Biomolecules‐Incorporated Metal‐Organic Frameworks Gated Light‐Sensitive Organic Photoelectrochemical Transistor for Biodetection
Incorporating biomolecules into metal‐organic frameworks (MOFs) as exoskeletons to form biomolecules‐MOFs biohybrids has attracted great attention as an emerging class of advanced materials. Organic devices have been shown as powerful platforms for next‐generation bioelectronics, such as wearable bi...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 8 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Incorporating biomolecules into metal‐organic frameworks (MOFs) as exoskeletons to form biomolecules‐MOFs biohybrids has attracted great attention as an emerging class of advanced materials. Organic devices have been shown as powerful platforms for next‐generation bioelectronics, such as wearable biosensors, tissue engineering constructs, and neural interfaces. Herein, biomolecules‐incorporated MOFs as innovative gating module is realized for the first time, which is exemplified by biocatalytic precipitation (BCP)‐oriented horseradish peroxidase (HRP)‐embedded zeolitic imidazolate framework‐90 (HRP@ZIF‐90)/CdIn2S4 gated organic photoelectrochemical transistor under light illumination. In connection to a sandwich immunocomplexing targeting the model analyte human IgG, the IgG‐dependent generation of H2O2 and the tandem HRP‐triggered BCP reaction can cause the in situ blocking of the pore network of ZIF‐90, leading to variant gating effect with corresponding responses of the device. This representative biodetection achieved good analytical performance with a wide linear range and a low detection limit of 100 fg mL−1. In the view of the plentiful biomolecule‐MOF complexes and their potential interactions with organic systems, this study provides a proof‐of‐concept study for the generic development of biomolecules‐MOFs‐gated electronics and beyond.
Herein, biomolecules‐incorporated MOFs as innovative gating module is realized for the first time, which is exemplified by biocatalytic precipitation‐oriented horseradish peroxidase (HRP)‐embedded zeolitic imidazolate framework‐90 (HRP@ZIF‐90)/CdIn2S4 gated organic photoelectrochemical transistor under light illumination. By linking with a sandwich immunoassay, the proposed biosensor achieved good analytical performance at zero gate bias. |
---|---|
AbstractList | Incorporating biomolecules into metal‐organic frameworks (MOFs) as exoskeletons to form biomolecules‐MOFs biohybrids has attracted great attention as an emerging class of advanced materials. Organic devices have been shown as powerful platforms for next‐generation bioelectronics, such as wearable biosensors, tissue engineering constructs, and neural interfaces. Herein, biomolecules‐incorporated MOFs as innovative gating module is realized for the first time, which is exemplified by biocatalytic precipitation (BCP)‐oriented horseradish peroxidase (HRP)‐embedded zeolitic imidazolate framework‐90 (HRP@ZIF‐90)/CdIn2S4 gated organic photoelectrochemical transistor under light illumination. In connection to a sandwich immunocomplexing targeting the model analyte human IgG, the IgG‐dependent generation of H2O2 and the tandem HRP‐triggered BCP reaction can cause the in situ blocking of the pore network of ZIF‐90, leading to variant gating effect with corresponding responses of the device. This representative biodetection achieved good analytical performance with a wide linear range and a low detection limit of 100 fg mL−1. In the view of the plentiful biomolecule‐MOF complexes and their potential interactions with organic systems, this study provides a proof‐of‐concept study for the generic development of biomolecules‐MOFs‐gated electronics and beyond.
Herein, biomolecules‐incorporated MOFs as innovative gating module is realized for the first time, which is exemplified by biocatalytic precipitation‐oriented horseradish peroxidase (HRP)‐embedded zeolitic imidazolate framework‐90 (HRP@ZIF‐90)/CdIn2S4 gated organic photoelectrochemical transistor under light illumination. By linking with a sandwich immunoassay, the proposed biosensor achieved good analytical performance at zero gate bias. Incorporating biomolecules into metal‐organic frameworks (MOFs) as exoskeletons to form biomolecules‐MOFs biohybrids has attracted great attention as an emerging class of advanced materials. Organic devices have been shown as powerful platforms for next‐generation bioelectronics, such as wearable biosensors, tissue engineering constructs, and neural interfaces. Herein, biomolecules‐incorporated MOFs as innovative gating module is realized for the first time, which is exemplified by biocatalytic precipitation (BCP)‐oriented horseradish peroxidase (HRP)‐embedded zeolitic imidazolate framework‐90 (HRP@ZIF‐90)/CdIn2S4 gated organic photoelectrochemical transistor under light illumination. In connection to a sandwich immunocomplexing targeting the model analyte human IgG, the IgG‐dependent generation of H2O2 and the tandem HRP‐triggered BCP reaction can cause the in situ blocking of the pore network of ZIF‐90, leading to variant gating effect with corresponding responses of the device. This representative biodetection achieved good analytical performance with a wide linear range and a low detection limit of 100 fg mL−1. In the view of the plentiful biomolecule‐MOF complexes and their potential interactions with organic systems, this study provides a proof‐of‐concept study for the generic development of biomolecules‐MOFs‐gated electronics and beyond. Incorporating biomolecules into metal‐organic frameworks (MOFs) as exoskeletons to form biomolecules‐MOFs biohybrids has attracted great attention as an emerging class of advanced materials. Organic devices have been shown as powerful platforms for next‐generation bioelectronics, such as wearable biosensors, tissue engineering constructs, and neural interfaces. Herein, biomolecules‐incorporated MOFs as innovative gating module is realized for the first time, which is exemplified by biocatalytic precipitation (BCP)‐oriented horseradish peroxidase (HRP)‐embedded zeolitic imidazolate framework‐90 (HRP@ZIF‐90)/CdIn 2 S 4 gated organic photoelectrochemical transistor under light illumination. In connection to a sandwich immunocomplexing targeting the model analyte human IgG, the IgG‐dependent generation of H 2 O 2 and the tandem HRP‐triggered BCP reaction can cause the in situ blocking of the pore network of ZIF‐90, leading to variant gating effect with corresponding responses of the device. This representative biodetection achieved good analytical performance with a wide linear range and a low detection limit of 100 fg mL −1 . In the view of the plentiful biomolecule‐MOF complexes and their potential interactions with organic systems, this study provides a proof‐of‐concept study for the generic development of biomolecules‐MOFs‐gated electronics and beyond. |
Author | Qu, Peng Zhao, Wei‐Wei Li, Cheng‐Jie Chen, Guangxu Lin, Peng Gao, Ge Chen, Jia‐Hao Zhou, Hong Hu, Jin Wang, Cheng‐Shuang |
Author_xml | – sequence: 1 givenname: Cheng‐Jie surname: Li fullname: Li, Cheng‐Jie organization: Nanjing University – sequence: 2 givenname: Jin surname: Hu fullname: Hu, Jin organization: Shenzhen University – sequence: 3 givenname: Ge surname: Gao fullname: Gao, Ge organization: Nanjing University – sequence: 4 givenname: Jia‐Hao surname: Chen fullname: Chen, Jia‐Hao organization: Nanjing University – sequence: 5 givenname: Cheng‐Shuang surname: Wang fullname: Wang, Cheng‐Shuang organization: Nanjing University – sequence: 6 givenname: Hong surname: Zhou fullname: Zhou, Hong organization: Qingdao University of Science and Technology – sequence: 7 givenname: Guangxu surname: Chen fullname: Chen, Guangxu organization: South China University of Technology – sequence: 8 givenname: Peng surname: Qu fullname: Qu, Peng email: qupeng0212@cync.edu.cn organization: Chaoyang Normal College – sequence: 9 givenname: Peng orcidid: 0000-0002-6154-4859 surname: Lin fullname: Lin, Peng email: lin.peng@szu.edu.cn organization: Shenzhen University – sequence: 10 givenname: Wei‐Wei surname: Zhao fullname: Zhao, Wei‐Wei email: zww@nju.edu.cn organization: Nanjing University |
BookMark | eNqFkM9OAjEQhxuDiYBePW_iGWy7df8cEQVJIJiIibemlFko7m6xLRJuHj36CD6Lj-KTWIRgYmI8NG0m329m-tVQpdQlIHRKcJNgTM_FJCuaFFNKCI3jA1QlEYkaIaZJZf8mD0eoZu0cYxLHIaui10ulC52DXOZgP1_eeqXUZqGNcDAJBuBE7otDMxWlkkHHiAJW2jzaoPsN9NV05jxwB6VVTj1DsEM_3m9n2mnwjZ3RcgaFkiIPRkZ40DptgswfP3sCziNKl8foMBO5hZPdXUf3netR-6bRH3Z77Va_IUO_ciOWCfE_ihiTIaMsijIW0oSIVI4xlQlLEwJhQuQ4lhGmILwOXxpDmiVZJHAa1tHZtu_C6KclWMfnemlKP5J7azFhJIwvPMW2lDTaWgMZl8qJzZ7OCJVzgvnGOd8453vnPtb8FVsYVQiz_juQbgMrlcP6H5q3rjqDn-wX39Kctw |
CitedBy_id | crossref_primary_10_1002_adfm_202424871 crossref_primary_10_1021_acssensors_3c00289 crossref_primary_10_1002_adfm_202412928 crossref_primary_10_1021_cbe_3c00091 crossref_primary_10_1093_rb_rbad115 crossref_primary_10_1021_acs_analchem_3c04263 crossref_primary_10_1021_acs_analchem_4c00173 crossref_primary_10_1021_acs_analchem_4c03220 crossref_primary_10_1021_acs_analchem_3c01401 crossref_primary_10_1002_adfm_202405913 crossref_primary_10_3390_chemosensors11070412 crossref_primary_10_1021_acs_analchem_3c02258 crossref_primary_10_1021_acs_analchem_3c04875 crossref_primary_10_1002_adma_202405887 crossref_primary_10_1002_adma_202300034 crossref_primary_10_1021_acscatal_4c00924 crossref_primary_10_1002_adfm_202404497 crossref_primary_10_1039_D4CC05991C crossref_primary_10_1002_adma_202407654 crossref_primary_10_1039_D3CE00274H crossref_primary_10_1002_elan_202400041 crossref_primary_10_1016_j_jhazmat_2024_134175 crossref_primary_10_1039_D4NR03421J crossref_primary_10_1016_j_aca_2023_341362 crossref_primary_10_1002_smll_202402655 crossref_primary_10_1002_smll_202400033 crossref_primary_10_1021_acs_analchem_4c01369 crossref_primary_10_1021_acs_analchem_3c01185 crossref_primary_10_1002_adma_202503030 crossref_primary_10_1021_acs_analchem_4c04755 crossref_primary_10_1021_acsanm_3c01359 crossref_primary_10_1021_acs_analchem_2c05797 crossref_primary_10_1021_acsanm_3c04406 crossref_primary_10_1002_adfm_202414037 crossref_primary_10_1039_D3SD00105A crossref_primary_10_1002_cjoc_202400206 crossref_primary_10_1039_D4TC02820A crossref_primary_10_1002_adfm_202500235 crossref_primary_10_1002_adma_202306252 crossref_primary_10_1002_adfm_202408186 crossref_primary_10_1039_D3AN01225E |
Cites_doi | 10.1002/adom.202102687 10.1002/anie.201801378 10.1002/adfm.200601239 10.1021/acs.accounts.2c00027 10.1021/acs.chemrev.0c01029 10.1002/anie.201913231 10.1038/natrevmats.2017.86 10.1021/jacs.2c00735 10.1021/acs.analchem.0c02341 10.1002/adma.201901179 10.1021/acs.analchem.1c00444 10.1039/C7CS00058H 10.1039/C4CS00228H 10.1038/natrevmats.2016.75 10.1039/D0CS00955E 10.1002/advs.202003416 10.1038/s41467-020-16800-w 10.1021/acs.chemrev.9b00766 10.1002/anie.202111608 10.1016/j.bios.2022.114224 10.1126/science.1230444 10.1002/adma.202202972 10.1038/s41929-018-0117-2 10.1021/jacs.7b01794 10.1002/ange.201710418 10.1021/acs.analchem.9b00352 10.1021/ac203184g 10.1021/acssensors.2c01493 10.1021/cr500100j 10.1038/s41563-022-01239-9 10.1039/C7MH00818J 10.1002/adma.202000270 10.1016/j.bios.2021.113958 10.1002/adma.201103334 10.1021/jacs.1c05584 10.1002/adma.202202287 10.1002/adma.201303080 10.1126/sciadv.abg8387 10.1002/adfm.202109046 10.1021/acs.analchem.7b04862 10.1002/adhm.201800536 10.1021/ja513058h |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202211277 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202211277 ADFM202211277 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22174063; U1904195 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3177-7c81028644c342466f43281a9cb02c84981e381cb7c602ea022981be9f8f6a093 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 03:00:07 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Tue Jul 01 00:30:37 EDT 2025 Wed Jan 22 16:23:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3177-7c81028644c342466f43281a9cb02c84981e381cb7c602ea022981be9f8f6a093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6154-4859 |
PQID | 2777141375 |
PQPubID | 2045204 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2777141375 crossref_citationtrail_10_1002_adfm_202211277 crossref_primary_10_1002_adfm_202211277 wiley_primary_10_1002_adfm_202211277_ADFM202211277 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 17 2021; 8 2021; 7 2019; 91 2013; 25 2017; 2 2019; 31 2020; 120 2017; 46 2020; 59 2022; 21 2013; 341 2020; 11 2021; 143 2020; 32 2021; 121 2021; 50 2021; 93 2014; 114 2017; 139 2022; 144 2018; 7 2018; 3 2018; 5 2015; 137 2018; 1 2022; 7 2020; 92 2015; 44 2022; 34 2018; 90 2022; 32 2022; 209 2022; 10 2022; 55 2012; 24 2021; 60 2022; 201 2017; 129 2018; 57 2012; 84 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 209 year: 2022 publication-title: Biosens. Bioelectron. – volume: 84 start-page: 917 year: 2012 publication-title: Anal. Chem. – volume: 5 start-page: 93 year: 2018 publication-title: Mater. Horiz. – volume: 201 year: 2022 publication-title: Biosens. Bioelectron. – volume: 120 start-page: 8536 year: 2020 publication-title: Chem. Rev. – volume: 129 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 3078 year: 2020 publication-title: Nat. Commun. – volume: 90 start-page: 2341 year: 2018 publication-title: Anal. Chem. – volume: 144 start-page: 4642 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 91 start-page: 3800 year: 2019 publication-title: Anal. Chem. – volume: 92 start-page: 8670 year: 2020 publication-title: Anal. Chem. – volume: 114 start-page: 7421 year: 2014 publication-title: Chem. Rev. – volume: 46 start-page: 3386 year: 2017 publication-title: Chem. Soc. Rev. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem Int. Ed. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 25 start-page: 7010 year: 2013 publication-title: Adv. Mater. – volume: 3 year: 2018 publication-title: Nat. Rev. Mater. – volume: 50 start-page: 4484 year: 2021 publication-title: Chem. Soc. Rev. – volume: 341 year: 2013 publication-title: Science – volume: 21 start-page: 564 year: 2022 publication-title: Nat. Mater. – volume: 121 start-page: 1077 year: 2021 publication-title: Chem. Rev. – volume: 137 start-page: 4276 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 44 start-page: 729 year: 2015 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 34 year: 2012 publication-title: Adv. Mater. – volume: 55 start-page: 1047 year: 2022 publication-title: Acc. Chem. Res. – volume: 17 start-page: 3538 year: 2007 publication-title: Adv. Funct. Mater. – volume: 93 start-page: 5001 year: 2021 publication-title: Anal. Chem. – volume: 7 start-page: 2788 year: 2022 publication-title: ACS Sens. – volume: 139 start-page: 6530 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 689 year: 2018 publication-title: Nat. Catal. – volume: 57 start-page: 5725 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 59 start-page: 2867 year: 2020 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_8_17_1 doi: 10.1002/adom.202102687 – ident: e_1_2_8_34_1 doi: 10.1002/anie.201801378 – ident: e_1_2_8_42_1 doi: 10.1002/adfm.200601239 – ident: e_1_2_8_24_1 doi: 10.1021/acs.accounts.2c00027 – ident: e_1_2_8_28_1 doi: 10.1021/acs.chemrev.0c01029 – ident: e_1_2_8_30_1 doi: 10.1002/anie.201913231 – ident: e_1_2_8_1_1 doi: 10.1038/natrevmats.2017.86 – ident: e_1_2_8_4_1 doi: 10.1021/jacs.2c00735 – ident: e_1_2_8_11_1 doi: 10.1021/acs.analchem.0c02341 – ident: e_1_2_8_33_1 doi: 10.1002/adma.201901179 – ident: e_1_2_8_38_1 doi: 10.1021/acs.analchem.1c00444 – ident: e_1_2_8_35_1 doi: 10.1039/C7CS00058H – ident: e_1_2_8_21_1 doi: 10.1039/C4CS00228H – ident: e_1_2_8_22_1 doi: 10.1038/natrevmats.2016.75 – ident: e_1_2_8_27_1 doi: 10.1039/D0CS00955E – ident: e_1_2_8_23_1 doi: 10.1002/advs.202003416 – ident: e_1_2_8_39_1 doi: 10.1038/s41467-020-16800-w – ident: e_1_2_8_26_1 doi: 10.1021/acs.chemrev.9b00766 – ident: e_1_2_8_8_1 doi: 10.1002/anie.202111608 – ident: e_1_2_8_16_1 doi: 10.1016/j.bios.2022.114224 – ident: e_1_2_8_25_1 doi: 10.1126/science.1230444 – ident: e_1_2_8_3_1 doi: 10.1002/adma.202202972 – ident: e_1_2_8_32_1 doi: 10.1038/s41929-018-0117-2 – ident: e_1_2_8_29_1 doi: 10.1021/jacs.7b01794 – ident: e_1_2_8_31_1 doi: 10.1002/ange.201710418 – ident: e_1_2_8_40_1 doi: 10.1021/acs.analchem.9b00352 – ident: e_1_2_8_37_1 doi: 10.1021/ac203184g – ident: e_1_2_8_15_1 doi: 10.1021/acssensors.2c01493 – ident: e_1_2_8_7_1 doi: 10.1021/cr500100j – ident: e_1_2_8_6_1 doi: 10.1038/s41563-022-01239-9 – ident: e_1_2_8_18_1 doi: 10.1039/C7MH00818J – ident: e_1_2_8_19_1 doi: 10.1002/adma.202000270 – ident: e_1_2_8_14_1 doi: 10.1016/j.bios.2021.113958 – ident: e_1_2_8_2_1 doi: 10.1002/adma.201103334 – ident: e_1_2_8_10_1 doi: 10.1021/jacs.1c05584 – ident: e_1_2_8_9_1 doi: 10.1002/adma.202202287 – ident: e_1_2_8_20_1 doi: 10.1002/adma.201303080 – ident: e_1_2_8_5_1 doi: 10.1126/sciadv.abg8387 – ident: e_1_2_8_12_1 doi: 10.1002/adfm.202109046 – ident: e_1_2_8_41_1 doi: 10.1021/acs.analchem.7b04862 – ident: e_1_2_8_13_1 doi: 10.1002/adhm.201800536 – ident: e_1_2_8_36_1 doi: 10.1021/ja513058h |
SSID | ssj0017734 |
Score | 2.6027288 |
Snippet | Incorporating biomolecules into metal‐organic frameworks (MOFs) as exoskeletons to form biomolecules‐MOFs biohybrids has attracted great attention as an... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | biocatalytic precipitation Biomolecules Biosensors Exoskeletons Hydrogen peroxide Light Materials science Metal-organic frameworks organic electrochemical transistor Peroxidase photoelectrochemical transistors Semiconductor devices Tissue engineering Transistors Zeolites |
Title | Biomolecules‐Incorporated Metal‐Organic Frameworks Gated Light‐Sensitive Organic Photoelectrochemical Transistor for Biodetection |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202211277 https://www.proquest.com/docview/2777141375 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29btswECYKZ2mGpn9BnboBhwKdZEuUTEqjG9dNArso6hjwJpAUhQRJ5aKWl04dM-YR8ix5lDxJ7khJtgsEBdpRh6MkkkfeR-nuO0LehyHWNeLGCzLGPaTs9mKjpKdM1I9NLKRSmJw8-cKPZ9HpvD_fyOJ3_BDNBzdcGXa_xgUu1bK3Jg2VWY6Z5AxOMExgOjkGbCEq-tbwRwVCuN_KPMAAr2Beszb6rLfdfNsrraHmJmC1Hme0R2T9ri7Q5LK7KlVX__qDxvF_OvOcPKvgKB04-3lBnpjiJdndICl8Ra4_Xiy-uyK6Znn_--YEmS8t-7HJ6MQAeAehS-nUdFTHei3pZ6swxsM_KEwxUB63Vlqp3t1-PV-Ui6oMj654C6j1nZa6hAKcpvDszJQ2XKx4TWajT2dHx15Vv8HTgEqEJ3SM8AUQlw4jFnGeRyGLA5lo5TMdR0kcGAAMWgkNBmMkdB9EyiR5nHPpJ-E-aRWLwrwhNMkVSwB5ZFr6kQ5C5Qthcs15xnOwKdkmXj1_qa7IzbHGxlXqaJlZiiOcNiPcJh8a_R-O1uNRzU5tDmm1vJcpyEUA7l_024TZef3LXdLBcDRprg7-pdFb8hRL3buI8Q5plT9X5h0AolIdkp3BcDKeHlrjfwB7oAmf |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4hOFAOpdAitqWtD6CeAhsnaycHDrTb7W7ZRYgfaW9p7DhqVditukEITj322EfoK_QV-gh9hD5JZ-wk_EgICYlDjxlNnMSe8cw4M98ArAYB9TUSxvMzLjyC7PYio1JPmbAVmUimSlFx8mBHdA_D98PWcAp-VbUwDh-iPnAjzbD7NSk4HUhvXKCGpllOpeQcQxguZZlXuW3OTjFqm2z22rjEa5x33h686XplYwFPo7mUntQR2VV0BXQQ8lCIPAx45KexVk2uozCOfIOWTCup8UtMis9AkjJxHuUitfhLuOvPUBtxgutv79WIVTi6-5EtfEop84cVTmSTb1x936t28MK5vewiWxvXmYc_1ey41JbP6yeFWtfn14Aj_6vpewQPS4-bbTkVWYApM1qEuUs4jI_h--tP42PXJ9hM_n770SNwTwvwbDI2MBifINFVrWrWqdLZJuydZejT-QYy7FMtAFkPVrL-_rn7cVyMy05DuoRmYNY9sOgsDCMGhs_OTGEz4kZP4PBepmIJpkfjkVkGFueKx-hcZTpthtoPVFNKk2shMpGj2qQN8CqBSXSJ305tRI4ShzzNE1rRpF7RBryq-b845JIbOVcq-UvKHWySIF366OHIVgO4FaRbRkm22p1BffX0Lje9hNnuwaCf9Hs728_gAdIDlyC_AtPF1xPzHP2_Qr2wGsfgw33L6D_i92H6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4hkFA5QGlBXUrBh1acAomTtZMDB9olsMAiVEDaW4gdR0XALuoGVeXEkWMfgUfgGfoGvAJPwthOwo-EKlXiwDGjiZPYM54ZZ-YbgM--r_saMeV4GWWOhux2QiVSR6igGaqQp0Lo4uTONlvfDza6ze4QXFe1MBYfoj5w05ph9mut4KdZvnQPGppmua4kpxjBUM7LtMpN9fsXBm2D5XYLV_gLpfHq3rd1p-wr4Ei0ltzhMtRmFT0B6Qc0YCwPfBp6aSSFS2UYRKGn0JBJwSV-iErxGUgSKsrDnKUGfgk3_ZGAuZFuFtH6XgNW4ej2PzbzdEaZ161gIl269Ph9H5vBe9_2oYdsTFw8ATfV5NjMlqPFs0IsyvMnuJGvafbewnjpb5MVqyCTMKR672DsAQrje7j8etg_sV2C1eD24k9bQ3saeGeVkY7C6ASJtmZVkrhKZhuQNcOwpU83kGFXVwJo20FK1r9XOz_6Rb_sMyRLYAZinAODzUIwXiD47EwVJh-uNwX7LzIV0zDc6_fUByBRLmiErlUmUzeQni9czlUuGctYjkqTNsCp5CWRJXq7biJynFjcaZroFU3qFW3AQs1_anFLnuWcrcQvKfevQYJ07qF_w5sNoEaO_jFKstKKO_XVzP_cNA-jO6042Wpvb36EN0j2bXb8LAwXP8_UJ3T-CjFn9I3AwUuL6B0-82Cp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomolecules%E2%80%90Incorporated+Metal%E2%80%90Organic+Frameworks+Gated+Light%E2%80%90Sensitive+Organic%C2%A0Photoelectrochemical+Transistor+for+Biodetection&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Cheng%E2%80%90Jie&rft.au=Hu%2C+Jin&rft.au=Gao%2C+Ge&rft.au=Chen%2C+Jia%E2%80%90Hao&rft.date=2023-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202211277&rft.externalDBID=10.1002%252Fadfm.202211277&rft.externalDocID=ADFM202211277 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |