Extending Anisotropy Dynamics of Light‐Emitting Dipoles as Necessary Condition Toward Developing Highly‐Efficient OLEDs
Designing in‐plane‐oriented light‐emitting dipoles is known as a critical method to develop high‐efficiency organic light‐emitting diodes (OLEDs) by enhancing light extraction. However, in‐plane‐oriented light‐emitting dipoles must demonstrate sufficient polarization memory extended into light emiss...
Saved in:
Published in | Advanced optical materials Vol. 11; no. 8 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing in‐plane‐oriented light‐emitting dipoles is known as a critical method to develop high‐efficiency organic light‐emitting diodes (OLEDs) by enhancing light extraction. However, in‐plane‐oriented light‐emitting dipoles must demonstrate sufficient polarization memory extended into light emission lifetime window, generating extended anisotropy dynamics shown as the necessary condition to increase light extraction toward developing high‐efficiency OLEDs. This paper reports experimental studies on anisotropy dynamics of light‐emitting dipoles in both time and energy domains by using time‐resolved and steady‐state photoluminescence anisotropy measurements based on the in‐plane oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host dispersed with phosphorescent molecules. It is found that, when host–guest Coulomb scattering is suppressed by parallel placing of the in‐plane‐configured phosphorescent Ir(ppy)2(acac) molecules into the in‐plane‐oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host, the anisotropy dynamics of light‐emitting dipoles can be extended into microseconds time window comparable with its phosphorescence lifetime, satisfying the necessary condition in time domain to increase light out‐coupling efficiency toward developing high external quantum efficiencies (EQEs) in Ir(ppy)2(acac):exciplex system. More importantly, by suppressing host–guest Coulomb scattering, the high‐energy transition dipoles can still maintain extended anisotropy dynamics in the energy domain in Ir(ppy)2(acac):exciplex system while hot electrons are relaxing toward lowest unoccupied molecular orbital (LUMO). Consequently, the extended anisotropy dynamics of light‐emitting dipoles demonstrate a high EQE of 34.01% in the Ir(ppy)2(acac):exciplex OLED.
Anisotropy dynamics of light‐emitting dipoles in both time and energy domains are investigated to reveal extended anisotropy dynamics in exciplex:Ir(ppy)2(acac) light‐emitting system. The anisotropy‐enhanced system can take advantage of the high horizontally oriented dipole ratio of exciplex during the energy transfer process, contributing to the light out‐coupling efficiency in organic light‐emitting diodes (OLEDs). Consequently, Ir(ppy)2(acac):exciplex OLED demonstrates a high external quamtum efficiency of 34.01%. |
---|---|
AbstractList | Designing in‐plane‐oriented light‐emitting dipoles is known as a critical method to develop high‐efficiency organic light‐emitting diodes (OLEDs) by enhancing light extraction. However, in‐plane‐oriented light‐emitting dipoles must demonstrate sufficient polarization memory extended into light emission lifetime window, generating extended anisotropy dynamics shown as the necessary condition to increase light extraction toward developing high‐efficiency OLEDs. This paper reports experimental studies on anisotropy dynamics of light‐emitting dipoles in both time and energy domains by using time‐resolved and steady‐state photoluminescence anisotropy measurements based on the in‐plane oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host dispersed with phosphorescent molecules. It is found that, when host–guest Coulomb scattering is suppressed by parallel placing of the in‐plane‐configured phosphorescent Ir(ppy)2(acac) molecules into the in‐plane‐oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host, the anisotropy dynamics of light‐emitting dipoles can be extended into microseconds time window comparable with its phosphorescence lifetime, satisfying the necessary condition in time domain to increase light out‐coupling efficiency toward developing high external quantum efficiencies (EQEs) in Ir(ppy)2(acac):exciplex system. More importantly, by suppressing host–guest Coulomb scattering, the high‐energy transition dipoles can still maintain extended anisotropy dynamics in the energy domain in Ir(ppy)2(acac):exciplex system while hot electrons are relaxing toward lowest unoccupied molecular orbital (LUMO). Consequently, the extended anisotropy dynamics of light‐emitting dipoles demonstrate a high EQE of 34.01% in the Ir(ppy)2(acac):exciplex OLED. Designing in‐plane‐oriented light‐emitting dipoles is known as a critical method to develop high‐efficiency organic light‐emitting diodes (OLEDs) by enhancing light extraction. However, in‐plane‐oriented light‐emitting dipoles must demonstrate sufficient polarization memory extended into light emission lifetime window, generating extended anisotropy dynamics shown as the necessary condition to increase light extraction toward developing high‐efficiency OLEDs. This paper reports experimental studies on anisotropy dynamics of light‐emitting dipoles in both time and energy domains by using time‐resolved and steady‐state photoluminescence anisotropy measurements based on the in‐plane oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host dispersed with phosphorescent molecules. It is found that, when host–guest Coulomb scattering is suppressed by parallel placing of the in‐plane‐configured phosphorescent Ir(ppy)2(acac) molecules into the in‐plane‐oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host, the anisotropy dynamics of light‐emitting dipoles can be extended into microseconds time window comparable with its phosphorescence lifetime, satisfying the necessary condition in time domain to increase light out‐coupling efficiency toward developing high external quantum efficiencies (EQEs) in Ir(ppy)2(acac):exciplex system. More importantly, by suppressing host–guest Coulomb scattering, the high‐energy transition dipoles can still maintain extended anisotropy dynamics in the energy domain in Ir(ppy)2(acac):exciplex system while hot electrons are relaxing toward lowest unoccupied molecular orbital (LUMO). Consequently, the extended anisotropy dynamics of light‐emitting dipoles demonstrate a high EQE of 34.01% in the Ir(ppy)2(acac):exciplex OLED. Anisotropy dynamics of light‐emitting dipoles in both time and energy domains are investigated to reveal extended anisotropy dynamics in exciplex:Ir(ppy)2(acac) light‐emitting system. The anisotropy‐enhanced system can take advantage of the high horizontally oriented dipole ratio of exciplex during the energy transfer process, contributing to the light out‐coupling efficiency in organic light‐emitting diodes (OLEDs). Consequently, Ir(ppy)2(acac):exciplex OLED demonstrates a high external quamtum efficiency of 34.01%. Designing in‐plane‐oriented light‐emitting dipoles is known as a critical method to develop high‐efficiency organic light‐emitting diodes (OLEDs) by enhancing light extraction. However, in‐plane‐oriented light‐emitting dipoles must demonstrate sufficient polarization memory extended into light emission lifetime window, generating extended anisotropy dynamics shown as the necessary condition to increase light extraction toward developing high‐efficiency OLEDs. This paper reports experimental studies on anisotropy dynamics of light‐emitting dipoles in both time and energy domains by using time‐resolved and steady‐state photoluminescence anisotropy measurements based on the in‐plane oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host dispersed with phosphorescent molecules. It is found that, when host–guest Coulomb scattering is suppressed by parallel placing of the in‐plane‐configured phosphorescent Ir(ppy) 2 (acac) molecules into the in‐plane‐oriented exciplex‐heterostructured [BCzPh:CN‐T2T] host, the anisotropy dynamics of light‐emitting dipoles can be extended into microseconds time window comparable with its phosphorescence lifetime, satisfying the necessary condition in time domain to increase light out‐coupling efficiency toward developing high external quantum efficiencies (EQEs) in Ir(ppy) 2 (acac):exciplex system. More importantly, by suppressing host–guest Coulomb scattering, the high‐energy transition dipoles can still maintain extended anisotropy dynamics in the energy domain in Ir(ppy) 2 (acac):exciplex system while hot electrons are relaxing toward lowest unoccupied molecular orbital (LUMO). Consequently, the extended anisotropy dynamics of light‐emitting dipoles demonstrate a high EQE of 34.01% in the Ir(ppy) 2 (acac):exciplex OLED. |
Author | Wang, Miaosheng Hu, Bin Hung, Wen‐Yi Tang, Yipeng Yeh, Tzu‐Hung Wong, Ken‐Tsung Ko, Chang‐Lun Luo, Dian Huang, Yi‐Hsuan Liu, Shun‐Wei |
Author_xml | – sequence: 1 givenname: Miaosheng surname: Wang fullname: Wang, Miaosheng organization: Department of Materials Science and University of Tennessee – sequence: 2 givenname: Dian surname: Luo fullname: Luo, Dian organization: Ming Chi University of Technology – sequence: 3 givenname: Tzu‐Hung surname: Yeh fullname: Yeh, Tzu‐Hung organization: Ming Chi University of Technology – sequence: 4 givenname: Yi‐Hsuan surname: Huang fullname: Huang, Yi‐Hsuan organization: Academia Sinica – sequence: 5 givenname: Chang‐Lun surname: Ko fullname: Ko, Chang‐Lun organization: National Taiwan Ocean University – sequence: 6 givenname: Wen‐Yi surname: Hung fullname: Hung, Wen‐Yi organization: National Taiwan Ocean University – sequence: 7 givenname: Yipeng surname: Tang fullname: Tang, Yipeng organization: Department of Materials Science and University of Tennessee – sequence: 8 givenname: Shun‐Wei orcidid: 0000-0002-3128-905X surname: Liu fullname: Liu, Shun‐Wei email: swliu@mail.mcut.edu.tw organization: Ming Chi University of Technology – sequence: 9 givenname: Ken‐Tsung orcidid: 0000-0002-1680-6186 surname: Wong fullname: Wong, Ken‐Tsung email: kenwong@ntu.edu.tw organization: Academia Sinica – sequence: 10 givenname: Bin orcidid: 0000-0002-1573-7625 surname: Hu fullname: Hu, Bin email: bhu@utk.edu organization: Department of Materials Science and University of Tennessee |
BookMark | eNqFkMtKAzEUhoMoqNWt64Dr1iQzY5pl6dQLjHZT10Oai6ZMkzGJl8GNj-Az-iRmqKgIIgRODvzfF_Lvg23rrALgCKMRRoiccOnWI4JIOjmlW2CPYFYMMaJ4-8d9FxyGsEIIpSVjOd0DL7PnqKw09hZOrAkuetd2sOwsXxsRoNOwMrd38f31bbY2Mfa50rSuUQHyAK-VUCFw38GpS5JonIUL98S9hKV6VI1re-AiGZquV2hthFE2wnk1K8MB2NG8Cerwcw7AzdlsMb0YVvPzy-mkGooMUzrkmkvKMiaXmJxyqRUjgpBTqnnGCq0KpqgYE4boMl8WS1JwkgtWII5zJYmUKBuA44239e7-QYVYr9yDt-nJmoxTZWOUJ_8A5JuU8C4Er3QtTOT9l6Lnpqkxqvum677p-qvphI1-Ya0361TJ3wDbAE-mUd0_6XpSzq--2Q9pv5bS |
CitedBy_id | crossref_primary_10_1039_D3TC00188A crossref_primary_10_1002_adom_202303334 crossref_primary_10_1080_15980316_2024_2304869 crossref_primary_10_1126_sciadv_add7526 crossref_primary_10_1002_adfm_202313897 crossref_primary_10_1002_advs_202302631 crossref_primary_10_1021_acsami_3c07430 crossref_primary_10_1021_acsphotonics_3c00590 |
Cites_doi | 10.1021/acs.jpclett.9b01140 10.1023/A:1022995327718 10.1002/adma.201200848 10.1126/sciadv.1603282 10.1038/s41566-020-0667-0 10.1021/jacs.8b04795 10.1002/adma.201402532 10.1038/s41566-019-0415-5 10.1002/9783527650002 10.1021/acsaelm.0c00062 10.1002/adfm.201300187 10.1021/acs.chemmater.7b02403 10.1002/adma.201405062 10.1038/s41467-020-20150-y 10.1038/s41566-018-0112-9 10.1002/adfm.201300104 10.1016/j.orgel.2011.06.011 10.1038/s41598-017-00053-7 10.1002/adma.201601675 10.1038/s41563-020-0710-z 10.1039/C4TC00997E 10.1002/adma.201400955 10.1021/acsami.5b11895 10.1021/acs.jpca.5b02253 10.1002/adom.201400644 10.1002/adma.201803524 10.1002/adma.201904114 10.1063/1.4773188 10.1038/s41467-017-02449-5 10.1002/adma.201401476 10.1038/natrevmats.2018.20 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1002/adom.202202477 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2195-1071 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adom_202202477 ADOM202202477 |
Genre | article |
GrantInformation_xml | – fundername: The Tennessee Higher Education Commission – fundername: Air Force Office of Scientific Research funderid: FA 9550‐18‐1‐0472 – fundername: National Science and Technology Council funderid: 109‐2223‐E‐131‐001‐MY3; 107‐2113‐M‐002‐019‐MY3; 110‐2113‐M‐002‐021 – fundername: Center for Materials Processing, University of Tennessee, Knoxville – fundername: AOARD funderid: FA2386‐15‐1‐4104 |
GroupedDBID | 0R~ 1OC 33P 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI D-B DCZOG DPXWK EBS G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION EJD GODZA 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY H8D L7M |
ID | FETCH-LOGICAL-c3177-afad7939db126adfe92c2267fa395fe59e7c82907b4b5b25a24c950a14ed2dd03 |
ISSN | 2195-1071 |
IngestDate | Fri Jul 25 11:55:50 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Tue Jul 01 00:35:57 EDT 2025 Wed Jan 22 16:20:46 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3177-afad7939db126adfe92c2267fa395fe59e7c82907b4b5b25a24c950a14ed2dd03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1680-6186 0000-0002-3128-905X 0000-0002-1573-7625 |
PQID | 2802280479 |
PQPubID | 2034581 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2802280479 crossref_citationtrail_10_1002_adom_202202477 crossref_primary_10_1002_adom_202202477 wiley_primary_10_1002_adom_202202477_ADOM202202477 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced optical materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2012; 101 2017; 3 2018; 140 2015; 3 2019; 31 2012 2015; 92 2019; 10 2013; 23 2019; 13 2003; 13 2014; 26 2020; 14 2017; 29 2011; 12 2020; 19 2018; 6 2018; 9 2018; 3 2015; 27 2020; 2 2021; 12 2014; 2 2015; 119 2018; 30 2013 2018; 12 2016; 28 2012; 24 2016; 8 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 Lakowicz J. R. (e_1_2_7_20_1) 2013 e_1_2_7_26_1 e_1_2_7_30_1 e_1_2_7_25_1 Kim K. H. (e_1_2_7_29_1) 2018; 30 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_36_1 e_1_2_7_37_1 Byeon S. Y. (e_1_2_7_28_1) 2018; 6 Fuchs C. (e_1_2_7_27_1) 2015; 92 |
References_xml | – volume: 2 start-page: 1011 year: 2020 publication-title: ACS Appl. Electron. Mater. – volume: 3 start-page: 895 year: 2015 publication-title: Adv. Opt. Mater. – volume: 2 year: 2014 publication-title: J. Mater. Chem. C – volume: 92 start-page: 10 year: 2015 publication-title: Phys. Rev. B – volume: 101 year: 2012 publication-title: Appl. Phys. Lett. – volume: 140 start-page: 8877 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2811 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 9 start-page: 10 year: 2018 publication-title: Nat. Commun. – volume: 14 start-page: 643 year: 2020 publication-title: Nat. Photonics – volume: 3 start-page: 9 year: 2017 publication-title: Sci. Adv. – volume: 7 start-page: 9 year: 2017 publication-title: Sci. Rep. – volume: 26 start-page: 4730 year: 2014 publication-title: Adv. Mater. – volume: 26 start-page: 5050 year: 2014 publication-title: Adv. Mater. – volume: 26 start-page: 7931 year: 2014 publication-title: Adv. Mater. – volume: 12 start-page: 1663 year: 2011 publication-title: Org. Electron. – volume: 12 start-page: 235 year: 2018 publication-title: Nat. Photonics – volume: 13 start-page: 179 year: 2003 publication-title: J. Fluoresc. – volume: 30 start-page: 19 year: 2018 publication-title: Adv. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 28 start-page: 6976 year: 2016 publication-title: Adv. Mater. – volume: 24 start-page: 3212 year: 2012 publication-title: Adv. Mater. – year: 2012 – volume: 3 year: 2018 publication-title: Nat. Rev. Mater. – volume: 23 start-page: 4105 year: 2013 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 1332 year: 2020 publication-title: Nat. Mater. – volume: 13 start-page: 540 year: 2019 publication-title: Nat. Photonics – volume: 29 start-page: 8630 year: 2017 publication-title: Chem. Mater. – volume: 6 start-page: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 12 start-page: 10 year: 2021 publication-title: Nat. Commun. – volume: 8 start-page: 4811 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 119 start-page: 3415 year: 2015 publication-title: J. Phys. Chem. A – volume: 23 start-page: 3896 year: 2013 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 2378 year: 2015 publication-title: Adv. Mater. – year: 2013 – ident: e_1_2_7_9_1 doi: 10.1021/acs.jpclett.9b01140 – ident: e_1_2_7_21_1 doi: 10.1023/A:1022995327718 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201200848 – ident: e_1_2_7_31_1 doi: 10.1126/sciadv.1603282 – ident: e_1_2_7_1_1 doi: 10.1038/s41566-020-0667-0 – ident: e_1_2_7_33_1 doi: 10.1021/jacs.8b04795 – ident: e_1_2_7_5_1 doi: 10.1002/adma.201402532 – volume: 6 start-page: 6 year: 2018 ident: e_1_2_7_28_1 publication-title: Adv. Opt. Mater. – volume-title: Principles of Fluorescence Spectroscopy year: 2013 ident: e_1_2_7_20_1 – ident: e_1_2_7_11_1 doi: 10.1038/s41566-019-0415-5 – volume: 30 start-page: 19 year: 2018 ident: e_1_2_7_29_1 publication-title: Adv. Mater. – ident: e_1_2_7_19_1 doi: 10.1002/9783527650002 – ident: e_1_2_7_24_1 doi: 10.1021/acsaelm.0c00062 – ident: e_1_2_7_36_1 doi: 10.1002/adfm.201300187 – ident: e_1_2_7_13_1 doi: 10.1021/acs.chemmater.7b02403 – ident: e_1_2_7_2_1 doi: 10.1002/adma.201405062 – ident: e_1_2_7_37_1 doi: 10.1038/s41467-020-20150-y – ident: e_1_2_7_14_1 doi: 10.1038/s41566-018-0112-9 – ident: e_1_2_7_16_1 doi: 10.1002/adfm.201300104 – ident: e_1_2_7_25_1 doi: 10.1016/j.orgel.2011.06.011 – ident: e_1_2_7_34_1 doi: 10.1038/s41598-017-00053-7 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201601675 – ident: e_1_2_7_32_1 doi: 10.1038/s41563-020-0710-z – ident: e_1_2_7_18_1 doi: 10.1039/C4TC00997E – ident: e_1_2_7_35_1 doi: 10.1002/adma.201400955 – ident: e_1_2_7_23_1 doi: 10.1021/acsami.5b11895 – ident: e_1_2_7_15_1 doi: 10.1038/s41566-019-0415-5 – ident: e_1_2_7_6_1 doi: 10.1021/acs.jpca.5b02253 – ident: e_1_2_7_30_1 doi: 10.1002/adom.201400644 – ident: e_1_2_7_7_1 doi: 10.1002/adma.201803524 – ident: e_1_2_7_8_1 doi: 10.1002/adma.201904114 – ident: e_1_2_7_17_1 doi: 10.1063/1.4773188 – ident: e_1_2_7_26_1 doi: 10.1038/s41467-017-02449-5 – volume: 92 start-page: 10 year: 2015 ident: e_1_2_7_27_1 publication-title: Phys. Rev. B – ident: e_1_2_7_3_1 doi: 10.1002/adma.201401476 – ident: e_1_2_7_4_1 doi: 10.1038/natrevmats.2018.20 – ident: e_1_2_7_10_1 doi: 10.1002/adma.201601675 |
SSID | ssj0001073947 |
Score | 2.3520882 |
Snippet | Designing in‐plane‐oriented light‐emitting dipoles is known as a critical method to develop high‐efficiency organic light‐emitting diodes (OLEDs) by enhancing... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anisotropy anisotropy dynamics Coupling (molecular) Dipoles Dynamics Efficiency exciplex‐heterostructured high external quantum efficiency Hot electrons Light Light emission Materials science Molecular orbitals Optics Organic light emitting diodes organic light emitting diploes Phosphorescence Photoluminescence Quantum efficiency Scattering thermally activated delayed fluorescence Windows (intervals) |
Title | Extending Anisotropy Dynamics of Light‐Emitting Dipoles as Necessary Condition Toward Developing Highly‐Efficient OLEDs |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202202477 https://www.proquest.com/docview/2802280479 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbcZOnSd1G3acGhQIdArURRpjkakQOj8GOoDDiTQIpSKyCxjMgeki75CZn6A_tLeiT1MpC2aQGDsGX5DOg-Hu-OH-8Qej_kAoCTEEe5A-5QxbgjFVWOIp5QTNDEN3W6Z_PBZEk_r4JVr_ejw1rabeXH5PrOcyX_o1W4BnrVp2T_QbONULgA70G_MIKGYbyXjscmg20SG-u8LLaXxebqOLQ95g1FY2pC75rPML7ILcs5zDe6jpPuMTNP9TkBTZ07KfTutUZDZKi0NZ9I_0CzQc6vWkGm7oRmESym47DsOrijmlNQbGyWHDxi-yja1L01L7NcFOW3tFo5NSdoZ9K2YQew0fWu-dMJmKXjs7RJX5_l7VflDszUBIav3SwG8Tvkl_vZSrteGcNIdH9JCFu9PSvuddA6vHNxsMVmhSp0BQICL1p1kNmrwj1fxKfL6TSOxqvoATokEH6A_TwchbPplzZ7pzc4KaurgLrk077YfS-nDV26AZDxYKIn6FEVeuCRxdFT1EvXz9DjKgzBlZEvn6PvDaxwCytcwwoXGTaw-nlzWwMKV4DCosQNoHADKGwBhVtAYQsoLaKGEjZQeoGWp-PoZOJUPTocmMWMOSKDKc19rqRHBkJlKScJePQsEz4PsjTgKUv0Xj2TVAaSBILQhAeu8GiqiFKu_xIdrIt1-grhhPuBHFAp_YFP3UzJjHk-c4cCvHLJXNlHTv1M46QqYK_7qJzHtvQ2ibUO4kYHffShuX9jS7f89s6jWkVxNb3LmAxNqSjKeB8Ro7a_SIlH4WLWfHr9Z5lv0MN2Ghyhg-3lLn0L7u1Wvquw9gs4NKlj |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extending+Anisotropy+Dynamics+of+Light%E2%80%90Emitting+Dipoles+as+Necessary+Condition+Toward+Developing+Highly%E2%80%90Efficient+OLEDs&rft.jtitle=Advanced+optical+materials&rft.au=Wang%2C+Miaosheng&rft.au=Luo%2C+Dian&rft.au=Tzu%E2%80%90Hung+Yeh&rft.au=Yi%E2%80%90Hsuan+Huang&rft.date=2023-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=2195-1071&rft.volume=11&rft.issue=8&rft_id=info:doi/10.1002%2Fadom.202202477&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon |