A Novel Ce─Mn Heterojunction‐Based Multi‐Enzymatic Nanozyme with Cancer‐Specific Enzymatic Activity and Photothermal Capacity for Efficient Tumor Combination Therapy
Catalytic medicine, using enzymes or nanozymes, is an emerging method for cancer treatment. However, its applicability is limited by the low catalytic activity in the tumor microenvironment (TME). In this work, a versatile and synthesis‐friendly nanozyme, CeO2Mn1.08Ox nanoclusters, is prepared. This...
Saved in:
Published in | Advanced functional materials Vol. 35; no. 6 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Catalytic medicine, using enzymes or nanozymes, is an emerging method for cancer treatment. However, its applicability is limited by the low catalytic activity in the tumor microenvironment (TME). In this work, a versatile and synthesis‐friendly nanozyme, CeO2Mn1.08Ox nanoclusters, is prepared. This novel Ce─Mn heterojunction is formed by oxidation of CeO2 nanoparticles through H2SO4/KMnO4. CeO2Mn1.08Ox exhibits high multi‐enzymatic catalytic activities and acts as a catalase (CAT), peroxidase (POD), and oxidase (OXD) mimics under acidic conditions. It can regulate the TME by relieving hypoxia and consuming endogenous glutathione (GSH). Glucose oxidase (GOx) is then incorporated into CeO2Mn1.08Ox and linked with poly(ethylene glycol) (PEG) to obtain the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG. CeO2Mn1.08Ox exhibits CAT‐like properties, which sensitize GOx‐based starvation therapy, and POD‐ and OXD‐like properties, which generate highly cytotoxic reactive oxygen species (ROS) in cancer cells. The glucose catabolic product, H2O2, is also used to generate O2 and ROS. In addition, the heterojunction structure provides CeO2Mn1.08Ox with near‐infrared (NIR) photothermal capability, making it suitable for photothermal therapy (PTT). Density functional theory (DFT) calculations provide possible reasons for the high catalytic activity and photothermal capability of CeO2Mn1.08Ox. When combining mild PTT with catalytic therapy, the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG can efficiently ablate tumors.
The novel Ce─Mn heterojunctions, CeO2Mn1.08Ox nanoclusters, are reported and are used to construct the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG. The heterojunction structure provides CeO2Mn1.08Ox with good multi‐enzyme activities and photothermal ability. (Ce─Mn)‐PEI/GOx‐PEG enables efficient catalysis of enzymatic cascade reactions in cancer cells, glucose consumption, and ROS generation, and can be coupled with mild PTT for efficient tumor inhibition. |
---|---|
AbstractList | Catalytic medicine, using enzymes or nanozymes, is an emerging method for cancer treatment. However, its applicability is limited by the low catalytic activity in the tumor microenvironment (TME). In this work, a versatile and synthesis‐friendly nanozyme, CeO2Mn1.08Ox nanoclusters, is prepared. This novel Ce─Mn heterojunction is formed by oxidation of CeO2 nanoparticles through H2SO4/KMnO4. CeO2Mn1.08Ox exhibits high multi‐enzymatic catalytic activities and acts as a catalase (CAT), peroxidase (POD), and oxidase (OXD) mimics under acidic conditions. It can regulate the TME by relieving hypoxia and consuming endogenous glutathione (GSH). Glucose oxidase (GOx) is then incorporated into CeO2Mn1.08Ox and linked with poly(ethylene glycol) (PEG) to obtain the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG. CeO2Mn1.08Ox exhibits CAT‐like properties, which sensitize GOx‐based starvation therapy, and POD‐ and OXD‐like properties, which generate highly cytotoxic reactive oxygen species (ROS) in cancer cells. The glucose catabolic product, H2O2, is also used to generate O2 and ROS. In addition, the heterojunction structure provides CeO2Mn1.08Ox with near‐infrared (NIR) photothermal capability, making it suitable for photothermal therapy (PTT). Density functional theory (DFT) calculations provide possible reasons for the high catalytic activity and photothermal capability of CeO2Mn1.08Ox. When combining mild PTT with catalytic therapy, the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG can efficiently ablate tumors. Catalytic medicine, using enzymes or nanozymes, is an emerging method for cancer treatment. However, its applicability is limited by the low catalytic activity in the tumor microenvironment (TME). In this work, a versatile and synthesis‐friendly nanozyme, CeO 2 Mn 1.08 O x nanoclusters, is prepared. This novel Ce─Mn heterojunction is formed by oxidation of CeO 2 nanoparticles through H 2 SO 4 /KMnO 4 . CeO 2 Mn 1.08 O x exhibits high multi‐enzymatic catalytic activities and acts as a catalase (CAT), peroxidase (POD), and oxidase (OXD) mimics under acidic conditions. It can regulate the TME by relieving hypoxia and consuming endogenous glutathione (GSH). Glucose oxidase (GOx) is then incorporated into CeO 2 Mn 1.08 O x and linked with poly(ethylene glycol) (PEG) to obtain the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG. CeO 2 Mn 1.08 O x exhibits CAT‐like properties, which sensitize GOx‐based starvation therapy, and POD‐ and OXD‐like properties, which generate highly cytotoxic reactive oxygen species (ROS) in cancer cells. The glucose catabolic product, H 2 O 2 , is also used to generate O 2 and ROS. In addition, the heterojunction structure provides CeO 2 Mn 1.08 O x with near‐infrared (NIR) photothermal capability, making it suitable for photothermal therapy (PTT). Density functional theory (DFT) calculations provide possible reasons for the high catalytic activity and photothermal capability of CeO 2 Mn 1.08 O x . When combining mild PTT with catalytic therapy, the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG can efficiently ablate tumors. Catalytic medicine, using enzymes or nanozymes, is an emerging method for cancer treatment. However, its applicability is limited by the low catalytic activity in the tumor microenvironment (TME). In this work, a versatile and synthesis‐friendly nanozyme, CeO2Mn1.08Ox nanoclusters, is prepared. This novel Ce─Mn heterojunction is formed by oxidation of CeO2 nanoparticles through H2SO4/KMnO4. CeO2Mn1.08Ox exhibits high multi‐enzymatic catalytic activities and acts as a catalase (CAT), peroxidase (POD), and oxidase (OXD) mimics under acidic conditions. It can regulate the TME by relieving hypoxia and consuming endogenous glutathione (GSH). Glucose oxidase (GOx) is then incorporated into CeO2Mn1.08Ox and linked with poly(ethylene glycol) (PEG) to obtain the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG. CeO2Mn1.08Ox exhibits CAT‐like properties, which sensitize GOx‐based starvation therapy, and POD‐ and OXD‐like properties, which generate highly cytotoxic reactive oxygen species (ROS) in cancer cells. The glucose catabolic product, H2O2, is also used to generate O2 and ROS. In addition, the heterojunction structure provides CeO2Mn1.08Ox with near‐infrared (NIR) photothermal capability, making it suitable for photothermal therapy (PTT). Density functional theory (DFT) calculations provide possible reasons for the high catalytic activity and photothermal capability of CeO2Mn1.08Ox. When combining mild PTT with catalytic therapy, the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG can efficiently ablate tumors. The novel Ce─Mn heterojunctions, CeO2Mn1.08Ox nanoclusters, are reported and are used to construct the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG. The heterojunction structure provides CeO2Mn1.08Ox with good multi‐enzyme activities and photothermal ability. (Ce─Mn)‐PEI/GOx‐PEG enables efficient catalysis of enzymatic cascade reactions in cancer cells, glucose consumption, and ROS generation, and can be coupled with mild PTT for efficient tumor inhibition. |
Author | Kuang, Ying Li, Cao Hu, Fei Qiao, Qianqian Xu, Ziqiang Liu, Zerui |
Author_xml | – sequence: 1 givenname: Qianqian surname: Qiao fullname: Qiao, Qianqian organization: Hubei University of Technology – sequence: 2 givenname: Zerui surname: Liu fullname: Liu, Zerui organization: Hubei University – sequence: 3 givenname: Fei surname: Hu fullname: Hu, Fei organization: Chuzhou First People's Hospital – sequence: 4 givenname: Ziqiang surname: Xu fullname: Xu, Ziqiang organization: Hubei University – sequence: 5 givenname: Ying surname: Kuang fullname: Kuang, Ying email: kuangying@hbut.edu.cn organization: Hubei University of Technology – sequence: 6 givenname: Cao orcidid: 0000-0002-3500-340X surname: Li fullname: Li, Cao email: licao@hbut.edu.cn organization: Hubei University |
BookMark | eNqFkc9u1DAQxi1UJNrClbMlzrvYseUkxyVsKVK3ILFI3KKJM9Z6ldjBcVqFUx-BA6_BS_VJ8LKolZAQJ89ovt_88XdGTpx3SMhLzpacsew1tKZfZiyTXBYif0JOueJqIVhWnDzE_MszcjaOe8Z4ngt5Sn6u6LW_wY5WeP_jbuPoJUYMfj85Ha1393ff38CILd1MXbQpW7tvcw_RanoNzqcY6a2NO1qB0xiS4NOA2ppUf1SuUqsbG2cKrqUfdz76uMPQQxoKA-hDxfhA1yZhFl2k26lPeeX7xjo4rEG3CYBhfk6eGuhGfPHnPSefL9bb6nJx9eHd-2p1tdAi3bVomc6UKlsttC7bhhtQBRayNAowz1nbKK4bljPIW8ZQpg_TUDKBxjRaCKnFOXl17DsE_3XCMdZ7PwWXRtaCKyFlLgqVVPKo0sGPY0BTp1t-7xsD2K7mrD4YUx-MqR-MSdjyL2wItocw_xsoj8Ct7XD-j7pevb3YPLK_AF7Sq1c |
CitedBy_id | crossref_primary_10_1021_acs_est_4c10490 crossref_primary_10_1021_acsanm_4c05215 crossref_primary_10_1002_adfm_202421176 crossref_primary_10_3390_pharmaceutics17040409 |
Cites_doi | 10.1016/j.carbon.2017.05.024 10.1002/adfm.202103581 10.1007/s40820-023-01224-0 10.1039/D3EE01344H 10.1002/smll.202103868 10.1016/S0926-3373(01)00136-9 10.1021/acscatal.5b00320 10.1016/j.apmt.2024.102215 10.1016/0927-0256(96)00008-0 10.1016/j.apsusc.2013.09.067 10.1002/anie.202107556 10.1021/acs.chemrev.8b00672 10.1038/sj.embor.7400645 10.1002/adfm.202000486 10.1021/acsnano.1c10450 10.1039/D0TA10875H 10.1016/j.nantod.2023.102059 10.1146/annurev-physiol-021119-034627 10.1002/adma.201704136 10.1039/C9SC01615E 10.1016/j.ccr.2021.213953 10.1016/j.cej.2021.131052 10.1002/adfm.201806588 10.1002/adma.202401619 10.1002/advs.202200005 10.1002/advs.201801702 10.1016/j.ccr.2023.215482 10.1002/solr.202000037 10.1021/es8001508 10.1016/j.biomaterials.2022.121970 10.1016/0021-9517(91)90325-X 10.1016/j.mattod.2023.06.015 10.1007/s40820-022-00828-2 10.1021/es400878c 10.1016/j.apcatb.2022.121371 10.1093/carcin/16.10.2373 10.1002/VIW.20200133 10.1039/C8TA09494B 10.1002/adma.202206401 10.1016/j.nantod.2021.101269 10.1038/s41467-017-01050-0 10.1038/s41467-021-24961-5 10.1016/j.electacta.2017.01.182 10.1002/adma.202002439 10.1002/advs.202105747 10.1016/j.apcatb.2006.08.015 10.1002/wnan.1720 10.1039/C8CS00457A 10.1016/j.apcatb.2020.119279 10.1007/s40145-022-0629-8 10.1021/cm201617d 10.1039/D0CS00718H 10.1021/jacs.1c03510 10.1002/adma.201901778 10.1021/acsami.9b18059 10.1021/acssuschemeng.6b02583 10.1002/smll.201903895 10.1039/C6CS00571C 10.1021/acs.chemrev.5b00373 10.1016/j.critrevonc.2007.07.004 10.1021/acsami.6b00002 10.1007/s00018-016-2223-0 10.1016/j.cej.2022.139332 10.1016/j.apcatb.2020.119477 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202414837 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202414837 ADFM202414837 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51973053; 51773055; 22073025 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ 53G AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LH4 LW6 1OB 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3177-d0c2669dc3cc9db1fa68e849f6ae770db61cb070a7d00e4414ca903effbc334c3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Wed Aug 13 06:34:23 EDT 2025 Tue Jul 01 04:15:41 EDT 2025 Thu Apr 24 22:57:14 EDT 2025 Thu Feb 06 09:47:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3177-d0c2669dc3cc9db1fa68e849f6ae770db61cb070a7d00e4414ca903effbc334c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3500-340X |
PQID | 3163447386 |
PQPubID | 2045204 |
PageCount | 18 |
ParticipantIDs | proquest_journals_3163447386 crossref_citationtrail_10_1002_adfm_202414837 crossref_primary_10_1002_adfm_202414837 wiley_primary_10_1002_adfm_202414837_ADFM202414837 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 1991; 131 2013; 47 1995; 16 2019; 10 2020; 82 2022 2021 2019; 311 439 6 2016; 73 2017; 29 2020; 12 2006 2021; 7 50 2020; 32 2021; 143 2024; 36 2021 2021 2020 2017; 60 281 4 46 2007 2022 2011; 71 11 23 2022 2017; 428 120 2023 2020; 16 278 2024 2022 2021 2019; 16 14 2 31 1996 2021; 6 9 2024 2023; 54 68 2021 2020 2017; 13 30 8 2021; 31 2021; 12 2016 2019; 116 7 2022; 9 2023; 452 2023 2019; 293 15 2019; 29 2008; 66 2015 2013; 5 286 2024; 499 2008; 42 2022; 16 2021 2019 2019; 40 119 48 2024 2024; 31 38 2022; 18 2017 2016; 231 8 2001; 32 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_13_2 e_1_2_8_13_3 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_19_3 e_1_2_8_19_4 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_27_2 e_1_2_8_29_1 e_1_2_8_23_2 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_8_3 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_16_3 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_31_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_33_2 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 116 7 start-page: 323 5090 year: 2016 2019 publication-title: Chem. Rev. J. Mater. Chem. A. – volume: 18 year: 2022 publication-title: Small – volume: 13 30 8 start-page: 902 year: 2021 2020 2017 publication-title: WIREs Nanomed. Nanobiotechnol. Adv. Funct. Mater. Nat. Commun. – volume: 73 start-page: 3221 year: 2016 publication-title: Cell. Mol. Life Sci. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 2255 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 16 start-page: 2373 year: 1995 publication-title: Carcinogenesis – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 10 start-page: 8618 year: 2019 publication-title: Chem. Sci. – volume: 16 14 2 31 start-page: 28 95 year: 2024 2022 2021 2019 publication-title: Nano‐Micro Lett. Nano‐Micro Lett. VIEW Adv. Mater. – volume: 5 286 start-page: 4825 269 year: 2015 2013 publication-title: ACS Catal. Appl. Surf. Sci. – volume: 47 start-page: 5882 year: 2013 publication-title: Environ. Sci. Technol. – volume: 71 11 23 start-page: 57 1559 4464 year: 2007 2022 2011 publication-title: Appl. Catal. B‐Environ. J. Adv. Ceram. Chem. Mater. – volume: 131 start-page: 88 year: 1991 publication-title: J. Catal. – volume: 60 281 4 46 start-page: 1693 year: 2021 2021 2020 2017 publication-title: Angew. Chem., Int. Ed. Appl. Catal. B‐Environ. Sol. RRL Chem. Soc. Rev. – volume: 12 start-page: 5704 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 82 start-page: 103 year: 2020 publication-title: Annu. Rev. Physiol. – volume: 66 start-page: 1 year: 2008 publication-title: Crit. Rev. Oncol. Hemat. – volume: 16 start-page: 5597 year: 2022 publication-title: ACS Nano – volume: 32 start-page: 195 year: 2001 publication-title: Appl. Catal. B‐Environ. – volume: 293 15 year: 2023 2019 publication-title: Biomaterials Small – volume: 54 68 start-page: 148 year: 2024 2023 publication-title: Nano Today Mater. Today – volume: 7 50 start-page: 271 6013 year: 2006 2021 publication-title: EMBO Rep. Chem. Soc. Rev. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 16 278 start-page: 3240 year: 2023 2020 publication-title: Energy Environ. Sci. Appl. Catal. B‐Environ. – volume: 499 year: 2024 publication-title: Coordin. Chem. Rev. – volume: 311 439 6 year: 2022 2021 2019 publication-title: Appl. Catal. B‐Environ. Coordin. Chem. Rev. Adv. Sci. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 143 start-page: 8855 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 42 start-page: 5014 year: 2008 publication-title: Environ. Sci. Technol. – volume: 452 year: 2023 publication-title: Chem. Eng. J. – volume: 40 119 48 start-page: 4357 1004 year: 2021 2019 2019 publication-title: Nano Today Chem. Rev. Chem. Soc. Rev. – volume: 12 start-page: 4777 year: 2021 publication-title: Nat. Commun. – volume: 6 9 start-page: 15 3555 year: 1996 2021 publication-title: Comput. Mater. Sci. J. Mater. Chem. A. – volume: 231 8 start-page: 749 8670 year: 2017 2016 publication-title: Electrochim. Acta. ACS Appl. Mater. Interfaces – volume: 31 38 year: 2024 2024 publication-title: Adv. Mater. Appl. Mater. Today – volume: 428 120 start-page: 23 year: 2022 2017 publication-title: Chem. Eng. J. Carbon – ident: e_1_2_8_23_2 doi: 10.1016/j.carbon.2017.05.024 – ident: e_1_2_8_36_1 doi: 10.1002/adfm.202103581 – ident: e_1_2_8_1_1 doi: 10.1007/s40820-023-01224-0 – ident: e_1_2_8_18_1 doi: 10.1039/D3EE01344H – ident: e_1_2_8_7_1 doi: 10.1002/smll.202103868 – ident: e_1_2_8_35_1 doi: 10.1016/S0926-3373(01)00136-9 – ident: e_1_2_8_21_1 doi: 10.1021/acscatal.5b00320 – ident: e_1_2_8_22_2 doi: 10.1016/j.apmt.2024.102215 – ident: e_1_2_8_33_1 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_8_21_2 doi: 10.1016/j.apsusc.2013.09.067 – ident: e_1_2_8_19_1 doi: 10.1002/anie.202107556 – ident: e_1_2_8_2_2 doi: 10.1021/acs.chemrev.8b00672 – ident: e_1_2_8_6_1 doi: 10.1038/sj.embor.7400645 – ident: e_1_2_8_16_2 doi: 10.1002/adfm.202000486 – ident: e_1_2_8_17_1 doi: 10.1021/acsnano.1c10450 – ident: e_1_2_8_33_2 doi: 10.1039/D0TA10875H – ident: e_1_2_8_31_1 doi: 10.1016/j.nantod.2023.102059 – ident: e_1_2_8_5_1 doi: 10.1146/annurev-physiol-021119-034627 – ident: e_1_2_8_10_1 doi: 10.1002/adma.201704136 – ident: e_1_2_8_15_1 doi: 10.1039/C9SC01615E – ident: e_1_2_8_8_2 doi: 10.1016/j.ccr.2021.213953 – ident: e_1_2_8_23_1 doi: 10.1016/j.cej.2021.131052 – ident: e_1_2_8_34_1 doi: 10.1002/adfm.201806588 – ident: e_1_2_8_22_1 doi: 10.1002/adma.202401619 – ident: e_1_2_8_30_1 doi: 10.1002/advs.202200005 – ident: e_1_2_8_8_3 doi: 10.1002/advs.201801702 – ident: e_1_2_8_3_1 doi: 10.1016/j.ccr.2023.215482 – ident: e_1_2_8_19_3 doi: 10.1002/solr.202000037 – ident: e_1_2_8_37_1 doi: 10.1021/es8001508 – ident: e_1_2_8_39_1 doi: 10.1016/j.biomaterials.2022.121970 – ident: e_1_2_8_32_1 doi: 10.1016/0021-9517(91)90325-X – ident: e_1_2_8_31_2 doi: 10.1016/j.mattod.2023.06.015 – ident: e_1_2_8_1_2 doi: 10.1007/s40820-022-00828-2 – ident: e_1_2_8_20_1 doi: 10.1021/es400878c – ident: e_1_2_8_8_1 doi: 10.1016/j.apcatb.2022.121371 – ident: e_1_2_8_40_1 doi: 10.1093/carcin/16.10.2373 – ident: e_1_2_8_1_3 doi: 10.1002/VIW.20200133 – ident: e_1_2_8_12_2 doi: 10.1039/C8TA09494B – ident: e_1_2_8_28_1 doi: 10.1002/adma.202206401 – ident: e_1_2_8_2_1 doi: 10.1016/j.nantod.2021.101269 – ident: e_1_2_8_16_3 doi: 10.1038/s41467-017-01050-0 – ident: e_1_2_8_11_1 doi: 10.1038/s41467-021-24961-5 – ident: e_1_2_8_27_1 doi: 10.1016/j.electacta.2017.01.182 – ident: e_1_2_8_14_1 doi: 10.1002/adma.202002439 – ident: e_1_2_8_9_1 doi: 10.1002/advs.202105747 – ident: e_1_2_8_13_1 doi: 10.1016/j.apcatb.2006.08.015 – ident: e_1_2_8_16_1 doi: 10.1002/wnan.1720 – ident: e_1_2_8_2_3 doi: 10.1039/C8CS00457A – ident: e_1_2_8_18_2 doi: 10.1016/j.apcatb.2020.119279 – ident: e_1_2_8_13_2 doi: 10.1007/s40145-022-0629-8 – ident: e_1_2_8_13_3 doi: 10.1021/cm201617d – ident: e_1_2_8_6_2 doi: 10.1039/D0CS00718H – ident: e_1_2_8_29_1 doi: 10.1021/jacs.1c03510 – ident: e_1_2_8_1_4 doi: 10.1002/adma.201901778 – ident: e_1_2_8_25_1 doi: 10.1021/acsami.9b18059 – ident: e_1_2_8_26_1 doi: 10.1021/acssuschemeng.6b02583 – ident: e_1_2_8_39_2 doi: 10.1002/smll.201903895 – ident: e_1_2_8_19_4 doi: 10.1039/C6CS00571C – ident: e_1_2_8_12_1 doi: 10.1021/acs.chemrev.5b00373 – ident: e_1_2_8_4_1 doi: 10.1016/j.critrevonc.2007.07.004 – ident: e_1_2_8_27_2 doi: 10.1021/acsami.6b00002 – ident: e_1_2_8_38_1 doi: 10.1007/s00018-016-2223-0 – ident: e_1_2_8_24_1 doi: 10.1016/j.cej.2022.139332 – ident: e_1_2_8_19_2 doi: 10.1016/j.apcatb.2020.119477 |
SSID | ssj0017734 |
Score | 2.5320892 |
Snippet | Catalytic medicine, using enzymes or nanozymes, is an emerging method for cancer treatment. However, its applicability is limited by the low catalytic activity... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Ablation Acidic oxides Cancer cascade enzyme system Catalase Catalytic activity catalytic medicine Cerium oxides Chemical synthesis combination therapy Density functional theory Enzymes Glucose oxidase Glutathione heterojunction Heterojunctions Hydrogen peroxide multi‐enzymatic nanozyme Nanoclusters Oxidation Peroxidase Polyethylene glycol Potassium permanganate Sulfuric acid Therapy Tumors |
Title | A Novel Ce─Mn Heterojunction‐Based Multi‐Enzymatic Nanozyme with Cancer‐Specific Enzymatic Activity and Photothermal Capacity for Efficient Tumor Combination Therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202414837 https://www.proquest.com/docview/3163447386 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iSQ--xfoiB8HT6j7Sze6x1pYiVEQq9LbkifjYFW0FPfkTPPg3_FP-Emey7bYKIuhtQ5Ily0xmvmRnviFkz-U7Bqn0NBxoPRaKyBPcCg-gfpLAjFQzTHDunsadC3bSr_ensvhLfojqwg13hrPXuMGFfDickIYKbTGTHDwQkqKDEcaALURF5xV_VMB5-Vs5DjDAK-iPWRv98PDr9K9eaQI1pwGr8zjtRSLGay0DTa4PhgN5oJ6_0Tj-52OWyMIIjtJGqT_LZMbkK2R-iqRwlbw36GnxaG5o03y8vXRz2sEImuIKHCIK9ePl9Qg8oaYulRdarfz5yfHAUrDcBTwbipe9tIn6dQ8DXMl7C_2TkQ1VFrGgItf07LIYuLywW1hZE5y5wh4A17Tl-C7ATdLe8BbaYMzgYO90i_ZKeoQ1ctFu9Zodb1TkwVMAXbinfQUYIdUqUirVMrAiTkzCUhsLw7mvZRwoCXZJcO37BsAbAwXyI2OtVFHEVLROZvMiNxuEakCPOk3rNk4E41zIkPuJCoUyMgFUYmvEGws5UyMGdCzEcZOV3M1hhmLIKjHUyH41_q7k_vhx5PZYZ7KRDXjIIoC6jGFR1RoJnfB_eUvWOG53q9bmXyZtkbkQCxS7sPJtMju4H5odQE0Duet2xid9cRZe |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAeyr-6UMAHEKe0iePm58Bh2R9taXeFYCvtLfgvoqVNqna3qD31ETjwGhx4FR6hT8LYTrItEkJC6oFbrEwsy57xfHZmvgF4YfMdg1R4Cg-0HqM89Hiccw-hfpLgF6liJsF5OIoGO-ztZGOyAD_qXBjHD9FcuBnLsPu1MXBzIb0-Zw3lKjep5OiCDCt6FVe5pU-_4Knt-PVmF5f4JaX93rgz8KrCAp5Edxl7ypfol1IlQylTJYKcR4lOWJpHXMexr0QUSIG2wGPl-xoBA8NB-6HOcyHDkMkQ-70BN00ZcUPX333fMFZh7-5HdhSYkLJgUvNE-nT96niv-sE5uL0Mka2P69-Bn_XsuNCWz2uzqViTZ78RR_5X03cXlivETdrORO7Bgi7uw9IlHsYH8L1NRuWJ3icdffHtfFiQgQkSKvfQ5xu9vTj_-gadvSI2WxlbveLs1FLdEnROJT5rYu6zSceY0BEKfDjUNtaRzCXb0tXpILxQ5N2ncmpT3w5wZB3EK9K8wfMD6VlKD0QCZDw7wDbu12LX3diSsWOAeAg71zJfj2CxKAu9AkQhQFZpupFHCWdxzAWN_URSLrVIEHjlLfBqrcpkRfJuao3sZ46emmZm2bNm2VvwqpE_dPQmf5RcrZU0q7a54yxENM-YqRvbAmq17S-9ZO1uf9i0Hv_LR8_h1mA83M62N0dbT-A2NfWYbRT9KixOj2b6KYLEqXhmzZLAx-tW5F8VfnZH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48EZdKOADiFPaxHHzOHBY9qEtZVcVbKW9BT9FoU1W7S6oPfUn9NC_gcRf4S_0lzB2HtsiISSkHrjFysSy7BnPZ2fmG4AXLt8xSIWn8EDrMcpDj8eGewj1kwS_SBWzCc7DUTTYYW8nG5Ml-FHnwpT8EM2Fm7UMt19bA58qs74gDeXK2Exy9ECWFL0Kq9zSR9_w0Hb4erOLK_yS0n5v3Bl4VV0BT6K3jD3lS3RLqZKhlKkSgeFRohOWmojrOPaViAIp0BR4rHxfI15gOGY_1MYIGYZMhtjvNbjOIj-1xSK67xvCKuy9_I8dBTaiLJjUNJE-Xb883stucIFtLyJk5-L6d-BnPTllZMuXtflMrMnj33gj_6fZuwu3K7xN2qWB3IMlnd-HWxdYGB_A9zYZFV_1Huno87OTYU4GNkSo-Iwe32rt-cnpG3T1irhcZWz18uMjR3RL0DUV-KyJvc0mHWtAByjwYapdpCNZSLZlWaWD8FyR7U_FzCW-7ePIOohWpH2DpwfSc4QeiAPIeL6PbdytxW55X0vGJf_DQ9i5kvl6BMt5kesVIArhsUrTDRMlnMUxFzT2E0m51CJB2GVa4NVKlcmK4t1WGtnLSnJqmtllz5plb8GrRn5akpv8UXK11tGs2uQOsxCxPGO2amwLqFO2v_SStbv9YdN6_C8fPYcb291-9m5ztPUEblJbjNmF0K_C8uxgrp8iQpyJZ84oCXy8aj3-BTnfdPY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Ce%E2%94%80Mn+Heterojunction%E2%80%90Based+Multi%E2%80%90Enzymatic+Nanozyme+with+Cancer%E2%80%90Specific+Enzymatic+Activity+and+Photothermal+Capacity+for+Efficient+Tumor+Combination+Therapy&rft.jtitle=Advanced+functional+materials&rft.au=Qiao%2C+Qianqian&rft.au=Liu%2C+Zerui&rft.au=Hu%2C+Fei&rft.au=Xu%2C+Ziqiang&rft.date=2025-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=6&rft_id=info:doi/10.1002%2Fadfm.202414837&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202414837 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |