A Novel Ce─Mn Heterojunction‐Based Multi‐Enzymatic Nanozyme with Cancer‐Specific Enzymatic Activity and Photothermal Capacity for Efficient Tumor Combination Therapy

Catalytic medicine, using enzymes or nanozymes, is an emerging method for cancer treatment. However, its applicability is limited by the low catalytic activity in the tumor microenvironment (TME). In this work, a versatile and synthesis‐friendly nanozyme, CeO2Mn1.08Ox nanoclusters, is prepared. This...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 35; no. 6
Main Authors Qiao, Qianqian, Liu, Zerui, Hu, Fei, Xu, Ziqiang, Kuang, Ying, Li, Cao
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Catalytic medicine, using enzymes or nanozymes, is an emerging method for cancer treatment. However, its applicability is limited by the low catalytic activity in the tumor microenvironment (TME). In this work, a versatile and synthesis‐friendly nanozyme, CeO2Mn1.08Ox nanoclusters, is prepared. This novel Ce─Mn heterojunction is formed by oxidation of CeO2 nanoparticles through H2SO4/KMnO4. CeO2Mn1.08Ox exhibits high multi‐enzymatic catalytic activities and acts as a catalase (CAT), peroxidase (POD), and oxidase (OXD) mimics under acidic conditions. It can regulate the TME by relieving hypoxia and consuming endogenous glutathione (GSH). Glucose oxidase (GOx) is then incorporated into CeO2Mn1.08Ox and linked with poly(ethylene glycol) (PEG) to obtain the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG. CeO2Mn1.08Ox exhibits CAT‐like properties, which sensitize GOx‐based starvation therapy, and POD‐ and OXD‐like properties, which generate highly cytotoxic reactive oxygen species (ROS) in cancer cells. The glucose catabolic product, H2O2, is also used to generate O2 and ROS. In addition, the heterojunction structure provides CeO2Mn1.08Ox with near‐infrared (NIR) photothermal capability, making it suitable for photothermal therapy (PTT). Density functional theory (DFT) calculations provide possible reasons for the high catalytic activity and photothermal capability of CeO2Mn1.08Ox. When combining mild PTT with catalytic therapy, the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG can efficiently ablate tumors. The novel Ce─Mn heterojunctions, CeO2Mn1.08Ox nanoclusters, are reported and are used to construct the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG. The heterojunction structure provides CeO2Mn1.08Ox with good multi‐enzyme activities and photothermal ability. (Ce─Mn)‐PEI/GOx‐PEG enables efficient catalysis of enzymatic cascade reactions in cancer cells, glucose consumption, and ROS generation, and can be coupled with mild PTT for efficient tumor inhibition.
AbstractList Catalytic medicine, using enzymes or nanozymes, is an emerging method for cancer treatment. However, its applicability is limited by the low catalytic activity in the tumor microenvironment (TME). In this work, a versatile and synthesis‐friendly nanozyme, CeO2Mn1.08Ox nanoclusters, is prepared. This novel Ce─Mn heterojunction is formed by oxidation of CeO2 nanoparticles through H2SO4/KMnO4. CeO2Mn1.08Ox exhibits high multi‐enzymatic catalytic activities and acts as a catalase (CAT), peroxidase (POD), and oxidase (OXD) mimics under acidic conditions. It can regulate the TME by relieving hypoxia and consuming endogenous glutathione (GSH). Glucose oxidase (GOx) is then incorporated into CeO2Mn1.08Ox and linked with poly(ethylene glycol) (PEG) to obtain the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG. CeO2Mn1.08Ox exhibits CAT‐like properties, which sensitize GOx‐based starvation therapy, and POD‐ and OXD‐like properties, which generate highly cytotoxic reactive oxygen species (ROS) in cancer cells. The glucose catabolic product, H2O2, is also used to generate O2 and ROS. In addition, the heterojunction structure provides CeO2Mn1.08Ox with near‐infrared (NIR) photothermal capability, making it suitable for photothermal therapy (PTT). Density functional theory (DFT) calculations provide possible reasons for the high catalytic activity and photothermal capability of CeO2Mn1.08Ox. When combining mild PTT with catalytic therapy, the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG can efficiently ablate tumors.
Catalytic medicine, using enzymes or nanozymes, is an emerging method for cancer treatment. However, its applicability is limited by the low catalytic activity in the tumor microenvironment (TME). In this work, a versatile and synthesis‐friendly nanozyme, CeO 2 Mn 1.08 O x nanoclusters, is prepared. This novel Ce─Mn heterojunction is formed by oxidation of CeO 2 nanoparticles through H 2 SO 4 /KMnO 4 . CeO 2 Mn 1.08 O x exhibits high multi‐enzymatic catalytic activities and acts as a catalase (CAT), peroxidase (POD), and oxidase (OXD) mimics under acidic conditions. It can regulate the TME by relieving hypoxia and consuming endogenous glutathione (GSH). Glucose oxidase (GOx) is then incorporated into CeO 2 Mn 1.08 O x and linked with poly(ethylene glycol) (PEG) to obtain the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG. CeO 2 Mn 1.08 O x exhibits CAT‐like properties, which sensitize GOx‐based starvation therapy, and POD‐ and OXD‐like properties, which generate highly cytotoxic reactive oxygen species (ROS) in cancer cells. The glucose catabolic product, H 2 O 2 , is also used to generate O 2 and ROS. In addition, the heterojunction structure provides CeO 2 Mn 1.08 O x with near‐infrared (NIR) photothermal capability, making it suitable for photothermal therapy (PTT). Density functional theory (DFT) calculations provide possible reasons for the high catalytic activity and photothermal capability of CeO 2 Mn 1.08 O x . When combining mild PTT with catalytic therapy, the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG can efficiently ablate tumors.
Catalytic medicine, using enzymes or nanozymes, is an emerging method for cancer treatment. However, its applicability is limited by the low catalytic activity in the tumor microenvironment (TME). In this work, a versatile and synthesis‐friendly nanozyme, CeO2Mn1.08Ox nanoclusters, is prepared. This novel Ce─Mn heterojunction is formed by oxidation of CeO2 nanoparticles through H2SO4/KMnO4. CeO2Mn1.08Ox exhibits high multi‐enzymatic catalytic activities and acts as a catalase (CAT), peroxidase (POD), and oxidase (OXD) mimics under acidic conditions. It can regulate the TME by relieving hypoxia and consuming endogenous glutathione (GSH). Glucose oxidase (GOx) is then incorporated into CeO2Mn1.08Ox and linked with poly(ethylene glycol) (PEG) to obtain the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG. CeO2Mn1.08Ox exhibits CAT‐like properties, which sensitize GOx‐based starvation therapy, and POD‐ and OXD‐like properties, which generate highly cytotoxic reactive oxygen species (ROS) in cancer cells. The glucose catabolic product, H2O2, is also used to generate O2 and ROS. In addition, the heterojunction structure provides CeO2Mn1.08Ox with near‐infrared (NIR) photothermal capability, making it suitable for photothermal therapy (PTT). Density functional theory (DFT) calculations provide possible reasons for the high catalytic activity and photothermal capability of CeO2Mn1.08Ox. When combining mild PTT with catalytic therapy, the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG can efficiently ablate tumors. The novel Ce─Mn heterojunctions, CeO2Mn1.08Ox nanoclusters, are reported and are used to construct the cascade enzyme system (Ce─Mn)‐PEI/GOx‐PEG. The heterojunction structure provides CeO2Mn1.08Ox with good multi‐enzyme activities and photothermal ability. (Ce─Mn)‐PEI/GOx‐PEG enables efficient catalysis of enzymatic cascade reactions in cancer cells, glucose consumption, and ROS generation, and can be coupled with mild PTT for efficient tumor inhibition.
Author Kuang, Ying
Li, Cao
Hu, Fei
Qiao, Qianqian
Xu, Ziqiang
Liu, Zerui
Author_xml – sequence: 1
  givenname: Qianqian
  surname: Qiao
  fullname: Qiao, Qianqian
  organization: Hubei University of Technology
– sequence: 2
  givenname: Zerui
  surname: Liu
  fullname: Liu, Zerui
  organization: Hubei University
– sequence: 3
  givenname: Fei
  surname: Hu
  fullname: Hu, Fei
  organization: Chuzhou First People's Hospital
– sequence: 4
  givenname: Ziqiang
  surname: Xu
  fullname: Xu, Ziqiang
  organization: Hubei University
– sequence: 5
  givenname: Ying
  surname: Kuang
  fullname: Kuang, Ying
  email: kuangying@hbut.edu.cn
  organization: Hubei University of Technology
– sequence: 6
  givenname: Cao
  orcidid: 0000-0002-3500-340X
  surname: Li
  fullname: Li, Cao
  email: licao@hbut.edu.cn
  organization: Hubei University
BookMark eNqFkc9u1DAQxi1UJNrClbMlzrvYseUkxyVsKVK3ILFI3KKJM9Z6ldjBcVqFUx-BA6_BS_VJ8LKolZAQJ89ovt_88XdGTpx3SMhLzpacsew1tKZfZiyTXBYif0JOueJqIVhWnDzE_MszcjaOe8Z4ngt5Sn6u6LW_wY5WeP_jbuPoJUYMfj85Ha1393ff38CILd1MXbQpW7tvcw_RanoNzqcY6a2NO1qB0xiS4NOA2ppUf1SuUqsbG2cKrqUfdz76uMPQQxoKA-hDxfhA1yZhFl2k26lPeeX7xjo4rEG3CYBhfk6eGuhGfPHnPSefL9bb6nJx9eHd-2p1tdAi3bVomc6UKlsttC7bhhtQBRayNAowz1nbKK4bljPIW8ZQpg_TUDKBxjRaCKnFOXl17DsE_3XCMdZ7PwWXRtaCKyFlLgqVVPKo0sGPY0BTp1t-7xsD2K7mrD4YUx-MqR-MSdjyL2wItocw_xsoj8Ct7XD-j7pevb3YPLK_AF7Sq1c
CitedBy_id crossref_primary_10_1021_acs_est_4c10490
crossref_primary_10_1021_acsanm_4c05215
crossref_primary_10_1002_adfm_202421176
crossref_primary_10_3390_pharmaceutics17040409
Cites_doi 10.1016/j.carbon.2017.05.024
10.1002/adfm.202103581
10.1007/s40820-023-01224-0
10.1039/D3EE01344H
10.1002/smll.202103868
10.1016/S0926-3373(01)00136-9
10.1021/acscatal.5b00320
10.1016/j.apmt.2024.102215
10.1016/0927-0256(96)00008-0
10.1016/j.apsusc.2013.09.067
10.1002/anie.202107556
10.1021/acs.chemrev.8b00672
10.1038/sj.embor.7400645
10.1002/adfm.202000486
10.1021/acsnano.1c10450
10.1039/D0TA10875H
10.1016/j.nantod.2023.102059
10.1146/annurev-physiol-021119-034627
10.1002/adma.201704136
10.1039/C9SC01615E
10.1016/j.ccr.2021.213953
10.1016/j.cej.2021.131052
10.1002/adfm.201806588
10.1002/adma.202401619
10.1002/advs.202200005
10.1002/advs.201801702
10.1016/j.ccr.2023.215482
10.1002/solr.202000037
10.1021/es8001508
10.1016/j.biomaterials.2022.121970
10.1016/0021-9517(91)90325-X
10.1016/j.mattod.2023.06.015
10.1007/s40820-022-00828-2
10.1021/es400878c
10.1016/j.apcatb.2022.121371
10.1093/carcin/16.10.2373
10.1002/VIW.20200133
10.1039/C8TA09494B
10.1002/adma.202206401
10.1016/j.nantod.2021.101269
10.1038/s41467-017-01050-0
10.1038/s41467-021-24961-5
10.1016/j.electacta.2017.01.182
10.1002/adma.202002439
10.1002/advs.202105747
10.1016/j.apcatb.2006.08.015
10.1002/wnan.1720
10.1039/C8CS00457A
10.1016/j.apcatb.2020.119279
10.1007/s40145-022-0629-8
10.1021/cm201617d
10.1039/D0CS00718H
10.1021/jacs.1c03510
10.1002/adma.201901778
10.1021/acsami.9b18059
10.1021/acssuschemeng.6b02583
10.1002/smll.201903895
10.1039/C6CS00571C
10.1021/acs.chemrev.5b00373
10.1016/j.critrevonc.2007.07.004
10.1021/acsami.6b00002
10.1007/s00018-016-2223-0
10.1016/j.cej.2022.139332
10.1016/j.apcatb.2020.119477
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202414837
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202414837
ADFM202414837
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51973053; 51773055; 22073025
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
53G
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LH4
LW6
1OB
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3177-d0c2669dc3cc9db1fa68e849f6ae770db61cb070a7d00e4414ca903effbc334c3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Aug 13 06:34:23 EDT 2025
Tue Jul 01 04:15:41 EDT 2025
Thu Apr 24 22:57:14 EDT 2025
Thu Feb 06 09:47:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-d0c2669dc3cc9db1fa68e849f6ae770db61cb070a7d00e4414ca903effbc334c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3500-340X
PQID 3163447386
PQPubID 2045204
PageCount 18
ParticipantIDs proquest_journals_3163447386
crossref_citationtrail_10_1002_adfm_202414837
crossref_primary_10_1002_adfm_202414837
wiley_primary_10_1002_adfm_202414837_ADFM202414837
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
1991; 131
2013; 47
1995; 16
2019; 10
2020; 82
2022 2021 2019; 311 439 6
2016; 73
2017; 29
2020; 12
2006 2021; 7 50
2020; 32
2021; 143
2024; 36
2021 2021 2020 2017; 60 281 4 46
2007 2022 2011; 71 11 23
2022 2017; 428 120
2023 2020; 16 278
2024 2022 2021 2019; 16 14 2 31
1996 2021; 6 9
2024 2023; 54 68
2021 2020 2017; 13 30 8
2021; 31
2021; 12
2016 2019; 116 7
2022; 9
2023; 452
2023 2019; 293 15
2019; 29
2008; 66
2015 2013; 5 286
2024; 499
2008; 42
2022; 16
2021 2019 2019; 40 119 48
2024 2024; 31 38
2022; 18
2017 2016; 231 8
2001; 32
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_13_2
e_1_2_8_13_3
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_19_3
e_1_2_8_19_4
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_27_2
e_1_2_8_29_1
e_1_2_8_23_2
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_8_3
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_16_3
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_31_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_33_2
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 116 7
  start-page: 323 5090
  year: 2016 2019
  publication-title: Chem. Rev. J. Mater. Chem. A.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 13 30 8
  start-page: 902
  year: 2021 2020 2017
  publication-title: WIREs Nanomed. Nanobiotechnol. Adv. Funct. Mater. Nat. Commun.
– volume: 73
  start-page: 3221
  year: 2016
  publication-title: Cell. Mol. Life Sci.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 2255
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 16
  start-page: 2373
  year: 1995
  publication-title: Carcinogenesis
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 10
  start-page: 8618
  year: 2019
  publication-title: Chem. Sci.
– volume: 16 14 2 31
  start-page: 28 95
  year: 2024 2022 2021 2019
  publication-title: Nano‐Micro Lett. Nano‐Micro Lett. VIEW Adv. Mater.
– volume: 5 286
  start-page: 4825 269
  year: 2015 2013
  publication-title: ACS Catal. Appl. Surf. Sci.
– volume: 47
  start-page: 5882
  year: 2013
  publication-title: Environ. Sci. Technol.
– volume: 71 11 23
  start-page: 57 1559 4464
  year: 2007 2022 2011
  publication-title: Appl. Catal. B‐Environ. J. Adv. Ceram. Chem. Mater.
– volume: 131
  start-page: 88
  year: 1991
  publication-title: J. Catal.
– volume: 60 281 4 46
  start-page: 1693
  year: 2021 2021 2020 2017
  publication-title: Angew. Chem., Int. Ed. Appl. Catal. B‐Environ. Sol. RRL Chem. Soc. Rev.
– volume: 12
  start-page: 5704
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 82
  start-page: 103
  year: 2020
  publication-title: Annu. Rev. Physiol.
– volume: 66
  start-page: 1
  year: 2008
  publication-title: Crit. Rev. Oncol. Hemat.
– volume: 16
  start-page: 5597
  year: 2022
  publication-title: ACS Nano
– volume: 32
  start-page: 195
  year: 2001
  publication-title: Appl. Catal. B‐Environ.
– volume: 293 15
  year: 2023 2019
  publication-title: Biomaterials Small
– volume: 54 68
  start-page: 148
  year: 2024 2023
  publication-title: Nano Today Mater. Today
– volume: 7 50
  start-page: 271 6013
  year: 2006 2021
  publication-title: EMBO Rep. Chem. Soc. Rev.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 16 278
  start-page: 3240
  year: 2023 2020
  publication-title: Energy Environ. Sci. Appl. Catal. B‐Environ.
– volume: 499
  year: 2024
  publication-title: Coordin. Chem. Rev.
– volume: 311 439 6
  year: 2022 2021 2019
  publication-title: Appl. Catal. B‐Environ. Coordin. Chem. Rev. Adv. Sci.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 143
  start-page: 8855
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 42
  start-page: 5014
  year: 2008
  publication-title: Environ. Sci. Technol.
– volume: 452
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 40 119 48
  start-page: 4357 1004
  year: 2021 2019 2019
  publication-title: Nano Today Chem. Rev. Chem. Soc. Rev.
– volume: 12
  start-page: 4777
  year: 2021
  publication-title: Nat. Commun.
– volume: 6 9
  start-page: 15 3555
  year: 1996 2021
  publication-title: Comput. Mater. Sci. J. Mater. Chem. A.
– volume: 231 8
  start-page: 749 8670
  year: 2017 2016
  publication-title: Electrochim. Acta. ACS Appl. Mater. Interfaces
– volume: 31 38
  year: 2024 2024
  publication-title: Adv. Mater. Appl. Mater. Today
– volume: 428 120
  start-page: 23
  year: 2022 2017
  publication-title: Chem. Eng. J. Carbon
– ident: e_1_2_8_23_2
  doi: 10.1016/j.carbon.2017.05.024
– ident: e_1_2_8_36_1
  doi: 10.1002/adfm.202103581
– ident: e_1_2_8_1_1
  doi: 10.1007/s40820-023-01224-0
– ident: e_1_2_8_18_1
  doi: 10.1039/D3EE01344H
– ident: e_1_2_8_7_1
  doi: 10.1002/smll.202103868
– ident: e_1_2_8_35_1
  doi: 10.1016/S0926-3373(01)00136-9
– ident: e_1_2_8_21_1
  doi: 10.1021/acscatal.5b00320
– ident: e_1_2_8_22_2
  doi: 10.1016/j.apmt.2024.102215
– ident: e_1_2_8_33_1
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_8_21_2
  doi: 10.1016/j.apsusc.2013.09.067
– ident: e_1_2_8_19_1
  doi: 10.1002/anie.202107556
– ident: e_1_2_8_2_2
  doi: 10.1021/acs.chemrev.8b00672
– ident: e_1_2_8_6_1
  doi: 10.1038/sj.embor.7400645
– ident: e_1_2_8_16_2
  doi: 10.1002/adfm.202000486
– ident: e_1_2_8_17_1
  doi: 10.1021/acsnano.1c10450
– ident: e_1_2_8_33_2
  doi: 10.1039/D0TA10875H
– ident: e_1_2_8_31_1
  doi: 10.1016/j.nantod.2023.102059
– ident: e_1_2_8_5_1
  doi: 10.1146/annurev-physiol-021119-034627
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.201704136
– ident: e_1_2_8_15_1
  doi: 10.1039/C9SC01615E
– ident: e_1_2_8_8_2
  doi: 10.1016/j.ccr.2021.213953
– ident: e_1_2_8_23_1
  doi: 10.1016/j.cej.2021.131052
– ident: e_1_2_8_34_1
  doi: 10.1002/adfm.201806588
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.202401619
– ident: e_1_2_8_30_1
  doi: 10.1002/advs.202200005
– ident: e_1_2_8_8_3
  doi: 10.1002/advs.201801702
– ident: e_1_2_8_3_1
  doi: 10.1016/j.ccr.2023.215482
– ident: e_1_2_8_19_3
  doi: 10.1002/solr.202000037
– ident: e_1_2_8_37_1
  doi: 10.1021/es8001508
– ident: e_1_2_8_39_1
  doi: 10.1016/j.biomaterials.2022.121970
– ident: e_1_2_8_32_1
  doi: 10.1016/0021-9517(91)90325-X
– ident: e_1_2_8_31_2
  doi: 10.1016/j.mattod.2023.06.015
– ident: e_1_2_8_1_2
  doi: 10.1007/s40820-022-00828-2
– ident: e_1_2_8_20_1
  doi: 10.1021/es400878c
– ident: e_1_2_8_8_1
  doi: 10.1016/j.apcatb.2022.121371
– ident: e_1_2_8_40_1
  doi: 10.1093/carcin/16.10.2373
– ident: e_1_2_8_1_3
  doi: 10.1002/VIW.20200133
– ident: e_1_2_8_12_2
  doi: 10.1039/C8TA09494B
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.202206401
– ident: e_1_2_8_2_1
  doi: 10.1016/j.nantod.2021.101269
– ident: e_1_2_8_16_3
  doi: 10.1038/s41467-017-01050-0
– ident: e_1_2_8_11_1
  doi: 10.1038/s41467-021-24961-5
– ident: e_1_2_8_27_1
  doi: 10.1016/j.electacta.2017.01.182
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.202002439
– ident: e_1_2_8_9_1
  doi: 10.1002/advs.202105747
– ident: e_1_2_8_13_1
  doi: 10.1016/j.apcatb.2006.08.015
– ident: e_1_2_8_16_1
  doi: 10.1002/wnan.1720
– ident: e_1_2_8_2_3
  doi: 10.1039/C8CS00457A
– ident: e_1_2_8_18_2
  doi: 10.1016/j.apcatb.2020.119279
– ident: e_1_2_8_13_2
  doi: 10.1007/s40145-022-0629-8
– ident: e_1_2_8_13_3
  doi: 10.1021/cm201617d
– ident: e_1_2_8_6_2
  doi: 10.1039/D0CS00718H
– ident: e_1_2_8_29_1
  doi: 10.1021/jacs.1c03510
– ident: e_1_2_8_1_4
  doi: 10.1002/adma.201901778
– ident: e_1_2_8_25_1
  doi: 10.1021/acsami.9b18059
– ident: e_1_2_8_26_1
  doi: 10.1021/acssuschemeng.6b02583
– ident: e_1_2_8_39_2
  doi: 10.1002/smll.201903895
– ident: e_1_2_8_19_4
  doi: 10.1039/C6CS00571C
– ident: e_1_2_8_12_1
  doi: 10.1021/acs.chemrev.5b00373
– ident: e_1_2_8_4_1
  doi: 10.1016/j.critrevonc.2007.07.004
– ident: e_1_2_8_27_2
  doi: 10.1021/acsami.6b00002
– ident: e_1_2_8_38_1
  doi: 10.1007/s00018-016-2223-0
– ident: e_1_2_8_24_1
  doi: 10.1016/j.cej.2022.139332
– ident: e_1_2_8_19_2
  doi: 10.1016/j.apcatb.2020.119477
SSID ssj0017734
Score 2.5320892
Snippet Catalytic medicine, using enzymes or nanozymes, is an emerging method for cancer treatment. However, its applicability is limited by the low catalytic activity...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Ablation
Acidic oxides
Cancer
cascade enzyme system
Catalase
Catalytic activity
catalytic medicine
Cerium oxides
Chemical synthesis
combination therapy
Density functional theory
Enzymes
Glucose oxidase
Glutathione
heterojunction
Heterojunctions
Hydrogen peroxide
multi‐enzymatic nanozyme
Nanoclusters
Oxidation
Peroxidase
Polyethylene glycol
Potassium permanganate
Sulfuric acid
Therapy
Tumors
Title A Novel Ce─Mn Heterojunction‐Based Multi‐Enzymatic Nanozyme with Cancer‐Specific Enzymatic Activity and Photothermal Capacity for Efficient Tumor Combination Therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202414837
https://www.proquest.com/docview/3163447386
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iSQ--xfoiB8HT6j7Sze6x1pYiVEQq9LbkifjYFW0FPfkTPPg3_FP-Emey7bYKIuhtQ5Ily0xmvmRnviFkz-U7Bqn0NBxoPRaKyBPcCg-gfpLAjFQzTHDunsadC3bSr_ensvhLfojqwg13hrPXuMGFfDickIYKbTGTHDwQkqKDEcaALURF5xV_VMB5-Vs5DjDAK-iPWRv98PDr9K9eaQI1pwGr8zjtRSLGay0DTa4PhgN5oJ6_0Tj-52OWyMIIjtJGqT_LZMbkK2R-iqRwlbw36GnxaG5o03y8vXRz2sEImuIKHCIK9ePl9Qg8oaYulRdarfz5yfHAUrDcBTwbipe9tIn6dQ8DXMl7C_2TkQ1VFrGgItf07LIYuLywW1hZE5y5wh4A17Tl-C7ATdLe8BbaYMzgYO90i_ZKeoQ1ctFu9Zodb1TkwVMAXbinfQUYIdUqUirVMrAiTkzCUhsLw7mvZRwoCXZJcO37BsAbAwXyI2OtVFHEVLROZvMiNxuEakCPOk3rNk4E41zIkPuJCoUyMgFUYmvEGws5UyMGdCzEcZOV3M1hhmLIKjHUyH41_q7k_vhx5PZYZ7KRDXjIIoC6jGFR1RoJnfB_eUvWOG53q9bmXyZtkbkQCxS7sPJtMju4H5odQE0Duet2xid9cRZe
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAeyr-6UMAHEKe0iePm58Bh2R9taXeFYCvtLfgvoqVNqna3qD31ETjwGhx4FR6hT8LYTrItEkJC6oFbrEwsy57xfHZmvgF4YfMdg1R4Cg-0HqM89Hiccw-hfpLgF6liJsF5OIoGO-ztZGOyAD_qXBjHD9FcuBnLsPu1MXBzIb0-Zw3lKjep5OiCDCt6FVe5pU-_4Knt-PVmF5f4JaX93rgz8KrCAp5Edxl7ypfol1IlQylTJYKcR4lOWJpHXMexr0QUSIG2wGPl-xoBA8NB-6HOcyHDkMkQ-70BN00ZcUPX333fMFZh7-5HdhSYkLJgUvNE-nT96niv-sE5uL0Mka2P69-Bn_XsuNCWz2uzqViTZ78RR_5X03cXlivETdrORO7Bgi7uw9IlHsYH8L1NRuWJ3icdffHtfFiQgQkSKvfQ5xu9vTj_-gadvSI2WxlbveLs1FLdEnROJT5rYu6zSceY0BEKfDjUNtaRzCXb0tXpILxQ5N2ncmpT3w5wZB3EK9K8wfMD6VlKD0QCZDw7wDbu12LX3diSsWOAeAg71zJfj2CxKAu9AkQhQFZpupFHCWdxzAWN_URSLrVIEHjlLfBqrcpkRfJuao3sZ46emmZm2bNm2VvwqpE_dPQmf5RcrZU0q7a54yxENM-YqRvbAmq17S-9ZO1uf9i0Hv_LR8_h1mA83M62N0dbT-A2NfWYbRT9KixOj2b6KYLEqXhmzZLAx-tW5F8VfnZH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48EZdKOADiFPaxHHzOHBY9qEtZVcVbKW9BT9FoU1W7S6oPfUn9NC_gcRf4S_0lzB2HtsiISSkHrjFysSy7BnPZ2fmG4AXLt8xSIWn8EDrMcpDj8eGewj1kwS_SBWzCc7DUTTYYW8nG5Ml-FHnwpT8EM2Fm7UMt19bA58qs74gDeXK2Exy9ECWFL0Kq9zSR9_w0Hb4erOLK_yS0n5v3Bl4VV0BT6K3jD3lS3RLqZKhlKkSgeFRohOWmojrOPaViAIp0BR4rHxfI15gOGY_1MYIGYZMhtjvNbjOIj-1xSK67xvCKuy9_I8dBTaiLJjUNJE-Xb883stucIFtLyJk5-L6d-BnPTllZMuXtflMrMnj33gj_6fZuwu3K7xN2qWB3IMlnd-HWxdYGB_A9zYZFV_1Huno87OTYU4GNkSo-Iwe32rt-cnpG3T1irhcZWz18uMjR3RL0DUV-KyJvc0mHWtAByjwYapdpCNZSLZlWaWD8FyR7U_FzCW-7ePIOohWpH2DpwfSc4QeiAPIeL6PbdytxW55X0vGJf_DQ9i5kvl6BMt5kesVIArhsUrTDRMlnMUxFzT2E0m51CJB2GVa4NVKlcmK4t1WGtnLSnJqmtllz5plb8GrRn5akpv8UXK11tGs2uQOsxCxPGO2amwLqFO2v_SStbv9YdN6_C8fPYcb291-9m5ztPUEblJbjNmF0K_C8uxgrp8iQpyJZ84oCXy8aj3-BTnfdPY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Ce%E2%94%80Mn+Heterojunction%E2%80%90Based+Multi%E2%80%90Enzymatic+Nanozyme+with+Cancer%E2%80%90Specific+Enzymatic+Activity+and+Photothermal+Capacity+for+Efficient+Tumor+Combination+Therapy&rft.jtitle=Advanced+functional+materials&rft.au=Qiao%2C+Qianqian&rft.au=Liu%2C+Zerui&rft.au=Hu%2C+Fei&rft.au=Xu%2C+Ziqiang&rft.date=2025-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=6&rft_id=info:doi/10.1002%2Fadfm.202414837&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202414837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon