Bioinspired Superhydrophobic Swimming Robots with Embedded Microfluidic Networks and Photothermal Switch for Controllable Marangoni Propulsion

Chemical Marangoni propulsion enables dynamic and untethered motion by generating surface tension gradient through chemical release, thereby having great potential for the development of insect‐scale self‐propelled robots. However, as the release and diffusion of chemical “fuels” are commonly uncont...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 6
Main Authors Mao, Jiang‐Wei, Han, Dong‐Dong, Zhou, Hao, Sun, Hong‐Bo, Zhang, Yong‐Lai
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chemical Marangoni propulsion enables dynamic and untethered motion by generating surface tension gradient through chemical release, thereby having great potential for the development of insect‐scale self‐propelled robots. However, as the release and diffusion of chemical “fuels” are commonly uncontrollable, the Marangoni propulsion is unstable, thereby restricting robotic applications. Herein, the laser fabrication of superhydrophobic swimming robots to develop controllable Marangoni propulsion based on a photothermal composite of graphene and polydimethylsiloxane is reported. By combining the microfluidic channels with photothermal air chambers, a light‐triggered switch that can control the release of chemical “fuels” is proposed. Furthermore, a superhydrophobic surface is fabricated on the swimming robot by laser treatment, which reduced water resistance and promoted propulsion. On‐demand actuation and swimming route planning are realized by programming the alcohol/air segments in the releasing channels, on‐demand actuation and swimming route planning have been realized. As a proof‐of‐concept, a Marangoni swimming robot equipped with a miniature digital camera is used in an actual environment. Therefore, this study is expected to advance the practical applications of the chemical Marangoni effect in swimming robots. Microfluidics‐enabled superhydrophobic swimming robots that enable controllable Marangoni propulsion are fabricated, in which photothermal air chambers are proposed as light‐responsive switches for controllable chemical release. By programming, the alcohol/air segments, on‐demand actuation, and swimming route planning are realized. Proof‐of‐concept Marangoni swimming robot equipped with a miniature digital camera are driven in the wild environment.
AbstractList Chemical Marangoni propulsion enables dynamic and untethered motion by generating surface tension gradient through chemical release, thereby having great potential for the development of insect‐scale self‐propelled robots. However, as the release and diffusion of chemical “fuels” are commonly uncontrollable, the Marangoni propulsion is unstable, thereby restricting robotic applications. Herein, the laser fabrication of superhydrophobic swimming robots to develop controllable Marangoni propulsion based on a photothermal composite of graphene and polydimethylsiloxane is reported. By combining the microfluidic channels with photothermal air chambers, a light‐triggered switch that can control the release of chemical “fuels” is proposed. Furthermore, a superhydrophobic surface is fabricated on the swimming robot by laser treatment, which reduced water resistance and promoted propulsion. On‐demand actuation and swimming route planning are realized by programming the alcohol/air segments in the releasing channels, on‐demand actuation and swimming route planning have been realized. As a proof‐of‐concept, a Marangoni swimming robot equipped with a miniature digital camera is used in an actual environment. Therefore, this study is expected to advance the practical applications of the chemical Marangoni effect in swimming robots.
Chemical Marangoni propulsion enables dynamic and untethered motion by generating surface tension gradient through chemical release, thereby having great potential for the development of insect‐scale self‐propelled robots. However, as the release and diffusion of chemical “fuels” are commonly uncontrollable, the Marangoni propulsion is unstable, thereby restricting robotic applications. Herein, the laser fabrication of superhydrophobic swimming robots to develop controllable Marangoni propulsion based on a photothermal composite of graphene and polydimethylsiloxane is reported. By combining the microfluidic channels with photothermal air chambers, a light‐triggered switch that can control the release of chemical “fuels” is proposed. Furthermore, a superhydrophobic surface is fabricated on the swimming robot by laser treatment, which reduced water resistance and promoted propulsion. On‐demand actuation and swimming route planning are realized by programming the alcohol/air segments in the releasing channels, on‐demand actuation and swimming route planning have been realized. As a proof‐of‐concept, a Marangoni swimming robot equipped with a miniature digital camera is used in an actual environment. Therefore, this study is expected to advance the practical applications of the chemical Marangoni effect in swimming robots.
Chemical Marangoni propulsion enables dynamic and untethered motion by generating surface tension gradient through chemical release, thereby having great potential for the development of insect‐scale self‐propelled robots. However, as the release and diffusion of chemical “fuels” are commonly uncontrollable, the Marangoni propulsion is unstable, thereby restricting robotic applications. Herein, the laser fabrication of superhydrophobic swimming robots to develop controllable Marangoni propulsion based on a photothermal composite of graphene and polydimethylsiloxane is reported. By combining the microfluidic channels with photothermal air chambers, a light‐triggered switch that can control the release of chemical “fuels” is proposed. Furthermore, a superhydrophobic surface is fabricated on the swimming robot by laser treatment, which reduced water resistance and promoted propulsion. On‐demand actuation and swimming route planning are realized by programming the alcohol/air segments in the releasing channels, on‐demand actuation and swimming route planning have been realized. As a proof‐of‐concept, a Marangoni swimming robot equipped with a miniature digital camera is used in an actual environment. Therefore, this study is expected to advance the practical applications of the chemical Marangoni effect in swimming robots. Microfluidics‐enabled superhydrophobic swimming robots that enable controllable Marangoni propulsion are fabricated, in which photothermal air chambers are proposed as light‐responsive switches for controllable chemical release. By programming, the alcohol/air segments, on‐demand actuation, and swimming route planning are realized. Proof‐of‐concept Marangoni swimming robot equipped with a miniature digital camera are driven in the wild environment.
Author Sun, Hong‐Bo
Zhou, Hao
Zhang, Yong‐Lai
Mao, Jiang‐Wei
Han, Dong‐Dong
Author_xml – sequence: 1
  givenname: Jiang‐Wei
  surname: Mao
  fullname: Mao, Jiang‐Wei
  organization: Jilin University
– sequence: 2
  givenname: Dong‐Dong
  surname: Han
  fullname: Han, Dong‐Dong
  email: handongdong@jlu.edu.cn
  organization: Jilin University
– sequence: 3
  givenname: Hao
  surname: Zhou
  fullname: Zhou, Hao
  organization: Jilin University
– sequence: 4
  givenname: Hong‐Bo
  surname: Sun
  fullname: Sun, Hong‐Bo
  organization: Tsinghua University
– sequence: 5
  givenname: Yong‐Lai
  orcidid: 0000-0002-4282-250X
  surname: Zhang
  fullname: Zhang, Yong‐Lai
  email: yonglaizhang@jlu.edu.cn
  organization: Jilin University
BookMark eNqFkE9P3DAQxS0EUvl37dlSz7u1ncTeHGGBFoltEVCpt8iOHWJwPMF2tNov0c-MV1uBVKniNKPR-82beUdo34M3CH2mZE4JYV-l7oY5I4yRBRdiDx1STvmsIGyx_9bT35_QUYxPhFAhivIQ_Tm3YH0cbTAa30-jCf1GBxh7ULbF92s7DNY_4jtQkCJe29Tjy0EZrbN8ZdsAnZusztIfJq0hPEcsvca3PSRIvQmDdNslqe1xBwEvwacAzknlDF7JIP0jeItvs-HkogV_gg466aI5_VuP0a-ry4fl99nNz2_Xy7ObWVvkw2dcKKoKWnBBRdVVqsrDVhaVpDXhiwVVZSnrViumy1JVpOMlEZ1kTAlOTd3S4hh92e0dA7xMJqbmCabgs2XDhKCc0aqos2q-U-U_Ywyma8ZgBxk2DSXNNvNmm3nzlnkGyn-A1iaZ7PZtad3_sXqHra0zmw9MmrOLq9U7-wrF25u-
CitedBy_id crossref_primary_10_1016_j_snb_2024_135586
crossref_primary_10_1021_acs_langmuir_4c05184
crossref_primary_10_1021_acsami_3c14091
crossref_primary_10_1109_LPT_2023_3307019
crossref_primary_10_1016_j_surfin_2023_103602
crossref_primary_10_1109_TRO_2025_3543273
crossref_primary_10_3390_s23177571
crossref_primary_10_1002_advs_202500669
crossref_primary_10_1016_j_ijbiomac_2025_140548
crossref_primary_10_1021_acsapm_3c02893
crossref_primary_10_1016_j_cej_2024_150094
crossref_primary_10_1002_advs_202408161
crossref_primary_10_1021_acsami_3c06041
crossref_primary_10_1021_acsami_4c12202
crossref_primary_10_1002_adma_202311446
crossref_primary_10_1002_asia_202300680
crossref_primary_10_1021_acsami_4c03059
crossref_primary_10_1016_j_cej_2024_157917
crossref_primary_10_35848_1347_4065_ada104
crossref_primary_10_1088_2631_7990_ad2cdf
crossref_primary_10_1126_scirobotics_adr0721
crossref_primary_10_1021_acsami_4c15581
crossref_primary_10_1016_j_cej_2023_143555
crossref_primary_10_1109_TRO_2025_3532503
crossref_primary_10_1021_acsanm_4c05533
crossref_primary_10_1039_D4TA00544A
crossref_primary_10_3390_biomimetics9110655
crossref_primary_10_1002_smtd_202401946
crossref_primary_10_1021_acsenergylett_4c01769
crossref_primary_10_1021_acsami_3c03640
crossref_primary_10_1016_j_cej_2024_155881
crossref_primary_10_1016_j_jobe_2025_112449
crossref_primary_10_1002_adom_202402250
crossref_primary_10_1039_D4MH00756E
crossref_primary_10_1016_j_cej_2025_159503
crossref_primary_10_1002_smll_202400906
crossref_primary_10_34133_research_0449
Cites_doi 10.1021/acsnano.0c04382
10.1038/s41377-020-00417-1
10.1002/adma.202107659
10.1038/s41928-021-00669-8
10.1038/s41467-022-28185-z
10.1021/acsami.0c15764
10.1126/scirobotics.abl6334
10.1038/s41467-021-25386-w
10.1007/s40843-022-2007-8
10.1016/j.nanoen.2019.104302
10.1038/s41467-019-11141-9
10.1038/s41563-021-01157-2
10.1038/s41467-021-24996-8
10.1038/am.2014.76
10.1038/s41467-020-18117-0
10.1126/scirobotics.aaz6451
10.1039/D0SM01347A
10.1021/ed081p824
10.1038/s41563-020-0736-2
10.1038/s41377-020-0309-9
10.1186/s43074-021-00033-1
10.1093/nsr/nwz219
10.1126/scirobotics.abb0839
10.1242/jeb.205.8.1097
10.1002/adfm.202006179
10.1126/sciadv.abm7834
10.1093/nsr/nwz083
10.1038/lsa.2014.30
10.1016/j.physleta.2018.02.026
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202208677
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202208677
ADFM202208677
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61935008; 62275100; 61905087
– fundername: Jilin Province Development and Reform Commission Project
  funderid: 2022C047‐4
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3177-67b1b31367175f5b5177ca35a1906881b44a9cdb2d44b50f6407fa22b761e9c13
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 06:06:29 EDT 2025
Tue Jul 01 00:30:37 EDT 2025
Thu Apr 24 22:57:21 EDT 2025
Wed Jan 22 16:17:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-67b1b31367175f5b5177ca35a1906881b44a9cdb2d44b50f6407fa22b761e9c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4282-250X
PQID 2771621539
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2771621539
crossref_primary_10_1002_adfm_202208677
crossref_citationtrail_10_1002_adfm_202208677
wiley_primary_10_1002_adfm_202208677_ADFM202208677
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 7
2019; 4
2021; 4
2021; 20
2019; 6
2004; 81
2018; 382
2021; 2
2017; 27
2019; 10
2020; 16
2020; 14
2020; 12
2022; 65
2020; 11
2020; 19
2020; 7
2020; 5
2021; 31
2021; 12
2014; 3
2022; 7
2022; 8
2020; 9
2022; 34
2002; 205
2022; 13
2020; 68
2014; 6
e_1_2_8_29_1
e_1_2_8_26_1
Pan D. (e_1_2_8_25_1) 2021; 31
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Wang W. (e_1_2_8_28_1) 2017; 27
e_1_2_8_1_1
Xuan H. (e_1_2_8_24_1) 2021; 31
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
Hou K. (e_1_2_8_20_1) 2021; 7
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Yang X. (e_1_2_8_16_1) 2020; 5
e_1_2_8_30_1
References_xml – volume: 7
  start-page: 775
  year: 2020
  publication-title: Natl. Sci. Rev.
– volume: 12
  start-page: 4724
  year: 2021
  publication-title: Nat. Commun.
– volume: 10
  start-page: 3188
  year: 2019
  publication-title: Nat. Commun.
– volume: 19
  start-page: 1230
  year: 2020
  publication-title: Nat. Mater.
– volume: 4
  start-page: 37
  year: 2019
  publication-title: Sci. Robot.
– volume: 65
  start-page: 2309
  year: 2022
  publication-title: Sci. China Mater
– volume: 7
  start-page: 37
  year: 2021
  publication-title: Sci. Adv.
– volume: 16
  start-page: 8933
  year: 2020
  publication-title: Soft Matter
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 382
  start-page: 1176
  year: 2018
  publication-title: Phys. Lett. A
– volume: 9
  start-page: 181
  year: 2020
  publication-title: Light: Sci. Appl.
– volume: 7
  year: 2022
  publication-title: Sci. Robot.
– volume: 11
  start-page: 4536
  year: 2020
  publication-title: Nat. Commun.
– volume: 9
  start-page: 75
  year: 2020
  publication-title: Light: Sci. Appl.
– volume: 8
  start-page: 13
  year: 2022
  publication-title: Sci. Adv.
– volume: 27
  start-page: 44
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 44
  year: 2020
  publication-title: Sci. Robot.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 31
  start-page: 14
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 3
  year: 2014
  publication-title: Light: Sci. Appl.
– volume: 205
  start-page: 1097
  year: 2002
  publication-title: J. Exp. Biol.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 6
  start-page: 970
  year: 2019
  publication-title: Natl. Sci. Rev.
– volume: 81
  start-page: 824
  year: 2004
  publication-title: J. Chem. Educ.
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 6
  year: 2014
  publication-title: NPG Asia Mater
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 1590
  year: 2021
  publication-title: Nat. Mater.
– volume: 13
  start-page: 524
  year: 2022
  publication-title: Nat. Commun.
– volume: 4
  start-page: 845
  year: 2021
  publication-title: Nat. Electron.
– volume: 2
  start-page: 17
  year: 2021
  publication-title: PhotoniX
– volume: 12
  start-page: 5072
  year: 2021
  publication-title: Nat. Commun.
– volume: 5
  start-page: 45
  year: 2020
  publication-title: Sci. Robot.
– ident: e_1_2_8_11_1
  doi: 10.1021/acsnano.0c04382
– ident: e_1_2_8_22_1
  doi: 10.1038/s41377-020-00417-1
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.202107659
– ident: e_1_2_8_1_1
  doi: 10.1038/s41928-021-00669-8
– ident: e_1_2_8_5_1
  doi: 10.1038/s41467-022-28185-z
– volume: 31
  start-page: 14
  year: 2021
  ident: e_1_2_8_25_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_26_1
  doi: 10.1021/acsami.0c15764
– ident: e_1_2_8_3_1
  doi: 10.1126/scirobotics.abl6334
– ident: e_1_2_8_4_1
  doi: 10.1038/s41467-021-25386-w
– ident: e_1_2_8_10_1
  doi: 10.1007/s40843-022-2007-8
– ident: e_1_2_8_8_1
  doi: 10.1016/j.nanoen.2019.104302
– ident: e_1_2_8_29_1
  doi: 10.1038/s41467-019-11141-9
– ident: e_1_2_8_13_1
  doi: 10.1038/s41563-021-01157-2
– ident: e_1_2_8_23_1
  doi: 10.1038/s41467-021-24996-8
– volume: 5
  start-page: 45
  year: 2020
  ident: e_1_2_8_16_1
  publication-title: Sci. Robot.
– ident: e_1_2_8_31_1
  doi: 10.1038/am.2014.76
– ident: e_1_2_8_14_1
  doi: 10.1038/s41467-020-18117-0
– ident: e_1_2_8_17_1
  doi: 10.1126/scirobotics.aaz6451
– ident: e_1_2_8_32_1
  doi: 10.1039/D0SM01347A
– ident: e_1_2_8_21_1
  doi: 10.1021/ed081p824
– ident: e_1_2_8_12_1
  doi: 10.1038/s41563-020-0736-2
– volume: 27
  start-page: 44
  year: 2017
  ident: e_1_2_8_28_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_6_1
  doi: 10.1038/s41377-020-0309-9
– ident: e_1_2_8_33_1
  doi: 10.1186/s43074-021-00033-1
– ident: e_1_2_8_9_1
  doi: 10.1093/nsr/nwz219
– ident: e_1_2_8_2_1
  doi: 10.1126/scirobotics.abb0839
– ident: e_1_2_8_18_1
  doi: 10.1242/jeb.205.8.1097
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.202006179
– volume: 7
  start-page: 37
  year: 2021
  ident: e_1_2_8_20_1
  publication-title: Sci. Adv.
– volume: 31
  start-page: 14
  year: 2021
  ident: e_1_2_8_24_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_7_1
  doi: 10.1126/sciadv.abm7834
– ident: e_1_2_8_19_1
  doi: 10.1093/nsr/nwz083
– ident: e_1_2_8_34_1
  doi: 10.1038/lsa.2014.30
– ident: e_1_2_8_30_1
  doi: 10.1016/j.physleta.2018.02.026
SSID ssj0017734
Score 2.6417463
Snippet Chemical Marangoni propulsion enables dynamic and untethered motion by generating surface tension gradient through chemical release, thereby having great...
Chemical Marangoni propulsion enables dynamic and untethered motion by generating surface tension gradient through chemical release, thereby having great...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Actuation
Air chambers
Channels
Controllability
Digital cameras
Fuels
Graphene
Hydrophobic surfaces
Hydrophobicity
Insects
laser irradiation
Marangoni convection
Marangoni propulsion
Materials science
Microfluidics
photothermal switches
Polydimethylsiloxane
Propulsion
Robotics
Robots
Route planning
Surface tension
Swimming
swimming robots
Water resistance
Title Bioinspired Superhydrophobic Swimming Robots with Embedded Microfluidic Networks and Photothermal Switch for Controllable Marangoni Propulsion
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202208677
https://www.proquest.com/docview/2771621539
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9owFLcmdlkP3Ver0rLKh0k7hSaOE8ORQlFVDYRglbhFduyMqJAgCJq6P2J_c9-LIYVJVaXtmMh2Evt9_GK_93uEfA1DwaXm8G_iJYHDEw12MBTMAe8n28KXMpBltMUwvL3nd9NgupfFb_khqg031IzSXqOCS7W-eiYNlTrBTHLGXKRkAyOMAVuIisYVf5QnhD1WDj0M8PKmO9ZGl10ddj_0Ss9Qcx-wlh6n_57I3bvaQJOH5qZQzfj3XzSO__MxH8jxFo7SjpWfj-SNyT6Roz2Sws_kz3WapxkeyBtNJ5ulWc0e9SpfznKVxnTyK10soB0d5yov1hT3denNQhkwaJoOMNwvmW9SDU2HNuJ8TWWm6WiWF2Xy1wIeD4OA8FDAz7RrQ-fnmNFFBxI86U-wOnRUFhrDnb0Tct-_-dG9dbZVHJwYsIlwQqE85SMzHCCVJFAB3IylH0iAImELUDMHqYi1YppzFbgJniwmkjElQs-0Y88_JbUsz8wZoa7hWsVaJsoH5-sq2VJtwXRLGw_mrsXrxNmtYhRvKc6x0sY8suTMLMJ5jqp5rpNvVfulJfd4sWVjJxTRVsnXERNIvwUuo10nrFzdV0aJOr3-oLo6_5dOF-QdFry3ceMNUitWG_MFYFGhLsnbTm_wfXJZqsATmL8ILQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V9gAcoLxESoE9gDi5tddrOzlwKE2jlDZR1YeUm9n1ronVxI4SR1X5Ef0v_Sv8Imb8aouEkJB64OjVem3t7Dx29ptvAT74fiCkFrg3cWLPErFGO-gH3ELvJzuBK6UnC7TF0O-fia8jb7QC13UtTMkP0STcSDMKe00KTgnp7RvWUKljKiXn3CZOtgpXeWAuL3DXtvi830URf-S8t3e627eqiwWsCN1lYPmBcpRLZGXoPGNPedgYSdeT6B39NgZyAn800oprIZRnx3TYFUvOFe75TSdyXBz3AazRNeJE1989bhircKDyINt3CFLmjGqeSJtv3_3fu37wJri9HSIXPq73FH7Ws1NCW863lrnain78Rhz5X03fOjypIm62U6rIM1gx6XN4fIuH8QVcfUmyJCXMgdHsZDkz8_GlnmezcaaSiJ1cJNMp9mPHmcryBaPUNdubKoM2W7MBIRrjyTLR2HVYguoXTKaaHY2zvKhvm-LncRDUD4ZbBLZbVgdMqGiNDSQGC9_RsLKj4i41Sl6-hLN7mZBXsJpmqXkNzDZCq0jLWLkYX9hKtlUn4LqtjYOyaosWWPWyCaOKxZ0uE5mEJf80D0muYSPXFnxq-s9K_pI_9tysV2FY2bFFyANiGEOv2GkBL5bTX0YJd7q9QfO08S8vvYeH_dPBYXi4Pzx4A4-w3S1h8puwms-X5i1Ggbl6V-gdg2_3vVJ_AbknYXU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4aQ0Lsgn-0wgBfgLjKljhO0lxwMdZVG6NVtTGpd8GObRrRJlWbahoPsWfZq_BGHMdJtiEhJKRdcBnLcSKfX9vf-QzwNgwjxiXDtYmnA4dpiX4wjKiD0Y_Hkc95wCu0xTA8OGWfxsF4DS6bWhjLD9FuuBnLqPy1MfC51DtXpKFcalNJTqlrKNlqWOWROj_DRdvyw2EPJfyO0v7-l70Dp75XwEkxWkZOGAlP-IarDGOnDkSAjSn3A47BMexiHsfwP1MpqGRMBK42Z12aUypwya_i1PNx3Dtwl4VubC6L6B23hFU4kD3HDj2DKPPGDU2kS3du_u_NMHiV217PkKsQ138IP5vJsciW79urUmynP37jjfyfZu8RPKjzbbJrDeQxrKn8CWxcY2F8ChcfsyLLDeJASXKymqvF5FwuivmkEFlKTs6y2Qz7keNCFOWSmI1rsj8TCj22JAODZ9TTVSax69BC6peE55KMJkVZVbfN8PM4CFoHwQUC2bO1AVNTskYGHFOFb-hWyai6Sc1sXT6D01uZkOewnhe52gTiKiZFKrkWPmYXruBdEUdUdqXyUFZd1gGn0ZokrTnczVUi08SyT9PEyDVp5dqB923_uWUv-WPPrUYJk9qLLRMaGX4xjIlxB2ilTX8ZJdnt9Qft04t_eekN3Bv1-snnw-HRS7iPzb7FyG_BerlYqVeYApbidWV1BL7etqL-AhDqYCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+Superhydrophobic+Swimming+Robots+with+Embedded+Microfluidic+Networks+and+Photothermal+Switch+for+Controllable+Marangoni+Propulsion&rft.jtitle=Advanced+functional+materials&rft.au=Jiang%E2%80%90Wei+Mao&rft.au=Dong%E2%80%90Dong+Han&rft.au=Zhou%2C+Hao&rft.au=Hong%E2%80%90Bo+Sun&rft.date=2023-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=6&rft_id=info:doi/10.1002%2Fadfm.202208677&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon