Scalable Lithiophilic/Sodiophilic Porous Buffer Layer Fabrication Enables Uniform Nucleation and Growth for Lithium/Sodium Metal Batteries

Metallic lithium/sodium (Li/Na) is considered an attractive anode for future high‐energy‐density batteries. The root causes of preventing their applications come from uneven Li/Na nucleation and subsequent dendrite formation. Here, a cost‐efficient and scalable solid‐to‐solid transfer method for den...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 28
Main Authors Zhang, Shao‐Jian, You, Jin‐Hai, He, Zhiwei, Zhong, Jiajie, Zhang, Peng‐Fang, Yin, Zu‐Wei, Pan, Feng, Ling, Min, Zhang, Bingkai, Lin, Zhan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metallic lithium/sodium (Li/Na) is considered an attractive anode for future high‐energy‐density batteries. The root causes of preventing their applications come from uneven Li/Na nucleation and subsequent dendrite formation. Here, a cost‐efficient and scalable solid‐to‐solid transfer method for dense buffer layer construction on Li/Na anodes is proposed, and thin lithiophilic/sodiophilic buffer layers based on natural silk fibers derived carbon (SFC) and carbon nanotubes (CNTs) composites (denoted as SFC/CNTs) are adopted, which facilitate uniform Li/Na nucleation and dendrite‐free, lateral growth behavior upon recurring Li/Na plating/stripping processes. Lithiopilic/sodiophilic buffer layers enable long‐term cycling stability (>250 cycles) with high Coulombic efficiency (99.2% for Li and 98.8% for Na), low polarization, and flat voltage profiles. More importantly, the cycling performance of LiFePO4|Li pouch cells is largely enhanced with a lifespan of 390 cycles. Further, using ultra‐thin Li anodes (25 μm) also achieves stable LiNi1/3Mn1/3Co1/3O2|Li cells with 200 cycles under a low negative/positive ratio (1.67). Similar achievement is also realized in Na‐metal batteries with negligible capacity fading for over 600 cycles in Na3V2(PO4)3|Na cells, further demonstrating that SFC/CNT buffer layer is technically viable in practical batteries. This study provides a facile strategy for fabricating dense and uniform lithiophilic/sodiophilic buffer layers for low‐cost and scale‐up energy storage devices. Natural silk fiber derived N/S‐functionalized porous carbon flakes are elucidated to regular the lithium/sodium (Li/Na) growth patterns from vertical to lateral direction, and a novel solid‐to‐solid transfer method is applied for dense and uniform buffer layer fabrication. The modified Li/Na anodes reveal a high performance in Li‐based pouch cells (390 cycles), and negligible fading in Na‐based coin cells (600 cycles).
AbstractList Metallic lithium/sodium (Li/Na) is considered an attractive anode for future high‐energy‐density batteries. The root causes of preventing their applications come from uneven Li/Na nucleation and subsequent dendrite formation. Here, a cost‐efficient and scalable solid‐to‐solid transfer method for dense buffer layer construction on Li/Na anodes is proposed, and thin lithiophilic/sodiophilic buffer layers based on natural silk fibers derived carbon (SFC) and carbon nanotubes (CNTs) composites (denoted as SFC/CNTs) are adopted, which facilitate uniform Li/Na nucleation and dendrite‐free, lateral growth behavior upon recurring Li/Na plating/stripping processes. Lithiopilic/sodiophilic buffer layers enable long‐term cycling stability (>250 cycles) with high Coulombic efficiency (99.2% for Li and 98.8% for Na), low polarization, and flat voltage profiles. More importantly, the cycling performance of LiFePO4|Li pouch cells is largely enhanced with a lifespan of 390 cycles. Further, using ultra‐thin Li anodes (25 μm) also achieves stable LiNi1/3Mn1/3Co1/3O2|Li cells with 200 cycles under a low negative/positive ratio (1.67). Similar achievement is also realized in Na‐metal batteries with negligible capacity fading for over 600 cycles in Na3V2(PO4)3|Na cells, further demonstrating that SFC/CNT buffer layer is technically viable in practical batteries. This study provides a facile strategy for fabricating dense and uniform lithiophilic/sodiophilic buffer layers for low‐cost and scale‐up energy storage devices. Natural silk fiber derived N/S‐functionalized porous carbon flakes are elucidated to regular the lithium/sodium (Li/Na) growth patterns from vertical to lateral direction, and a novel solid‐to‐solid transfer method is applied for dense and uniform buffer layer fabrication. The modified Li/Na anodes reveal a high performance in Li‐based pouch cells (390 cycles), and negligible fading in Na‐based coin cells (600 cycles).
Metallic lithium/sodium (Li/Na) is considered an attractive anode for future high‐energy‐density batteries. The root causes of preventing their applications come from uneven Li/Na nucleation and subsequent dendrite formation. Here, a cost‐efficient and scalable solid‐to‐solid transfer method for dense buffer layer construction on Li/Na anodes is proposed, and thin lithiophilic/sodiophilic buffer layers based on natural silk fibers derived carbon (SFC) and carbon nanotubes (CNTs) composites (denoted as SFC/CNTs) are adopted, which facilitate uniform Li/Na nucleation and dendrite‐free, lateral growth behavior upon recurring Li/Na plating/stripping processes. Lithiopilic/sodiophilic buffer layers enable long‐term cycling stability ( > 250 cycles) with high Coulombic efficiency (99.2% for Li and 98.8% for Na), low polarization, and flat voltage profiles. More importantly, the cycling performance of LiFePO 4 |Li pouch cells is largely enhanced with a lifespan of 390 cycles. Further, using ultra‐thin Li anodes (25 μm) also achieves stable LiNi 1/3 Mn 1/3 Co 1/3 O 2 |Li cells with 200 cycles under a low negative/positive ratio (1.67). Similar achievement is also realized in Na‐metal batteries with negligible capacity fading for over 600 cycles in Na 3 V 2 (PO 4 ) 3 |Na cells, further demonstrating that SFC/CNT buffer layer is technically viable in practical batteries. This study provides a facile strategy for fabricating dense and uniform lithiophilic/sodiophilic buffer layers for low‐cost and scale‐up energy storage devices.
Metallic lithium/sodium (Li/Na) is considered an attractive anode for future high‐energy‐density batteries. The root causes of preventing their applications come from uneven Li/Na nucleation and subsequent dendrite formation. Here, a cost‐efficient and scalable solid‐to‐solid transfer method for dense buffer layer construction on Li/Na anodes is proposed, and thin lithiophilic/sodiophilic buffer layers based on natural silk fibers derived carbon (SFC) and carbon nanotubes (CNTs) composites (denoted as SFC/CNTs) are adopted, which facilitate uniform Li/Na nucleation and dendrite‐free, lateral growth behavior upon recurring Li/Na plating/stripping processes. Lithiopilic/sodiophilic buffer layers enable long‐term cycling stability (>250 cycles) with high Coulombic efficiency (99.2% for Li and 98.8% for Na), low polarization, and flat voltage profiles. More importantly, the cycling performance of LiFePO4|Li pouch cells is largely enhanced with a lifespan of 390 cycles. Further, using ultra‐thin Li anodes (25 μm) also achieves stable LiNi1/3Mn1/3Co1/3O2|Li cells with 200 cycles under a low negative/positive ratio (1.67). Similar achievement is also realized in Na‐metal batteries with negligible capacity fading for over 600 cycles in Na3V2(PO4)3|Na cells, further demonstrating that SFC/CNT buffer layer is technically viable in practical batteries. This study provides a facile strategy for fabricating dense and uniform lithiophilic/sodiophilic buffer layers for low‐cost and scale‐up energy storage devices.
Author He, Zhiwei
Ling, Min
Zhang, Bingkai
Zhong, Jiajie
Zhang, Peng‐Fang
Pan, Feng
Zhang, Shao‐Jian
Yin, Zu‐Wei
Lin, Zhan
You, Jin‐Hai
Author_xml – sequence: 1
  givenname: Shao‐Jian
  surname: Zhang
  fullname: Zhang, Shao‐Jian
  organization: Zhejiang University
– sequence: 2
  givenname: Jin‐Hai
  surname: You
  fullname: You, Jin‐Hai
  organization: KU Leuven
– sequence: 3
  givenname: Zhiwei
  surname: He
  fullname: He, Zhiwei
  organization: Guangdong University of Technology
– sequence: 4
  givenname: Jiajie
  surname: Zhong
  fullname: Zhong, Jiajie
  organization: Guangdong University of Technology
– sequence: 5
  givenname: Peng‐Fang
  surname: Zhang
  fullname: Zhang, Peng‐Fang
  organization: Liaocheng University
– sequence: 6
  givenname: Zu‐Wei
  surname: Yin
  fullname: Yin, Zu‐Wei
  organization: Peking University Shenzhen Graduate School
– sequence: 7
  givenname: Feng
  surname: Pan
  fullname: Pan, Feng
  organization: Peking University Shenzhen Graduate School
– sequence: 8
  givenname: Min
  surname: Ling
  fullname: Ling, Min
  organization: Zhejiang University
– sequence: 9
  givenname: Bingkai
  surname: Zhang
  fullname: Zhang, Bingkai
  email: zhangbk@gdut.edu.cn
  organization: Guangdong University of Technology
– sequence: 10
  givenname: Zhan
  orcidid: 0000-0001-5009-8198
  surname: Lin
  fullname: Lin, Zhan
  email: zhanlin@gdut.edu.cn
  organization: Guangdong University of Technology
BookMark eNqFkMFOAjEQhhuDiYBePTfxDLRdaNkjIKDJoiZI4m1Tum0o2d1i2w3hFXxqC6uYmBgvnenMfPO3fws0SlNKAG4x6mKESI9nqugSRAhCMWUXoIkppp0IkWHjnOO3K9BybosQZizqN8HHUvCcr3MJE-032uw2OteitzTZdw5fjDWVg-NKKWlhwg_hnPG11YJ7bUo4LY-8g6tSK2ML-FSJXNYtXmZwbs3eb2Bo1RJVcdpeFXAhPc_hmHsvrZbuGlwqnjt58xXbYDWbvk4eOsnz_HEySjoiCo_uxIxkQ8IjOYhkrML3JFVYxqGABnTNsMiYijKkKBNIRAqjAWNUsAFZ42E_XKI2uKv37qx5r6Tz6dZUtgySKaFDRmMadMJUt54S1jhnpUp3VhfcHlKM0qPf6dHv9Ox3APq_AKH9yQZvuc7_xuIa2-tcHv4RSUf3s8UP-wknQpkA
CitedBy_id crossref_primary_10_1007_s12274_023_5478_4
crossref_primary_10_1002_advs_202402321
crossref_primary_10_1002_smll_202402206
crossref_primary_10_1016_j_jcis_2024_01_101
crossref_primary_10_1039_D4TA01072H
crossref_primary_10_1002_adma_202207573
crossref_primary_10_1126_sciadv_adh8060
crossref_primary_10_1002_anie_202409992
crossref_primary_10_1016_j_cej_2024_155256
crossref_primary_10_3390_batteries9070345
crossref_primary_10_1021_acs_nanolett_4c01549
crossref_primary_10_1039_D5EE00136F
crossref_primary_10_1007_s40820_024_01479_1
crossref_primary_10_3390_ma17010021
crossref_primary_10_1002_smll_202208277
crossref_primary_10_1007_s12274_022_4985_z
crossref_primary_10_1039_D3EE02082G
crossref_primary_10_1002_adma_202402337
crossref_primary_10_1002_ange_202309247
crossref_primary_10_1002_aenm_202403258
crossref_primary_10_1002_adma_202301967
crossref_primary_10_1002_cssc_202301847
crossref_primary_10_1016_j_cej_2024_157200
crossref_primary_10_1002_ange_202409992
crossref_primary_10_1039_D2QI02680E
crossref_primary_10_1002_adfm_202303111
crossref_primary_10_1002_smsc_202300108
crossref_primary_10_1002_sus2_97
crossref_primary_10_1002_adfm_202417809
crossref_primary_10_1039_D3EE03477A
crossref_primary_10_3390_batteries9080408
crossref_primary_10_1002_eem2_12525
crossref_primary_10_1002_advs_202304235
crossref_primary_10_1002_anie_202309247
Cites_doi 10.1038/35104644
10.1039/C5NR04768D
10.1039/C9EE00716D
10.1021/acs.nanolett.9b01567
10.1021/acsami.8b10110
10.1016/j.nanoen.2017.12.055
10.1002/adfm.201606422
10.1002/adma.201706216
10.1038/s41467-018-07599-8
10.1002/aenm.201702764
10.1002/anie.201801818
10.1038/s41467-017-00613-5
10.1016/j.ensm.2017.08.015
10.1021/acsami.9b16363
10.1038/nenergy.2016.10
10.1103/PhysRevLett.77.3865
10.1002/aenm.201800635
10.1002/aenm.201804019
10.1002/adma.201700389
10.1103/PhysRevB.54.11169
10.1002/adma.201905573
10.1016/j.ensm.2018.08.018
10.1002/adma.201801334
10.1002/anie.202000628
10.1002/adfm.201905078
10.1016/j.nanoen.2018.09.017
10.1002/aenm.201200558
10.1103/PhysRevB.50.17953
10.1039/C8EE01373J
10.1002/smll.201801054
10.1002/aenm.201802645
10.1039/c3cs60177c
10.1038/s41467-019-12938-4
10.1002/adfm.201702524
10.1038/s41565-019-0427-9
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202200967
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202200967
ADFM202200967
Genre article
GrantInformation_xml – fundername: GuangDong Basic and Applied Basic Research Foundation
  funderid: 2020A1515110046
– fundername: National Natural Science Foundation of China
  funderid: 51874104
– fundername: Key Technology and Supporting Platform of Genetic Engineering of Materials under States Key Project of Research and Development Plan of China
  funderid: 2016YFB0700600
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3177-972d82a3e53e9f302e6f1e9a3e056b71cd7f3d0f67c0c3f105776c752b1840573
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:23:56 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Tue Jul 01 00:30:28 EDT 2025
Wed Jan 22 16:23:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-972d82a3e53e9f302e6f1e9a3e056b71cd7f3d0f67c0c3f105776c752b1840573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5009-8198
PQID 2687696317
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2687696317
crossref_primary_10_1002_adfm_202200967
crossref_citationtrail_10_1002_adfm_202200967
wiley_primary_10_1002_adfm_202200967_ADFM202200967
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 9
2018 2019; 9 12
2017; 8
2013; 3
2001 2018 2018 2018; 414 8 11 10
2016; 1
2019 2019 2019; 14 10 9
2017; 27
2019 2018; 19 8
2015 2020; 7 59
2019 2017; 11 29
2018; 45
2018; 10
2013 2018; 42 53
2018 2020 2019; 14 32 29
2018 2018 2019; 30 30 18
2018; 57
1994 1996; 50 54
1996; 77
e_1_2_8_8_3
e_1_2_8_1_3
e_1_2_8_2_2
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_2_1
e_1_2_8_3_3
e_1_2_8_4_2
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_7_3
e_1_2_8_8_2
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 9
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 7734
  year: 2018
  publication-title: Angew Chem., Int. Ed. Engl.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 414 8 11 10
  start-page: 359 2673 139
  year: 2001 2018 2018 2018
  publication-title: Nature Adv. Energy Mater. Energy Environ. Sci. Energy Storage Mater.
– volume: 45
  start-page: 203
  year: 2018
  publication-title: Nano Energy
– volume: 30 30 18
  start-page: 320
  year: 2018 2018 2019
  publication-title: Adv. Mater. Adv. Mater. Energy Storage Mater.
– volume: 9 12
  start-page: 5262 2174
  year: 2018 2019
  publication-title: Nat. Commun. Energy Environ. Sci.
– volume: 14 32 29
  year: 2018 2020 2019
  publication-title: Small Adv. Mater. Adv. Funct. Mater.
– volume: 7 59
  start-page: 7778
  year: 2015 2020
  publication-title: Nanoscale Angew Chem., Int. Ed. Engl.
– volume: 3
  start-page: 156
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 19 8
  start-page: 4601
  year: 2019 2018
  publication-title: Nano Lett. Adv. Energy Mater.
– volume: 14 10 9
  start-page: 594 4930
  year: 2019 2019 2019
  publication-title: Nat. Nanotechnol. Nat. Commun. Adv. Energy Mater.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 11 29
  year: 2019 2017
  publication-title: ACS Appl. Mater. Interfaces Adv. Mater.
– volume: 8
  start-page: 1387
  year: 2017
  publication-title: Nat. Commun.
– volume: 42 53
  start-page: 9011 630
  year: 2013 2018
  publication-title: Chem. Soc. Rev. Nano Energy
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 50 54
  year: 1994 1996
  publication-title: Phys. Rev. B Condens. Matter. Phys. Rev. B
– ident: e_1_2_8_1_1
  doi: 10.1038/35104644
– ident: e_1_2_8_10_1
  doi: 10.1039/C5NR04768D
– ident: e_1_2_8_14_2
  doi: 10.1039/C9EE00716D
– ident: e_1_2_8_6_1
  doi: 10.1021/acs.nanolett.9b01567
– ident: e_1_2_8_11_1
  doi: 10.1021/acsami.8b10110
– ident: e_1_2_8_12_1
  doi: 10.1016/j.nanoen.2017.12.055
– ident: e_1_2_8_15_1
  doi: 10.1002/adfm.201606422
– ident: e_1_2_8_8_2
  doi: 10.1002/adma.201706216
– ident: e_1_2_8_14_1
  doi: 10.1038/s41467-018-07599-8
– ident: e_1_2_8_1_2
  doi: 10.1002/aenm.201702764
– ident: e_1_2_8_16_1
  doi: 10.1002/anie.201801818
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-017-00613-5
– ident: e_1_2_8_1_4
  doi: 10.1016/j.ensm.2017.08.015
– ident: e_1_2_8_4_1
  doi: 10.1021/acsami.9b16363
– ident: e_1_2_8_5_1
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_8_20_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_6_2
  doi: 10.1002/aenm.201800635
– ident: e_1_2_8_7_3
  doi: 10.1002/aenm.201804019
– ident: e_1_2_8_4_2
  doi: 10.1002/adma.201700389
– ident: e_1_2_8_19_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_3_2
  doi: 10.1002/adma.201905573
– ident: e_1_2_8_8_3
  doi: 10.1016/j.ensm.2018.08.018
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.201801334
– ident: e_1_2_8_10_2
  doi: 10.1002/anie.202000628
– ident: e_1_2_8_3_3
  doi: 10.1002/adfm.201905078
– ident: e_1_2_8_2_2
  doi: 10.1016/j.nanoen.2018.09.017
– ident: e_1_2_8_17_1
  doi: 10.1002/aenm.201200558
– ident: e_1_2_8_19_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_8_1_3
  doi: 10.1039/C8EE01373J
– ident: e_1_2_8_3_1
  doi: 10.1002/smll.201801054
– ident: e_1_2_8_9_1
  doi: 10.1002/aenm.201802645
– ident: e_1_2_8_2_1
  doi: 10.1039/c3cs60177c
– ident: e_1_2_8_7_2
  doi: 10.1038/s41467-019-12938-4
– ident: e_1_2_8_13_1
  doi: 10.1002/adfm.201702524
– ident: e_1_2_8_7_1
  doi: 10.1038/s41565-019-0427-9
SSID ssj0017734
Score 2.5616863
Snippet Metallic lithium/sodium (Li/Na) is considered an attractive anode for future high‐energy‐density batteries. The root causes of preventing their applications...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Buffer layers
Carbon nanotubes
Cycles
Dendritic structure
Electrode polarization
Energy storage
lateral growth
Lithium
Materials science
metallic anodes
nitrogen/sulfur functionalized carbon
Nucleation
Silk
Sodium
solid‐to‐solid transfer method
Thin films
Title Scalable Lithiophilic/Sodiophilic Porous Buffer Layer Fabrication Enables Uniform Nucleation and Growth for Lithium/Sodium Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202200967
https://www.proquest.com/docview/2687696317
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcikHHgVEoVQ-IPWUbuwkdnJcaJcK7VZVl0p7i2zHVqu2m2o3ERI_gV_NjJ2kWySEBLckfiV-fjOZ-YaQjyqzzLlKRFpVLkrTLId9MGGR0ppzrVnKPGX-7EycXqZfF9liw4s_8EMMCjdcGX6_xgWu9Hr0QBoKdaMnOUf1vkB3cjTYQlR0MfBHMSnDb2XB0MCLLXrWxpiPHhd_fCo9QM1NwOpPnMlzovp3DYYmN0dto4_Mj99oHP_nY16QZx0cpeMwf16SLbvcJU83SApfkZ9zGEZ0sKLT6-bqur5HFYwZzeuqv6bn9apu1_RTi8FW6FQBjKcTpVedPpCeeAetNQWAixiZniGJckhSy4p-WdXfmysKSaGJ9s7X3t7RmQXZgAYOUBDpX5PLycm3z6dRF8EhMoBLZFRIXuVcJTZLbOGSmFvhmC3gAeAuLZmppEuq2AlpYpM4jDkshZEZ1yh4ZjJ5Q7aX9dK-JTQH7CmZLkAeFWmcO88yUxVZrgyDEm6PRP0IlqajN8coG7dlIGbmJfZxOfTxHjkc8t8HYo8_5tzvJ0TZLfB1yQUcI7B5MUjmfmT_Uks5Pp7Mhrt3_1LoPdnhGH3Y24zvk-1m1doPAIkafUCejI9n0_mBn_6_ACb2BQ0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKOQAH_hGFAj6AOKUbO4mdHDgUtsuW7q4QbaW9pbFjqyvoptokquAReBtehSdiJk7SFgkhIfXALYntSWSP5y_jbwh5mUWGWZsLT2W59cIwikEOBszLlOJcKRayBjJ_OhPjw_DDPJqvkR_dWRiHD9EH3HBnNPIaNzgGpAfnqKFAHI-Sc4zvC9nmVe6Zr2fgtZVvdoewxK84H-0cvBt7bWEBT4O6lF4ieR7zLDBRYBIb-NwIy0wCD8AcUJLpXNog962Q2teBxVK4UmgZcYX-UCQDoHuNXMcy4gjXP_zUI1YBdfcjWzBMKWPzDifS54PL33tZD54btxdN5EbHje6Qn93suNSWz1t1pbb0t9-AI_-r6btLbrcWN912W-QeWTPL--TWBRzGB-T7PnAqniGjk0V1vChOMcqkB_tF3l3Tj8WqqEv6tsZ6MnSSgadCR5latSFPutOcQSsp2PDoBtAZ4kS7pmyZ0_er4qw6ptDkXlGfNNTrEzo14P5QB3O6MOVDcnglk_GIrC-LpXlMaAzmtWQqAZdbhH5sGyCdPIniTDMYYTeI17FMqlsEdywk8iV12NM8xTVN-zXdIK_7_qcOu-SPPTc7DkxbGVamXICmBPnMoJk3rPQXKun2cDTt7578y6AX5Mb4YDpJJ7uzvafkJj53udGbZL1a1eYZWICVet7sOUqOrppLfwHgtF8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRAcyr8oLeADiFO6sZPYyYFDYRtauruqKJX2lsZ_6gq6WW0SVe0j8DS8Cm_EOE7SFgkhIfXALYntSWTP2DOTmW8Qep1HmhijmCdyZbwwjGLYBwPi5UJQKgQJSQOZP56w3aPw0zSarqAfXS6Mw4foHW5WMpr92gr4QpnBJWgo0LaZ5NS69xlvwyr39fkZGG3lu70hrPAbStOdLx92vbaugCfhtORewqmKaR7oKNCJCXyqmSE6gQegDQhOpOImUL5hXPoyMLYSLmeSR1RYcyjiAdC9hW6HzE9ssYjh5x6wCqi7_9iM2IgyMu1gIn06uP6914_BS932qobcHHHpffSzmxwX2fJ1q67Elrz4DTfyf5q9B2it1bfxthOQh2hFzx-he1dQGB-j74fApzaDDI9m1cmsWFgfkxwcFqq7xgfFsqhL_L621WTwKAc7Bae5WLYOT7zTZKCVGDR4awTgiUWJdk35XOGPy-KsOsHQ5F5RnzbU61M81mD8YAdyOtPlE3R0I5PxFK3Oi7l-hnAMyjUnIgGDm4V-bBoYHZVEcS4JjDDryOs4JpMtfrstI_Itc8jTNLNrmvVruo7e9v0XDrnkjz03OwbM2h2szCiDcxJ2ZwLNtOGkv1DJtofpuL97_i-DXqE7B8M0G-1N9jfQXfvYBUZvotVqWesXoP5V4mUjcRgd3zST_gI8-l3P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Lithiophilic%2FSodiophilic+Porous+Buffer+Layer+Fabrication+Enables+Uniform+Nucleation+and+Growth+for+Lithium%2FSodium+Metal+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Shao%E2%80%90Jian&rft.au=You%2C+Jin%E2%80%90Hai&rft.au=He%2C+Zhiwei&rft.au=Zhong%2C+Jiajie&rft.date=2022-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=28&rft_id=info:doi/10.1002%2Fadfm.202200967&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202200967
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon