High‐Performance Organic Solar Cells from Non‐Halogenated Solvents
High‐performance organic solar cells (OSCs) at the current stage are majorly accomplished from the processing of halogenated solvents, such as chloroform, which will be constrained for upscale fabrication due to the adverse health and environmental impacts. Therefore, exploring the high‐performance...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 4 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High‐performance organic solar cells (OSCs) at the current stage are majorly accomplished from the processing of halogenated solvents, such as chloroform, which will be constrained for upscale fabrication due to the adverse health and environmental impacts. Therefore, exploring the high‐performance OSCs from non‐halogenated solvent processing becomes highly necessary, yet largely lagged behind. Herein, it is demonstrated high‐performance OSCs can be obtained from the hot spin processing of different non‐halogenated solvents, and achieve the highest reported efficiency of OSCs from non‐halogenated solvent processing so far. It is revealed that the phase evolution of ternary blends during solution‐to‐solid transition has a correlation to the substrate temperature. With the elevated substrate temperature of hot spin coating, the optimal blend films can be secured in different kinds of non‐halogenated solvents. As result, high‐performance OSCs are obtained with excellent power conversion efficiencies of 18.25% in o‐xylene, 18.20% in p‐xylene, and 18.12% in toluene, respectively. To the author's best knowledge, these results represent the best‐performed OSCs made from non‐halogenated solvents so far.
High‐performance organic solar cells (OSCs) are feasibly obtained from the hot spin coating of different kinds of non‐halogenated solvents. It is revealed that the blend phase evolution during solution‐to‐solid transition has a correlation to the substrate temperature. As result, high‐performance OSCs are obtained with power conversion efficiencies of 18.25% in o‐xylene, 18.20% in p‐xylene, and 18.12% in toluene, respectively. |
---|---|
AbstractList | High‐performance organic solar cells (OSCs) at the current stage are majorly accomplished from the processing of halogenated solvents, such as chloroform, which will be constrained for upscale fabrication due to the adverse health and environmental impacts. Therefore, exploring the high‐performance OSCs from non‐halogenated solvent processing becomes highly necessary, yet largely lagged behind. Herein, it is demonstrated high‐performance OSCs can be obtained from the hot spin processing of different non‐halogenated solvents, and achieve the highest reported efficiency of OSCs from non‐halogenated solvent processing so far. It is revealed that the phase evolution of ternary blends during solution‐to‐solid transition has a correlation to the substrate temperature. With the elevated substrate temperature of hot spin coating, the optimal blend films can be secured in different kinds of non‐halogenated solvents. As result, high‐performance OSCs are obtained with excellent power conversion efficiencies of 18.25% in o‐xylene, 18.20% in p‐xylene, and 18.12% in toluene, respectively. To the author's best knowledge, these results represent the best‐performed OSCs made from non‐halogenated solvents so far.
High‐performance organic solar cells (OSCs) are feasibly obtained from the hot spin coating of different kinds of non‐halogenated solvents. It is revealed that the blend phase evolution during solution‐to‐solid transition has a correlation to the substrate temperature. As result, high‐performance OSCs are obtained with power conversion efficiencies of 18.25% in o‐xylene, 18.20% in p‐xylene, and 18.12% in toluene, respectively. High‐performance organic solar cells (OSCs) at the current stage are majorly accomplished from the processing of halogenated solvents, such as chloroform, which will be constrained for upscale fabrication due to the adverse health and environmental impacts. Therefore, exploring the high‐performance OSCs from non‐halogenated solvent processing becomes highly necessary, yet largely lagged behind. Herein, it is demonstrated high‐performance OSCs can be obtained from the hot spin processing of different non‐halogenated solvents, and achieve the highest reported efficiency of OSCs from non‐halogenated solvent processing so far. It is revealed that the phase evolution of ternary blends during solution‐to‐solid transition has a correlation to the substrate temperature. With the elevated substrate temperature of hot spin coating, the optimal blend films can be secured in different kinds of non‐halogenated solvents. As result, high‐performance OSCs are obtained with excellent power conversion efficiencies of 18.25% in o ‐xylene, 18.20% in p ‐xylene, and 18.12% in toluene, respectively. To the author's best knowledge, these results represent the best‐performed OSCs made from non‐halogenated solvents so far. High‐performance organic solar cells (OSCs) at the current stage are majorly accomplished from the processing of halogenated solvents, such as chloroform, which will be constrained for upscale fabrication due to the adverse health and environmental impacts. Therefore, exploring the high‐performance OSCs from non‐halogenated solvent processing becomes highly necessary, yet largely lagged behind. Herein, it is demonstrated high‐performance OSCs can be obtained from the hot spin processing of different non‐halogenated solvents, and achieve the highest reported efficiency of OSCs from non‐halogenated solvent processing so far. It is revealed that the phase evolution of ternary blends during solution‐to‐solid transition has a correlation to the substrate temperature. With the elevated substrate temperature of hot spin coating, the optimal blend films can be secured in different kinds of non‐halogenated solvents. As result, high‐performance OSCs are obtained with excellent power conversion efficiencies of 18.25% in o‐xylene, 18.20% in p‐xylene, and 18.12% in toluene, respectively. To the author's best knowledge, these results represent the best‐performed OSCs made from non‐halogenated solvents so far. |
Author | Zhou, Guanqing Yan, Kangrong Lu, Xinhui Chen, Hongzheng Wang, Di Zhan, Lingling Li, Chang‐Zhi Zhu, Haiming Li, Yuhao |
Author_xml | – sequence: 1 givenname: Di surname: Wang fullname: Wang, Di organization: Zhejiang University – sequence: 2 givenname: Guanqing surname: Zhou fullname: Zhou, Guanqing organization: Zhejiang University – sequence: 3 givenname: Yuhao surname: Li fullname: Li, Yuhao organization: Chinese University of Hong Kong – sequence: 4 givenname: Kangrong surname: Yan fullname: Yan, Kangrong organization: Zhejiang University – sequence: 5 givenname: Lingling surname: Zhan fullname: Zhan, Lingling organization: Zhejiang University – sequence: 6 givenname: Haiming surname: Zhu fullname: Zhu, Haiming organization: Zhejiang University – sequence: 7 givenname: Xinhui surname: Lu fullname: Lu, Xinhui organization: Chinese University of Hong Kong – sequence: 8 givenname: Hongzheng surname: Chen fullname: Chen, Hongzheng organization: Zhejiang University – sequence: 9 givenname: Chang‐Zhi orcidid: 0000-0003-1968-2032 surname: Li fullname: Li, Chang‐Zhi email: czli@zju.edu.cn organization: Zhejiang University |
BookMark | eNqFkE1LAzEQhoNUsK1ePS943jpJ9iM9lmpdoVpBBW9hms3WLbtJTbZKb_4Ef6O_xC2VCoJ4mjk8z7zM2yMdY40m5JTCgAKwc8yLesCAUUgFSw9IlyY0CTkw0dnv9OmI9LxfAtA05VGXTLJy8fz5_nGnXWFdjUbpYOYWaEoV3NsKXTDWVeWDwtk6uLWmRTOs7EIbbHS-RV61afwxOSyw8vrke_bJ4-TyYZyF09nV9Xg0DRVvA0PEWAhQc4VxpBRTXBRAeaRZnicU2RBpAnPOVC5UrEEl8xgYi4CigpiJCHmfnO3urpx9WWvfyKVdO9NGSpa0n0MkEt5Sgx2lnPXe6UKuXFmj20gKctuV3HYl9121QvRLUGWDTWlN47Cs_taGO-2trPTmnxA5upjc_LhfX3qBvQ |
CitedBy_id | crossref_primary_10_1021_acsenergylett_2c02348 crossref_primary_10_1002_cjoc_202200796 crossref_primary_10_1038_s41467_023_41978_0 crossref_primary_10_1039_D4TC02821J crossref_primary_10_1002_adma_202204718 crossref_primary_10_1016_j_jechem_2022_12_002 crossref_primary_10_1002_pip_3506 crossref_primary_10_1002_solr_202300206 crossref_primary_10_1021_acs_jpcc_3c00267 crossref_primary_10_1039_D2NJ00505K crossref_primary_10_1021_acsami_2c07703 crossref_primary_10_1002_solr_202200679 crossref_primary_10_1002_aenm_202500024 crossref_primary_10_1002_adfm_202215095 crossref_primary_10_1002_aenm_202104028 crossref_primary_10_1002_admi_202201740 crossref_primary_10_1021_acsaem_2c04123 crossref_primary_10_1039_D2TC02497G crossref_primary_10_1007_s12209_022_00323_0 crossref_primary_10_1002_adma_202300259 crossref_primary_10_1039_D2TC05318G crossref_primary_10_3390_molecules27185802 crossref_primary_10_1021_acsaem_2c01249 crossref_primary_10_1002_ange_202306847 crossref_primary_10_1016_j_cej_2023_148484 crossref_primary_10_1002_marc_202200049 crossref_primary_10_1039_D3TC03287F crossref_primary_10_1002_solr_202300029 crossref_primary_10_1002_solr_202300665 crossref_primary_10_1021_acsami_4c11805 crossref_primary_10_1039_D2QM00162D crossref_primary_10_1021_acsami_2c05504 crossref_primary_10_1007_s00339_023_06533_0 crossref_primary_10_1039_D3CC04412B crossref_primary_10_1039_D2EE03246E crossref_primary_10_1002_adfm_202413814 crossref_primary_10_1039_D3TC02037A crossref_primary_10_1088_1674_4926_43_6_060201 crossref_primary_10_1039_D4EE01405G crossref_primary_10_1021_acsenergylett_2c00476 crossref_primary_10_1039_D3EE00294B crossref_primary_10_1002_adma_202110569 crossref_primary_10_1021_acsaem_2c01945 crossref_primary_10_1039_D3MH01133J crossref_primary_10_1002_aenm_202403129 crossref_primary_10_1002_adma_202307863 crossref_primary_10_1021_acs_macromol_2c02144 crossref_primary_10_1002_adma_202413270 crossref_primary_10_1002_anie_202214931 crossref_primary_10_1016_j_polymer_2023_126605 crossref_primary_10_1039_D2TA10030D crossref_primary_10_1021_acsaem_2c00092 crossref_primary_10_1002_solr_202300927 crossref_primary_10_3390_en17102262 crossref_primary_10_1016_j_cej_2022_136472 crossref_primary_10_1002_solr_202200119 crossref_primary_10_1002_aenm_202203313 crossref_primary_10_1002_aenm_202202224 crossref_primary_10_1002_anie_202306847 crossref_primary_10_1007_s10118_022_2750_0 crossref_primary_10_1002_ange_202214931 crossref_primary_10_1007_s10118_022_2803_4 crossref_primary_10_1002_adfm_202209152 crossref_primary_10_1002_adma_202200044 crossref_primary_10_1002_aelm_202400530 crossref_primary_10_1002_adma_202303729 crossref_primary_10_1021_acsami_3c13833 crossref_primary_10_1039_D2EE00740A crossref_primary_10_3390_en17040814 crossref_primary_10_1007_s11426_023_1821_y crossref_primary_10_1002_adma_202109516 crossref_primary_10_1002_adfm_202200694 crossref_primary_10_1002_adma_202302592 crossref_primary_10_1002_adma_202411071 crossref_primary_10_1021_acsaem_1c03717 crossref_primary_10_1039_D2TA08621B crossref_primary_10_1016_j_cej_2023_142178 crossref_primary_10_1039_D3TC02994H crossref_primary_10_3390_en16114494 crossref_primary_10_1002_adfm_202200807 crossref_primary_10_1002_aenm_202405889 crossref_primary_10_1002_solr_202300349 crossref_primary_10_1002_adom_202302548 crossref_primary_10_1002_ange_202404297 crossref_primary_10_1016_j_progsolidstchem_2024_100463 crossref_primary_10_1002_inf2_12276 crossref_primary_10_1002_adfm_202315825 crossref_primary_10_1007_s11426_023_1608_6 crossref_primary_10_1039_D4TC00721B crossref_primary_10_1039_D3TC02562D crossref_primary_10_1002_adma_202305356 crossref_primary_10_1021_acsami_3c14992 crossref_primary_10_1002_adma_202107476 crossref_primary_10_1016_j_cej_2024_148728 crossref_primary_10_1007_s11426_022_1242_9 crossref_primary_10_1039_D3EE01270K crossref_primary_10_1002_aesr_202200070 crossref_primary_10_1002_smll_202409411 crossref_primary_10_1021_acsami_3c03860 crossref_primary_10_1002_anie_202404297 crossref_primary_10_1021_polymscitech_4c00054 crossref_primary_10_1016_j_cej_2022_135973 crossref_primary_10_1002_ente_202201176 crossref_primary_10_1016_j_cej_2024_150081 crossref_primary_10_1002_solr_202200147 crossref_primary_10_1002_adfm_202403770 crossref_primary_10_1002_advs_202303842 crossref_primary_10_1002_smll_202411698 |
Cites_doi | 10.1002/adfm.202003223 10.1038/s41560-021-00820-x 10.1002/anie.201409208 10.1021/acsenergylett.0c01554 10.1016/j.mattod.2016.02.019 10.1021/ma301900h 10.1002/adma.201800052 10.1038/nenergy.2015.27 10.1039/C7TA00292K 10.1016/j.jechem.2020.05.054 10.1002/solr.202000547 10.1021/acsapm.0c00791 10.1002/adma.202004183 10.1016/j.cclet.2019.08.046 10.1038/s41566-018-0104-9 10.1039/C8QO00788H 10.1088/1361-648X/aaabad 10.1021/acsenergylett.0c01949 10.1039/D0EE02034F 10.1002/adma.201703973 10.1093/nsr/nwz200 10.1002/smll.201801793 10.1021/acsnano.0c07488 10.1002/adma.202002302 10.1002/adma.201803769 10.1002/adma.202002066 10.1039/C8EE02863J 10.1039/C9EE03710A 10.1016/j.scib.2020.01.001 10.1002/solr.202000156 10.1038/nenergy.2016.118 10.1002/adma.201906045 10.1002/adma.201902210 10.1007/s40843-017-9080-x 10.6023/A20080342 10.1016/j.joule.2020.07.028 10.1002/aenm.202003777 10.1002/solr.201700169 10.1002/adma.201805041 10.1016/j.joule.2021.02.010 10.1016/j.joule.2019.01.004 10.1002/adma.201903441 10.1002/aenm.201802674 10.1002/adma.201502110 10.1021/acs.chemrev.6b00448 10.1002/adma.201905645 10.1038/s41578-019-0093-4 10.1038/ncomms6293 10.1039/C4EE02362E 10.1002/adma.201903173 10.1088/1674-4926/42/3/030502 10.1016/j.nanoen.2019.04.018 10.1002/adma.202001621 10.1021/acsami.9b13812 10.1021/acsami.9b12522 10.1002/adma.202007231 10.1002/adma.201904601 10.1103/PhysRevB.35.2972 10.1021/acsenergylett.0c00537 10.1126/science.aaf9570 10.1038/nmat5063 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202107827 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202107827 ADFM202107827 |
Genre | article |
GrantInformation_xml | – fundername: Theme‐based Research Scheme funderid: T23‐407/13‐N – fundername: Zhejiang Natural Science Fund for Distinguished Young Scholars funderid: LR17E030001 – fundername: National Natural Science Foundation of China funderid: 21722404; 21674093 – fundername: National Key Research and Development Program of China funderid: 2019YFA0705900 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3177-aa5880cbca54cc2c38f0134e2dd61a29a160b32cd8c5e0c6b5022401ac05284a3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 03:10:17 EDT 2025 Tue Jul 01 04:12:37 EDT 2025 Thu Apr 24 22:59:25 EDT 2025 Wed Jan 22 16:26:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3177-aa5880cbca54cc2c38f0134e2dd61a29a160b32cd8c5e0c6b5022401ac05284a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1968-2032 |
PQID | 2621004863 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2621004863 crossref_primary_10_1002_adfm_202107827 crossref_citationtrail_10_1002_adfm_202107827 wiley_primary_10_1002_adfm_202107827_ADFM202107827 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 1987; 35 2021; 6 2019; 4 2021; 5 2019; 3 2021; 42 2017; 60 2021; 3 2016; 19 2019; 31 2019; 11 2019; 12 2020; 14 2020; 13 2016; 2016 2020; 78 2020; 32 2015; 8 2017; 117 2020; 7 2018; 17 2020; 5 2018; 8 2020; 4 2019; 60 2021; 54 2014; 5 2018; 2 2020; 3 2016; 1 2015; 27 2018; 5 2021; 33 2020; 30 2018; 30 2020; 65 2018; 12 2012; 45 2018; 14 2014; 53 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 13 start-page: 4381 year: 2020 publication-title: Energy Environ. Sci. – volume: 8 start-page: 585 year: 2015 publication-title: Energy Environ. Sci. – volume: 54 start-page: 131 year: 2021 publication-title: J. Energ. Chem. – volume: 3 start-page: 1140 year: 2019 publication-title: Joule – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 19 start-page: 533 year: 2016 publication-title: Mater. Today – volume: 35 start-page: 2972 year: 1987 publication-title: Phys. Rev. B – volume: 45 start-page: 9611 year: 2012 publication-title: Macromolecules – volume: 5 start-page: 3663 year: 2020 publication-title: ACS Energy Lett. – volume: 117 start-page: 5146 year: 2017 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: J. Phys.: Condens. Matter – volume: 42 year: 2021 publication-title: J. Semicond. – volume: 65 start-page: 272 year: 2020 publication-title: Sci. Bull. – volume: 14 year: 2018 publication-title: Small – volume: 13 start-page: 635 year: 2020 publication-title: Energy Environ. Sci. – volume: 2016 start-page: 1409 year: 2016 publication-title: Science – volume: 3 year: 2021 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1239 year: 2020 publication-title: Natl. Sci. Rev. – volume: 4 year: 2020 publication-title: Sol. RRL – volume: 12 start-page: 157 year: 2019 publication-title: Energy Environ. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 2 year: 2018 publication-title: Sol. RRL – volume: 5 start-page: 2845 year: 2018 publication-title: Org. Chem. Front. – volume: 5 start-page: 1554 year: 2020 publication-title: ACS Energy Lett. – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 5 start-page: 3115 year: 2020 publication-title: ACS Energy Lett. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 14 year: 2020 publication-title: ACS Nano – volume: 60 start-page: 768 year: 2019 publication-title: Nano Energy – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 2004 year: 2020 publication-title: Joule – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 27 start-page: 4655 year: 2015 publication-title: Adv. Mater. – volume: 12 start-page: 131 year: 2018 publication-title: Nat. Photonics – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 5 start-page: 945 year: 2021 publication-title: Joule – volume: 3 start-page: 60 year: 2020 publication-title: ACS Appl. Polym. Mater. – volume: 5 start-page: 5293 year: 2014 publication-title: Nat. Commun. – volume: 4 start-page: 229 year: 2019 publication-title: Nat. Rev. Mater. – volume: 17 start-page: 119 year: 2018 publication-title: Nat. Mater. – volume: 31 start-page: 1608 year: 2019 publication-title: Chin. Chem. Lett. – volume: 6 start-page: 605 year: 2021 publication-title: Nat. Energy – volume: 78 start-page: 1287 year: 2020 publication-title: Acta Chim. Sin. – volume: 60 start-page: 697 year: 2017 publication-title: Sci. China Mater. – ident: e_1_2_7_16_1 doi: 10.1002/adfm.202003223 – ident: e_1_2_7_10_1 doi: 10.1038/s41560-021-00820-x – ident: e_1_2_7_26_1 doi: 10.1002/anie.201409208 – ident: e_1_2_7_43_1 doi: 10.1021/acsenergylett.0c01554 – ident: e_1_2_7_11_1 doi: 10.1016/j.mattod.2016.02.019 – ident: e_1_2_7_34_1 doi: 10.1021/ma301900h – ident: e_1_2_7_20_1 doi: 10.1002/adma.201800052 – ident: e_1_2_7_35_1 doi: 10.1038/nenergy.2015.27 – ident: e_1_2_7_51_1 doi: 10.1039/C7TA00292K – ident: e_1_2_7_54_1 doi: 10.1016/j.jechem.2020.05.054 – ident: e_1_2_7_23_1 doi: 10.1002/solr.202000547 – ident: e_1_2_7_31_1 doi: 10.1021/acsapm.0c00791 – ident: e_1_2_7_15_1 doi: 10.1002/adma.202004183 – ident: e_1_2_7_44_1 doi: 10.1016/j.cclet.2019.08.046 – ident: e_1_2_7_3_1 doi: 10.1038/s41566-018-0104-9 – ident: e_1_2_7_41_1 doi: 10.1039/C8QO00788H – ident: e_1_2_7_50_1 doi: 10.1088/1361-648X/aaabad – ident: e_1_2_7_9_1 doi: 10.1021/acsenergylett.0c01949 – ident: e_1_2_7_22_1 doi: 10.1039/D0EE02034F – ident: e_1_2_7_28_1 doi: 10.1002/adma.201703973 – ident: e_1_2_7_40_1 doi: 10.1093/nsr/nwz200 – ident: e_1_2_7_12_1 doi: 10.1002/smll.201801793 – ident: e_1_2_7_5_1 doi: 10.1021/acsnano.0c07488 – ident: e_1_2_7_58_1 doi: 10.1002/adma.202002302 – ident: e_1_2_7_56_1 doi: 10.1002/adma.201803769 – ident: e_1_2_7_19_1 doi: 10.1002/adma.202002066 – ident: e_1_2_7_25_1 doi: 10.1039/C8EE02863J – ident: e_1_2_7_47_1 doi: 10.1039/C9EE03710A – ident: e_1_2_7_7_1 doi: 10.1016/j.scib.2020.01.001 – ident: e_1_2_7_32_1 doi: 10.1002/solr.202000156 – ident: e_1_2_7_49_1 doi: 10.1038/nenergy.2016.118 – ident: e_1_2_7_27_1 doi: 10.1002/adma.201906045 – ident: e_1_2_7_18_1 doi: 10.1002/adma.201902210 – ident: e_1_2_7_33_1 doi: 10.1007/s40843-017-9080-x – ident: e_1_2_7_42_1 doi: 10.6023/A20080342 – ident: e_1_2_7_21_1 doi: 10.1016/j.joule.2020.07.028 – ident: e_1_2_7_39_1 doi: 10.1002/aenm.202003777 – ident: e_1_2_7_24_1 doi: 10.1002/solr.201700169 – ident: e_1_2_7_17_1 doi: 10.1002/adma.201805041 – ident: e_1_2_7_29_1 doi: 10.1016/j.joule.2021.02.010 – ident: e_1_2_7_6_1 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_7_59_1 doi: 10.1002/adma.201903441 – ident: e_1_2_7_36_1 doi: 10.1002/aenm.201802674 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201502110 – ident: e_1_2_7_55_1 doi: 10.1021/acs.chemrev.6b00448 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201905645 – ident: e_1_2_7_4_1 doi: 10.1038/s41578-019-0093-4 – ident: e_1_2_7_57_1 doi: 10.1038/ncomms6293 – ident: e_1_2_7_30_1 doi: 10.1039/C4EE02362E – ident: e_1_2_7_13_1 doi: 10.1002/adma.201903173 – ident: e_1_2_7_61_1 doi: 10.1088/1674-4926/42/3/030502 – ident: e_1_2_7_45_1 doi: 10.1016/j.nanoen.2019.04.018 – ident: e_1_2_7_46_1 doi: 10.1002/adma.202001621 – ident: e_1_2_7_37_1 doi: 10.1021/acsami.9b13812 – ident: e_1_2_7_60_1 doi: 10.1021/acsami.9b12522 – ident: e_1_2_7_8_1 doi: 10.1002/adma.202007231 – ident: e_1_2_7_48_1 doi: 10.1002/adma.201904601 – ident: e_1_2_7_53_1 doi: 10.1103/PhysRevB.35.2972 – ident: e_1_2_7_2_1 doi: 10.1021/acsenergylett.0c00537 – ident: e_1_2_7_52_1 doi: 10.1126/science.aaf9570 – ident: e_1_2_7_1_1 doi: 10.1038/nmat5063 |
SSID | ssj0017734 |
Score | 2.6422148 |
Snippet | High‐performance organic solar cells (OSCs) at the current stage are majorly accomplished from the processing of halogenated solvents, such as chloroform,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Chloroform conductive fullerene eco‐friendliness Energy conversion efficiency Environmental impact hot spin‐coating Materials science non‐halogenated solvent organic solar cells Photovoltaic cells Solar cells Solvents Spin coating Substrates Ternary systems Toluene Xylene |
Title | High‐Performance Organic Solar Cells from Non‐Halogenated Solvents |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202107827 https://www.proquest.com/docview/2621004863 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1EL3rwW6zWkoPgKW12k900x9Iaitgi1kJvYXeyvVhSMe3Fkz_B3-gvcSdfbQUR9BiYDcnsTubtZN5bQq61EgA-lWZbwn3ba0tlq9gBm01NbnLigMVtZCMPhqI_9u4mfLLG4s_1IaqCG0ZG9r3GAJcqba1EQ2U8RSa52bKYJId0cmzYQlT0WOlHUd_PfysLig1edFKqNjqstTl8MyutoOY6YM0yTnhAZPmseaPJc3O5UE14-ybj-J-XOST7BRy1Ovn6OSJbOjkme2sihSckxFaQz_ePhxXFwMoZnGCNcGNsdfVsllpIVLGG88SY9rEipBMDY2M0wZbK9JSMw9unbt8uTl-wwWAK35aSm9gGBZJ7AAzc9tTARU-zOBZUskBS4SiXobYA1w4IxTN4QCU43OQ86Z6R7WSe6HNiae47IgDBwYABIVSgOFAZgAvclxDTGrFL70dQSJPjCRmzKBdVZhH6J6r8UyM3lf1LLsrxo2W9nMyoCM40YoLRTGrQrRGWzcovd4k6vXBQXV38ZdAl2WVInMiKN3WyvXhd6isDZxaqQXY6vcH9qJEt3S9I9e6h |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6JQIAckToHYiZ3mWBWqsrRCLBK3yJ64F6oU0XLhxCfwjXwJnmwtSAgJjpHGUWJ7Mm8m854BDo2WiCFTNi0RoRs0lHZ14qHL-zY2eUnEkwaxkbs92bkPLh5E2U1IXJhcH6IquJFnZN9rcnAqSJ9MVENV0icquc1ZbJQLZ2GejvXOsqqbSkGKhWH-Y1kyavFiD6Vuo8dPvo7_GpcmYHMasmYxp70CunzavNXk8fhlrI_x9ZuQ479eZxWWC0TqNPMttAYzJl2HpSmdwg1oUzfIx9v79YRl4OQkTnRuKTd2WmYwGDnEVXF6w9SadqgoZFKLZBMyoa7K0Sbct8_uWh23OIDBRQsrQlcpYd0bNSoRIHL0G32LGAPDk0QyxSPFpKd9TvICwngotcgQAlPoCRv2lL8Fc-kwNdvgGBF6MkIp0OIBKXWkBTIVoY8iVJiwGrjl9MdYqJPTIRmDONdV5jHNT1zNTw2OKvunXJfjR8t6uZpx4Z-jmEvOMrVBvwY8W5Zf7hI3T9vd6mrnL4MOYKFz172Kr857l7uwyIlHkdVy6jA3fn4xexbdjPV-tn8_AbQJ8Sg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2BGFAjkgcQrETuwkx6olKluFWKTeInvsXqhSRMuFE5_AN_Il2EmTFiSEBMdI4ygZezLPk3nPAEdacsSQCLMtYaEbREK6Unno0r7JTZ6KqYosG_m6yzsPwUWP9WZY_IU-RFVws5GRf69tgD-p_ulUNFSovmWSmy2LSXLhPCwE3Ivsum7fVgJSJAyL_8qc2A4v0itlGz16-nX817Q0xZqziDVPOckqiPJhi06Tx5OXsTzB1286jv95mzVYmeBRp1ksoHWY09kGLM-oFG5CYntBPt7eb6YcA6egcKJzZ3fGTksPBiPHMlWc7jAzph1bEtKZwbHKmtieytEWPCRn962OOzl-wUUDKkJXCGaCGyUKFiBS9KO-wYuBpkpxImgsCPekT624ANMecslyfEAEeswkPeFvQy0bZnoHHM1Cj8fIGRo0wLmMJUMiYvSRhQIVqYNbej_FiTa5PSJjkBaqyjS1_kkr_9ThuLJ_KlQ5frRslJOZTqJzlFJOSa416NeB5rPyy13SZju5rq52_zLoEBZv2kl6dd693IMlakkUeSGnAbXx84veN9BmLA_y1fsJAjzv4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Performance+Organic+Solar+Cells+from+Non%E2%80%90Halogenated+Solvents&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Di&rft.au=Zhou%2C+Guanqing&rft.au=Li%2C+Yuhao&rft.au=Yan%2C+Kangrong&rft.date=2022-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=4&rft_id=info:doi/10.1002%2Fadfm.202107827&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202107827 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |