Biomolecules‐Incorporated Metal‐Organic Frameworks Gated Light‐Sensitive Organic Photoelectrochemical Transistor for Biodetection

Incorporating biomolecules into metal‐organic frameworks (MOFs) as exoskeletons to form biomolecules‐MOFs biohybrids has attracted great attention as an emerging class of advanced materials. Organic devices have been shown as powerful platforms for next‐generation bioelectronics, such as wearable bi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 8
Main Authors Li, Cheng‐Jie, Hu, Jin, Gao, Ge, Chen, Jia‐Hao, Wang, Cheng‐Shuang, Zhou, Hong, Chen, Guangxu, Qu, Peng, Lin, Peng, Zhao, Wei‐Wei
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Incorporating biomolecules into metal‐organic frameworks (MOFs) as exoskeletons to form biomolecules‐MOFs biohybrids has attracted great attention as an emerging class of advanced materials. Organic devices have been shown as powerful platforms for next‐generation bioelectronics, such as wearable biosensors, tissue engineering constructs, and neural interfaces. Herein, biomolecules‐incorporated MOFs as innovative gating module is realized for the first time, which is exemplified by biocatalytic precipitation (BCP)‐oriented horseradish peroxidase (HRP)‐embedded zeolitic imidazolate framework‐90 (HRP@ZIF‐90)/CdIn2S4 gated organic photoelectrochemical transistor under light illumination. In connection to a sandwich immunocomplexing targeting the model analyte human IgG, the IgG‐dependent generation of H2O2 and the tandem HRP‐triggered BCP reaction can cause the in situ blocking of the pore network of ZIF‐90, leading to variant gating effect with corresponding responses of the device. This representative biodetection achieved good analytical performance with a wide linear range and a low detection limit of 100 fg mL−1. In the view of the plentiful biomolecule‐MOF complexes and their potential interactions with organic systems, this study provides a proof‐of‐concept study for the generic development of biomolecules‐MOFs‐gated electronics and beyond. Herein, biomolecules‐incorporated MOFs as innovative gating module is realized for the first time, which is exemplified by biocatalytic precipitation‐oriented horseradish peroxidase (HRP)‐embedded zeolitic imidazolate framework‐90 (HRP@ZIF‐90)/CdIn2S4 gated organic photoelectrochemical transistor under light illumination. By linking with a sandwich immunoassay, the proposed biosensor achieved good analytical performance at zero gate bias.
AbstractList Incorporating biomolecules into metal‐organic frameworks (MOFs) as exoskeletons to form biomolecules‐MOFs biohybrids has attracted great attention as an emerging class of advanced materials. Organic devices have been shown as powerful platforms for next‐generation bioelectronics, such as wearable biosensors, tissue engineering constructs, and neural interfaces. Herein, biomolecules‐incorporated MOFs as innovative gating module is realized for the first time, which is exemplified by biocatalytic precipitation (BCP)‐oriented horseradish peroxidase (HRP)‐embedded zeolitic imidazolate framework‐90 (HRP@ZIF‐90)/CdIn2S4 gated organic photoelectrochemical transistor under light illumination. In connection to a sandwich immunocomplexing targeting the model analyte human IgG, the IgG‐dependent generation of H2O2 and the tandem HRP‐triggered BCP reaction can cause the in situ blocking of the pore network of ZIF‐90, leading to variant gating effect with corresponding responses of the device. This representative biodetection achieved good analytical performance with a wide linear range and a low detection limit of 100 fg mL−1. In the view of the plentiful biomolecule‐MOF complexes and their potential interactions with organic systems, this study provides a proof‐of‐concept study for the generic development of biomolecules‐MOFs‐gated electronics and beyond. Herein, biomolecules‐incorporated MOFs as innovative gating module is realized for the first time, which is exemplified by biocatalytic precipitation‐oriented horseradish peroxidase (HRP)‐embedded zeolitic imidazolate framework‐90 (HRP@ZIF‐90)/CdIn2S4 gated organic photoelectrochemical transistor under light illumination. By linking with a sandwich immunoassay, the proposed biosensor achieved good analytical performance at zero gate bias.
Incorporating biomolecules into metal‐organic frameworks (MOFs) as exoskeletons to form biomolecules‐MOFs biohybrids has attracted great attention as an emerging class of advanced materials. Organic devices have been shown as powerful platforms for next‐generation bioelectronics, such as wearable biosensors, tissue engineering constructs, and neural interfaces. Herein, biomolecules‐incorporated MOFs as innovative gating module is realized for the first time, which is exemplified by biocatalytic precipitation (BCP)‐oriented horseradish peroxidase (HRP)‐embedded zeolitic imidazolate framework‐90 (HRP@ZIF‐90)/CdIn2S4 gated organic photoelectrochemical transistor under light illumination. In connection to a sandwich immunocomplexing targeting the model analyte human IgG, the IgG‐dependent generation of H2O2 and the tandem HRP‐triggered BCP reaction can cause the in situ blocking of the pore network of ZIF‐90, leading to variant gating effect with corresponding responses of the device. This representative biodetection achieved good analytical performance with a wide linear range and a low detection limit of 100 fg mL−1. In the view of the plentiful biomolecule‐MOF complexes and their potential interactions with organic systems, this study provides a proof‐of‐concept study for the generic development of biomolecules‐MOFs‐gated electronics and beyond.
Incorporating biomolecules into metal‐organic frameworks (MOFs) as exoskeletons to form biomolecules‐MOFs biohybrids has attracted great attention as an emerging class of advanced materials. Organic devices have been shown as powerful platforms for next‐generation bioelectronics, such as wearable biosensors, tissue engineering constructs, and neural interfaces. Herein, biomolecules‐incorporated MOFs as innovative gating module is realized for the first time, which is exemplified by biocatalytic precipitation (BCP)‐oriented horseradish peroxidase (HRP)‐embedded zeolitic imidazolate framework‐90 (HRP@ZIF‐90)/CdIn 2 S 4 gated organic photoelectrochemical transistor under light illumination. In connection to a sandwich immunocomplexing targeting the model analyte human IgG, the IgG‐dependent generation of H 2 O 2 and the tandem HRP‐triggered BCP reaction can cause the in situ blocking of the pore network of ZIF‐90, leading to variant gating effect with corresponding responses of the device. This representative biodetection achieved good analytical performance with a wide linear range and a low detection limit of 100 fg mL −1 . In the view of the plentiful biomolecule‐MOF complexes and their potential interactions with organic systems, this study provides a proof‐of‐concept study for the generic development of biomolecules‐MOFs‐gated electronics and beyond.
Author Qu, Peng
Zhao, Wei‐Wei
Li, Cheng‐Jie
Chen, Guangxu
Lin, Peng
Gao, Ge
Chen, Jia‐Hao
Zhou, Hong
Hu, Jin
Wang, Cheng‐Shuang
Author_xml – sequence: 1
  givenname: Cheng‐Jie
  surname: Li
  fullname: Li, Cheng‐Jie
  organization: Nanjing University
– sequence: 2
  givenname: Jin
  surname: Hu
  fullname: Hu, Jin
  organization: Shenzhen University
– sequence: 3
  givenname: Ge
  surname: Gao
  fullname: Gao, Ge
  organization: Nanjing University
– sequence: 4
  givenname: Jia‐Hao
  surname: Chen
  fullname: Chen, Jia‐Hao
  organization: Nanjing University
– sequence: 5
  givenname: Cheng‐Shuang
  surname: Wang
  fullname: Wang, Cheng‐Shuang
  organization: Nanjing University
– sequence: 6
  givenname: Hong
  surname: Zhou
  fullname: Zhou, Hong
  organization: Qingdao University of Science and Technology
– sequence: 7
  givenname: Guangxu
  surname: Chen
  fullname: Chen, Guangxu
  organization: South China University of Technology
– sequence: 8
  givenname: Peng
  surname: Qu
  fullname: Qu, Peng
  email: qupeng0212@cync.edu.cn
  organization: Chaoyang Normal College
– sequence: 9
  givenname: Peng
  orcidid: 0000-0002-6154-4859
  surname: Lin
  fullname: Lin, Peng
  email: lin.peng@szu.edu.cn
  organization: Shenzhen University
– sequence: 10
  givenname: Wei‐Wei
  surname: Zhao
  fullname: Zhao, Wei‐Wei
  email: zww@nju.edu.cn
  organization: Nanjing University
BookMark eNqFkM9OAjEQhxuDiYBePW_iGWy7df8cEQVJIJiIibemlFko7m6xLRJuHj36CD6Lj-KTWIRgYmI8NG0m329m-tVQpdQlIHRKcJNgTM_FJCuaFFNKCI3jA1QlEYkaIaZJZf8mD0eoZu0cYxLHIaui10ulC52DXOZgP1_eeqXUZqGNcDAJBuBE7otDMxWlkkHHiAJW2jzaoPsN9NV05jxwB6VVTj1DsEM_3m9n2mnwjZ3RcgaFkiIPRkZ40DptgswfP3sCziNKl8foMBO5hZPdXUf3netR-6bRH3Z77Va_IUO_ciOWCfE_ihiTIaMsijIW0oSIVI4xlQlLEwJhQuQ4lhGmILwOXxpDmiVZJHAa1tHZtu_C6KclWMfnemlKP5J7azFhJIwvPMW2lDTaWgMZl8qJzZ7OCJVzgvnGOd8453vnPtb8FVsYVQiz_juQbgMrlcP6H5q3rjqDn-wX39Kctw
CitedBy_id crossref_primary_10_1002_adfm_202424871
crossref_primary_10_1021_acssensors_3c00289
crossref_primary_10_1002_adfm_202412928
crossref_primary_10_1021_cbe_3c00091
crossref_primary_10_1093_rb_rbad115
crossref_primary_10_1021_acs_analchem_3c04263
crossref_primary_10_1021_acs_analchem_4c00173
crossref_primary_10_1021_acs_analchem_4c03220
crossref_primary_10_1021_acs_analchem_3c01401
crossref_primary_10_1002_adfm_202405913
crossref_primary_10_3390_chemosensors11070412
crossref_primary_10_1021_acs_analchem_3c02258
crossref_primary_10_1021_acs_analchem_3c04875
crossref_primary_10_1002_adma_202405887
crossref_primary_10_1002_adma_202300034
crossref_primary_10_1021_acscatal_4c00924
crossref_primary_10_1002_adfm_202404497
crossref_primary_10_1039_D4CC05991C
crossref_primary_10_1002_adma_202407654
crossref_primary_10_1039_D3CE00274H
crossref_primary_10_1002_elan_202400041
crossref_primary_10_1016_j_jhazmat_2024_134175
crossref_primary_10_1039_D4NR03421J
crossref_primary_10_1016_j_aca_2023_341362
crossref_primary_10_1002_smll_202402655
crossref_primary_10_1002_smll_202400033
crossref_primary_10_1021_acs_analchem_4c01369
crossref_primary_10_1021_acs_analchem_3c01185
crossref_primary_10_1002_adma_202503030
crossref_primary_10_1021_acs_analchem_4c04755
crossref_primary_10_1021_acsanm_3c01359
crossref_primary_10_1021_acs_analchem_2c05797
crossref_primary_10_1021_acsanm_3c04406
crossref_primary_10_1002_adfm_202414037
crossref_primary_10_1039_D3SD00105A
crossref_primary_10_1002_cjoc_202400206
crossref_primary_10_1039_D4TC02820A
crossref_primary_10_1002_adfm_202500235
crossref_primary_10_1002_adma_202306252
crossref_primary_10_1002_adfm_202408186
crossref_primary_10_1039_D3AN01225E
Cites_doi 10.1002/adom.202102687
10.1002/anie.201801378
10.1002/adfm.200601239
10.1021/acs.accounts.2c00027
10.1021/acs.chemrev.0c01029
10.1002/anie.201913231
10.1038/natrevmats.2017.86
10.1021/jacs.2c00735
10.1021/acs.analchem.0c02341
10.1002/adma.201901179
10.1021/acs.analchem.1c00444
10.1039/C7CS00058H
10.1039/C4CS00228H
10.1038/natrevmats.2016.75
10.1039/D0CS00955E
10.1002/advs.202003416
10.1038/s41467-020-16800-w
10.1021/acs.chemrev.9b00766
10.1002/anie.202111608
10.1016/j.bios.2022.114224
10.1126/science.1230444
10.1002/adma.202202972
10.1038/s41929-018-0117-2
10.1021/jacs.7b01794
10.1002/ange.201710418
10.1021/acs.analchem.9b00352
10.1021/ac203184g
10.1021/acssensors.2c01493
10.1021/cr500100j
10.1038/s41563-022-01239-9
10.1039/C7MH00818J
10.1002/adma.202000270
10.1016/j.bios.2021.113958
10.1002/adma.201103334
10.1021/jacs.1c05584
10.1002/adma.202202287
10.1002/adma.201303080
10.1126/sciadv.abg8387
10.1002/adfm.202109046
10.1021/acs.analchem.7b04862
10.1002/adhm.201800536
10.1021/ja513058h
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202211277
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202211277
ADFM202211277
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22174063; U1904195
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3177-7c81028644c342466f43281a9cb02c84981e381cb7c602ea022981be9f8f6a093
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 03:00:07 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
Tue Jul 01 00:30:37 EDT 2025
Wed Jan 22 16:23:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-7c81028644c342466f43281a9cb02c84981e381cb7c602ea022981be9f8f6a093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6154-4859
PQID 2777141375
PQPubID 2045204
PageCount 7
ParticipantIDs proquest_journals_2777141375
crossref_citationtrail_10_1002_adfm_202211277
crossref_primary_10_1002_adfm_202211277
wiley_primary_10_1002_adfm_202211277_ADFM202211277
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 17
2021; 8
2021; 7
2019; 91
2013; 25
2017; 2
2019; 31
2020; 120
2017; 46
2020; 59
2022; 21
2013; 341
2020; 11
2021; 143
2020; 32
2021; 121
2021; 50
2021; 93
2014; 114
2017; 139
2022; 144
2018; 7
2018; 3
2018; 5
2015; 137
2018; 1
2022; 7
2020; 92
2015; 44
2022; 34
2018; 90
2022; 32
2022; 209
2022; 10
2022; 55
2012; 24
2021; 60
2022; 201
2017; 129
2018; 57
2012; 84
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 209
  year: 2022
  publication-title: Biosens. Bioelectron.
– volume: 84
  start-page: 917
  year: 2012
  publication-title: Anal. Chem.
– volume: 5
  start-page: 93
  year: 2018
  publication-title: Mater. Horiz.
– volume: 201
  year: 2022
  publication-title: Biosens. Bioelectron.
– volume: 120
  start-page: 8536
  year: 2020
  publication-title: Chem. Rev.
– volume: 129
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 3078
  year: 2020
  publication-title: Nat. Commun.
– volume: 90
  start-page: 2341
  year: 2018
  publication-title: Anal. Chem.
– volume: 144
  start-page: 4642
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 91
  start-page: 3800
  year: 2019
  publication-title: Anal. Chem.
– volume: 92
  start-page: 8670
  year: 2020
  publication-title: Anal. Chem.
– volume: 114
  start-page: 7421
  year: 2014
  publication-title: Chem. Rev.
– volume: 46
  start-page: 3386
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem Int. Ed.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 25
  start-page: 7010
  year: 2013
  publication-title: Adv. Mater.
– volume: 3
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 50
  start-page: 4484
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 341
  year: 2013
  publication-title: Science
– volume: 21
  start-page: 564
  year: 2022
  publication-title: Nat. Mater.
– volume: 121
  start-page: 1077
  year: 2021
  publication-title: Chem. Rev.
– volume: 137
  start-page: 4276
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 44
  start-page: 729
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 34
  year: 2012
  publication-title: Adv. Mater.
– volume: 55
  start-page: 1047
  year: 2022
  publication-title: Acc. Chem. Res.
– volume: 17
  start-page: 3538
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 93
  start-page: 5001
  year: 2021
  publication-title: Anal. Chem.
– volume: 7
  start-page: 2788
  year: 2022
  publication-title: ACS Sens.
– volume: 139
  start-page: 6530
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 689
  year: 2018
  publication-title: Nat. Catal.
– volume: 57
  start-page: 5725
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 59
  start-page: 2867
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_8_17_1
  doi: 10.1002/adom.202102687
– ident: e_1_2_8_34_1
  doi: 10.1002/anie.201801378
– ident: e_1_2_8_42_1
  doi: 10.1002/adfm.200601239
– ident: e_1_2_8_24_1
  doi: 10.1021/acs.accounts.2c00027
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.chemrev.0c01029
– ident: e_1_2_8_30_1
  doi: 10.1002/anie.201913231
– ident: e_1_2_8_1_1
  doi: 10.1038/natrevmats.2017.86
– ident: e_1_2_8_4_1
  doi: 10.1021/jacs.2c00735
– ident: e_1_2_8_11_1
  doi: 10.1021/acs.analchem.0c02341
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.201901179
– ident: e_1_2_8_38_1
  doi: 10.1021/acs.analchem.1c00444
– ident: e_1_2_8_35_1
  doi: 10.1039/C7CS00058H
– ident: e_1_2_8_21_1
  doi: 10.1039/C4CS00228H
– ident: e_1_2_8_22_1
  doi: 10.1038/natrevmats.2016.75
– ident: e_1_2_8_27_1
  doi: 10.1039/D0CS00955E
– ident: e_1_2_8_23_1
  doi: 10.1002/advs.202003416
– ident: e_1_2_8_39_1
  doi: 10.1038/s41467-020-16800-w
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.chemrev.9b00766
– ident: e_1_2_8_8_1
  doi: 10.1002/anie.202111608
– ident: e_1_2_8_16_1
  doi: 10.1016/j.bios.2022.114224
– ident: e_1_2_8_25_1
  doi: 10.1126/science.1230444
– ident: e_1_2_8_3_1
  doi: 10.1002/adma.202202972
– ident: e_1_2_8_32_1
  doi: 10.1038/s41929-018-0117-2
– ident: e_1_2_8_29_1
  doi: 10.1021/jacs.7b01794
– ident: e_1_2_8_31_1
  doi: 10.1002/ange.201710418
– ident: e_1_2_8_40_1
  doi: 10.1021/acs.analchem.9b00352
– ident: e_1_2_8_37_1
  doi: 10.1021/ac203184g
– ident: e_1_2_8_15_1
  doi: 10.1021/acssensors.2c01493
– ident: e_1_2_8_7_1
  doi: 10.1021/cr500100j
– ident: e_1_2_8_6_1
  doi: 10.1038/s41563-022-01239-9
– ident: e_1_2_8_18_1
  doi: 10.1039/C7MH00818J
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.202000270
– ident: e_1_2_8_14_1
  doi: 10.1016/j.bios.2021.113958
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201103334
– ident: e_1_2_8_10_1
  doi: 10.1021/jacs.1c05584
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.202202287
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.201303080
– ident: e_1_2_8_5_1
  doi: 10.1126/sciadv.abg8387
– ident: e_1_2_8_12_1
  doi: 10.1002/adfm.202109046
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.analchem.7b04862
– ident: e_1_2_8_13_1
  doi: 10.1002/adhm.201800536
– ident: e_1_2_8_36_1
  doi: 10.1021/ja513058h
SSID ssj0017734
Score 2.6027288
Snippet Incorporating biomolecules into metal‐organic frameworks (MOFs) as exoskeletons to form biomolecules‐MOFs biohybrids has attracted great attention as an...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms biocatalytic precipitation
Biomolecules
Biosensors
Exoskeletons
Hydrogen peroxide
Light
Materials science
Metal-organic frameworks
organic electrochemical transistor
Peroxidase
photoelectrochemical transistors
Semiconductor devices
Tissue engineering
Transistors
Zeolites
Title Biomolecules‐Incorporated Metal‐Organic Frameworks Gated Light‐Sensitive Organic Photoelectrochemical Transistor for Biodetection
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202211277
https://www.proquest.com/docview/2777141375
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29btswECYKZ2mGpn9BnboBhwKdZEuUTEqjG9dNArso6hjwJpAUhQRJ5aKWl04dM-YR8ix5lDxJ7khJtgsEBdpRh6MkkkfeR-nuO0LehyHWNeLGCzLGPaTs9mKjpKdM1I9NLKRSmJw8-cKPZ9HpvD_fyOJ3_BDNBzdcGXa_xgUu1bK3Jg2VWY6Z5AxOMExgOjkGbCEq-tbwRwVCuN_KPMAAr2Beszb6rLfdfNsrraHmJmC1Hme0R2T9ri7Q5LK7KlVX__qDxvF_OvOcPKvgKB04-3lBnpjiJdndICl8Ra4_Xiy-uyK6Znn_--YEmS8t-7HJ6MQAeAehS-nUdFTHei3pZ6swxsM_KEwxUB63Vlqp3t1-PV-Ui6oMj654C6j1nZa6hAKcpvDszJQ2XKx4TWajT2dHx15Vv8HTgEqEJ3SM8AUQlw4jFnGeRyGLA5lo5TMdR0kcGAAMWgkNBmMkdB9EyiR5nHPpJ-E-aRWLwrwhNMkVSwB5ZFr6kQ5C5Qthcs15xnOwKdkmXj1_qa7IzbHGxlXqaJlZiiOcNiPcJh8a_R-O1uNRzU5tDmm1vJcpyEUA7l_024TZef3LXdLBcDRprg7-pdFb8hRL3buI8Q5plT9X5h0AolIdkp3BcDKeHlrjfwB7oAmf
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4hOFAOpdAitqWtD6CeAhsnaycHDrTb7W7ZRYgfaW9p7DhqVditukEITj322EfoK_QV-gh9hD5JZ-wk_EgICYlDjxlNnMSe8cw4M98ArAYB9TUSxvMzLjyC7PYio1JPmbAVmUimSlFx8mBHdA_D98PWcAp-VbUwDh-iPnAjzbD7NSk4HUhvXKCGpllOpeQcQxguZZlXuW3OTjFqm2z22rjEa5x33h686XplYwFPo7mUntQR2VV0BXQQ8lCIPAx45KexVk2uozCOfIOWTCup8UtMis9AkjJxHuUitfhLuOvPUBtxgutv79WIVTi6-5EtfEop84cVTmSTb1x936t28MK5vewiWxvXmYc_1ey41JbP6yeFWtfn14Aj_6vpewQPS4-bbTkVWYApM1qEuUs4jI_h--tP42PXJ9hM_n770SNwTwvwbDI2MBifINFVrWrWqdLZJuydZejT-QYy7FMtAFkPVrL-_rn7cVyMy05DuoRmYNY9sOgsDCMGhs_OTGEz4kZP4PBepmIJpkfjkVkGFueKx-hcZTpthtoPVFNKk2shMpGj2qQN8CqBSXSJ305tRI4ShzzNE1rRpF7RBryq-b845JIbOVcq-UvKHWySIF366OHIVgO4FaRbRkm22p1BffX0Lje9hNnuwaCf9Hs728_gAdIDlyC_AtPF1xPzHP2_Qr2wGsfgw33L6D_i92H6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4hkFA5QGlBXUrBh1acAomTtZMDB9olsMAiVEDaW4gdR0XALuoGVeXEkWMfgUfgGfoGvAJPwthOwo-EKlXiwDGjiZPYM54ZZ-YbgM--r_saMeV4GWWOhux2QiVSR6igGaqQp0Lo4uTONlvfDza6ze4QXFe1MBYfoj5w05ph9mut4KdZvnQPGppmua4kpxjBUM7LtMpN9fsXBm2D5XYLV_gLpfHq3rd1p-wr4Ei0ltzhMtRmFT0B6Qc0YCwPfBp6aSSFS2UYRKGn0JBJwSV-iErxGUgSKsrDnKUGfgk3_ZGAuZFuFtH6XgNW4ej2PzbzdEaZ161gIl269Ph9H5vBe9_2oYdsTFw8ATfV5NjMlqPFs0IsyvMnuJGvafbewnjpb5MVqyCTMKR672DsAQrje7j8etg_sV2C1eD24k9bQ3saeGeVkY7C6ASJtmZVkrhKZhuQNcOwpU83kGFXVwJo20FK1r9XOz_6Rb_sMyRLYAZinAODzUIwXiD47EwVJh-uNwX7LzIV0zDc6_fUByBRLmiErlUmUzeQni9czlUuGctYjkqTNsCp5CWRJXq7biJynFjcaZroFU3qFW3AQs1_anFLnuWcrcQvKfevQYJ07qF_w5sNoEaO_jFKstKKO_XVzP_cNA-jO6042Wpvb36EN0j2bXb8LAwXP8_UJ3T-CjFn9I3AwUuL6B0-82Cp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomolecules%E2%80%90Incorporated+Metal%E2%80%90Organic+Frameworks+Gated+Light%E2%80%90Sensitive+Organic%C2%A0Photoelectrochemical+Transistor+for+Biodetection&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Cheng%E2%80%90Jie&rft.au=Hu%2C+Jin&rft.au=Gao%2C+Ge&rft.au=Chen%2C+Jia%E2%80%90Hao&rft.date=2023-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202211277&rft.externalDBID=10.1002%252Fadfm.202211277&rft.externalDocID=ADFM202211277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon