Regulated Perovskite Crystallization for Efficient Blue Light‐Emitting Diodes via Interfacial Molecular Network
Metal halide perovskite light‐emitting diodes (PeLEDs) are gaining increasing attention as a promising candidate for the new‐generation display technology. Although tremendous progress has been witnessed in this field, the device performance of blue PeLEDs still lags far behind that of the green and...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 36 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal halide perovskite light‐emitting diodes (PeLEDs) are gaining increasing attention as a promising candidate for the new‐generation display technology. Although tremendous progress has been witnessed in this field, the device performance of blue PeLEDs still lags far behind that of the green and red counterparts. In this work, an effective interfacial engineering is employed to boost the radiative recombination of blue perovskite film by introducing a multifunctional tetraethyl orthosilicate (TEOS) network on the grain‐growth substrate. Benefitting from the strong interaction between the TEOS molecule and perovskite nuclei, the perovskite crystallization dynamics are effectively regulated, contributing to significantly improved emitting film with uniformly distributed halogen and concentrated low‐dimensional domain. Additionally, the TEOS network can distinctly passivate the crystal defects at the buried perovskite interface owing to its adequate electron‐donating sites. Consequently, the target blue PeLEDs featuring a stable emission peak at 488 nm exhibit a champion external quantum efficiency of 17.3%, which is among the highest values to date. The results demonstrate the critical role of the surface molecular characteristics of the grain‐growth substrate in regulating the mixed‐halide blue perovskite crystallization.
A multifunctional interface engineering by constructing a tetraethyl orthosilicate molecular network onto the grain‐growth substrate is developed to comprehensively regulate the crystallization dynamics and passivate the buried surface defects of mixed‐halide blue perovskite films, leading to spectrally stable and efficient blue light‐emitting diodes with an external quantum efficiency of 17.3%. |
---|---|
AbstractList | Metal halide perovskite light‐emitting diodes (PeLEDs) are gaining increasing attention as a promising candidate for the new‐generation display technology. Although tremendous progress has been witnessed in this field, the device performance of blue PeLEDs still lags far behind that of the green and red counterparts. In this work, an effective interfacial engineering is employed to boost the radiative recombination of blue perovskite film by introducing a multifunctional tetraethyl orthosilicate (TEOS) network on the grain‐growth substrate. Benefitting from the strong interaction between the TEOS molecule and perovskite nuclei, the perovskite crystallization dynamics are effectively regulated, contributing to significantly improved emitting film with uniformly distributed halogen and concentrated low‐dimensional domain. Additionally, the TEOS network can distinctly passivate the crystal defects at the buried perovskite interface owing to its adequate electron‐donating sites. Consequently, the target blue PeLEDs featuring a stable emission peak at 488 nm exhibit a champion external quantum efficiency of 17.3%, which is among the highest values to date. The results demonstrate the critical role of the surface molecular characteristics of the grain‐growth substrate in regulating the mixed‐halide blue perovskite crystallization. Metal halide perovskite light‐emitting diodes (PeLEDs) are gaining increasing attention as a promising candidate for the new‐generation display technology. Although tremendous progress has been witnessed in this field, the device performance of blue PeLEDs still lags far behind that of the green and red counterparts. In this work, an effective interfacial engineering is employed to boost the radiative recombination of blue perovskite film by introducing a multifunctional tetraethyl orthosilicate (TEOS) network on the grain‐growth substrate. Benefitting from the strong interaction between the TEOS molecule and perovskite nuclei, the perovskite crystallization dynamics are effectively regulated, contributing to significantly improved emitting film with uniformly distributed halogen and concentrated low‐dimensional domain. Additionally, the TEOS network can distinctly passivate the crystal defects at the buried perovskite interface owing to its adequate electron‐donating sites. Consequently, the target blue PeLEDs featuring a stable emission peak at 488 nm exhibit a champion external quantum efficiency of 17.3%, which is among the highest values to date. The results demonstrate the critical role of the surface molecular characteristics of the grain‐growth substrate in regulating the mixed‐halide blue perovskite crystallization. Metal halide perovskite light‐emitting diodes (PeLEDs) are gaining increasing attention as a promising candidate for the new‐generation display technology. Although tremendous progress has been witnessed in this field, the device performance of blue PeLEDs still lags far behind that of the green and red counterparts. In this work, an effective interfacial engineering is employed to boost the radiative recombination of blue perovskite film by introducing a multifunctional tetraethyl orthosilicate (TEOS) network on the grain‐growth substrate. Benefitting from the strong interaction between the TEOS molecule and perovskite nuclei, the perovskite crystallization dynamics are effectively regulated, contributing to significantly improved emitting film with uniformly distributed halogen and concentrated low‐dimensional domain. Additionally, the TEOS network can distinctly passivate the crystal defects at the buried perovskite interface owing to its adequate electron‐donating sites. Consequently, the target blue PeLEDs featuring a stable emission peak at 488 nm exhibit a champion external quantum efficiency of 17.3%, which is among the highest values to date. The results demonstrate the critical role of the surface molecular characteristics of the grain‐growth substrate in regulating the mixed‐halide blue perovskite crystallization. A multifunctional interface engineering by constructing a tetraethyl orthosilicate molecular network onto the grain‐growth substrate is developed to comprehensively regulate the crystallization dynamics and passivate the buried surface defects of mixed‐halide blue perovskite films, leading to spectrally stable and efficient blue light‐emitting diodes with an external quantum efficiency of 17.3%. |
Author | Su, Zhen‐Huang Shen, Yang Feng, Shi‐Chi Gao, Xingyu Xie, Feng‐Ming Li, Yan‐Qing Wang, Lu Meng, Ke‐Fan Tang, Jian‐Xin Zhang, Kai |
Author_xml | – sequence: 1 givenname: Lu surname: Wang fullname: Wang, Lu organization: Soochow University – sequence: 2 givenname: Zhen‐Huang surname: Su fullname: Su, Zhen‐Huang organization: Chinese Academy of Sciences – sequence: 3 givenname: Yang surname: Shen fullname: Shen, Yang email: yangshen@suda.edu.cn organization: Macau University of Science and Technology – sequence: 4 givenname: Shi‐Chi surname: Feng fullname: Feng, Shi‐Chi organization: Soochow University – sequence: 5 givenname: Feng‐Ming surname: Xie fullname: Xie, Feng‐Ming organization: Soochow University – sequence: 6 givenname: Kai surname: Zhang fullname: Zhang, Kai organization: Macau University of Science and Technology – sequence: 7 givenname: Ke‐Fan surname: Meng fullname: Meng, Ke‐Fan organization: Soochow University – sequence: 8 givenname: Xingyu surname: Gao fullname: Gao, Xingyu organization: Chinese Academy of Sciences – sequence: 9 givenname: Jian‐Xin orcidid: 0000-0002-6813-0448 surname: Tang fullname: Tang, Jian‐Xin email: jxtang@suda.edu.cn, jxtang@must.edu.mo organization: Macau University of Science and Technology – sequence: 10 givenname: Yan‐Qing surname: Li fullname: Li, Yan‐Qing email: yqli@phy.ecnu.edu.cn organization: East China Normal University |
BookMark | eNqFkM9OAjEQhxuDiaJePTfxDLbdZbs9Kn_UBNQYTbxtSplipWyhLRA8-Qg-o0_iIkYTE-Np5jDf_Ga-OqqVrgSEjilpUkLYqRzpaZMRlhLKBN9B-zSjWSMhLK999_RxD9VDeCaEcp6k-2h-B-OFlRFG-Ba8W4aJiYDbfh2itNa8yGhcibXzuKu1UQbKiM_tAnDfjJ_i--tbd2piNOUYd4wbQcBLI_FVGcFrqYy0eOAsqCrB42uIK-cnh2hXSxvg6KseoIde97592ejfXFy1z_oNlVS3NTgRqQLCudCUpypXOeXZUAOrPtQiyXVrRFIlKKR8yIgeEqpEK9OJ5jrJhGglB-hku3fm3XwBIRbPbuHLKrJIKBGCMkbzaqq5nVLeheBBFzNvptKvC0qKjdZio7X41loB6S9AmfhpKXpp7N-Y2GIrY2H9T0hx1ukNftgP1h6Q6w |
CitedBy_id | crossref_primary_10_1002_smll_202404573 crossref_primary_10_1002_adma_202415648 crossref_primary_10_1002_adom_202401955 crossref_primary_10_1002_solr_202400652 crossref_primary_10_1002_ange_202419746 crossref_primary_10_1002_anie_202419746 crossref_primary_10_1021_acsami_4c21188 crossref_primary_10_1038_s41377_025_01768_3 crossref_primary_10_1002_adfm_202412894 crossref_primary_10_1021_acsphotonics_4c01767 crossref_primary_10_1021_acsanm_4c06141 |
Cites_doi | 10.1002/adma.201904319 10.1126/sciadv.abq2321 10.1038/s41467-019-09011-5 10.1002/adma.202208078 10.1126/science.aad1818 10.1002/adma.201403751 10.1038/s41377-022-00761-4 10.1038/s41586-018-0575-3 10.1126/science.aaa2725 10.1038/s41928-023-00955-7 10.1038/s41566-018-0260-y 10.1002/adma.202105290 10.1038/s41586-022-05304-w 10.1126/science.aaa5760 10.1021/acsnano.6b02683 10.1002/adma.201805244 10.1002/adma.202302283 10.1002/adfm.202000026 10.1126/science.1243982 10.1038/nnano.2014.149 10.1002/adma.201800251 10.1002/adfm.201700338 10.1002/adma.202103640 10.1002/adma.201801996 10.1038/s41467-018-05909-8 10.1021/acsenergylett.1c02081 10.1021/jacs.8b11035 10.1002/adma.202302161 10.1038/ncomms15640 10.1002/adma.201600669 10.1002/adma.202205092 10.1002/adfm.201902008 10.1002/adfm.202301425 10.1126/science.aaa9272 10.1021/acsnano.0c03765 10.1038/s41467-021-25407-8 10.1126/science.aah5557 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202401297 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202401297 ADFM202401297 |
Genre | article |
GrantInformation_xml | – fundername: Science and Technology Development Fund (FDCT), Macao SAR funderid: 0018/2022/A1 – fundername: Collaborative Innovation Center of Suzhou Nano Science & Technology – fundername: Science and Technology Innovation Plan Of Shanghai Science and Technology Commission funderid: 22520760600 – fundername: Shanghai Pilot Program for Basic Research‐Chinese Academy of Science, Shanghai Branch funderid: JCYJ‐SHFY‐2022‐002 – fundername: National Key R&D Program of China funderid: 2022YFE0108900 – fundername: National Natural Science Foundation of China funderid: 62320106004; 62274117; 62075061; 12075303 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3177-7094ce0779f174c8c8176bfe2202f938f5d04c91e47b20fb01c956f3f7f369953 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 22:40:23 EDT 2025 Thu Apr 24 22:57:14 EDT 2025 Tue Jul 01 00:31:00 EDT 2025 Wed Jan 22 17:14:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3177-7094ce0779f174c8c8176bfe2202f938f5d04c91e47b20fb01c956f3f7f369953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6813-0448 |
PQID | 3109912218 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3109912218 crossref_primary_10_1002_adfm_202401297 crossref_citationtrail_10_1002_adfm_202401297 wiley_primary_10_1002_adfm_202401297_ADFM202401297 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 562 2017; 8 2023; 35 2018; 140 2023; 33 2015; 347 2019; 31 2023; 6 2019; 10 2017; 27 2016; 10 2013; 342 2020; 14 2015; 348 2022; 611 2015; 350 2023; 62 2018; 9 2015; 27 2021; 12 2021; 33 2020; 30 2022; 7 2022; 8 2022; 34 2016; 354 2019; 29 2018; 30 2022; 11 2014; 9 2018; 12 2016; 28 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Wang B. (e_1_2_8_21_1) 2023; 62 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 342 start-page: 341 year: 2013 publication-title: Science – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 350 start-page: 1222 year: 2015 publication-title: Science – volume: 12 start-page: 5081 year: 2021 publication-title: Nat. Commun. – volume: 347 start-page: 519 year: 2015 publication-title: Science – volume: 10 start-page: 6897 year: 2016 publication-title: ACS Nano – volume: 562 start-page: 245 year: 2018 publication-title: Nature – volume: 12 start-page: 681 year: 2018 publication-title: Nat. Photonics. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 27 start-page: 1248 year: 2015 publication-title: Adv. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 6804 year: 2016 publication-title: Adv. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 11 start-page: 69 year: 2022 publication-title: Light Sci. Appl. – volume: 6 start-page: 360 year: 2023 publication-title: Nat. Electron. – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 start-page: 70 year: 2022 publication-title: ACS Energy Lett. – volume: 9 start-page: 687 year: 2014 publication-title: Nat. Nanotechnol. – volume: 354 start-page: 206 year: 2016 publication-title: Science – volume: 8 start-page: 2321 year: 2022 publication-title: Sci. Adv. – volume: 10 start-page: 1027 year: 2019 publication-title: Nat. Commun. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 347 start-page: 967 year: 2015 publication-title: Science – volume: 611 start-page: 688 year: 2022 publication-title: Nature – volume: 9 start-page: 3541 year: 2018 publication-title: Nat. Commun. – volume: 62 year: 2023 ident: e_1_2_8_21_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_8_17_1 doi: 10.1002/adma.201904319 – ident: e_1_2_8_27_1 doi: 10.1126/sciadv.abq2321 – ident: e_1_2_8_8_1 doi: 10.1038/s41467-019-09011-5 – ident: e_1_2_8_36_1 doi: 10.1002/adma.202208078 – ident: e_1_2_8_20_1 doi: 10.1126/science.aad1818 – ident: e_1_2_8_19_1 doi: 10.1002/adma.201403751 – ident: e_1_2_8_28_1 doi: 10.1038/s41377-022-00761-4 – ident: e_1_2_8_16_1 doi: 10.1038/s41586-018-0575-3 – ident: e_1_2_8_3_1 doi: 10.1126/science.aaa2725 – ident: e_1_2_8_9_1 doi: 10.1038/s41928-023-00955-7 – ident: e_1_2_8_4_1 doi: 10.1038/s41566-018-0260-y – ident: e_1_2_8_24_1 doi: 10.1002/adma.202105290 – ident: e_1_2_8_6_1 doi: 10.1038/s41586-022-05304-w – ident: e_1_2_8_32_1 doi: 10.1126/science.aaa5760 – ident: e_1_2_8_13_1 doi: 10.1021/acsnano.6b02683 – ident: e_1_2_8_23_1 doi: 10.1002/adma.201805244 – ident: e_1_2_8_5_1 doi: 10.1002/adma.202302283 – ident: e_1_2_8_11_1 doi: 10.1002/adfm.202000026 – ident: e_1_2_8_2_1 doi: 10.1126/science.1243982 – ident: e_1_2_8_1_1 doi: 10.1038/nnano.2014.149 – ident: e_1_2_8_22_1 doi: 10.1002/adma.201800251 – ident: e_1_2_8_15_1 doi: 10.1002/adfm.201700338 – ident: e_1_2_8_34_1 doi: 10.1002/adma.202103640 – ident: e_1_2_8_12_1 doi: 10.1002/adma.201801996 – ident: e_1_2_8_30_1 doi: 10.1038/s41467-018-05909-8 – ident: e_1_2_8_35_1 doi: 10.1021/acsenergylett.1c02081 – ident: e_1_2_8_14_1 doi: 10.1021/jacs.8b11035 – ident: e_1_2_8_37_1 doi: 10.1002/adma.202302161 – ident: e_1_2_8_29_1 doi: 10.1038/ncomms15640 – ident: e_1_2_8_31_1 doi: 10.1002/adma.201600669 – ident: e_1_2_8_33_1 doi: 10.1002/adma.202205092 – ident: e_1_2_8_18_1 doi: 10.1002/adfm.201902008 – ident: e_1_2_8_25_1 doi: 10.1002/adfm.202301425 – ident: e_1_2_8_39_1 doi: 10.1126/science.aaa9272 – ident: e_1_2_8_10_1 doi: 10.1002/adma.202302161 – ident: e_1_2_8_38_1 doi: 10.1021/acsnano.0c03765 – ident: e_1_2_8_7_1 doi: 10.1038/s41467-021-25407-8 – ident: e_1_2_8_26_1 doi: 10.1002/adfm.201700338 – ident: e_1_2_8_40_1 doi: 10.1126/science.aah5557 |
SSID | ssj0017734 |
Score | 2.5363204 |
Snippet | Metal halide perovskite light‐emitting diodes (PeLEDs) are gaining increasing attention as a promising candidate for the new‐generation display technology.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Crystal defects Crystallization crystallization regulation defect passivation Display devices interfacial engineering Light emitting diodes Metal halides perovskite light‐emitting diodes Perovskites phase arrangement Quantum efficiency Radiative recombination Substrates Tetraethyl orthosilicate |
Title | Regulated Perovskite Crystallization for Efficient Blue Light‐Emitting Diodes via Interfacial Molecular Network |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202401297 https://www.proquest.com/docview/3109912218 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWsgfBU9q8NznWPijSFKkWegvJZgeKsdWmLejJn-Bv9Je4m03SVhBBLyGB3ZDd2c18MzvzDUJXDlAAk3LrhCsnxbQiqoQgjgu5KgQghq2lNZa8vt0dmrcja7SWxS_5IQqHm9gZ6f9abPAgTOor0tAgApFJzjUSV1kinVwEbAlUNCj4ozRC5LGyrYkAL22Uszaqen2z-6ZWWkHNdcCaapzOPgryb5WBJo-1xTys0bdvNI7_GcwB2svgKG7I9XOIttjkCO2ukRQeo5eBLFfPInzHZtNlIvy9uDl75bgyjrM0TsyxL26ndBRci-GbeMFwT9j9n-8f7adxGlyNW-NpxBK8HAc4dURCIPz12Msr9OK-jEk_QcNO-6HZVbJCDQrlEiYK4TYiZSohLnADhzrU0YgdAtP5iMA1HLAi1aSuxkwS6iqEqka5WQYGEDBs17WMU1SaTCfsDGE7Uu2I6CojrmOCycTFogwiEvIeqlNGSi4on2Ys5qKYRuxL_mXdF1PpF1NZRtdF-2fJ3_Fjy0oudz_bx4kveFNdTec4qIz0VIC_vMVvtDpe8XT-l04XaEfcy0C2CirNZwt2yZHPPKyi7UbL691X01X-BTTX_XQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThsxEB4hOJQeKAUqQoH60IrTwq6zWe8eegCSKJQkQgik3Jas14MiQgL5AdFTH6Gvwqv0EfokzOwfUKmqhMShl5V2ZVtee-z5Zjz-BuCzjxrR1WSdkHKy3EqsrQj5uJBUIaIqe06SY6nV9hqn7rdOpTMD9_ldmJQfonC48cpI9mte4OyQ3nlkDe3GyFfJSSWRzlJZXOWhubslq2389aBKU_xFynrtZL9hZYkFLE09UpYim0YbW6kACZBrX_uO8iI0klrDoOxjJbZdHTjGVZG0MbIdTWYEllFh2QsCThRBu_4cpxFnuv7qccFYRa2nB9mewyFlTifnibTlzvP-PteDj-D2KUROdFz9HfzKRycNbbnYnk6ibf39D-LI_2r4FmEhQ9xiN10i72HGDJbg7RMexmW4PjbnnMbMxOLIjIY3Y3Zpi_3RHUHnfj-7qSoI3otawrhBilrs9adGNNm18fvHz9plL4kfF9XeMDZjcdPrisTXil0-khCtPAmxaKdh9ytw-ir__AFmB8OBWQXhxbYXK2kbFfguuoYfFW0wVhHVsP0SWLlkhDojaud8If0wpZiWIU9dWExdCbaK8lcpRclfS67nghZmW9U4ZGrYwJEE9UogE4n5RyvhbrXeKt7WXlLpE7xpnLSaYfOgffgR5vl7Gre3DrOT0dRsENCbRJvJ0hJw9trC-ACMyldV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThsxEB5FIFX0UFpKRQqlPoB6WvA6m_XuoQdgE0EhEUIg5bZkbU8VNU1ofkD01Efoo_AqfYU-CeP9C1RCSEgcellpV7bltceeb8bjbwA2AlSIniLrhJST49W1chK0x4WkChFlzXfTHEuttr9_5n3p1DsVuCnuwmT8EKXDza6MdL-2C_xC4_aMNLSr0d4kJ41EKkvmYZWH5vqKjLbx54OIZnhTiGbjdG_fyfMKOIo6JB1JJo0yXMoQCY-rQAWu9BM0glrDsBZgXXNPha7xZCI4JtxVZEVgDSXW_DC0eSJo05_3fB7aZBHRSUlYRa1n59i-ayPK3E5BE8nF9v3-3leDM2x7FyGnKq65CH-KwckiW75tTSfJlvr5D2_k_zR6r-FVjrfZTrZA3kDFDJbg5R0Wxrfw48R8tUnMjGbHZjS8HFuHNtsbXRNw7vfze6qMwD1rpHwbpKbZbn9q2JF1bPz99bvxvZdGj7OoN9RmzC57XZZ6WrFrDyRYq0hBzNpZ0P0ynD3LP7-DucFwYFaA-Zr7WgpuZBh46Bn7qCuDWiZUgwdVcArBiFVO026zhfTjjGBaxHbq4nLqqvCpLH-REZQ8WHKtkLM436jGsSWGDV1BQK8KIhWYR1qJd6Jmq3x7_5RKH-HFcdSMjw7ah6uwYD9nQXtrMDcZTc0HQnmTZD1dWAzOn1sWbwEJpFYE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulated+Perovskite+Crystallization+for+Efficient+Blue+Light%E2%80%90Emitting+Diodes+via+Interfacial+Molecular+Network&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Lu&rft.au=Zhen%E2%80%90Huang+Su&rft.au=Shen%2C+Yang&rft.au=Shi%E2%80%90Chi+Feng&rft.date=2024-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=36&rft_id=info:doi/10.1002%2Fadfm.202401297&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |