Extending Anisotropy Dynamics of Light‐Emitting Dipoles as Necessary Condition Toward Developing Highly‐Efficient OLEDs

Designing in‐plane‐oriented light‐emitting dipoles is known as a critical method to develop high‐efficiency organic light‐emitting diodes (OLEDs) by enhancing light extraction. However, in‐plane‐oriented light‐emitting dipoles must demonstrate sufficient polarization memory extended into light emiss...

Full description

Saved in:
Bibliographic Details
Published inAdvanced optical materials Vol. 11; no. 8
Main Authors Wang, Miaosheng, Luo, Dian, Yeh, Tzu‐Hung, Huang, Yi‐Hsuan, Ko, Chang‐Lun, Hung, Wen‐Yi, Tang, Yipeng, Liu, Shun‐Wei, Wong, Ken‐Tsung, Hu, Bin
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Designing in‐plane‐oriented light‐emitting dipoles is known as a critical method to develop high‐efficiency organic light‐emitting diodes (OLEDs) by enhancing light extraction. However, in‐plane‐oriented light‐emitting dipoles must demonstrate sufficient polarization memory extended into light emission lifetime window, generating extended anisotropy dynamics shown as the necessary condition to increase light extraction toward developing high‐efficiency OLEDs. This paper reports experimental studies on anisotropy dynamics of light‐emitting dipoles in both time and energy domains by using time‐resolved and steady‐state photoluminescence anisotropy measurements based on the in‐plane oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host dispersed with phosphorescent molecules. It is found that, when host–guest Coulomb scattering is suppressed by parallel placing of the in‐plane‐configured phosphorescent Ir(ppy)2(acac) molecules into the in‐plane‐oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host, the anisotropy dynamics of light‐emitting dipoles can be extended into microseconds time window comparable with its phosphorescence lifetime, satisfying the necessary condition in time domain to increase light out‐coupling efficiency toward developing high external quantum efficiencies (EQEs) in Ir(ppy)2(acac):exciplex system. More importantly, by suppressing host–guest Coulomb scattering, the high‐energy transition dipoles can still maintain extended anisotropy dynamics in the energy domain in Ir(ppy)2(acac):exciplex system while hot electrons are relaxing toward lowest unoccupied molecular orbital (LUMO). Consequently, the extended anisotropy dynamics of light‐emitting dipoles demonstrate a high EQE of 34.01% in the Ir(ppy)2(acac):exciplex OLED. Anisotropy dynamics of light‐emitting dipoles in both time and energy domains are investigated to reveal extended anisotropy dynamics in exciplex:Ir(ppy)2(acac) light‐emitting system. The anisotropy‐enhanced system can take advantage of the high horizontally oriented dipole ratio of exciplex during the energy transfer process, contributing to the light out‐coupling efficiency in organic light‐emitting diodes (OLEDs). Consequently, Ir(ppy)2(acac):exciplex OLED demonstrates a high external quamtum efficiency of 34.01%.
AbstractList Designing in‐plane‐oriented light‐emitting dipoles is known as a critical method to develop high‐efficiency organic light‐emitting diodes (OLEDs) by enhancing light extraction. However, in‐plane‐oriented light‐emitting dipoles must demonstrate sufficient polarization memory extended into light emission lifetime window, generating extended anisotropy dynamics shown as the necessary condition to increase light extraction toward developing high‐efficiency OLEDs. This paper reports experimental studies on anisotropy dynamics of light‐emitting dipoles in both time and energy domains by using time‐resolved and steady‐state photoluminescence anisotropy measurements based on the in‐plane oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host dispersed with phosphorescent molecules. It is found that, when host–guest Coulomb scattering is suppressed by parallel placing of the in‐plane‐configured phosphorescent Ir(ppy)2(acac) molecules into the in‐plane‐oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host, the anisotropy dynamics of light‐emitting dipoles can be extended into microseconds time window comparable with its phosphorescence lifetime, satisfying the necessary condition in time domain to increase light out‐coupling efficiency toward developing high external quantum efficiencies (EQEs) in Ir(ppy)2(acac):exciplex system. More importantly, by suppressing host–guest Coulomb scattering, the high‐energy transition dipoles can still maintain extended anisotropy dynamics in the energy domain in Ir(ppy)2(acac):exciplex system while hot electrons are relaxing toward lowest unoccupied molecular orbital (LUMO). Consequently, the extended anisotropy dynamics of light‐emitting dipoles demonstrate a high EQE of 34.01% in the Ir(ppy)2(acac):exciplex OLED.
Designing in‐plane‐oriented light‐emitting dipoles is known as a critical method to develop high‐efficiency organic light‐emitting diodes (OLEDs) by enhancing light extraction. However, in‐plane‐oriented light‐emitting dipoles must demonstrate sufficient polarization memory extended into light emission lifetime window, generating extended anisotropy dynamics shown as the necessary condition to increase light extraction toward developing high‐efficiency OLEDs. This paper reports experimental studies on anisotropy dynamics of light‐emitting dipoles in both time and energy domains by using time‐resolved and steady‐state photoluminescence anisotropy measurements based on the in‐plane oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host dispersed with phosphorescent molecules. It is found that, when host–guest Coulomb scattering is suppressed by parallel placing of the in‐plane‐configured phosphorescent Ir(ppy)2(acac) molecules into the in‐plane‐oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host, the anisotropy dynamics of light‐emitting dipoles can be extended into microseconds time window comparable with its phosphorescence lifetime, satisfying the necessary condition in time domain to increase light out‐coupling efficiency toward developing high external quantum efficiencies (EQEs) in Ir(ppy)2(acac):exciplex system. More importantly, by suppressing host–guest Coulomb scattering, the high‐energy transition dipoles can still maintain extended anisotropy dynamics in the energy domain in Ir(ppy)2(acac):exciplex system while hot electrons are relaxing toward lowest unoccupied molecular orbital (LUMO). Consequently, the extended anisotropy dynamics of light‐emitting dipoles demonstrate a high EQE of 34.01% in the Ir(ppy)2(acac):exciplex OLED. Anisotropy dynamics of light‐emitting dipoles in both time and energy domains are investigated to reveal extended anisotropy dynamics in exciplex:Ir(ppy)2(acac) light‐emitting system. The anisotropy‐enhanced system can take advantage of the high horizontally oriented dipole ratio of exciplex during the energy transfer process, contributing to the light out‐coupling efficiency in organic light‐emitting diodes (OLEDs). Consequently, Ir(ppy)2(acac):exciplex OLED demonstrates a high external quamtum efficiency of 34.01%.
Designing in‐plane‐oriented light‐emitting dipoles is known as a critical method to develop high‐efficiency organic light‐emitting diodes (OLEDs) by enhancing light extraction. However, in‐plane‐oriented light‐emitting dipoles must demonstrate sufficient polarization memory extended into light emission lifetime window, generating extended anisotropy dynamics shown as the necessary condition to increase light extraction toward developing high‐efficiency OLEDs. This paper reports experimental studies on anisotropy dynamics of light‐emitting dipoles in both time and energy domains by using time‐resolved and steady‐state photoluminescence anisotropy measurements based on the in‐plane oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host dispersed with phosphorescent molecules. It is found that, when host–guest Coulomb scattering is suppressed by parallel placing of the in‐plane‐configured phosphorescent Ir(ppy) 2 (acac) molecules into the in‐plane‐oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host, the anisotropy dynamics of light‐emitting dipoles can be extended into microseconds time window comparable with its phosphorescence lifetime, satisfying the necessary condition in time domain to increase light out‐coupling efficiency toward developing high external quantum efficiencies (EQEs) in Ir(ppy) 2 (acac):exciplex system. More importantly, by suppressing host–guest Coulomb scattering, the high‐energy transition dipoles can still maintain extended anisotropy dynamics in the energy domain in Ir(ppy) 2 (acac):exciplex system while hot electrons are relaxing toward lowest unoccupied molecular orbital (LUMO). Consequently, the extended anisotropy dynamics of light‐emitting dipoles demonstrate a high EQE of 34.01% in the Ir(ppy) 2 (acac):exciplex OLED.
Author Wang, Miaosheng
Hu, Bin
Hung, Wen‐Yi
Tang, Yipeng
Yeh, Tzu‐Hung
Wong, Ken‐Tsung
Ko, Chang‐Lun
Luo, Dian
Huang, Yi‐Hsuan
Liu, Shun‐Wei
Author_xml – sequence: 1
  givenname: Miaosheng
  surname: Wang
  fullname: Wang, Miaosheng
  organization: Department of Materials Science and University of Tennessee
– sequence: 2
  givenname: Dian
  surname: Luo
  fullname: Luo, Dian
  organization: Ming Chi University of Technology
– sequence: 3
  givenname: Tzu‐Hung
  surname: Yeh
  fullname: Yeh, Tzu‐Hung
  organization: Ming Chi University of Technology
– sequence: 4
  givenname: Yi‐Hsuan
  surname: Huang
  fullname: Huang, Yi‐Hsuan
  organization: Academia Sinica
– sequence: 5
  givenname: Chang‐Lun
  surname: Ko
  fullname: Ko, Chang‐Lun
  organization: National Taiwan Ocean University
– sequence: 6
  givenname: Wen‐Yi
  surname: Hung
  fullname: Hung, Wen‐Yi
  organization: National Taiwan Ocean University
– sequence: 7
  givenname: Yipeng
  surname: Tang
  fullname: Tang, Yipeng
  organization: Department of Materials Science and University of Tennessee
– sequence: 8
  givenname: Shun‐Wei
  orcidid: 0000-0002-3128-905X
  surname: Liu
  fullname: Liu, Shun‐Wei
  email: swliu@mail.mcut.edu.tw
  organization: Ming Chi University of Technology
– sequence: 9
  givenname: Ken‐Tsung
  orcidid: 0000-0002-1680-6186
  surname: Wong
  fullname: Wong, Ken‐Tsung
  email: kenwong@ntu.edu.tw
  organization: Academia Sinica
– sequence: 10
  givenname: Bin
  orcidid: 0000-0002-1573-7625
  surname: Hu
  fullname: Hu, Bin
  email: bhu@utk.edu
  organization: Department of Materials Science and University of Tennessee
BookMark eNqFkMtKAzEUhoMoqNWt64Dr1iQzY5pl6dQLjHZT10Oai6ZMkzGJl8GNj-Az-iRmqKgIIgRODvzfF_Lvg23rrALgCKMRRoiccOnWI4JIOjmlW2CPYFYMMaJ4-8d9FxyGsEIIpSVjOd0DL7PnqKw09hZOrAkuetd2sOwsXxsRoNOwMrd38f31bbY2Mfa50rSuUQHyAK-VUCFw38GpS5JonIUL98S9hKV6VI1re-AiGZquV2hthFE2wnk1K8MB2NG8Cerwcw7AzdlsMb0YVvPzy-mkGooMUzrkmkvKMiaXmJxyqRUjgpBTqnnGCq0KpqgYE4boMl8WS1JwkgtWII5zJYmUKBuA44239e7-QYVYr9yDt-nJmoxTZWOUJ_8A5JuU8C4Er3QtTOT9l6Lnpqkxqvum677p-qvphI1-Ya0361TJ3wDbAE-mUd0_6XpSzq--2Q9pv5bS
CitedBy_id crossref_primary_10_1039_D3TC00188A
crossref_primary_10_1002_adom_202303334
crossref_primary_10_1080_15980316_2024_2304869
crossref_primary_10_1126_sciadv_add7526
crossref_primary_10_1002_adfm_202313897
crossref_primary_10_1002_advs_202302631
crossref_primary_10_1021_acsami_3c07430
crossref_primary_10_1021_acsphotonics_3c00590
Cites_doi 10.1021/acs.jpclett.9b01140
10.1023/A:1022995327718
10.1002/adma.201200848
10.1126/sciadv.1603282
10.1038/s41566-020-0667-0
10.1021/jacs.8b04795
10.1002/adma.201402532
10.1038/s41566-019-0415-5
10.1002/9783527650002
10.1021/acsaelm.0c00062
10.1002/adfm.201300187
10.1021/acs.chemmater.7b02403
10.1002/adma.201405062
10.1038/s41467-020-20150-y
10.1038/s41566-018-0112-9
10.1002/adfm.201300104
10.1016/j.orgel.2011.06.011
10.1038/s41598-017-00053-7
10.1002/adma.201601675
10.1038/s41563-020-0710-z
10.1039/C4TC00997E
10.1002/adma.201400955
10.1021/acsami.5b11895
10.1021/acs.jpca.5b02253
10.1002/adom.201400644
10.1002/adma.201803524
10.1002/adma.201904114
10.1063/1.4773188
10.1038/s41467-017-02449-5
10.1002/adma.201401476
10.1038/natrevmats.2018.20
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1002/adom.202202477
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2195-1071
EndPage n/a
ExternalDocumentID 10_1002_adom_202202477
ADOM202202477
Genre article
GrantInformation_xml – fundername: The Tennessee Higher Education Commission
– fundername: Air Force Office of Scientific Research
  funderid: FA 9550‐18‐1‐0472
– fundername: National Science and Technology Council
  funderid: 109‐2223‐E‐131‐001‐MY3; 107‐2113‐M‐002‐019‐MY3; 110‐2113‐M‐002‐021
– fundername: Center for Materials Processing, University of Tennessee, Knoxville
– fundername: AOARD
  funderid: FA2386‐15‐1‐4104
GroupedDBID 0R~
1OC
33P
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
D-B
DCZOG
DPXWK
EBS
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
EJD
GODZA
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H8D
L7M
ID FETCH-LOGICAL-c3177-afad7939db126adfe92c2267fa395fe59e7c82907b4b5b25a24c950a14ed2dd03
ISSN 2195-1071
IngestDate Fri Jul 25 11:55:50 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Tue Jul 01 00:35:57 EDT 2025
Wed Jan 22 16:20:46 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3177-afad7939db126adfe92c2267fa395fe59e7c82907b4b5b25a24c950a14ed2dd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1680-6186
0000-0002-3128-905X
0000-0002-1573-7625
PQID 2802280479
PQPubID 2034581
PageCount 9
ParticipantIDs proquest_journals_2802280479
crossref_citationtrail_10_1002_adom_202202477
crossref_primary_10_1002_adom_202202477
wiley_primary_10_1002_adom_202202477_ADOM202202477
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced optical materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2012; 101
2017; 3
2018; 140
2015; 3
2019; 31
2012
2015; 92
2019; 10
2013; 23
2019; 13
2003; 13
2014; 26
2020; 14
2017; 29
2011; 12
2020; 19
2018; 6
2018; 9
2018; 3
2015; 27
2020; 2
2021; 12
2014; 2
2015; 119
2018; 30
2013
2018; 12
2016; 28
2012; 24
2016; 8
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Lakowicz J. R. (e_1_2_7_20_1) 2013
e_1_2_7_26_1
e_1_2_7_30_1
e_1_2_7_25_1
Kim K. H. (e_1_2_7_29_1) 2018; 30
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
e_1_2_7_37_1
Byeon S. Y. (e_1_2_7_28_1) 2018; 6
Fuchs C. (e_1_2_7_27_1) 2015; 92
References_xml – volume: 2
  start-page: 1011
  year: 2020
  publication-title: ACS Appl. Electron. Mater.
– volume: 3
  start-page: 895
  year: 2015
  publication-title: Adv. Opt. Mater.
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 92
  start-page: 10
  year: 2015
  publication-title: Phys. Rev. B
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 140
  start-page: 8877
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2811
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 9
  start-page: 10
  year: 2018
  publication-title: Nat. Commun.
– volume: 14
  start-page: 643
  year: 2020
  publication-title: Nat. Photonics
– volume: 3
  start-page: 9
  year: 2017
  publication-title: Sci. Adv.
– volume: 7
  start-page: 9
  year: 2017
  publication-title: Sci. Rep.
– volume: 26
  start-page: 4730
  year: 2014
  publication-title: Adv. Mater.
– volume: 26
  start-page: 5050
  year: 2014
  publication-title: Adv. Mater.
– volume: 26
  start-page: 7931
  year: 2014
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1663
  year: 2011
  publication-title: Org. Electron.
– volume: 12
  start-page: 235
  year: 2018
  publication-title: Nat. Photonics
– volume: 13
  start-page: 179
  year: 2003
  publication-title: J. Fluoresc.
– volume: 30
  start-page: 19
  year: 2018
  publication-title: Adv. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 28
  start-page: 6976
  year: 2016
  publication-title: Adv. Mater.
– volume: 24
  start-page: 3212
  year: 2012
  publication-title: Adv. Mater.
– year: 2012
– volume: 3
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 23
  start-page: 4105
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 1332
  year: 2020
  publication-title: Nat. Mater.
– volume: 13
  start-page: 540
  year: 2019
  publication-title: Nat. Photonics
– volume: 29
  start-page: 8630
  year: 2017
  publication-title: Chem. Mater.
– volume: 6
  start-page: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 12
  start-page: 10
  year: 2021
  publication-title: Nat. Commun.
– volume: 8
  start-page: 4811
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 119
  start-page: 3415
  year: 2015
  publication-title: J. Phys. Chem. A
– volume: 23
  start-page: 3896
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 2378
  year: 2015
  publication-title: Adv. Mater.
– year: 2013
– ident: e_1_2_7_9_1
  doi: 10.1021/acs.jpclett.9b01140
– ident: e_1_2_7_21_1
  doi: 10.1023/A:1022995327718
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201200848
– ident: e_1_2_7_31_1
  doi: 10.1126/sciadv.1603282
– ident: e_1_2_7_1_1
  doi: 10.1038/s41566-020-0667-0
– ident: e_1_2_7_33_1
  doi: 10.1021/jacs.8b04795
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201402532
– volume: 6
  start-page: 6
  year: 2018
  ident: e_1_2_7_28_1
  publication-title: Adv. Opt. Mater.
– volume-title: Principles of Fluorescence Spectroscopy
  year: 2013
  ident: e_1_2_7_20_1
– ident: e_1_2_7_11_1
  doi: 10.1038/s41566-019-0415-5
– volume: 30
  start-page: 19
  year: 2018
  ident: e_1_2_7_29_1
  publication-title: Adv. Mater.
– ident: e_1_2_7_19_1
  doi: 10.1002/9783527650002
– ident: e_1_2_7_24_1
  doi: 10.1021/acsaelm.0c00062
– ident: e_1_2_7_36_1
  doi: 10.1002/adfm.201300187
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.chemmater.7b02403
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201405062
– ident: e_1_2_7_37_1
  doi: 10.1038/s41467-020-20150-y
– ident: e_1_2_7_14_1
  doi: 10.1038/s41566-018-0112-9
– ident: e_1_2_7_16_1
  doi: 10.1002/adfm.201300104
– ident: e_1_2_7_25_1
  doi: 10.1016/j.orgel.2011.06.011
– ident: e_1_2_7_34_1
  doi: 10.1038/s41598-017-00053-7
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201601675
– ident: e_1_2_7_32_1
  doi: 10.1038/s41563-020-0710-z
– ident: e_1_2_7_18_1
  doi: 10.1039/C4TC00997E
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.201400955
– ident: e_1_2_7_23_1
  doi: 10.1021/acsami.5b11895
– ident: e_1_2_7_15_1
  doi: 10.1038/s41566-019-0415-5
– ident: e_1_2_7_6_1
  doi: 10.1021/acs.jpca.5b02253
– ident: e_1_2_7_30_1
  doi: 10.1002/adom.201400644
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201803524
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201904114
– ident: e_1_2_7_17_1
  doi: 10.1063/1.4773188
– ident: e_1_2_7_26_1
  doi: 10.1038/s41467-017-02449-5
– volume: 92
  start-page: 10
  year: 2015
  ident: e_1_2_7_27_1
  publication-title: Phys. Rev. B
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201401476
– ident: e_1_2_7_4_1
  doi: 10.1038/natrevmats.2018.20
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201601675
SSID ssj0001073947
Score 2.3520882
Snippet Designing in‐plane‐oriented light‐emitting dipoles is known as a critical method to develop high‐efficiency organic light‐emitting diodes (OLEDs) by enhancing...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anisotropy
anisotropy dynamics
Coupling (molecular)
Dipoles
Dynamics
Efficiency
exciplex‐heterostructured
high external quantum efficiency
Hot electrons
Light
Light emission
Materials science
Molecular orbitals
Optics
Organic light emitting diodes
organic light emitting diploes
Phosphorescence
Photoluminescence
Quantum efficiency
Scattering
thermally activated delayed fluorescence
Windows (intervals)
Title Extending Anisotropy Dynamics of Light‐Emitting Dipoles as Necessary Condition Toward Developing Highly‐Efficient OLEDs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202202477
https://www.proquest.com/docview/2802280479
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbcZOnSd1G3acGhQIdArURRpjkakQOj8GOoDDiTQIpSKyCxjMgeki75CZn6A_tLeiT1MpC2aQGDsGX5DOg-Hu-OH-8Qej_kAoCTEEe5A-5QxbgjFVWOIp5QTNDEN3W6Z_PBZEk_r4JVr_ejw1rabeXH5PrOcyX_o1W4BnrVp2T_QbONULgA70G_MIKGYbyXjscmg20SG-u8LLaXxebqOLQ95g1FY2pC75rPML7ILcs5zDe6jpPuMTNP9TkBTZ07KfTutUZDZKi0NZ9I_0CzQc6vWkGm7oRmESym47DsOrijmlNQbGyWHDxi-yja1L01L7NcFOW3tFo5NSdoZ9K2YQew0fWu-dMJmKXjs7RJX5_l7VflDszUBIav3SwG8Tvkl_vZSrteGcNIdH9JCFu9PSvuddA6vHNxsMVmhSp0BQICL1p1kNmrwj1fxKfL6TSOxqvoATokEH6A_TwchbPplzZ7pzc4KaurgLrk077YfS-nDV26AZDxYKIn6FEVeuCRxdFT1EvXz9DjKgzBlZEvn6PvDaxwCytcwwoXGTaw-nlzWwMKV4DCosQNoHADKGwBhVtAYQsoLaKGEjZQeoGWp-PoZOJUPTocmMWMOSKDKc19rqRHBkJlKScJePQsEz4PsjTgKUv0Xj2TVAaSBILQhAeu8GiqiFKu_xIdrIt1-grhhPuBHFAp_YFP3UzJjHk-c4cCvHLJXNlHTv1M46QqYK_7qJzHtvQ2ibUO4kYHffShuX9jS7f89s6jWkVxNb3LmAxNqSjKeB8Ro7a_SIlH4WLWfHr9Z5lv0MN2Ghyhg-3lLn0L7u1Wvquw9gs4NKlj
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extending+Anisotropy+Dynamics+of+Light%E2%80%90Emitting+Dipoles+as+Necessary+Condition+Toward+Developing+Highly%E2%80%90Efficient+OLEDs&rft.jtitle=Advanced+optical+materials&rft.au=Wang%2C+Miaosheng&rft.au=Luo%2C+Dian&rft.au=Tzu%E2%80%90Hung+Yeh&rft.au=Yi%E2%80%90Hsuan+Huang&rft.date=2023-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2195-1071&rft.volume=11&rft.issue=8&rft_id=info:doi/10.1002%2Fadom.202202477&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon