A Functional Prelithiation Separator Promises Sustainable High‐Energy Lithium‐Ion Batteries

High‐energy lithium‐ion batteries built with silicon‐based anode materials are usually associated with short cycle lives due to mechanical failure at an anode level and more importantly, due to electrochemical failure at a cell level as a result of irreversible consumption of cathode Li during initi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 13; no. 19
Main Authors Meng, Qinghai, Fan, Min, Chang, Xin, Li, Hongliang, Wang, Wen‐Peng, Zhu, Yu‐Hui, Wan, Jing, Zhao, Yao, Wang, Fuyi, Wen, Rui, Xin, Sen, Guo, Yu‐Guo
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐energy lithium‐ion batteries built with silicon‐based anode materials are usually associated with short cycle lives due to mechanical failure at an anode level and more importantly, due to electrochemical failure at a cell level as a result of irreversible consumption of cathode Li during initial charge. (Electro)chemical prelithiation has shown promises to compensate initial Li loss and improve cycling performance of the battery. However, previous strategies applied directly at anode or cathode could raise concerns on safety and degraded electrode structure, and are less compatible with industrial manufacture of batteries. Here, a new concept of prelithiation by lithiation agents supported functional separator, which is highly adaptive to electrode preparation, battery manufacture and formation, and is capable of, by simply adjusting cell voltage, not only replenishing cathode Li loss but re‐uptaking anode Li to inhibit local over‐lithiation and dendrite formation, is shown. By employing the functional separator, a 3‐Ah Li‐ion pouch cell that pairs a silicon‐based anode and a high‐nickel layered oxide cathode demonstrates stable energy output of >330 Wh kg−1 and much improved cycling performance. A new prelithiation method based on a lithiation agents supported functional separator is proposed to compensate the Li loss during battery formation and cycling, and promises a high‐energy rechargeable lithium‐ion battery with improved safety and sustainability.
AbstractList High‐energy lithium‐ion batteries built with silicon‐based anode materials are usually associated with short cycle lives due to mechanical failure at an anode level and more importantly, due to electrochemical failure at a cell level as a result of irreversible consumption of cathode Li during initial charge. (Electro)chemical prelithiation has shown promises to compensate initial Li loss and improve cycling performance of the battery. However, previous strategies applied directly at anode or cathode could raise concerns on safety and degraded electrode structure, and are less compatible with industrial manufacture of batteries. Here, a new concept of prelithiation by lithiation agents supported functional separator, which is highly adaptive to electrode preparation, battery manufacture and formation, and is capable of, by simply adjusting cell voltage, not only replenishing cathode Li loss but re‐uptaking anode Li to inhibit local over‐lithiation and dendrite formation, is shown. By employing the functional separator, a 3‐Ah Li‐ion pouch cell that pairs a silicon‐based anode and a high‐nickel layered oxide cathode demonstrates stable energy output of >330 Wh kg −1 and much improved cycling performance.
High‐energy lithium‐ion batteries built with silicon‐based anode materials are usually associated with short cycle lives due to mechanical failure at an anode level and more importantly, due to electrochemical failure at a cell level as a result of irreversible consumption of cathode Li during initial charge. (Electro)chemical prelithiation has shown promises to compensate initial Li loss and improve cycling performance of the battery. However, previous strategies applied directly at anode or cathode could raise concerns on safety and degraded electrode structure, and are less compatible with industrial manufacture of batteries. Here, a new concept of prelithiation by lithiation agents supported functional separator, which is highly adaptive to electrode preparation, battery manufacture and formation, and is capable of, by simply adjusting cell voltage, not only replenishing cathode Li loss but re‐uptaking anode Li to inhibit local over‐lithiation and dendrite formation, is shown. By employing the functional separator, a 3‐Ah Li‐ion pouch cell that pairs a silicon‐based anode and a high‐nickel layered oxide cathode demonstrates stable energy output of >330 Wh kg−1 and much improved cycling performance.
High‐energy lithium‐ion batteries built with silicon‐based anode materials are usually associated with short cycle lives due to mechanical failure at an anode level and more importantly, due to electrochemical failure at a cell level as a result of irreversible consumption of cathode Li during initial charge. (Electro)chemical prelithiation has shown promises to compensate initial Li loss and improve cycling performance of the battery. However, previous strategies applied directly at anode or cathode could raise concerns on safety and degraded electrode structure, and are less compatible with industrial manufacture of batteries. Here, a new concept of prelithiation by lithiation agents supported functional separator, which is highly adaptive to electrode preparation, battery manufacture and formation, and is capable of, by simply adjusting cell voltage, not only replenishing cathode Li loss but re‐uptaking anode Li to inhibit local over‐lithiation and dendrite formation, is shown. By employing the functional separator, a 3‐Ah Li‐ion pouch cell that pairs a silicon‐based anode and a high‐nickel layered oxide cathode demonstrates stable energy output of >330 Wh kg−1 and much improved cycling performance. A new prelithiation method based on a lithiation agents supported functional separator is proposed to compensate the Li loss during battery formation and cycling, and promises a high‐energy rechargeable lithium‐ion battery with improved safety and sustainability.
Author Chang, Xin
Zhu, Yu‐Hui
Fan, Min
Wang, Wen‐Peng
Wang, Fuyi
Meng, Qinghai
Li, Hongliang
Guo, Yu‐Guo
Wan, Jing
Zhao, Yao
Xin, Sen
Wen, Rui
Author_xml – sequence: 1
  givenname: Qinghai
  orcidid: 0000-0002-9264-0886
  surname: Meng
  fullname: Meng, Qinghai
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Min
  surname: Fan
  fullname: Fan, Min
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Xin
  surname: Chang
  fullname: Chang, Xin
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 4
  givenname: Hongliang
  surname: Li
  fullname: Li, Hongliang
  organization: Qingdao University
– sequence: 5
  givenname: Wen‐Peng
  surname: Wang
  fullname: Wang, Wen‐Peng
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Yu‐Hui
  surname: Zhu
  fullname: Zhu, Yu‐Hui
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 7
  givenname: Jing
  surname: Wan
  fullname: Wan, Jing
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Yao
  surname: Zhao
  fullname: Zhao, Yao
  organization: Institute of Chemistry Chinese Academy of Sciences
– sequence: 9
  givenname: Fuyi
  surname: Wang
  fullname: Wang, Fuyi
  organization: Institute of Chemistry Chinese Academy of Sciences
– sequence: 10
  givenname: Rui
  surname: Wen
  fullname: Wen, Rui
  organization: Chinese Academy of Sciences
– sequence: 11
  givenname: Sen
  surname: Xin
  fullname: Xin, Sen
  email: xinsen08@iccas.ac.cn
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 12
  givenname: Yu‐Guo
  orcidid: 0000-0003-0322-8476
  surname: Guo
  fullname: Guo, Yu‐Guo
  email: ygguo@iccas.ac.cn
  organization: University of Chinese Academy of Sciences (UCAS)
BookMark eNqFkE1Lw0AQhhepYK29eg54Tt3NbjbJsZbWFuoHVM_LNJ20W_JRdzdIb_4Ef6O_xMRKBUGcy3wwzwzve046ZVUiIZeMDhilwTVgWQwCGnBKQxqdkC6TTPgyFrRzrHlwRvrWbmkTImGU8y5RQ29Sl6nTVQm592gw126joe29Be7AgKtMM68KbdF6i9o60CUsc_Smer35eHsfl2jWe2_ecnXRDGYNegPOodFoL8hpBrnF_nfukefJ-Gk09ecPt7PRcO6nnEWRv8pWYcpjGTHBWAoMk4DGGUqKkciAg4gxoRBHIuYhhCKUNJISlgEs5QqTlPEeuTrc3ZnqpUbr1LaqTaPJqiBmIRMyavT2yOCwlZrKWoOZ2hldgNkrRlXro2p9VEcfG0D8AlLtvtxxBnT-N5YcsFed4_6fJ2o4vr_7YT8BMdKL5w
CitedBy_id crossref_primary_10_1002_anie_202310435
crossref_primary_10_1016_j_ensm_2024_103696
crossref_primary_10_1002_adfm_202403574
crossref_primary_10_1002_smll_202311891
crossref_primary_10_1002_smtd_202401133
crossref_primary_10_1016_j_jpowsour_2024_235794
crossref_primary_10_1021_acsami_4c21194
crossref_primary_10_1016_j_cej_2024_152542
crossref_primary_10_1002_aenm_202402329
crossref_primary_10_1002_anie_202406557
crossref_primary_10_1016_j_est_2024_113185
crossref_primary_10_3390_ma17133153
crossref_primary_10_1016_j_apmate_2024_100215
crossref_primary_10_1002_ange_202403617
crossref_primary_10_1002_adma_202311529
crossref_primary_10_1007_s11426_023_1681_x
crossref_primary_10_1002_adma_202408268
crossref_primary_10_1016_j_carbon_2024_119615
crossref_primary_10_1039_D4SC03052D
crossref_primary_10_1039_D4RA08234F
crossref_primary_10_1002_smtd_202401188
crossref_primary_10_1016_j_cej_2023_144744
crossref_primary_10_1016_j_est_2025_115541
crossref_primary_10_1002_adfm_202423538
crossref_primary_10_1002_adfm_202307860
crossref_primary_10_1002_ange_202310435
crossref_primary_10_1002_batt_202400115
crossref_primary_10_1007_s11426_023_1918_0
crossref_primary_10_1016_j_cej_2025_161529
crossref_primary_10_1038_s41586_024_08465_y
crossref_primary_10_1016_j_electacta_2024_143918
crossref_primary_10_1016_j_jcis_2024_09_113
crossref_primary_10_1021_acssuschemeng_3c07940
crossref_primary_10_1002_ange_202406557
crossref_primary_10_1016_j_jcis_2023_12_141
crossref_primary_10_1002_aenm_202300725
crossref_primary_10_1002_anie_202403617
crossref_primary_10_1016_j_ensm_2024_103318
crossref_primary_10_1039_D3EE03740A
crossref_primary_10_1002_aenm_202303672
crossref_primary_10_1039_D4RA08061K
crossref_primary_10_1149_1945_7111_ad9993
crossref_primary_10_1002_aenm_202300466
Cites_doi 10.1002/adma.201801187
10.1002/aenm.202202906
10.1002/smll.202102641
10.1016/j.mattod.2020.07.015
10.1038/srep46530
10.1149/1.2068978
10.1002/aenm.202103630
10.1002/anie.200704287
10.1002/adma.201707430
10.1002/adfm.202005581
10.1002/aenm.201902788
10.1021/acs.nanolett.5b05228
10.1016/j.jpowsour.2017.07.073
10.1002/anie.202007436
10.1002/aenm.201601481
10.1016/j.ensm.2016.10.004
10.1016/j.jpowsour.2016.05.063
10.1038/s41560-017-0043-6
10.1002/adma.202005937
10.1002/aenm.202101565
10.1016/j.jpowsour.2014.02.112
10.1038/nenergy.2015.8
10.1002/eem2.12129
10.1149/2.1111702jes
10.1002/eem2.12267
10.1002/adfm.201707411
10.1038/s41467-021-25334-8
10.1016/j.jpowsour.2017.02.061
10.1016/j.ceramint.2020.06.259
10.1021/acsami.2c08788
10.1039/D0EE00807A
10.1016/S1452-3981(23)15092-9
10.31635/ccschem.022.202201996
10.1002/adma.201402813
10.1002/aenm.201903864
10.1021/acsenergylett.0c00211
10.1002/adma.201800561
10.1021/acsami.9b12086
10.1002/aenm.201600154
10.1002/aenm.202202447
10.1038/s41586-022-05281-0
10.1021/acs.nanolett.5b03776
10.1002/aenm.202102599
10.1016/j.ensm.2022.01.042
10.1021/cm902713m
10.3390/batteries4010004
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202300507
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202300507
AENM202300507
Genre article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2021YFB2400200
– fundername: Youth Innovation Promotion Association CAS
  funderid: 2023040
– fundername: CAS Project for Young Scientists in Basic Research
  funderid: YSBR‐058
– fundername: National Natural Science Foundation of China
  funderid: 22279148; 21905286
– fundername: Transformational Technologies for Clean Energy and Demonstration,” Strategic Priority Research Program of the CAS
  funderid: XDA21070300
– fundername: Beijing Natural Science Foundation
  funderid: JQ22005
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3177-dfd5c38671411ca1e9208fe60e74fa3a48e90a874835a54560766ab2ab6de9c13
ISSN 1614-6832
IngestDate Sun Jul 13 05:37:23 EDT 2025
Tue Jul 01 01:43:49 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Wed Jan 22 16:21:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3177-dfd5c38671411ca1e9208fe60e74fa3a48e90a874835a54560766ab2ab6de9c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9264-0886
0000-0003-0322-8476
PQID 2815146703
PQPubID 886389
PageCount 9
ParticipantIDs proquest_journals_2815146703
crossref_primary_10_1002_aenm_202300507
crossref_citationtrail_10_1002_aenm_202300507
wiley_primary_10_1002_aenm_202300507_AENM202300507
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2020 2021 2018; 5 12 30
2017; 2
2018 2021; 30 17
2022 2023; 12 13
2020 2021 2020 2018; 41 4 46 28
2021 2022 2020; 33 611 10
1992; 139
2022 2018 2017 2014; 46 30 7 26
2021 2021 2020 2022; 31 11 13 12
2020; 59
2008 2017; 47 363
2017; 164
2016 2020 2022 2017 2016 2016 2022; 1 10 14 6 6 16 12
2011; 6
2019 2014 2023 2018 2017 2016; 11 260 6 4 347 16
2010 2016; 22 324
e_1_2_8_8_4
e_1_2_8_9_3
e_1_2_8_7_4
e_1_2_8_8_3
e_1_2_8_9_2
e_1_2_8_9_5
e_1_2_8_9_4
e_1_2_8_9_6
e_1_2_8_1_3
e_1_2_8_2_2
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_5_1
e_1_2_8_2_3
e_1_2_8_3_2
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_7_3
e_1_2_8_8_2
e_1_2_8_9_1
e_1_2_8_6_3
e_1_2_8_7_2
e_1_2_8_8_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_10_4
e_1_2_8_11_3
e_1_2_8_12_2
e_1_2_8_13_1
Li J. (e_1_2_8_15_1) 2011; 6
e_1_2_8_10_5
e_1_2_8_11_4
e_1_2_8_14_1
e_1_2_8_10_6
e_1_2_8_10_7
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_11_1
e_1_2_8_10_3
e_1_2_8_11_2
e_1_2_8_12_1
References_xml – volume: 31 11 13 12
  start-page: 2341
  year: 2021 2021 2020 2022
  publication-title: Adv. Funct. Mater. Adv. Energy Mater. Energy Environ. Sci. Adv. Energy Mater.
– volume: 12 13
  year: 2022 2023
  publication-title: CCS Chem. Adv. Energy Mater. Adv. Energy Mater.
– volume: 139
  start-page: 2776
  year: 1992
  publication-title: J. Electrochem. Soc.
– volume: 164
  start-page: A389
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 46 30 7 26
  start-page: 482 6749
  year: 2022 2018 2017 2014
  publication-title: Energy Storage Mater. Adv. Mater. Adv. Energy Mater. Adv. Mater.
– volume: 47 363
  start-page: 1645 126
  year: 2008 2017
  publication-title: Angew. Chem., Int. Ed. J. Power Sources
– volume: 6
  start-page: 1550
  year: 2011
  publication-title: Int. J. Electrochem. Sci.
– volume: 1 10 14 6 6 16 12
  start-page: 119 1497
  year: 2016 2020 2022 2017 2016 2016 2022
  publication-title: Nat. Energy Adv. Energy Mater. ACS Appl. Mater. Interfaces Energy Storage Mater. Adv. Energy Mater. Nano Lett. Adv. Energy Mater.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 11 260 6 4 347 16
  start-page: 57 4 170 282
  year: 2019 2014 2023 2018 2017 2016
  publication-title: ACS Appl. Mater. Interfaces J. Power Sources Energy Environ. Mater. Batteries J. Power Sources Nano Lett.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 5 12 30
  start-page: 807 5459
  year: 2020 2021 2018
  publication-title: ACS Energy Lett. Nat. Commun. Adv. Mater.
– volume: 41 4 46 28
  start-page: 143 336
  year: 2020 2021 2020 2018
  publication-title: Mater. Today Energy Environ. Mater. Ceram. Int. Adv. Funct. Mater.
– volume: 22 324
  start-page: 1263 150
  year: 2010 2016
  publication-title: Chem. Mater. J. Power Sources
– volume: 30 17
  year: 2018 2021
  publication-title: Adv. Mater. Small
– volume: 2
  start-page: 963
  year: 2017
  publication-title: Nat. Energy
– volume: 33 611 10
  start-page: 485
  year: 2021 2022 2020
  publication-title: Adv. Mater. Nature Adv. Energy Mater.
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.201801187
– ident: e_1_2_8_6_3
  doi: 10.1002/aenm.202202906
– ident: e_1_2_8_4_2
  doi: 10.1002/smll.202102641
– ident: e_1_2_8_11_1
  doi: 10.1016/j.mattod.2020.07.015
– ident: e_1_2_8_16_1
  doi: 10.1038/srep46530
– ident: e_1_2_8_5_1
  doi: 10.1149/1.2068978
– ident: e_1_2_8_10_7
  doi: 10.1002/aenm.202103630
– ident: e_1_2_8_3_1
  doi: 10.1002/anie.200704287
– ident: e_1_2_8_7_2
  doi: 10.1002/adma.201707430
– ident: e_1_2_8_8_1
  doi: 10.1002/adfm.202005581
– ident: e_1_2_8_10_2
  doi: 10.1002/aenm.201902788
– ident: e_1_2_8_10_6
  doi: 10.1021/acs.nanolett.5b05228
– ident: e_1_2_8_3_2
  doi: 10.1016/j.jpowsour.2017.07.073
– ident: e_1_2_8_13_1
  doi: 10.1002/anie.202007436
– ident: e_1_2_8_7_3
  doi: 10.1002/aenm.201601481
– ident: e_1_2_8_10_4
  doi: 10.1016/j.ensm.2016.10.004
– ident: e_1_2_8_12_2
  doi: 10.1016/j.jpowsour.2016.05.063
– ident: e_1_2_8_14_1
  doi: 10.1038/s41560-017-0043-6
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.202005937
– ident: e_1_2_8_8_2
  doi: 10.1002/aenm.202101565
– ident: e_1_2_8_9_2
  doi: 10.1016/j.jpowsour.2014.02.112
– ident: e_1_2_8_10_1
  doi: 10.1038/nenergy.2015.8
– ident: e_1_2_8_11_2
  doi: 10.1002/eem2.12129
– ident: e_1_2_8_17_1
  doi: 10.1149/2.1111702jes
– ident: e_1_2_8_9_3
  doi: 10.1002/eem2.12267
– ident: e_1_2_8_11_4
  doi: 10.1002/adfm.201707411
– ident: e_1_2_8_2_2
  doi: 10.1038/s41467-021-25334-8
– ident: e_1_2_8_9_5
  doi: 10.1016/j.jpowsour.2017.02.061
– ident: e_1_2_8_11_3
  doi: 10.1016/j.ceramint.2020.06.259
– ident: e_1_2_8_10_3
  doi: 10.1021/acsami.2c08788
– ident: e_1_2_8_8_3
  doi: 10.1039/D0EE00807A
– volume: 6
  start-page: 1550
  year: 2011
  ident: e_1_2_8_15_1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)15092-9
– ident: e_1_2_8_6_1
  doi: 10.31635/ccschem.022.202201996
– ident: e_1_2_8_7_4
  doi: 10.1002/adma.201402813
– ident: e_1_2_8_1_3
  doi: 10.1002/aenm.201903864
– ident: e_1_2_8_2_1
  doi: 10.1021/acsenergylett.0c00211
– ident: e_1_2_8_2_3
  doi: 10.1002/adma.201800561
– ident: e_1_2_8_9_1
  doi: 10.1021/acsami.9b12086
– ident: e_1_2_8_10_5
  doi: 10.1002/aenm.201600154
– ident: e_1_2_8_8_4
  doi: 10.1002/aenm.202202447
– ident: e_1_2_8_1_2
  doi: 10.1038/s41586-022-05281-0
– ident: e_1_2_8_9_6
  doi: 10.1021/acs.nanolett.5b03776
– ident: e_1_2_8_6_2
  doi: 10.1002/aenm.202102599
– ident: e_1_2_8_7_1
  doi: 10.1016/j.ensm.2022.01.042
– ident: e_1_2_8_12_1
  doi: 10.1021/cm902713m
– ident: e_1_2_8_9_4
  doi: 10.3390/batteries4010004
SSID ssj0000491033
Score 2.5998743
Snippet High‐energy lithium‐ion batteries built with silicon‐based anode materials are usually associated with short cycle lives due to mechanical failure at an anode...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Cathodes
Cycles
Electrode materials
Electrodes
functionalized separators
high energy
Lithium-ion batteries
prelithiation
Separators
Silicon
SiO x
Title A Functional Prelithiation Separator Promises Sustainable High‐Energy Lithium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202300507
https://www.proquest.com/docview/2815146703
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6l6YUeEAWqBtpqD0gckOl67Xjto9UmKpUTqEik3Fbr9VpFggSl6QUuPEKfsU_CrPcnjtTSlouTjOyNvfN5dmY08y1C70hcV3HJ6kCGVQQBSkmDLI1kQDOWCaY7QZuc7micnE3j81l_1un8bneXrMqP8tedfSX_o1WQgV51l-wTNOsHBQF8B_3CETQMx0fpOP8whGXJZvO-LBW41JdmqsEGNKTei6VuBQBdqitdgON7pXR5h69zGJj-v0Jfff3Diz_BMIZ-0xUaOrZaVzegzIXg9Jqn9dpTxoJcwLp4Kb55jAhbqe8BeeLS1bO1rDD7aC90f7Gw66pNS9BWEeAjjV_L6IKLECSpzXOqtsxQOXlLHbURmd25AhhGWaHmmmaAajJ-s6vuJtX2-DMfTouCTwazyRbaphBj0C7azk9HxVefooPgKSRR06Lh7tDRfhJ6vPkXm27NOlZpRzyNyzJ5gZ7bWAPnBji7qKPmL9FOi4HyFeI5XkMIb0AIewhhByHcghDWELr9c2PAgy14QACwwR42r9F0OJicnAV2z41AgifJgqqu-jLSpIdxGEoRqoyStFYJUSyuRSTiVGVEpCwGz11o75uwJBElFWVSqUyG0R7qzhdztY9wVSYEzAAsERI-VV3WjFUp7cOgVCZh2kOBmzIuLSG93hflOzdU2pTrKeZ-invovT__p6FiuffMA6cBbl_XK05TcG7BLSBRD9FGKw-MwvPBeOR_vfn3mG_Rs_VbcIC6q-W1OgR3dVUeWVj9Bd3UlKg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Functional+Prelithiation+Separator+Promises+Sustainable+High%E2%80%90Energy+Lithium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Meng%2C+Qinghai&rft.au=Fan%2C+Min&rft.au=Chang%2C+Xin&rft.au=Li%2C+Hongliang&rft.date=2023-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=19&rft_id=info:doi/10.1002%2Faenm.202300507&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon