High‐Performance Organic Solar Cells from Non‐Halogenated Solvents

High‐performance organic solar cells (OSCs) at the current stage are majorly accomplished from the processing of halogenated solvents, such as chloroform, which will be constrained for upscale fabrication due to the adverse health and environmental impacts. Therefore, exploring the high‐performance...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 4
Main Authors Wang, Di, Zhou, Guanqing, Li, Yuhao, Yan, Kangrong, Zhan, Lingling, Zhu, Haiming, Lu, Xinhui, Chen, Hongzheng, Li, Chang‐Zhi
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐performance organic solar cells (OSCs) at the current stage are majorly accomplished from the processing of halogenated solvents, such as chloroform, which will be constrained for upscale fabrication due to the adverse health and environmental impacts. Therefore, exploring the high‐performance OSCs from non‐halogenated solvent processing becomes highly necessary, yet largely lagged behind. Herein, it is demonstrated high‐performance OSCs can be obtained from the hot spin processing of different non‐halogenated solvents, and achieve the highest reported efficiency of OSCs from non‐halogenated solvent processing so far. It is revealed that the phase evolution of ternary blends during solution‐to‐solid transition has a correlation to the substrate temperature. With the elevated substrate temperature of hot spin coating, the optimal blend films can be secured in different kinds of non‐halogenated solvents. As result, high‐performance OSCs are obtained with excellent power conversion efficiencies of 18.25% in o‐xylene, 18.20% in p‐xylene, and 18.12% in toluene, respectively. To the author's best knowledge, these results represent the best‐performed OSCs made from non‐halogenated solvents so far. High‐performance organic solar cells (OSCs) are feasibly obtained from the hot spin coating of different kinds of non‐halogenated solvents. It is revealed that the blend phase evolution during solution‐to‐solid transition has a correlation to the substrate temperature. As result, high‐performance OSCs are obtained with power conversion efficiencies of 18.25% in o‐xylene, 18.20% in p‐xylene, and 18.12% in toluene, respectively.
AbstractList High‐performance organic solar cells (OSCs) at the current stage are majorly accomplished from the processing of halogenated solvents, such as chloroform, which will be constrained for upscale fabrication due to the adverse health and environmental impacts. Therefore, exploring the high‐performance OSCs from non‐halogenated solvent processing becomes highly necessary, yet largely lagged behind. Herein, it is demonstrated high‐performance OSCs can be obtained from the hot spin processing of different non‐halogenated solvents, and achieve the highest reported efficiency of OSCs from non‐halogenated solvent processing so far. It is revealed that the phase evolution of ternary blends during solution‐to‐solid transition has a correlation to the substrate temperature. With the elevated substrate temperature of hot spin coating, the optimal blend films can be secured in different kinds of non‐halogenated solvents. As result, high‐performance OSCs are obtained with excellent power conversion efficiencies of 18.25% in o‐xylene, 18.20% in p‐xylene, and 18.12% in toluene, respectively. To the author's best knowledge, these results represent the best‐performed OSCs made from non‐halogenated solvents so far. High‐performance organic solar cells (OSCs) are feasibly obtained from the hot spin coating of different kinds of non‐halogenated solvents. It is revealed that the blend phase evolution during solution‐to‐solid transition has a correlation to the substrate temperature. As result, high‐performance OSCs are obtained with power conversion efficiencies of 18.25% in o‐xylene, 18.20% in p‐xylene, and 18.12% in toluene, respectively.
High‐performance organic solar cells (OSCs) at the current stage are majorly accomplished from the processing of halogenated solvents, such as chloroform, which will be constrained for upscale fabrication due to the adverse health and environmental impacts. Therefore, exploring the high‐performance OSCs from non‐halogenated solvent processing becomes highly necessary, yet largely lagged behind. Herein, it is demonstrated high‐performance OSCs can be obtained from the hot spin processing of different non‐halogenated solvents, and achieve the highest reported efficiency of OSCs from non‐halogenated solvent processing so far. It is revealed that the phase evolution of ternary blends during solution‐to‐solid transition has a correlation to the substrate temperature. With the elevated substrate temperature of hot spin coating, the optimal blend films can be secured in different kinds of non‐halogenated solvents. As result, high‐performance OSCs are obtained with excellent power conversion efficiencies of 18.25% in o ‐xylene, 18.20% in p ‐xylene, and 18.12% in toluene, respectively. To the author's best knowledge, these results represent the best‐performed OSCs made from non‐halogenated solvents so far.
High‐performance organic solar cells (OSCs) at the current stage are majorly accomplished from the processing of halogenated solvents, such as chloroform, which will be constrained for upscale fabrication due to the adverse health and environmental impacts. Therefore, exploring the high‐performance OSCs from non‐halogenated solvent processing becomes highly necessary, yet largely lagged behind. Herein, it is demonstrated high‐performance OSCs can be obtained from the hot spin processing of different non‐halogenated solvents, and achieve the highest reported efficiency of OSCs from non‐halogenated solvent processing so far. It is revealed that the phase evolution of ternary blends during solution‐to‐solid transition has a correlation to the substrate temperature. With the elevated substrate temperature of hot spin coating, the optimal blend films can be secured in different kinds of non‐halogenated solvents. As result, high‐performance OSCs are obtained with excellent power conversion efficiencies of 18.25% in o‐xylene, 18.20% in p‐xylene, and 18.12% in toluene, respectively. To the author's best knowledge, these results represent the best‐performed OSCs made from non‐halogenated solvents so far.
Author Zhou, Guanqing
Yan, Kangrong
Lu, Xinhui
Chen, Hongzheng
Wang, Di
Zhan, Lingling
Li, Chang‐Zhi
Zhu, Haiming
Li, Yuhao
Author_xml – sequence: 1
  givenname: Di
  surname: Wang
  fullname: Wang, Di
  organization: Zhejiang University
– sequence: 2
  givenname: Guanqing
  surname: Zhou
  fullname: Zhou, Guanqing
  organization: Zhejiang University
– sequence: 3
  givenname: Yuhao
  surname: Li
  fullname: Li, Yuhao
  organization: Chinese University of Hong Kong
– sequence: 4
  givenname: Kangrong
  surname: Yan
  fullname: Yan, Kangrong
  organization: Zhejiang University
– sequence: 5
  givenname: Lingling
  surname: Zhan
  fullname: Zhan, Lingling
  organization: Zhejiang University
– sequence: 6
  givenname: Haiming
  surname: Zhu
  fullname: Zhu, Haiming
  organization: Zhejiang University
– sequence: 7
  givenname: Xinhui
  surname: Lu
  fullname: Lu, Xinhui
  organization: Chinese University of Hong Kong
– sequence: 8
  givenname: Hongzheng
  surname: Chen
  fullname: Chen, Hongzheng
  organization: Zhejiang University
– sequence: 9
  givenname: Chang‐Zhi
  orcidid: 0000-0003-1968-2032
  surname: Li
  fullname: Li, Chang‐Zhi
  email: czli@zju.edu.cn
  organization: Zhejiang University
BookMark eNqFkE1LAzEQhoNUsK1ePS943jpJ9iM9lmpdoVpBBW9hms3WLbtJTbZKb_4Ef6O_xC2VCoJ4mjk8z7zM2yMdY40m5JTCgAKwc8yLesCAUUgFSw9IlyY0CTkw0dnv9OmI9LxfAtA05VGXTLJy8fz5_nGnXWFdjUbpYOYWaEoV3NsKXTDWVeWDwtk6uLWmRTOs7EIbbHS-RV61afwxOSyw8vrke_bJ4-TyYZyF09nV9Xg0DRVvA0PEWAhQc4VxpBRTXBRAeaRZnicU2RBpAnPOVC5UrEEl8xgYi4CigpiJCHmfnO3urpx9WWvfyKVdO9NGSpa0n0MkEt5Sgx2lnPXe6UKuXFmj20gKctuV3HYl9121QvRLUGWDTWlN47Cs_taGO-2trPTmnxA5upjc_LhfX3qBvQ
CitedBy_id crossref_primary_10_1021_acsenergylett_2c02348
crossref_primary_10_1002_cjoc_202200796
crossref_primary_10_1038_s41467_023_41978_0
crossref_primary_10_1039_D4TC02821J
crossref_primary_10_1002_adma_202204718
crossref_primary_10_1016_j_jechem_2022_12_002
crossref_primary_10_1002_pip_3506
crossref_primary_10_1002_solr_202300206
crossref_primary_10_1021_acs_jpcc_3c00267
crossref_primary_10_1039_D2NJ00505K
crossref_primary_10_1021_acsami_2c07703
crossref_primary_10_1002_solr_202200679
crossref_primary_10_1002_aenm_202500024
crossref_primary_10_1002_adfm_202215095
crossref_primary_10_1002_aenm_202104028
crossref_primary_10_1002_admi_202201740
crossref_primary_10_1021_acsaem_2c04123
crossref_primary_10_1039_D2TC02497G
crossref_primary_10_1007_s12209_022_00323_0
crossref_primary_10_1002_adma_202300259
crossref_primary_10_1039_D2TC05318G
crossref_primary_10_3390_molecules27185802
crossref_primary_10_1021_acsaem_2c01249
crossref_primary_10_1002_ange_202306847
crossref_primary_10_1016_j_cej_2023_148484
crossref_primary_10_1002_marc_202200049
crossref_primary_10_1039_D3TC03287F
crossref_primary_10_1002_solr_202300029
crossref_primary_10_1002_solr_202300665
crossref_primary_10_1021_acsami_4c11805
crossref_primary_10_1039_D2QM00162D
crossref_primary_10_1021_acsami_2c05504
crossref_primary_10_1007_s00339_023_06533_0
crossref_primary_10_1039_D3CC04412B
crossref_primary_10_1039_D2EE03246E
crossref_primary_10_1002_adfm_202413814
crossref_primary_10_1039_D3TC02037A
crossref_primary_10_1088_1674_4926_43_6_060201
crossref_primary_10_1039_D4EE01405G
crossref_primary_10_1021_acsenergylett_2c00476
crossref_primary_10_1039_D3EE00294B
crossref_primary_10_1002_adma_202110569
crossref_primary_10_1021_acsaem_2c01945
crossref_primary_10_1039_D3MH01133J
crossref_primary_10_1002_aenm_202403129
crossref_primary_10_1002_adma_202307863
crossref_primary_10_1021_acs_macromol_2c02144
crossref_primary_10_1002_adma_202413270
crossref_primary_10_1002_anie_202214931
crossref_primary_10_1016_j_polymer_2023_126605
crossref_primary_10_1039_D2TA10030D
crossref_primary_10_1021_acsaem_2c00092
crossref_primary_10_1002_solr_202300927
crossref_primary_10_3390_en17102262
crossref_primary_10_1016_j_cej_2022_136472
crossref_primary_10_1002_solr_202200119
crossref_primary_10_1002_aenm_202203313
crossref_primary_10_1002_aenm_202202224
crossref_primary_10_1002_anie_202306847
crossref_primary_10_1007_s10118_022_2750_0
crossref_primary_10_1002_ange_202214931
crossref_primary_10_1007_s10118_022_2803_4
crossref_primary_10_1002_adfm_202209152
crossref_primary_10_1002_adma_202200044
crossref_primary_10_1002_aelm_202400530
crossref_primary_10_1002_adma_202303729
crossref_primary_10_1021_acsami_3c13833
crossref_primary_10_1039_D2EE00740A
crossref_primary_10_3390_en17040814
crossref_primary_10_1007_s11426_023_1821_y
crossref_primary_10_1002_adma_202109516
crossref_primary_10_1002_adfm_202200694
crossref_primary_10_1002_adma_202302592
crossref_primary_10_1002_adma_202411071
crossref_primary_10_1021_acsaem_1c03717
crossref_primary_10_1039_D2TA08621B
crossref_primary_10_1016_j_cej_2023_142178
crossref_primary_10_1039_D3TC02994H
crossref_primary_10_3390_en16114494
crossref_primary_10_1002_adfm_202200807
crossref_primary_10_1002_aenm_202405889
crossref_primary_10_1002_solr_202300349
crossref_primary_10_1002_adom_202302548
crossref_primary_10_1002_ange_202404297
crossref_primary_10_1016_j_progsolidstchem_2024_100463
crossref_primary_10_1002_inf2_12276
crossref_primary_10_1002_adfm_202315825
crossref_primary_10_1007_s11426_023_1608_6
crossref_primary_10_1039_D4TC00721B
crossref_primary_10_1039_D3TC02562D
crossref_primary_10_1002_adma_202305356
crossref_primary_10_1021_acsami_3c14992
crossref_primary_10_1002_adma_202107476
crossref_primary_10_1016_j_cej_2024_148728
crossref_primary_10_1007_s11426_022_1242_9
crossref_primary_10_1039_D3EE01270K
crossref_primary_10_1002_aesr_202200070
crossref_primary_10_1002_smll_202409411
crossref_primary_10_1021_acsami_3c03860
crossref_primary_10_1002_anie_202404297
crossref_primary_10_1021_polymscitech_4c00054
crossref_primary_10_1016_j_cej_2022_135973
crossref_primary_10_1002_ente_202201176
crossref_primary_10_1016_j_cej_2024_150081
crossref_primary_10_1002_solr_202200147
crossref_primary_10_1002_adfm_202403770
crossref_primary_10_1002_advs_202303842
crossref_primary_10_1002_smll_202411698
Cites_doi 10.1002/adfm.202003223
10.1038/s41560-021-00820-x
10.1002/anie.201409208
10.1021/acsenergylett.0c01554
10.1016/j.mattod.2016.02.019
10.1021/ma301900h
10.1002/adma.201800052
10.1038/nenergy.2015.27
10.1039/C7TA00292K
10.1016/j.jechem.2020.05.054
10.1002/solr.202000547
10.1021/acsapm.0c00791
10.1002/adma.202004183
10.1016/j.cclet.2019.08.046
10.1038/s41566-018-0104-9
10.1039/C8QO00788H
10.1088/1361-648X/aaabad
10.1021/acsenergylett.0c01949
10.1039/D0EE02034F
10.1002/adma.201703973
10.1093/nsr/nwz200
10.1002/smll.201801793
10.1021/acsnano.0c07488
10.1002/adma.202002302
10.1002/adma.201803769
10.1002/adma.202002066
10.1039/C8EE02863J
10.1039/C9EE03710A
10.1016/j.scib.2020.01.001
10.1002/solr.202000156
10.1038/nenergy.2016.118
10.1002/adma.201906045
10.1002/adma.201902210
10.1007/s40843-017-9080-x
10.6023/A20080342
10.1016/j.joule.2020.07.028
10.1002/aenm.202003777
10.1002/solr.201700169
10.1002/adma.201805041
10.1016/j.joule.2021.02.010
10.1016/j.joule.2019.01.004
10.1002/adma.201903441
10.1002/aenm.201802674
10.1002/adma.201502110
10.1021/acs.chemrev.6b00448
10.1002/adma.201905645
10.1038/s41578-019-0093-4
10.1038/ncomms6293
10.1039/C4EE02362E
10.1002/adma.201903173
10.1088/1674-4926/42/3/030502
10.1016/j.nanoen.2019.04.018
10.1002/adma.202001621
10.1021/acsami.9b13812
10.1021/acsami.9b12522
10.1002/adma.202007231
10.1002/adma.201904601
10.1103/PhysRevB.35.2972
10.1021/acsenergylett.0c00537
10.1126/science.aaf9570
10.1038/nmat5063
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202107827
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202107827
ADFM202107827
Genre article
GrantInformation_xml – fundername: Theme‐based Research Scheme
  funderid: T23‐407/13‐N
– fundername: Zhejiang Natural Science Fund for Distinguished Young Scholars
  funderid: LR17E030001
– fundername: National Natural Science Foundation of China
  funderid: 21722404; 21674093
– fundername: National Key Research and Development Program of China
  funderid: 2019YFA0705900
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3177-aa5880cbca54cc2c38f0134e2dd61a29a160b32cd8c5e0c6b5022401ac05284a3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 03:10:17 EDT 2025
Tue Jul 01 04:12:37 EDT 2025
Thu Apr 24 22:59:25 EDT 2025
Wed Jan 22 16:26:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-aa5880cbca54cc2c38f0134e2dd61a29a160b32cd8c5e0c6b5022401ac05284a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1968-2032
PQID 2621004863
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2621004863
crossref_primary_10_1002_adfm_202107827
crossref_citationtrail_10_1002_adfm_202107827
wiley_primary_10_1002_adfm_202107827_ADFM202107827
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
1987; 35
2021; 6
2019; 4
2021; 5
2019; 3
2021; 42
2017; 60
2021; 3
2016; 19
2019; 31
2019; 11
2019; 12
2020; 14
2020; 13
2016; 2016
2020; 78
2020; 32
2015; 8
2017; 117
2020; 7
2018; 17
2020; 5
2018; 8
2020; 4
2019; 60
2021; 54
2014; 5
2018; 2
2020; 3
2016; 1
2015; 27
2018; 5
2021; 33
2020; 30
2018; 30
2020; 65
2018; 12
2012; 45
2018; 14
2014; 53
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 13
  start-page: 4381
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 585
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 54
  start-page: 131
  year: 2021
  publication-title: J. Energ. Chem.
– volume: 3
  start-page: 1140
  year: 2019
  publication-title: Joule
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 19
  start-page: 533
  year: 2016
  publication-title: Mater. Today
– volume: 35
  start-page: 2972
  year: 1987
  publication-title: Phys. Rev. B
– volume: 45
  start-page: 9611
  year: 2012
  publication-title: Macromolecules
– volume: 5
  start-page: 3663
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 117
  start-page: 5146
  year: 2017
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: J. Phys.: Condens. Matter
– volume: 42
  year: 2021
  publication-title: J. Semicond.
– volume: 65
  start-page: 272
  year: 2020
  publication-title: Sci. Bull.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 13
  start-page: 635
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 2016
  start-page: 1409
  year: 2016
  publication-title: Science
– volume: 3
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1239
  year: 2020
  publication-title: Natl. Sci. Rev.
– volume: 4
  year: 2020
  publication-title: Sol. RRL
– volume: 12
  start-page: 157
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 2
  year: 2018
  publication-title: Sol. RRL
– volume: 5
  start-page: 2845
  year: 2018
  publication-title: Org. Chem. Front.
– volume: 5
  start-page: 1554
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 5
  start-page: 3115
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 60
  start-page: 768
  year: 2019
  publication-title: Nano Energy
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 2004
  year: 2020
  publication-title: Joule
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 27
  start-page: 4655
  year: 2015
  publication-title: Adv. Mater.
– volume: 12
  start-page: 131
  year: 2018
  publication-title: Nat. Photonics
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 5
  start-page: 945
  year: 2021
  publication-title: Joule
– volume: 3
  start-page: 60
  year: 2020
  publication-title: ACS Appl. Polym. Mater.
– volume: 5
  start-page: 5293
  year: 2014
  publication-title: Nat. Commun.
– volume: 4
  start-page: 229
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 17
  start-page: 119
  year: 2018
  publication-title: Nat. Mater.
– volume: 31
  start-page: 1608
  year: 2019
  publication-title: Chin. Chem. Lett.
– volume: 6
  start-page: 605
  year: 2021
  publication-title: Nat. Energy
– volume: 78
  start-page: 1287
  year: 2020
  publication-title: Acta Chim. Sin.
– volume: 60
  start-page: 697
  year: 2017
  publication-title: Sci. China Mater.
– ident: e_1_2_7_16_1
  doi: 10.1002/adfm.202003223
– ident: e_1_2_7_10_1
  doi: 10.1038/s41560-021-00820-x
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.201409208
– ident: e_1_2_7_43_1
  doi: 10.1021/acsenergylett.0c01554
– ident: e_1_2_7_11_1
  doi: 10.1016/j.mattod.2016.02.019
– ident: e_1_2_7_34_1
  doi: 10.1021/ma301900h
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201800052
– ident: e_1_2_7_35_1
  doi: 10.1038/nenergy.2015.27
– ident: e_1_2_7_51_1
  doi: 10.1039/C7TA00292K
– ident: e_1_2_7_54_1
  doi: 10.1016/j.jechem.2020.05.054
– ident: e_1_2_7_23_1
  doi: 10.1002/solr.202000547
– ident: e_1_2_7_31_1
  doi: 10.1021/acsapm.0c00791
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.202004183
– ident: e_1_2_7_44_1
  doi: 10.1016/j.cclet.2019.08.046
– ident: e_1_2_7_3_1
  doi: 10.1038/s41566-018-0104-9
– ident: e_1_2_7_41_1
  doi: 10.1039/C8QO00788H
– ident: e_1_2_7_50_1
  doi: 10.1088/1361-648X/aaabad
– ident: e_1_2_7_9_1
  doi: 10.1021/acsenergylett.0c01949
– ident: e_1_2_7_22_1
  doi: 10.1039/D0EE02034F
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.201703973
– ident: e_1_2_7_40_1
  doi: 10.1093/nsr/nwz200
– ident: e_1_2_7_12_1
  doi: 10.1002/smll.201801793
– ident: e_1_2_7_5_1
  doi: 10.1021/acsnano.0c07488
– ident: e_1_2_7_58_1
  doi: 10.1002/adma.202002302
– ident: e_1_2_7_56_1
  doi: 10.1002/adma.201803769
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.202002066
– ident: e_1_2_7_25_1
  doi: 10.1039/C8EE02863J
– ident: e_1_2_7_47_1
  doi: 10.1039/C9EE03710A
– ident: e_1_2_7_7_1
  doi: 10.1016/j.scib.2020.01.001
– ident: e_1_2_7_32_1
  doi: 10.1002/solr.202000156
– ident: e_1_2_7_49_1
  doi: 10.1038/nenergy.2016.118
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201906045
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201902210
– ident: e_1_2_7_33_1
  doi: 10.1007/s40843-017-9080-x
– ident: e_1_2_7_42_1
  doi: 10.6023/A20080342
– ident: e_1_2_7_21_1
  doi: 10.1016/j.joule.2020.07.028
– ident: e_1_2_7_39_1
  doi: 10.1002/aenm.202003777
– ident: e_1_2_7_24_1
  doi: 10.1002/solr.201700169
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201805041
– ident: e_1_2_7_29_1
  doi: 10.1016/j.joule.2021.02.010
– ident: e_1_2_7_6_1
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_7_59_1
  doi: 10.1002/adma.201903441
– ident: e_1_2_7_36_1
  doi: 10.1002/aenm.201802674
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201502110
– ident: e_1_2_7_55_1
  doi: 10.1021/acs.chemrev.6b00448
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201905645
– ident: e_1_2_7_4_1
  doi: 10.1038/s41578-019-0093-4
– ident: e_1_2_7_57_1
  doi: 10.1038/ncomms6293
– ident: e_1_2_7_30_1
  doi: 10.1039/C4EE02362E
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201903173
– ident: e_1_2_7_61_1
  doi: 10.1088/1674-4926/42/3/030502
– ident: e_1_2_7_45_1
  doi: 10.1016/j.nanoen.2019.04.018
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.202001621
– ident: e_1_2_7_37_1
  doi: 10.1021/acsami.9b13812
– ident: e_1_2_7_60_1
  doi: 10.1021/acsami.9b12522
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.202007231
– ident: e_1_2_7_48_1
  doi: 10.1002/adma.201904601
– ident: e_1_2_7_53_1
  doi: 10.1103/PhysRevB.35.2972
– ident: e_1_2_7_2_1
  doi: 10.1021/acsenergylett.0c00537
– ident: e_1_2_7_52_1
  doi: 10.1126/science.aaf9570
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat5063
SSID ssj0017734
Score 2.6422148
Snippet High‐performance organic solar cells (OSCs) at the current stage are majorly accomplished from the processing of halogenated solvents, such as chloroform,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Chloroform
conductive fullerene
eco‐friendliness
Energy conversion efficiency
Environmental impact
hot spin‐coating
Materials science
non‐halogenated solvent
organic solar cells
Photovoltaic cells
Solar cells
Solvents
Spin coating
Substrates
Ternary systems
Toluene
Xylene
Title High‐Performance Organic Solar Cells from Non‐Halogenated Solvents
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202107827
https://www.proquest.com/docview/2621004863
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1EL3rwW6zWkoPgKW12k900x9Iaitgi1kJvYXeyvVhSMe3Fkz_B3-gvcSdfbQUR9BiYDcnsTubtZN5bQq61EgA-lWZbwn3ba0tlq9gBm01NbnLigMVtZCMPhqI_9u4mfLLG4s_1IaqCG0ZG9r3GAJcqba1EQ2U8RSa52bKYJId0cmzYQlT0WOlHUd_PfysLig1edFKqNjqstTl8MyutoOY6YM0yTnhAZPmseaPJc3O5UE14-ybj-J-XOST7BRy1Ovn6OSJbOjkme2sihSckxFaQz_ePhxXFwMoZnGCNcGNsdfVsllpIVLGG88SY9rEipBMDY2M0wZbK9JSMw9unbt8uTl-wwWAK35aSm9gGBZJ7AAzc9tTARU-zOBZUskBS4SiXobYA1w4IxTN4QCU43OQ86Z6R7WSe6HNiae47IgDBwYABIVSgOFAZgAvclxDTGrFL70dQSJPjCRmzKBdVZhH6J6r8UyM3lf1LLsrxo2W9nMyoCM40YoLRTGrQrRGWzcovd4k6vXBQXV38ZdAl2WVInMiKN3WyvXhd6isDZxaqQXY6vcH9qJEt3S9I9e6h
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6JQIAckToHYiZ3mWBWqsrRCLBK3yJ64F6oU0XLhxCfwjXwJnmwtSAgJjpHGUWJ7Mm8m854BDo2WiCFTNi0RoRs0lHZ14qHL-zY2eUnEkwaxkbs92bkPLh5E2U1IXJhcH6IquJFnZN9rcnAqSJ9MVENV0icquc1ZbJQLZ2GejvXOsqqbSkGKhWH-Y1kyavFiD6Vuo8dPvo7_GpcmYHMasmYxp70CunzavNXk8fhlrI_x9ZuQ479eZxWWC0TqNPMttAYzJl2HpSmdwg1oUzfIx9v79YRl4OQkTnRuKTd2WmYwGDnEVXF6w9SadqgoZFKLZBMyoa7K0Sbct8_uWh23OIDBRQsrQlcpYd0bNSoRIHL0G32LGAPDk0QyxSPFpKd9TvICwngotcgQAlPoCRv2lL8Fc-kwNdvgGBF6MkIp0OIBKXWkBTIVoY8iVJiwGrjl9MdYqJPTIRmDONdV5jHNT1zNTw2OKvunXJfjR8t6uZpx4Z-jmEvOMrVBvwY8W5Zf7hI3T9vd6mrnL4MOYKFz172Kr857l7uwyIlHkdVy6jA3fn4xexbdjPV-tn8_AbQJ8Sg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2BGFAjkgcQrETuwkx6olKluFWKTeInvsXqhSRMuFE5_AN_Il2EmTFiSEBMdI4ygZezLPk3nPAEdacsSQCLMtYaEbREK6Unno0r7JTZ6KqYosG_m6yzsPwUWP9WZY_IU-RFVws5GRf69tgD-p_ulUNFSovmWSmy2LSXLhPCwE3Ivsum7fVgJSJAyL_8qc2A4v0itlGz16-nX817Q0xZqziDVPOckqiPJhi06Tx5OXsTzB1286jv95mzVYmeBRp1ksoHWY09kGLM-oFG5CYntBPt7eb6YcA6egcKJzZ3fGTksPBiPHMlWc7jAzph1bEtKZwbHKmtieytEWPCRn962OOzl-wUUDKkJXCGaCGyUKFiBS9KO-wYuBpkpxImgsCPekT624ANMecslyfEAEeswkPeFvQy0bZnoHHM1Cj8fIGRo0wLmMJUMiYvSRhQIVqYNbej_FiTa5PSJjkBaqyjS1_kkr_9ThuLJ_KlQ5frRslJOZTqJzlFJOSa416NeB5rPyy13SZju5rq52_zLoEBZv2kl6dd693IMlakkUeSGnAbXx84veN9BmLA_y1fsJAjzv4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Performance+Organic+Solar+Cells+from+Non%E2%80%90Halogenated+Solvents&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Di&rft.au=Zhou%2C+Guanqing&rft.au=Li%2C+Yuhao&rft.au=Yan%2C+Kangrong&rft.date=2022-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=4&rft_id=info:doi/10.1002%2Fadfm.202107827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202107827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon