Scalable Lithiophilic/Sodiophilic Porous Buffer Layer Fabrication Enables Uniform Nucleation and Growth for Lithium/Sodium Metal Batteries
Metallic lithium/sodium (Li/Na) is considered an attractive anode for future high‐energy‐density batteries. The root causes of preventing their applications come from uneven Li/Na nucleation and subsequent dendrite formation. Here, a cost‐efficient and scalable solid‐to‐solid transfer method for den...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 28 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metallic lithium/sodium (Li/Na) is considered an attractive anode for future high‐energy‐density batteries. The root causes of preventing their applications come from uneven Li/Na nucleation and subsequent dendrite formation. Here, a cost‐efficient and scalable solid‐to‐solid transfer method for dense buffer layer construction on Li/Na anodes is proposed, and thin lithiophilic/sodiophilic buffer layers based on natural silk fibers derived carbon (SFC) and carbon nanotubes (CNTs) composites (denoted as SFC/CNTs) are adopted, which facilitate uniform Li/Na nucleation and dendrite‐free, lateral growth behavior upon recurring Li/Na plating/stripping processes. Lithiopilic/sodiophilic buffer layers enable long‐term cycling stability (>250 cycles) with high Coulombic efficiency (99.2% for Li and 98.8% for Na), low polarization, and flat voltage profiles. More importantly, the cycling performance of LiFePO4|Li pouch cells is largely enhanced with a lifespan of 390 cycles. Further, using ultra‐thin Li anodes (25 μm) also achieves stable LiNi1/3Mn1/3Co1/3O2|Li cells with 200 cycles under a low negative/positive ratio (1.67). Similar achievement is also realized in Na‐metal batteries with negligible capacity fading for over 600 cycles in Na3V2(PO4)3|Na cells, further demonstrating that SFC/CNT buffer layer is technically viable in practical batteries. This study provides a facile strategy for fabricating dense and uniform lithiophilic/sodiophilic buffer layers for low‐cost and scale‐up energy storage devices.
Natural silk fiber derived N/S‐functionalized porous carbon flakes are elucidated to regular the lithium/sodium (Li/Na) growth patterns from vertical to lateral direction, and a novel solid‐to‐solid transfer method is applied for dense and uniform buffer layer fabrication. The modified Li/Na anodes reveal a high performance in Li‐based pouch cells (390 cycles), and negligible fading in Na‐based coin cells (600 cycles). |
---|---|
AbstractList | Metallic lithium/sodium (Li/Na) is considered an attractive anode for future high‐energy‐density batteries. The root causes of preventing their applications come from uneven Li/Na nucleation and subsequent dendrite formation. Here, a cost‐efficient and scalable solid‐to‐solid transfer method for dense buffer layer construction on Li/Na anodes is proposed, and thin lithiophilic/sodiophilic buffer layers based on natural silk fibers derived carbon (SFC) and carbon nanotubes (CNTs) composites (denoted as SFC/CNTs) are adopted, which facilitate uniform Li/Na nucleation and dendrite‐free, lateral growth behavior upon recurring Li/Na plating/stripping processes. Lithiopilic/sodiophilic buffer layers enable long‐term cycling stability (>250 cycles) with high Coulombic efficiency (99.2% for Li and 98.8% for Na), low polarization, and flat voltage profiles. More importantly, the cycling performance of LiFePO4|Li pouch cells is largely enhanced with a lifespan of 390 cycles. Further, using ultra‐thin Li anodes (25 μm) also achieves stable LiNi1/3Mn1/3Co1/3O2|Li cells with 200 cycles under a low negative/positive ratio (1.67). Similar achievement is also realized in Na‐metal batteries with negligible capacity fading for over 600 cycles in Na3V2(PO4)3|Na cells, further demonstrating that SFC/CNT buffer layer is technically viable in practical batteries. This study provides a facile strategy for fabricating dense and uniform lithiophilic/sodiophilic buffer layers for low‐cost and scale‐up energy storage devices.
Natural silk fiber derived N/S‐functionalized porous carbon flakes are elucidated to regular the lithium/sodium (Li/Na) growth patterns from vertical to lateral direction, and a novel solid‐to‐solid transfer method is applied for dense and uniform buffer layer fabrication. The modified Li/Na anodes reveal a high performance in Li‐based pouch cells (390 cycles), and negligible fading in Na‐based coin cells (600 cycles). Metallic lithium/sodium (Li/Na) is considered an attractive anode for future high‐energy‐density batteries. The root causes of preventing their applications come from uneven Li/Na nucleation and subsequent dendrite formation. Here, a cost‐efficient and scalable solid‐to‐solid transfer method for dense buffer layer construction on Li/Na anodes is proposed, and thin lithiophilic/sodiophilic buffer layers based on natural silk fibers derived carbon (SFC) and carbon nanotubes (CNTs) composites (denoted as SFC/CNTs) are adopted, which facilitate uniform Li/Na nucleation and dendrite‐free, lateral growth behavior upon recurring Li/Na plating/stripping processes. Lithiopilic/sodiophilic buffer layers enable long‐term cycling stability ( > 250 cycles) with high Coulombic efficiency (99.2% for Li and 98.8% for Na), low polarization, and flat voltage profiles. More importantly, the cycling performance of LiFePO 4 |Li pouch cells is largely enhanced with a lifespan of 390 cycles. Further, using ultra‐thin Li anodes (25 μm) also achieves stable LiNi 1/3 Mn 1/3 Co 1/3 O 2 |Li cells with 200 cycles under a low negative/positive ratio (1.67). Similar achievement is also realized in Na‐metal batteries with negligible capacity fading for over 600 cycles in Na 3 V 2 (PO 4 ) 3 |Na cells, further demonstrating that SFC/CNT buffer layer is technically viable in practical batteries. This study provides a facile strategy for fabricating dense and uniform lithiophilic/sodiophilic buffer layers for low‐cost and scale‐up energy storage devices. Metallic lithium/sodium (Li/Na) is considered an attractive anode for future high‐energy‐density batteries. The root causes of preventing their applications come from uneven Li/Na nucleation and subsequent dendrite formation. Here, a cost‐efficient and scalable solid‐to‐solid transfer method for dense buffer layer construction on Li/Na anodes is proposed, and thin lithiophilic/sodiophilic buffer layers based on natural silk fibers derived carbon (SFC) and carbon nanotubes (CNTs) composites (denoted as SFC/CNTs) are adopted, which facilitate uniform Li/Na nucleation and dendrite‐free, lateral growth behavior upon recurring Li/Na plating/stripping processes. Lithiopilic/sodiophilic buffer layers enable long‐term cycling stability (>250 cycles) with high Coulombic efficiency (99.2% for Li and 98.8% for Na), low polarization, and flat voltage profiles. More importantly, the cycling performance of LiFePO4|Li pouch cells is largely enhanced with a lifespan of 390 cycles. Further, using ultra‐thin Li anodes (25 μm) also achieves stable LiNi1/3Mn1/3Co1/3O2|Li cells with 200 cycles under a low negative/positive ratio (1.67). Similar achievement is also realized in Na‐metal batteries with negligible capacity fading for over 600 cycles in Na3V2(PO4)3|Na cells, further demonstrating that SFC/CNT buffer layer is technically viable in practical batteries. This study provides a facile strategy for fabricating dense and uniform lithiophilic/sodiophilic buffer layers for low‐cost and scale‐up energy storage devices. |
Author | He, Zhiwei Ling, Min Zhang, Bingkai Zhong, Jiajie Zhang, Peng‐Fang Pan, Feng Zhang, Shao‐Jian Yin, Zu‐Wei Lin, Zhan You, Jin‐Hai |
Author_xml | – sequence: 1 givenname: Shao‐Jian surname: Zhang fullname: Zhang, Shao‐Jian organization: Zhejiang University – sequence: 2 givenname: Jin‐Hai surname: You fullname: You, Jin‐Hai organization: KU Leuven – sequence: 3 givenname: Zhiwei surname: He fullname: He, Zhiwei organization: Guangdong University of Technology – sequence: 4 givenname: Jiajie surname: Zhong fullname: Zhong, Jiajie organization: Guangdong University of Technology – sequence: 5 givenname: Peng‐Fang surname: Zhang fullname: Zhang, Peng‐Fang organization: Liaocheng University – sequence: 6 givenname: Zu‐Wei surname: Yin fullname: Yin, Zu‐Wei organization: Peking University Shenzhen Graduate School – sequence: 7 givenname: Feng surname: Pan fullname: Pan, Feng organization: Peking University Shenzhen Graduate School – sequence: 8 givenname: Min surname: Ling fullname: Ling, Min organization: Zhejiang University – sequence: 9 givenname: Bingkai surname: Zhang fullname: Zhang, Bingkai email: zhangbk@gdut.edu.cn organization: Guangdong University of Technology – sequence: 10 givenname: Zhan orcidid: 0000-0001-5009-8198 surname: Lin fullname: Lin, Zhan email: zhanlin@gdut.edu.cn organization: Guangdong University of Technology |
BookMark | eNqFkMFOAjEQhhuDiYBePTfxDLRdaNkjIKDJoiZI4m1Tum0o2d1i2w3hFXxqC6uYmBgvnenMfPO3fws0SlNKAG4x6mKESI9nqugSRAhCMWUXoIkppp0IkWHjnOO3K9BybosQZizqN8HHUvCcr3MJE-032uw2OteitzTZdw5fjDWVg-NKKWlhwg_hnPG11YJ7bUo4LY-8g6tSK2ML-FSJXNYtXmZwbs3eb2Bo1RJVcdpeFXAhPc_hmHsvrZbuGlwqnjt58xXbYDWbvk4eOsnz_HEySjoiCo_uxIxkQ8IjOYhkrML3JFVYxqGABnTNsMiYijKkKBNIRAqjAWNUsAFZ42E_XKI2uKv37qx5r6Tz6dZUtgySKaFDRmMadMJUt54S1jhnpUp3VhfcHlKM0qPf6dHv9Ox3APq_AKH9yQZvuc7_xuIa2-tcHv4RSUf3s8UP-wknQpkA |
CitedBy_id | crossref_primary_10_1007_s12274_023_5478_4 crossref_primary_10_1002_advs_202402321 crossref_primary_10_1002_smll_202402206 crossref_primary_10_1016_j_jcis_2024_01_101 crossref_primary_10_1039_D4TA01072H crossref_primary_10_1002_adma_202207573 crossref_primary_10_1126_sciadv_adh8060 crossref_primary_10_1002_anie_202409992 crossref_primary_10_1016_j_cej_2024_155256 crossref_primary_10_3390_batteries9070345 crossref_primary_10_1021_acs_nanolett_4c01549 crossref_primary_10_1039_D5EE00136F crossref_primary_10_1007_s40820_024_01479_1 crossref_primary_10_3390_ma17010021 crossref_primary_10_1002_smll_202208277 crossref_primary_10_1007_s12274_022_4985_z crossref_primary_10_1039_D3EE02082G crossref_primary_10_1002_adma_202402337 crossref_primary_10_1002_ange_202309247 crossref_primary_10_1002_aenm_202403258 crossref_primary_10_1002_adma_202301967 crossref_primary_10_1002_cssc_202301847 crossref_primary_10_1016_j_cej_2024_157200 crossref_primary_10_1002_ange_202409992 crossref_primary_10_1039_D2QI02680E crossref_primary_10_1002_adfm_202303111 crossref_primary_10_1002_smsc_202300108 crossref_primary_10_1002_sus2_97 crossref_primary_10_1002_adfm_202417809 crossref_primary_10_1039_D3EE03477A crossref_primary_10_3390_batteries9080408 crossref_primary_10_1002_eem2_12525 crossref_primary_10_1002_advs_202304235 crossref_primary_10_1002_anie_202309247 |
Cites_doi | 10.1038/35104644 10.1039/C5NR04768D 10.1039/C9EE00716D 10.1021/acs.nanolett.9b01567 10.1021/acsami.8b10110 10.1016/j.nanoen.2017.12.055 10.1002/adfm.201606422 10.1002/adma.201706216 10.1038/s41467-018-07599-8 10.1002/aenm.201702764 10.1002/anie.201801818 10.1038/s41467-017-00613-5 10.1016/j.ensm.2017.08.015 10.1021/acsami.9b16363 10.1038/nenergy.2016.10 10.1103/PhysRevLett.77.3865 10.1002/aenm.201800635 10.1002/aenm.201804019 10.1002/adma.201700389 10.1103/PhysRevB.54.11169 10.1002/adma.201905573 10.1016/j.ensm.2018.08.018 10.1002/adma.201801334 10.1002/anie.202000628 10.1002/adfm.201905078 10.1016/j.nanoen.2018.09.017 10.1002/aenm.201200558 10.1103/PhysRevB.50.17953 10.1039/C8EE01373J 10.1002/smll.201801054 10.1002/aenm.201802645 10.1039/c3cs60177c 10.1038/s41467-019-12938-4 10.1002/adfm.201702524 10.1038/s41565-019-0427-9 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202200967 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202200967 ADFM202200967 |
Genre | article |
GrantInformation_xml | – fundername: GuangDong Basic and Applied Basic Research Foundation funderid: 2020A1515110046 – fundername: National Natural Science Foundation of China funderid: 51874104 – fundername: Key Technology and Supporting Platform of Genetic Engineering of Materials under States Key Project of Research and Development Plan of China funderid: 2016YFB0700600 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3177-972d82a3e53e9f302e6f1e9a3e056b71cd7f3d0f67c0c3f105776c752b1840573 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 04:23:56 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Tue Jul 01 00:30:28 EDT 2025 Wed Jan 22 16:23:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3177-972d82a3e53e9f302e6f1e9a3e056b71cd7f3d0f67c0c3f105776c752b1840573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5009-8198 |
PQID | 2687696317 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2687696317 crossref_primary_10_1002_adfm_202200967 crossref_citationtrail_10_1002_adfm_202200967 wiley_primary_10_1002_adfm_202200967_ADFM202200967 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 9 2018 2019; 9 12 2017; 8 2013; 3 2001 2018 2018 2018; 414 8 11 10 2016; 1 2019 2019 2019; 14 10 9 2017; 27 2019 2018; 19 8 2015 2020; 7 59 2019 2017; 11 29 2018; 45 2018; 10 2013 2018; 42 53 2018 2020 2019; 14 32 29 2018 2018 2019; 30 30 18 2018; 57 1994 1996; 50 54 1996; 77 e_1_2_8_8_3 e_1_2_8_1_3 e_1_2_8_2_2 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_2_1 e_1_2_8_3_3 e_1_2_8_4_2 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_7_3 e_1_2_8_8_2 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_11_1 e_1_2_8_12_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 9 year: 2018 publication-title: Adv. Energy Mater. – volume: 57 start-page: 7734 year: 2018 publication-title: Angew Chem., Int. Ed. Engl. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 414 8 11 10 start-page: 359 2673 139 year: 2001 2018 2018 2018 publication-title: Nature Adv. Energy Mater. Energy Environ. Sci. Energy Storage Mater. – volume: 45 start-page: 203 year: 2018 publication-title: Nano Energy – volume: 30 30 18 start-page: 320 year: 2018 2018 2019 publication-title: Adv. Mater. Adv. Mater. Energy Storage Mater. – volume: 9 12 start-page: 5262 2174 year: 2018 2019 publication-title: Nat. Commun. Energy Environ. Sci. – volume: 14 32 29 year: 2018 2020 2019 publication-title: Small Adv. Mater. Adv. Funct. Mater. – volume: 7 59 start-page: 7778 year: 2015 2020 publication-title: Nanoscale Angew Chem., Int. Ed. Engl. – volume: 3 start-page: 156 year: 2013 publication-title: Adv. Energy Mater. – volume: 19 8 start-page: 4601 year: 2019 2018 publication-title: Nano Lett. Adv. Energy Mater. – volume: 14 10 9 start-page: 594 4930 year: 2019 2019 2019 publication-title: Nat. Nanotechnol. Nat. Commun. Adv. Energy Mater. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 11 29 year: 2019 2017 publication-title: ACS Appl. Mater. Interfaces Adv. Mater. – volume: 8 start-page: 1387 year: 2017 publication-title: Nat. Commun. – volume: 42 53 start-page: 9011 630 year: 2013 2018 publication-title: Chem. Soc. Rev. Nano Energy – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 50 54 year: 1994 1996 publication-title: Phys. Rev. B Condens. Matter. Phys. Rev. B – ident: e_1_2_8_1_1 doi: 10.1038/35104644 – ident: e_1_2_8_10_1 doi: 10.1039/C5NR04768D – ident: e_1_2_8_14_2 doi: 10.1039/C9EE00716D – ident: e_1_2_8_6_1 doi: 10.1021/acs.nanolett.9b01567 – ident: e_1_2_8_11_1 doi: 10.1021/acsami.8b10110 – ident: e_1_2_8_12_1 doi: 10.1016/j.nanoen.2017.12.055 – ident: e_1_2_8_15_1 doi: 10.1002/adfm.201606422 – ident: e_1_2_8_8_2 doi: 10.1002/adma.201706216 – ident: e_1_2_8_14_1 doi: 10.1038/s41467-018-07599-8 – ident: e_1_2_8_1_2 doi: 10.1002/aenm.201702764 – ident: e_1_2_8_16_1 doi: 10.1002/anie.201801818 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-017-00613-5 – ident: e_1_2_8_1_4 doi: 10.1016/j.ensm.2017.08.015 – ident: e_1_2_8_4_1 doi: 10.1021/acsami.9b16363 – ident: e_1_2_8_5_1 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_8_20_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_6_2 doi: 10.1002/aenm.201800635 – ident: e_1_2_8_7_3 doi: 10.1002/aenm.201804019 – ident: e_1_2_8_4_2 doi: 10.1002/adma.201700389 – ident: e_1_2_8_19_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_3_2 doi: 10.1002/adma.201905573 – ident: e_1_2_8_8_3 doi: 10.1016/j.ensm.2018.08.018 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201801334 – ident: e_1_2_8_10_2 doi: 10.1002/anie.202000628 – ident: e_1_2_8_3_3 doi: 10.1002/adfm.201905078 – ident: e_1_2_8_2_2 doi: 10.1016/j.nanoen.2018.09.017 – ident: e_1_2_8_17_1 doi: 10.1002/aenm.201200558 – ident: e_1_2_8_19_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_8_1_3 doi: 10.1039/C8EE01373J – ident: e_1_2_8_3_1 doi: 10.1002/smll.201801054 – ident: e_1_2_8_9_1 doi: 10.1002/aenm.201802645 – ident: e_1_2_8_2_1 doi: 10.1039/c3cs60177c – ident: e_1_2_8_7_2 doi: 10.1038/s41467-019-12938-4 – ident: e_1_2_8_13_1 doi: 10.1002/adfm.201702524 – ident: e_1_2_8_7_1 doi: 10.1038/s41565-019-0427-9 |
SSID | ssj0017734 |
Score | 2.5616863 |
Snippet | Metallic lithium/sodium (Li/Na) is considered an attractive anode for future high‐energy‐density batteries. The root causes of preventing their applications... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Buffer layers Carbon nanotubes Cycles Dendritic structure Electrode polarization Energy storage lateral growth Lithium Materials science metallic anodes nitrogen/sulfur functionalized carbon Nucleation Silk Sodium solid‐to‐solid transfer method Thin films |
Title | Scalable Lithiophilic/Sodiophilic Porous Buffer Layer Fabrication Enables Uniform Nucleation and Growth for Lithium/Sodium Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202200967 https://www.proquest.com/docview/2687696317 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcikHHgVEoVQ-IPWUbuwkdnJcaJcK7VZVl0p7i2zHVqu2m2o3ERI_gV_NjJ2kWySEBLckfiV-fjOZ-YaQjyqzzLlKRFpVLkrTLId9MGGR0ppzrVnKPGX-7EycXqZfF9liw4s_8EMMCjdcGX6_xgWu9Hr0QBoKdaMnOUf1vkB3cjTYQlR0MfBHMSnDb2XB0MCLLXrWxpiPHhd_fCo9QM1NwOpPnMlzovp3DYYmN0dto4_Mj99oHP_nY16QZx0cpeMwf16SLbvcJU83SApfkZ9zGEZ0sKLT6-bqur5HFYwZzeuqv6bn9apu1_RTi8FW6FQBjKcTpVedPpCeeAetNQWAixiZniGJckhSy4p-WdXfmysKSaGJ9s7X3t7RmQXZgAYOUBDpX5PLycm3z6dRF8EhMoBLZFRIXuVcJTZLbOGSmFvhmC3gAeAuLZmppEuq2AlpYpM4jDkshZEZ1yh4ZjJ5Q7aX9dK-JTQH7CmZLkAeFWmcO88yUxVZrgyDEm6PRP0IlqajN8coG7dlIGbmJfZxOfTxHjkc8t8HYo8_5tzvJ0TZLfB1yQUcI7B5MUjmfmT_Uks5Pp7Mhrt3_1LoPdnhGH3Y24zvk-1m1doPAIkafUCejI9n0_mBn_6_ACb2BQ0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKOQAH_hGFAj6AOKUbO4mdHDgUtsuW7q4QbaW9pbFjqyvoptokquAReBtehSdiJk7SFgkhIfXALYntSWSP5y_jbwh5mUWGWZsLT2W59cIwikEOBszLlOJcKRayBjJ_OhPjw_DDPJqvkR_dWRiHD9EH3HBnNPIaNzgGpAfnqKFAHI-Sc4zvC9nmVe6Zr2fgtZVvdoewxK84H-0cvBt7bWEBT4O6lF4ieR7zLDBRYBIb-NwIy0wCD8AcUJLpXNog962Q2teBxVK4UmgZcYX-UCQDoHuNXMcy4gjXP_zUI1YBdfcjWzBMKWPzDifS54PL33tZD54btxdN5EbHje6Qn93suNSWz1t1pbb0t9-AI_-r6btLbrcWN912W-QeWTPL--TWBRzGB-T7PnAqniGjk0V1vChOMcqkB_tF3l3Tj8WqqEv6tsZ6MnSSgadCR5latSFPutOcQSsp2PDoBtAZ4kS7pmyZ0_er4qw6ptDkXlGfNNTrEzo14P5QB3O6MOVDcnglk_GIrC-LpXlMaAzmtWQqAZdbhH5sGyCdPIniTDMYYTeI17FMqlsEdywk8iV12NM8xTVN-zXdIK_7_qcOu-SPPTc7DkxbGVamXICmBPnMoJk3rPQXKun2cDTt7578y6AX5Mb4YDpJJ7uzvafkJj53udGbZL1a1eYZWICVet7sOUqOrppLfwHgtF8g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRAcyr8oLeADiFO6sZPYyYFDYRtauruqKJX2lsZ_6gq6WW0SVe0j8DS8Cm_EOE7SFgkhIfXALYntSWTP2DOTmW8Qep1HmhijmCdyZbwwjGLYBwPi5UJQKgQJSQOZP56w3aPw0zSarqAfXS6Mw4foHW5WMpr92gr4QpnBJWgo0LaZ5NS69xlvwyr39fkZGG3lu70hrPAbStOdLx92vbaugCfhtORewqmKaR7oKNCJCXyqmSE6gQegDQhOpOImUL5hXPoyMLYSLmeSR1RYcyjiAdC9hW6HzE9ssYjh5x6wCqi7_9iM2IgyMu1gIn06uP6914_BS932qobcHHHpffSzmxwX2fJ1q67Elrz4DTfyf5q9B2it1bfxthOQh2hFzx-he1dQGB-j74fApzaDDI9m1cmsWFgfkxwcFqq7xgfFsqhL_L621WTwKAc7Bae5WLYOT7zTZKCVGDR4awTgiUWJdk35XOGPy-KsOsHQ5F5RnzbU61M81mD8YAdyOtPlE3R0I5PxFK3Oi7l-hnAMyjUnIgGDm4V-bBoYHZVEcS4JjDDryOs4JpMtfrstI_Itc8jTNLNrmvVruo7e9v0XDrnkjz03OwbM2h2szCiDcxJ2ZwLNtOGkv1DJtofpuL97_i-DXqE7B8M0G-1N9jfQXfvYBUZvotVqWesXoP5V4mUjcRgd3zST_gI8-l3P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Lithiophilic%2FSodiophilic+Porous+Buffer+Layer+Fabrication+Enables+Uniform+Nucleation+and+Growth+for+Lithium%2FSodium+Metal+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Shao%E2%80%90Jian&rft.au=You%2C+Jin%E2%80%90Hai&rft.au=He%2C+Zhiwei&rft.au=Zhong%2C+Jiajie&rft.date=2022-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=28&rft_id=info:doi/10.1002%2Fadfm.202200967&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202200967 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |