A Functional Prelithiation Separator Promises Sustainable High‐Energy Lithium‐Ion Batteries
High‐energy lithium‐ion batteries built with silicon‐based anode materials are usually associated with short cycle lives due to mechanical failure at an anode level and more importantly, due to electrochemical failure at a cell level as a result of irreversible consumption of cathode Li during initi...
Saved in:
Published in | Advanced energy materials Vol. 13; no. 19 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High‐energy lithium‐ion batteries built with silicon‐based anode materials are usually associated with short cycle lives due to mechanical failure at an anode level and more importantly, due to electrochemical failure at a cell level as a result of irreversible consumption of cathode Li during initial charge. (Electro)chemical prelithiation has shown promises to compensate initial Li loss and improve cycling performance of the battery. However, previous strategies applied directly at anode or cathode could raise concerns on safety and degraded electrode structure, and are less compatible with industrial manufacture of batteries. Here, a new concept of prelithiation by lithiation agents supported functional separator, which is highly adaptive to electrode preparation, battery manufacture and formation, and is capable of, by simply adjusting cell voltage, not only replenishing cathode Li loss but re‐uptaking anode Li to inhibit local over‐lithiation and dendrite formation, is shown. By employing the functional separator, a 3‐Ah Li‐ion pouch cell that pairs a silicon‐based anode and a high‐nickel layered oxide cathode demonstrates stable energy output of >330 Wh kg−1 and much improved cycling performance.
A new prelithiation method based on a lithiation agents supported functional separator is proposed to compensate the Li loss during battery formation and cycling, and promises a high‐energy rechargeable lithium‐ion battery with improved safety and sustainability. |
---|---|
AbstractList | High‐energy lithium‐ion batteries built with silicon‐based anode materials are usually associated with short cycle lives due to mechanical failure at an anode level and more importantly, due to electrochemical failure at a cell level as a result of irreversible consumption of cathode Li during initial charge. (Electro)chemical prelithiation has shown promises to compensate initial Li loss and improve cycling performance of the battery. However, previous strategies applied directly at anode or cathode could raise concerns on safety and degraded electrode structure, and are less compatible with industrial manufacture of batteries. Here, a new concept of prelithiation by lithiation agents supported functional separator, which is highly adaptive to electrode preparation, battery manufacture and formation, and is capable of, by simply adjusting cell voltage, not only replenishing cathode Li loss but re‐uptaking anode Li to inhibit local over‐lithiation and dendrite formation, is shown. By employing the functional separator, a 3‐Ah Li‐ion pouch cell that pairs a silicon‐based anode and a high‐nickel layered oxide cathode demonstrates stable energy output of >330 Wh kg
−1
and much improved cycling performance. High‐energy lithium‐ion batteries built with silicon‐based anode materials are usually associated with short cycle lives due to mechanical failure at an anode level and more importantly, due to electrochemical failure at a cell level as a result of irreversible consumption of cathode Li during initial charge. (Electro)chemical prelithiation has shown promises to compensate initial Li loss and improve cycling performance of the battery. However, previous strategies applied directly at anode or cathode could raise concerns on safety and degraded electrode structure, and are less compatible with industrial manufacture of batteries. Here, a new concept of prelithiation by lithiation agents supported functional separator, which is highly adaptive to electrode preparation, battery manufacture and formation, and is capable of, by simply adjusting cell voltage, not only replenishing cathode Li loss but re‐uptaking anode Li to inhibit local over‐lithiation and dendrite formation, is shown. By employing the functional separator, a 3‐Ah Li‐ion pouch cell that pairs a silicon‐based anode and a high‐nickel layered oxide cathode demonstrates stable energy output of >330 Wh kg−1 and much improved cycling performance. High‐energy lithium‐ion batteries built with silicon‐based anode materials are usually associated with short cycle lives due to mechanical failure at an anode level and more importantly, due to electrochemical failure at a cell level as a result of irreversible consumption of cathode Li during initial charge. (Electro)chemical prelithiation has shown promises to compensate initial Li loss and improve cycling performance of the battery. However, previous strategies applied directly at anode or cathode could raise concerns on safety and degraded electrode structure, and are less compatible with industrial manufacture of batteries. Here, a new concept of prelithiation by lithiation agents supported functional separator, which is highly adaptive to electrode preparation, battery manufacture and formation, and is capable of, by simply adjusting cell voltage, not only replenishing cathode Li loss but re‐uptaking anode Li to inhibit local over‐lithiation and dendrite formation, is shown. By employing the functional separator, a 3‐Ah Li‐ion pouch cell that pairs a silicon‐based anode and a high‐nickel layered oxide cathode demonstrates stable energy output of >330 Wh kg−1 and much improved cycling performance. A new prelithiation method based on a lithiation agents supported functional separator is proposed to compensate the Li loss during battery formation and cycling, and promises a high‐energy rechargeable lithium‐ion battery with improved safety and sustainability. |
Author | Chang, Xin Zhu, Yu‐Hui Fan, Min Wang, Wen‐Peng Wang, Fuyi Meng, Qinghai Li, Hongliang Guo, Yu‐Guo Wan, Jing Zhao, Yao Xin, Sen Wen, Rui |
Author_xml | – sequence: 1 givenname: Qinghai orcidid: 0000-0002-9264-0886 surname: Meng fullname: Meng, Qinghai organization: Chinese Academy of Sciences – sequence: 2 givenname: Min surname: Fan fullname: Fan, Min organization: Chinese Academy of Sciences – sequence: 3 givenname: Xin surname: Chang fullname: Chang, Xin organization: University of Chinese Academy of Sciences (UCAS) – sequence: 4 givenname: Hongliang surname: Li fullname: Li, Hongliang organization: Qingdao University – sequence: 5 givenname: Wen‐Peng surname: Wang fullname: Wang, Wen‐Peng organization: Chinese Academy of Sciences – sequence: 6 givenname: Yu‐Hui surname: Zhu fullname: Zhu, Yu‐Hui organization: University of Chinese Academy of Sciences (UCAS) – sequence: 7 givenname: Jing surname: Wan fullname: Wan, Jing organization: Chinese Academy of Sciences – sequence: 8 givenname: Yao surname: Zhao fullname: Zhao, Yao organization: Institute of Chemistry Chinese Academy of Sciences – sequence: 9 givenname: Fuyi surname: Wang fullname: Wang, Fuyi organization: Institute of Chemistry Chinese Academy of Sciences – sequence: 10 givenname: Rui surname: Wen fullname: Wen, Rui organization: Chinese Academy of Sciences – sequence: 11 givenname: Sen surname: Xin fullname: Xin, Sen email: xinsen08@iccas.ac.cn organization: University of Chinese Academy of Sciences (UCAS) – sequence: 12 givenname: Yu‐Guo orcidid: 0000-0003-0322-8476 surname: Guo fullname: Guo, Yu‐Guo email: ygguo@iccas.ac.cn organization: University of Chinese Academy of Sciences (UCAS) |
BookMark | eNqFkE1Lw0AQhhepYK29eg54Tt3NbjbJsZbWFuoHVM_LNJ20W_JRdzdIb_4Ef6O_xMRKBUGcy3wwzwzve046ZVUiIZeMDhilwTVgWQwCGnBKQxqdkC6TTPgyFrRzrHlwRvrWbmkTImGU8y5RQ29Sl6nTVQm592gw126joe29Be7AgKtMM68KbdF6i9o60CUsc_Smer35eHsfl2jWe2_ecnXRDGYNegPOodFoL8hpBrnF_nfukefJ-Gk09ecPt7PRcO6nnEWRv8pWYcpjGTHBWAoMk4DGGUqKkciAg4gxoRBHIuYhhCKUNJISlgEs5QqTlPEeuTrc3ZnqpUbr1LaqTaPJqiBmIRMyavT2yOCwlZrKWoOZ2hldgNkrRlXro2p9VEcfG0D8AlLtvtxxBnT-N5YcsFed4_6fJ2o4vr_7YT8BMdKL5w |
CitedBy_id | crossref_primary_10_1002_anie_202310435 crossref_primary_10_1016_j_ensm_2024_103696 crossref_primary_10_1002_adfm_202403574 crossref_primary_10_1002_smll_202311891 crossref_primary_10_1002_smtd_202401133 crossref_primary_10_1016_j_jpowsour_2024_235794 crossref_primary_10_1021_acsami_4c21194 crossref_primary_10_1016_j_cej_2024_152542 crossref_primary_10_1002_aenm_202402329 crossref_primary_10_1002_anie_202406557 crossref_primary_10_1016_j_est_2024_113185 crossref_primary_10_3390_ma17133153 crossref_primary_10_1016_j_apmate_2024_100215 crossref_primary_10_1002_ange_202403617 crossref_primary_10_1002_adma_202311529 crossref_primary_10_1007_s11426_023_1681_x crossref_primary_10_1002_adma_202408268 crossref_primary_10_1016_j_carbon_2024_119615 crossref_primary_10_1039_D4SC03052D crossref_primary_10_1039_D4RA08234F crossref_primary_10_1002_smtd_202401188 crossref_primary_10_1016_j_cej_2023_144744 crossref_primary_10_1016_j_est_2025_115541 crossref_primary_10_1002_adfm_202423538 crossref_primary_10_1002_adfm_202307860 crossref_primary_10_1002_ange_202310435 crossref_primary_10_1002_batt_202400115 crossref_primary_10_1007_s11426_023_1918_0 crossref_primary_10_1016_j_cej_2025_161529 crossref_primary_10_1038_s41586_024_08465_y crossref_primary_10_1016_j_electacta_2024_143918 crossref_primary_10_1016_j_jcis_2024_09_113 crossref_primary_10_1021_acssuschemeng_3c07940 crossref_primary_10_1002_ange_202406557 crossref_primary_10_1016_j_jcis_2023_12_141 crossref_primary_10_1002_aenm_202300725 crossref_primary_10_1002_anie_202403617 crossref_primary_10_1016_j_ensm_2024_103318 crossref_primary_10_1039_D3EE03740A crossref_primary_10_1002_aenm_202303672 crossref_primary_10_1039_D4RA08061K crossref_primary_10_1149_1945_7111_ad9993 crossref_primary_10_1002_aenm_202300466 |
Cites_doi | 10.1002/adma.201801187 10.1002/aenm.202202906 10.1002/smll.202102641 10.1016/j.mattod.2020.07.015 10.1038/srep46530 10.1149/1.2068978 10.1002/aenm.202103630 10.1002/anie.200704287 10.1002/adma.201707430 10.1002/adfm.202005581 10.1002/aenm.201902788 10.1021/acs.nanolett.5b05228 10.1016/j.jpowsour.2017.07.073 10.1002/anie.202007436 10.1002/aenm.201601481 10.1016/j.ensm.2016.10.004 10.1016/j.jpowsour.2016.05.063 10.1038/s41560-017-0043-6 10.1002/adma.202005937 10.1002/aenm.202101565 10.1016/j.jpowsour.2014.02.112 10.1038/nenergy.2015.8 10.1002/eem2.12129 10.1149/2.1111702jes 10.1002/eem2.12267 10.1002/adfm.201707411 10.1038/s41467-021-25334-8 10.1016/j.jpowsour.2017.02.061 10.1016/j.ceramint.2020.06.259 10.1021/acsami.2c08788 10.1039/D0EE00807A 10.1016/S1452-3981(23)15092-9 10.31635/ccschem.022.202201996 10.1002/adma.201402813 10.1002/aenm.201903864 10.1021/acsenergylett.0c00211 10.1002/adma.201800561 10.1021/acsami.9b12086 10.1002/aenm.201600154 10.1002/aenm.202202447 10.1038/s41586-022-05281-0 10.1021/acs.nanolett.5b03776 10.1002/aenm.202102599 10.1016/j.ensm.2022.01.042 10.1021/cm902713m 10.3390/batteries4010004 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202300507 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202300507 AENM202300507 |
Genre | article |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2021YFB2400200 – fundername: Youth Innovation Promotion Association CAS funderid: 2023040 – fundername: CAS Project for Young Scientists in Basic Research funderid: YSBR‐058 – fundername: National Natural Science Foundation of China funderid: 22279148; 21905286 – fundername: Transformational Technologies for Clean Energy and Demonstration,” Strategic Priority Research Program of the CAS funderid: XDA21070300 – fundername: Beijing Natural Science Foundation funderid: JQ22005 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3177-dfd5c38671411ca1e9208fe60e74fa3a48e90a874835a54560766ab2ab6de9c13 |
ISSN | 1614-6832 |
IngestDate | Sun Jul 13 05:37:23 EDT 2025 Tue Jul 01 01:43:49 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Wed Jan 22 16:21:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3177-dfd5c38671411ca1e9208fe60e74fa3a48e90a874835a54560766ab2ab6de9c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9264-0886 0000-0003-0322-8476 |
PQID | 2815146703 |
PQPubID | 886389 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2815146703 crossref_primary_10_1002_aenm_202300507 crossref_citationtrail_10_1002_aenm_202300507 wiley_primary_10_1002_aenm_202300507_AENM202300507 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2020 2021 2018; 5 12 30 2017; 2 2018 2021; 30 17 2022 2023; 12 13 2020 2021 2020 2018; 41 4 46 28 2021 2022 2020; 33 611 10 1992; 139 2022 2018 2017 2014; 46 30 7 26 2021 2021 2020 2022; 31 11 13 12 2020; 59 2008 2017; 47 363 2017; 164 2016 2020 2022 2017 2016 2016 2022; 1 10 14 6 6 16 12 2011; 6 2019 2014 2023 2018 2017 2016; 11 260 6 4 347 16 2010 2016; 22 324 e_1_2_8_8_4 e_1_2_8_9_3 e_1_2_8_7_4 e_1_2_8_8_3 e_1_2_8_9_2 e_1_2_8_9_5 e_1_2_8_9_4 e_1_2_8_9_6 e_1_2_8_1_3 e_1_2_8_2_2 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_5_1 e_1_2_8_2_3 e_1_2_8_3_2 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_7_3 e_1_2_8_8_2 e_1_2_8_9_1 e_1_2_8_6_3 e_1_2_8_7_2 e_1_2_8_8_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_10_4 e_1_2_8_11_3 e_1_2_8_12_2 e_1_2_8_13_1 Li J. (e_1_2_8_15_1) 2011; 6 e_1_2_8_10_5 e_1_2_8_11_4 e_1_2_8_14_1 e_1_2_8_10_6 e_1_2_8_10_7 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_11_1 e_1_2_8_10_3 e_1_2_8_11_2 e_1_2_8_12_1 |
References_xml | – volume: 31 11 13 12 start-page: 2341 year: 2021 2021 2020 2022 publication-title: Adv. Funct. Mater. Adv. Energy Mater. Energy Environ. Sci. Adv. Energy Mater. – volume: 12 13 year: 2022 2023 publication-title: CCS Chem. Adv. Energy Mater. Adv. Energy Mater. – volume: 139 start-page: 2776 year: 1992 publication-title: J. Electrochem. Soc. – volume: 164 start-page: A389 year: 2017 publication-title: J. Electrochem. Soc. – volume: 46 30 7 26 start-page: 482 6749 year: 2022 2018 2017 2014 publication-title: Energy Storage Mater. Adv. Mater. Adv. Energy Mater. Adv. Mater. – volume: 47 363 start-page: 1645 126 year: 2008 2017 publication-title: Angew. Chem., Int. Ed. J. Power Sources – volume: 6 start-page: 1550 year: 2011 publication-title: Int. J. Electrochem. Sci. – volume: 1 10 14 6 6 16 12 start-page: 119 1497 year: 2016 2020 2022 2017 2016 2016 2022 publication-title: Nat. Energy Adv. Energy Mater. ACS Appl. Mater. Interfaces Energy Storage Mater. Adv. Energy Mater. Nano Lett. Adv. Energy Mater. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 11 260 6 4 347 16 start-page: 57 4 170 282 year: 2019 2014 2023 2018 2017 2016 publication-title: ACS Appl. Mater. Interfaces J. Power Sources Energy Environ. Mater. Batteries J. Power Sources Nano Lett. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 5 12 30 start-page: 807 5459 year: 2020 2021 2018 publication-title: ACS Energy Lett. Nat. Commun. Adv. Mater. – volume: 41 4 46 28 start-page: 143 336 year: 2020 2021 2020 2018 publication-title: Mater. Today Energy Environ. Mater. Ceram. Int. Adv. Funct. Mater. – volume: 22 324 start-page: 1263 150 year: 2010 2016 publication-title: Chem. Mater. J. Power Sources – volume: 30 17 year: 2018 2021 publication-title: Adv. Mater. Small – volume: 2 start-page: 963 year: 2017 publication-title: Nat. Energy – volume: 33 611 10 start-page: 485 year: 2021 2022 2020 publication-title: Adv. Mater. Nature Adv. Energy Mater. – ident: e_1_2_8_4_1 doi: 10.1002/adma.201801187 – ident: e_1_2_8_6_3 doi: 10.1002/aenm.202202906 – ident: e_1_2_8_4_2 doi: 10.1002/smll.202102641 – ident: e_1_2_8_11_1 doi: 10.1016/j.mattod.2020.07.015 – ident: e_1_2_8_16_1 doi: 10.1038/srep46530 – ident: e_1_2_8_5_1 doi: 10.1149/1.2068978 – ident: e_1_2_8_10_7 doi: 10.1002/aenm.202103630 – ident: e_1_2_8_3_1 doi: 10.1002/anie.200704287 – ident: e_1_2_8_7_2 doi: 10.1002/adma.201707430 – ident: e_1_2_8_8_1 doi: 10.1002/adfm.202005581 – ident: e_1_2_8_10_2 doi: 10.1002/aenm.201902788 – ident: e_1_2_8_10_6 doi: 10.1021/acs.nanolett.5b05228 – ident: e_1_2_8_3_2 doi: 10.1016/j.jpowsour.2017.07.073 – ident: e_1_2_8_13_1 doi: 10.1002/anie.202007436 – ident: e_1_2_8_7_3 doi: 10.1002/aenm.201601481 – ident: e_1_2_8_10_4 doi: 10.1016/j.ensm.2016.10.004 – ident: e_1_2_8_12_2 doi: 10.1016/j.jpowsour.2016.05.063 – ident: e_1_2_8_14_1 doi: 10.1038/s41560-017-0043-6 – ident: e_1_2_8_1_1 doi: 10.1002/adma.202005937 – ident: e_1_2_8_8_2 doi: 10.1002/aenm.202101565 – ident: e_1_2_8_9_2 doi: 10.1016/j.jpowsour.2014.02.112 – ident: e_1_2_8_10_1 doi: 10.1038/nenergy.2015.8 – ident: e_1_2_8_11_2 doi: 10.1002/eem2.12129 – ident: e_1_2_8_17_1 doi: 10.1149/2.1111702jes – ident: e_1_2_8_9_3 doi: 10.1002/eem2.12267 – ident: e_1_2_8_11_4 doi: 10.1002/adfm.201707411 – ident: e_1_2_8_2_2 doi: 10.1038/s41467-021-25334-8 – ident: e_1_2_8_9_5 doi: 10.1016/j.jpowsour.2017.02.061 – ident: e_1_2_8_11_3 doi: 10.1016/j.ceramint.2020.06.259 – ident: e_1_2_8_10_3 doi: 10.1021/acsami.2c08788 – ident: e_1_2_8_8_3 doi: 10.1039/D0EE00807A – volume: 6 start-page: 1550 year: 2011 ident: e_1_2_8_15_1 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)15092-9 – ident: e_1_2_8_6_1 doi: 10.31635/ccschem.022.202201996 – ident: e_1_2_8_7_4 doi: 10.1002/adma.201402813 – ident: e_1_2_8_1_3 doi: 10.1002/aenm.201903864 – ident: e_1_2_8_2_1 doi: 10.1021/acsenergylett.0c00211 – ident: e_1_2_8_2_3 doi: 10.1002/adma.201800561 – ident: e_1_2_8_9_1 doi: 10.1021/acsami.9b12086 – ident: e_1_2_8_10_5 doi: 10.1002/aenm.201600154 – ident: e_1_2_8_8_4 doi: 10.1002/aenm.202202447 – ident: e_1_2_8_1_2 doi: 10.1038/s41586-022-05281-0 – ident: e_1_2_8_9_6 doi: 10.1021/acs.nanolett.5b03776 – ident: e_1_2_8_6_2 doi: 10.1002/aenm.202102599 – ident: e_1_2_8_7_1 doi: 10.1016/j.ensm.2022.01.042 – ident: e_1_2_8_12_1 doi: 10.1021/cm902713m – ident: e_1_2_8_9_4 doi: 10.3390/batteries4010004 |
SSID | ssj0000491033 |
Score | 2.5998743 |
Snippet | High‐energy lithium‐ion batteries built with silicon‐based anode materials are usually associated with short cycle lives due to mechanical failure at an anode... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Cathodes Cycles Electrode materials Electrodes functionalized separators high energy Lithium-ion batteries prelithiation Separators Silicon SiO x |
Title | A Functional Prelithiation Separator Promises Sustainable High‐Energy Lithium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202300507 https://www.proquest.com/docview/2815146703 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6l6YUeEAWqBtpqD0gckOl67Xjto9UmKpUTqEik3Fbr9VpFggSl6QUuPEKfsU_CrPcnjtTSlouTjOyNvfN5dmY08y1C70hcV3HJ6kCGVQQBSkmDLI1kQDOWCaY7QZuc7micnE3j81l_1un8bneXrMqP8tedfSX_o1WQgV51l-wTNOsHBQF8B_3CETQMx0fpOP8whGXJZvO-LBW41JdmqsEGNKTei6VuBQBdqitdgON7pXR5h69zGJj-v0Jfff3Diz_BMIZ-0xUaOrZaVzegzIXg9Jqn9dpTxoJcwLp4Kb55jAhbqe8BeeLS1bO1rDD7aC90f7Gw66pNS9BWEeAjjV_L6IKLECSpzXOqtsxQOXlLHbURmd25AhhGWaHmmmaAajJ-s6vuJtX2-DMfTouCTwazyRbaphBj0C7azk9HxVefooPgKSRR06Lh7tDRfhJ6vPkXm27NOlZpRzyNyzJ5gZ7bWAPnBji7qKPmL9FOi4HyFeI5XkMIb0AIewhhByHcghDWELr9c2PAgy14QACwwR42r9F0OJicnAV2z41AgifJgqqu-jLSpIdxGEoRqoyStFYJUSyuRSTiVGVEpCwGz11o75uwJBElFWVSqUyG0R7qzhdztY9wVSYEzAAsERI-VV3WjFUp7cOgVCZh2kOBmzIuLSG93hflOzdU2pTrKeZ-invovT__p6FiuffMA6cBbl_XK05TcG7BLSBRD9FGKw-MwvPBeOR_vfn3mG_Rs_VbcIC6q-W1OgR3dVUeWVj9Bd3UlKg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Functional+Prelithiation+Separator+Promises+Sustainable+High%E2%80%90Energy+Lithium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Meng%2C+Qinghai&rft.au=Fan%2C+Min&rft.au=Chang%2C+Xin&rft.au=Li%2C+Hongliang&rft.date=2023-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=19&rft_id=info:doi/10.1002%2Faenm.202300507&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |