doi: 10.1039/D2TA02050E
– ident: e_1_2_7_44_1
  doi: 10.1021/jacs.1c02186
– ident: e_1_2_7_21_1
  doi: 10.1073/pnas.1800771115
– start-page: 114. 1036
  year: 1967
  ident: e_1_2_7_8_1
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.202102801
– volume: 28
  year: 2022
  ident: e_1_2_7_12_1
  publication-title: J. Electrochem.
– ident: e_1_2_7_52_1
  doi: 10.1021/acsanm.3c00851
– ident: e_1_2_7_37_1
  doi: 10.1021/acs.chemrev.7b00689
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201800588
– ident: e_1_2_7_35_1
  doi: 10.1021/acscatal.9b02778
– ident: e_1_2_7_17_1
  doi: 10.1021/acsenergylett.0c02484
– ident: e_1_2_7_48_1
  doi: 10.1002/adfm.202110748
– ident: e_1_2_7_11_1
  doi: 10.1002/adfm.202000570
– ident: e_1_2_7_22_1
  doi: 10.1038/s41467-020-16381-8
– ident: e_1_2_7_30_1
  doi: 10.1016/j.apcatb.2018.10.046
– ident: e_1_2_7_36_1
  doi: 10.1016/j.electacta.2007.02.082
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ensm.2022.01.040
– ident: e_1_2_7_3_1
  doi: 10.1039/C8EE02679C
– ident: e_1_2_7_6_1
  doi: 10.1039/D0NR05511E
– ident: e_1_2_7_25_1
  doi: 10.1021/acsnano.3c02521
– ident: e_1_2_7_29_1
  doi: 10.1038/s41467-019-09596-x
– ident: e_1_2_7_2_1
  doi: 10.1038/s41467-023-36380-9
– ident: e_1_2_7_4_1
  doi: 10.1002/aenm.201700544
– ident: e_1_2_7_7_1
  doi: 10.1002/cctc.201000397
– volume: 32
  start-page: 32
  year: 2022
  ident: e_1_2_7_46_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_41_1
  doi: 10.1021/acs.chemrev.7b00488
– ident: e_1_2_7_1_1
  doi: 10.1038/nature11475
– ident: e_1_2_7_53_1
  doi: 10.1186/1471-2105-7-3
SSID ssj0017734
Score 2.532209
Snippet Oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are key reactions in diverse energy conversion devices, highlighting the importance of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atomic structure
Catalytic activity
Catalytic converters
Chemical reduction
Configurations
data‐driven screening
Edge effect
edge‐anchored single‐atom catalysts
Electronic properties
Electronic structure
Energy conversion
high‐throughput calculations
Machine learning
Oxygen evolution reactions
oxygen reaction
Oxygen reduction reactions
Regression models
Screening
Single atom catalysts
Stability criteria
Structural analysis
Structural stability
Transition metals
Title Data‐Driven Screening of Pivotal Subunits in Edge‐Anchored Single Atom Catalysts for Oxygen Reactions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202400107
https://www.proquest.com/docview/3077632509
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQXODAjihL5QMSp0BjZ-sxolQIUUAtSL1FjhdUASlqUgSc-AS-kS9hJmnTFgkhwS1WxlHsscdv7JlnQg6Er0w95sIC7OFYeLJnCa-uLCFcrj1f80Bg7nDr0ju7dc67bncqi7_ghyg33HBm5PYaJ7iI0-MJaahQBjPJMQbSztPJMWALUVG75I-yfb84VvZsDPCyu2PWxho7nq0-uypNoOY0YM1XnOYKEeN_LQJN7o-GWXwk377ROP6nMatkeQRHaViMnzUyp5N1sjRFUrhBeg2Ric_3j8YADSPtSIzUgTe0b-h177kP6J2C-RmCbUhpL6Gn6k6DeJiAYR1oRTsg-6BpmPUf6QluFr2mIAhYmV69vMLwpW1dJFekm-S2eXpzcmaNLmiwJMAO3zIeF1oGsMy6zIiYaXC3tAbA6Hta1ox08GYsD5wSFmslmRTMr0kwGBKdMCjxLTKf9BO9TagT80Aq8JZt5TgOiBrl1ANXK2YC4ypeIdZYQZEcsZfjJRoPUcG7zCLswqjswgo5LOWfCt6OHyX3xvqORvM3jTiyHHGAh_UKYbnifvlKFDaarbK085dKu2QRn4tY4D0ynw2Geh8QTxZXyULYaF10qvno_gJ6wfuY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5ROLQcKH2J8Gj30KonQ7LrVw49RJgoFEIrHlJu7nofVQQ4KHag6ak_oX-lf6U_gV_SmfgBVKoqVeLQo-3xyt6d5-7MNwCvZaBtOxHSQd_Ddehkz5F-WztSesL4gRGhpNrh_oHfO3HfD7zBHPyoamEKfIh6w40kY6avScBpQ3rrBjVUakul5JQEiTFMmVe5Z6ZXGLVl73YjXOI3nHd3jrd7TtlYwFFoLgPH-kIaFaJ58LiVCTcYJhiDjk7gG9W0yqWOTj460zwxWnEledBUyOiKgge8EjjuA1igNuIE1x8d1ohVOHpxkO23KKWsNahwIpt86-733rWDN87tbRd5ZuO6j-FnNTtFasvp5iRPNtXX34Aj_6vpW4al0uNmnUJEnsCcSZ_C4i0cxmcwjGQur799j8ak-9mRomQkfMJGln0cXo4wQGGoYSeo_jI2TNmO_myQvJOi7RgbzY6Q9sywTj46Z9u0HzbNkBDDAfbhyxQllB2aon4kew4n9_KvL2A-HaVmBZibiFDpUAQt7bouklrttkPPaG5D62nRAKfiiFiVAO3UJ-QsLqCleUxLFtdL1oC3Nf1FAU3yR8r1isHiUkVlsSAgJ4EecLsBfMYpfxkl7kTdfn21-i8vvYKHveP-fry_e7C3Bo_ofpH6vA7z-XhiNtDBy5OXM5Fi8Om-mfAX615Yvg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE4UH7FQgEfQJzS7trO36GHVdNVS2mpWirtLTj2GK3aZqtNFtie-gg8Cq_CK_AkjDc_bZEQElIPHJNMrMSeX3vmG4BXKjQ2zoTyyPeQnjvZ81QQG08pX2AQooiUqx3e2Q02D-XboT9cgO9NLUyFD9FuuDnJmOtrJ-Cnxq5egIYqY10lucuBpBCmTqvcxtkXCtqKta2EVvg154OND-ubXt1XwNNkLUPPBkKhjsg6-NyqjCNFCYjk54QB6q7V0jV0CsiX5hkazbXiYVcTn2sXO9CVoHFvwE0ZdGPXLCLZbwGraPTqHDvouYyy3rCBiezy1avfe9UMXvi2lz3kuYkbLMGPZnKqzJajlWmZreiz33Aj_6fZuwd3a3-b9SsBuQ8LmD-AO5dQGB_CKFGl-nn-LZk4zc8OtEtFoidsbNne6POYwhNG-nVKyq9go5xtmE9I5P2cLMcEDTsg2mNk_XJ8wtbdbtisIEIKBtj7rzOST7aPVfVI8QgOr-VfH8NiPs7xCTCZiUibSIQ9I6UkUmtkHPlouI2sb0QHvIYhUl3Ds7suIcdpBSzNU7dkabtkHXjT0p9WwCR_pFxu-CutFVSRCgfjJMj_jTvA54zyl1HSfjLYaa-e_stLL-HWXjJI323tbj-D2-52lfe8DIvlZIrPybsrsxdzgWLw8bp58Bdt1Vdt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data%E2%80%90Driven+Screening+of+Pivotal+Subunits+in+Edge%E2%80%90Anchored+Single+Atom+Catalysts+for+Oxygen+Reactions&rft.jtitle=Advanced+functional+materials&rft.au=Ye%2C+Qitong&rft.au=Yi%2C+Xingxing&rft.au=Wang%2C+Cai%E2%80%90Zhuang&rft.au=Zhang%2C+Tao&rft.date=2024-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=28&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202400107&rft.externalDBID=10.1002%252Fadfm.202400107&rft.externalDocID=ADFM202400107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon