Regulated Perovskite Crystallization for Efficient Blue Light‐Emitting Diodes via Interfacial Molecular Network

Metal halide perovskite light‐emitting diodes (PeLEDs) are gaining increasing attention as a promising candidate for the new‐generation display technology. Although tremendous progress has been witnessed in this field, the device performance of blue PeLEDs still lags far behind that of the green and...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 36
Main Authors Wang, Lu, Su, Zhen‐Huang, Shen, Yang, Feng, Shi‐Chi, Xie, Feng‐Ming, Zhang, Kai, Meng, Ke‐Fan, Gao, Xingyu, Tang, Jian‐Xin, Li, Yan‐Qing
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal halide perovskite light‐emitting diodes (PeLEDs) are gaining increasing attention as a promising candidate for the new‐generation display technology. Although tremendous progress has been witnessed in this field, the device performance of blue PeLEDs still lags far behind that of the green and red counterparts. In this work, an effective interfacial engineering is employed to boost the radiative recombination of blue perovskite film by introducing a multifunctional tetraethyl orthosilicate (TEOS) network on the grain‐growth substrate. Benefitting from the strong interaction between the TEOS molecule and perovskite nuclei, the perovskite crystallization dynamics are effectively regulated, contributing to significantly improved emitting film with uniformly distributed halogen and concentrated low‐dimensional domain. Additionally, the TEOS network can distinctly passivate the crystal defects at the buried perovskite interface owing to its adequate electron‐donating sites. Consequently, the target blue PeLEDs featuring a stable emission peak at 488 nm exhibit a champion external quantum efficiency of 17.3%, which is among the highest values to date. The results demonstrate the critical role of the surface molecular characteristics of the grain‐growth substrate in regulating the mixed‐halide blue perovskite crystallization. A multifunctional interface engineering by constructing a tetraethyl orthosilicate molecular network onto the grain‐growth substrate is developed to comprehensively regulate the crystallization dynamics and passivate the buried surface defects of mixed‐halide blue perovskite films, leading to spectrally stable and efficient blue light‐emitting diodes with an external quantum efficiency of 17.3%.
AbstractList Metal halide perovskite light‐emitting diodes (PeLEDs) are gaining increasing attention as a promising candidate for the new‐generation display technology. Although tremendous progress has been witnessed in this field, the device performance of blue PeLEDs still lags far behind that of the green and red counterparts. In this work, an effective interfacial engineering is employed to boost the radiative recombination of blue perovskite film by introducing a multifunctional tetraethyl orthosilicate (TEOS) network on the grain‐growth substrate. Benefitting from the strong interaction between the TEOS molecule and perovskite nuclei, the perovskite crystallization dynamics are effectively regulated, contributing to significantly improved emitting film with uniformly distributed halogen and concentrated low‐dimensional domain. Additionally, the TEOS network can distinctly passivate the crystal defects at the buried perovskite interface owing to its adequate electron‐donating sites. Consequently, the target blue PeLEDs featuring a stable emission peak at 488 nm exhibit a champion external quantum efficiency of 17.3%, which is among the highest values to date. The results demonstrate the critical role of the surface molecular characteristics of the grain‐growth substrate in regulating the mixed‐halide blue perovskite crystallization.
Metal halide perovskite light‐emitting diodes (PeLEDs) are gaining increasing attention as a promising candidate for the new‐generation display technology. Although tremendous progress has been witnessed in this field, the device performance of blue PeLEDs still lags far behind that of the green and red counterparts. In this work, an effective interfacial engineering is employed to boost the radiative recombination of blue perovskite film by introducing a multifunctional tetraethyl orthosilicate (TEOS) network on the grain‐growth substrate. Benefitting from the strong interaction between the TEOS molecule and perovskite nuclei, the perovskite crystallization dynamics are effectively regulated, contributing to significantly improved emitting film with uniformly distributed halogen and concentrated low‐dimensional domain. Additionally, the TEOS network can distinctly passivate the crystal defects at the buried perovskite interface owing to its adequate electron‐donating sites. Consequently, the target blue PeLEDs featuring a stable emission peak at 488 nm exhibit a champion external quantum efficiency of 17.3%, which is among the highest values to date. The results demonstrate the critical role of the surface molecular characteristics of the grain‐growth substrate in regulating the mixed‐halide blue perovskite crystallization.
Metal halide perovskite light‐emitting diodes (PeLEDs) are gaining increasing attention as a promising candidate for the new‐generation display technology. Although tremendous progress has been witnessed in this field, the device performance of blue PeLEDs still lags far behind that of the green and red counterparts. In this work, an effective interfacial engineering is employed to boost the radiative recombination of blue perovskite film by introducing a multifunctional tetraethyl orthosilicate (TEOS) network on the grain‐growth substrate. Benefitting from the strong interaction between the TEOS molecule and perovskite nuclei, the perovskite crystallization dynamics are effectively regulated, contributing to significantly improved emitting film with uniformly distributed halogen and concentrated low‐dimensional domain. Additionally, the TEOS network can distinctly passivate the crystal defects at the buried perovskite interface owing to its adequate electron‐donating sites. Consequently, the target blue PeLEDs featuring a stable emission peak at 488 nm exhibit a champion external quantum efficiency of 17.3%, which is among the highest values to date. The results demonstrate the critical role of the surface molecular characteristics of the grain‐growth substrate in regulating the mixed‐halide blue perovskite crystallization. A multifunctional interface engineering by constructing a tetraethyl orthosilicate molecular network onto the grain‐growth substrate is developed to comprehensively regulate the crystallization dynamics and passivate the buried surface defects of mixed‐halide blue perovskite films, leading to spectrally stable and efficient blue light‐emitting diodes with an external quantum efficiency of 17.3%.
Author Su, Zhen‐Huang
Shen, Yang
Feng, Shi‐Chi
Gao, Xingyu
Xie, Feng‐Ming
Li, Yan‐Qing
Wang, Lu
Meng, Ke‐Fan
Tang, Jian‐Xin
Zhang, Kai
Author_xml – sequence: 1
  givenname: Lu
  surname: Wang
  fullname: Wang, Lu
  organization: Soochow University
– sequence: 2
  givenname: Zhen‐Huang
  surname: Su
  fullname: Su, Zhen‐Huang
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Yang
  surname: Shen
  fullname: Shen, Yang
  email: yangshen@suda.edu.cn
  organization: Macau University of Science and Technology
– sequence: 4
  givenname: Shi‐Chi
  surname: Feng
  fullname: Feng, Shi‐Chi
  organization: Soochow University
– sequence: 5
  givenname: Feng‐Ming
  surname: Xie
  fullname: Xie, Feng‐Ming
  organization: Soochow University
– sequence: 6
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
  organization: Macau University of Science and Technology
– sequence: 7
  givenname: Ke‐Fan
  surname: Meng
  fullname: Meng, Ke‐Fan
  organization: Soochow University
– sequence: 8
  givenname: Xingyu
  surname: Gao
  fullname: Gao, Xingyu
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Jian‐Xin
  orcidid: 0000-0002-6813-0448
  surname: Tang
  fullname: Tang, Jian‐Xin
  email: jxtang@suda.edu.cn, jxtang@must.edu.mo
  organization: Macau University of Science and Technology
– sequence: 10
  givenname: Yan‐Qing
  surname: Li
  fullname: Li, Yan‐Qing
  email: yqli@phy.ecnu.edu.cn
  organization: East China Normal University
BookMark eNqFkM9OAjEQhxuDiaJePTfxDLbdZbs9Kn_UBNQYTbxtSplipWyhLRA8-Qg-o0_iIkYTE-Np5jDf_Ga-OqqVrgSEjilpUkLYqRzpaZMRlhLKBN9B-zSjWSMhLK999_RxD9VDeCaEcp6k-2h-B-OFlRFG-Ba8W4aJiYDbfh2itNa8yGhcibXzuKu1UQbKiM_tAnDfjJ_i--tbd2piNOUYd4wbQcBLI_FVGcFrqYy0eOAsqCrB42uIK-cnh2hXSxvg6KseoIde97592ejfXFy1z_oNlVS3NTgRqQLCudCUpypXOeXZUAOrPtQiyXVrRFIlKKR8yIgeEqpEK9OJ5jrJhGglB-hku3fm3XwBIRbPbuHLKrJIKBGCMkbzaqq5nVLeheBBFzNvptKvC0qKjdZio7X41loB6S9AmfhpKXpp7N-Y2GIrY2H9T0hx1ukNftgP1h6Q6w
CitedBy_id crossref_primary_10_1002_smll_202404573
crossref_primary_10_1002_adma_202415648
crossref_primary_10_1002_adom_202401955
crossref_primary_10_1002_solr_202400652
crossref_primary_10_1002_ange_202419746
crossref_primary_10_1002_anie_202419746
crossref_primary_10_1021_acsami_4c21188
crossref_primary_10_1038_s41377_025_01768_3
crossref_primary_10_1002_adfm_202412894
crossref_primary_10_1021_acsphotonics_4c01767
crossref_primary_10_1021_acsanm_4c06141
Cites_doi 10.1002/adma.201904319
10.1126/sciadv.abq2321
10.1038/s41467-019-09011-5
10.1002/adma.202208078
10.1126/science.aad1818
10.1002/adma.201403751
10.1038/s41377-022-00761-4
10.1038/s41586-018-0575-3
10.1126/science.aaa2725
10.1038/s41928-023-00955-7
10.1038/s41566-018-0260-y
10.1002/adma.202105290
10.1038/s41586-022-05304-w
10.1126/science.aaa5760
10.1021/acsnano.6b02683
10.1002/adma.201805244
10.1002/adma.202302283
10.1002/adfm.202000026
10.1126/science.1243982
10.1038/nnano.2014.149
10.1002/adma.201800251
10.1002/adfm.201700338
10.1002/adma.202103640
10.1002/adma.201801996
10.1038/s41467-018-05909-8
10.1021/acsenergylett.1c02081
10.1021/jacs.8b11035
10.1002/adma.202302161
10.1038/ncomms15640
10.1002/adma.201600669
10.1002/adma.202205092
10.1002/adfm.201902008
10.1002/adfm.202301425
10.1126/science.aaa9272
10.1021/acsnano.0c03765
10.1038/s41467-021-25407-8
10.1126/science.aah5557
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202401297
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202401297
ADFM202401297
Genre article
GrantInformation_xml – fundername: Science and Technology Development Fund (FDCT), Macao SAR
  funderid: 0018/2022/A1
– fundername: Collaborative Innovation Center of Suzhou Nano Science & Technology
– fundername: Science and Technology Innovation Plan Of Shanghai Science and Technology Commission
  funderid: 22520760600
– fundername: Shanghai Pilot Program for Basic Research‐Chinese Academy of Science, Shanghai Branch
  funderid: JCYJ‐SHFY‐2022‐002
– fundername: National Key R&D Program of China
  funderid: 2022YFE0108900
– fundername: National Natural Science Foundation of China
  funderid: 62320106004; 62274117; 62075061; 12075303
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3177-7094ce0779f174c8c8176bfe2202f938f5d04c91e47b20fb01c956f3f7f369953
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 22:40:23 EDT 2025
Thu Apr 24 22:57:14 EDT 2025
Tue Jul 01 00:31:00 EDT 2025
Wed Jan 22 17:14:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-7094ce0779f174c8c8176bfe2202f938f5d04c91e47b20fb01c956f3f7f369953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6813-0448
PQID 3109912218
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_3109912218
crossref_primary_10_1002_adfm_202401297
crossref_citationtrail_10_1002_adfm_202401297
wiley_primary_10_1002_adfm_202401297_ADFM202401297
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 562
2017; 8
2023; 35
2018; 140
2023; 33
2015; 347
2019; 31
2023; 6
2019; 10
2017; 27
2016; 10
2013; 342
2020; 14
2015; 348
2022; 611
2015; 350
2023; 62
2018; 9
2015; 27
2021; 12
2021; 33
2020; 30
2022; 7
2022; 8
2022; 34
2016; 354
2019; 29
2018; 30
2022; 11
2014; 9
2018; 12
2016; 28
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Wang B. (e_1_2_8_21_1) 2023; 62
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 350
  start-page: 1222
  year: 2015
  publication-title: Science
– volume: 12
  start-page: 5081
  year: 2021
  publication-title: Nat. Commun.
– volume: 347
  start-page: 519
  year: 2015
  publication-title: Science
– volume: 10
  start-page: 6897
  year: 2016
  publication-title: ACS Nano
– volume: 562
  start-page: 245
  year: 2018
  publication-title: Nature
– volume: 12
  start-page: 681
  year: 2018
  publication-title: Nat. Photonics.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1248
  year: 2015
  publication-title: Adv. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 6804
  year: 2016
  publication-title: Adv. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 11
  start-page: 69
  year: 2022
  publication-title: Light Sci. Appl.
– volume: 6
  start-page: 360
  year: 2023
  publication-title: Nat. Electron.
– volume: 348
  start-page: 1234
  year: 2015
  publication-title: Science
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  start-page: 70
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 687
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 354
  start-page: 206
  year: 2016
  publication-title: Science
– volume: 8
  start-page: 2321
  year: 2022
  publication-title: Sci. Adv.
– volume: 10
  start-page: 1027
  year: 2019
  publication-title: Nat. Commun.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 347
  start-page: 967
  year: 2015
  publication-title: Science
– volume: 611
  start-page: 688
  year: 2022
  publication-title: Nature
– volume: 9
  start-page: 3541
  year: 2018
  publication-title: Nat. Commun.
– volume: 62
  year: 2023
  ident: e_1_2_8_21_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.201904319
– ident: e_1_2_8_27_1
  doi: 10.1126/sciadv.abq2321
– ident: e_1_2_8_8_1
  doi: 10.1038/s41467-019-09011-5
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.202208078
– ident: e_1_2_8_20_1
  doi: 10.1126/science.aad1818
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.201403751
– ident: e_1_2_8_28_1
  doi: 10.1038/s41377-022-00761-4
– ident: e_1_2_8_16_1
  doi: 10.1038/s41586-018-0575-3
– ident: e_1_2_8_3_1
  doi: 10.1126/science.aaa2725
– ident: e_1_2_8_9_1
  doi: 10.1038/s41928-023-00955-7
– ident: e_1_2_8_4_1
  doi: 10.1038/s41566-018-0260-y
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.202105290
– ident: e_1_2_8_6_1
  doi: 10.1038/s41586-022-05304-w
– ident: e_1_2_8_32_1
  doi: 10.1126/science.aaa5760
– ident: e_1_2_8_13_1
  doi: 10.1021/acsnano.6b02683
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.201805244
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.202302283
– ident: e_1_2_8_11_1
  doi: 10.1002/adfm.202000026
– ident: e_1_2_8_2_1
  doi: 10.1126/science.1243982
– ident: e_1_2_8_1_1
  doi: 10.1038/nnano.2014.149
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.201800251
– ident: e_1_2_8_15_1
  doi: 10.1002/adfm.201700338
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.202103640
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201801996
– ident: e_1_2_8_30_1
  doi: 10.1038/s41467-018-05909-8
– ident: e_1_2_8_35_1
  doi: 10.1021/acsenergylett.1c02081
– ident: e_1_2_8_14_1
  doi: 10.1021/jacs.8b11035
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.202302161
– ident: e_1_2_8_29_1
  doi: 10.1038/ncomms15640
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.201600669
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.202205092
– ident: e_1_2_8_18_1
  doi: 10.1002/adfm.201902008
– ident: e_1_2_8_25_1
  doi: 10.1002/adfm.202301425
– ident: e_1_2_8_39_1
  doi: 10.1126/science.aaa9272
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.202302161
– ident: e_1_2_8_38_1
  doi: 10.1021/acsnano.0c03765
– ident: e_1_2_8_7_1
  doi: 10.1038/s41467-021-25407-8
– ident: e_1_2_8_26_1
  doi: 10.1002/adfm.201700338
– ident: e_1_2_8_40_1
  doi: 10.1126/science.aah5557
SSID ssj0017734
Score 2.5363204
Snippet Metal halide perovskite light‐emitting diodes (PeLEDs) are gaining increasing attention as a promising candidate for the new‐generation display technology....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Crystal defects
Crystallization
crystallization regulation
defect passivation
Display devices
interfacial engineering
Light emitting diodes
Metal halides
perovskite light‐emitting diodes
Perovskites
phase arrangement
Quantum efficiency
Radiative recombination
Substrates
Tetraethyl orthosilicate
Title Regulated Perovskite Crystallization for Efficient Blue Light‐Emitting Diodes via Interfacial Molecular Network
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202401297
https://www.proquest.com/docview/3109912218
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWsgfBU9q8NznWPijSFKkWegvJZgeKsdWmLejJn-Bv9Je4m03SVhBBLyGB3ZDd2c18MzvzDUJXDlAAk3LrhCsnxbQiqoQgjgu5KgQghq2lNZa8vt0dmrcja7SWxS_5IQqHm9gZ6f9abPAgTOor0tAgApFJzjUSV1kinVwEbAlUNCj4ozRC5LGyrYkAL22Uszaqen2z-6ZWWkHNdcCaapzOPgryb5WBJo-1xTys0bdvNI7_GcwB2svgKG7I9XOIttjkCO2ukRQeo5eBLFfPInzHZtNlIvy9uDl75bgyjrM0TsyxL26ndBRci-GbeMFwT9j9n-8f7adxGlyNW-NpxBK8HAc4dURCIPz12Msr9OK-jEk_QcNO-6HZVbJCDQrlEiYK4TYiZSohLnADhzrU0YgdAtP5iMA1HLAi1aSuxkwS6iqEqka5WQYGEDBs17WMU1SaTCfsDGE7Uu2I6CojrmOCycTFogwiEvIeqlNGSi4on2Ys5qKYRuxL_mXdF1PpF1NZRtdF-2fJ3_Fjy0oudz_bx4kveFNdTec4qIz0VIC_vMVvtDpe8XT-l04XaEfcy0C2CirNZwt2yZHPPKyi7UbL691X01X-BTTX_XQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThsxEB4hOJQeKAUqQoH60IrTwq6zWe8eegCSKJQkQgik3Jas14MiQgL5AdFTH6Gvwqv0EfokzOwfUKmqhMShl5V2ZVtee-z5Zjz-BuCzjxrR1WSdkHKy3EqsrQj5uJBUIaIqe06SY6nV9hqn7rdOpTMD9_ldmJQfonC48cpI9mte4OyQ3nlkDe3GyFfJSSWRzlJZXOWhubslq2389aBKU_xFynrtZL9hZYkFLE09UpYim0YbW6kACZBrX_uO8iI0klrDoOxjJbZdHTjGVZG0MbIdTWYEllFh2QsCThRBu_4cpxFnuv7qccFYRa2nB9mewyFlTifnibTlzvP-PteDj-D2KUROdFz9HfzKRycNbbnYnk6ibf39D-LI_2r4FmEhQ9xiN10i72HGDJbg7RMexmW4PjbnnMbMxOLIjIY3Y3Zpi_3RHUHnfj-7qSoI3otawrhBilrs9adGNNm18fvHz9plL4kfF9XeMDZjcdPrisTXil0-khCtPAmxaKdh9ytw-ir__AFmB8OBWQXhxbYXK2kbFfguuoYfFW0wVhHVsP0SWLlkhDojaud8If0wpZiWIU9dWExdCbaK8lcpRclfS67nghZmW9U4ZGrYwJEE9UogE4n5RyvhbrXeKt7WXlLpE7xpnLSaYfOgffgR5vl7Gre3DrOT0dRsENCbRJvJ0hJw9trC-ACMyldV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThsxEB5FIFX0UFpKRQqlPoB6WvA6m_XuoQdgE0EhEUIg5bZkbU8VNU1ofkD01Efoo_AqfYU-CeP9C1RCSEgcellpV7bltceeb8bjbwA2AlSIniLrhJST49W1chK0x4WkChFlzXfTHEuttr9_5n3p1DsVuCnuwmT8EKXDza6MdL-2C_xC4_aMNLSr0d4kJ41EKkvmYZWH5vqKjLbx54OIZnhTiGbjdG_fyfMKOIo6JB1JJo0yXMoQCY-rQAWu9BM0glrDsBZgXXNPha7xZCI4JtxVZEVgDSXW_DC0eSJo05_3fB7aZBHRSUlYRa1n59i-ayPK3E5BE8nF9v3-3leDM2x7FyGnKq65CH-KwckiW75tTSfJlvr5D2_k_zR6r-FVjrfZTrZA3kDFDJbg5R0Wxrfw48R8tUnMjGbHZjS8HFuHNtsbXRNw7vfze6qMwD1rpHwbpKbZbn9q2JF1bPz99bvxvZdGj7OoN9RmzC57XZZ6WrFrDyRYq0hBzNpZ0P0ynD3LP7-DucFwYFaA-Zr7WgpuZBh46Bn7qCuDWiZUgwdVcArBiFVO026zhfTjjGBaxHbq4nLqqvCpLH-REZQ8WHKtkLM436jGsSWGDV1BQK8KIhWYR1qJd6Jmq3x7_5RKH-HFcdSMjw7ah6uwYD9nQXtrMDcZTc0HQnmTZD1dWAzOn1sWbwEJpFYE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulated+Perovskite+Crystallization+for+Efficient+Blue+Light%E2%80%90Emitting+Diodes+via+Interfacial+Molecular+Network&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Lu&rft.au=Zhen%E2%80%90Huang+Su&rft.au=Shen%2C+Yang&rft.au=Shi%E2%80%90Chi+Feng&rft.date=2024-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=36&rft_id=info:doi/10.1002%2Fadfm.202401297&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon