Bioinspired Superhydrophobic Swimming Robots with Embedded Microfluidic Networks and Photothermal Switch for Controllable Marangoni Propulsion
Chemical Marangoni propulsion enables dynamic and untethered motion by generating surface tension gradient through chemical release, thereby having great potential for the development of insect‐scale self‐propelled robots. However, as the release and diffusion of chemical “fuels” are commonly uncont...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 6 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chemical Marangoni propulsion enables dynamic and untethered motion by generating surface tension gradient through chemical release, thereby having great potential for the development of insect‐scale self‐propelled robots. However, as the release and diffusion of chemical “fuels” are commonly uncontrollable, the Marangoni propulsion is unstable, thereby restricting robotic applications. Herein, the laser fabrication of superhydrophobic swimming robots to develop controllable Marangoni propulsion based on a photothermal composite of graphene and polydimethylsiloxane is reported. By combining the microfluidic channels with photothermal air chambers, a light‐triggered switch that can control the release of chemical “fuels” is proposed. Furthermore, a superhydrophobic surface is fabricated on the swimming robot by laser treatment, which reduced water resistance and promoted propulsion. On‐demand actuation and swimming route planning are realized by programming the alcohol/air segments in the releasing channels, on‐demand actuation and swimming route planning have been realized. As a proof‐of‐concept, a Marangoni swimming robot equipped with a miniature digital camera is used in an actual environment. Therefore, this study is expected to advance the practical applications of the chemical Marangoni effect in swimming robots.
Microfluidics‐enabled superhydrophobic swimming robots that enable controllable Marangoni propulsion are fabricated, in which photothermal air chambers are proposed as light‐responsive switches for controllable chemical release. By programming, the alcohol/air segments, on‐demand actuation, and swimming route planning are realized. Proof‐of‐concept Marangoni swimming robot equipped with a miniature digital camera are driven in the wild environment. |
---|---|
AbstractList | Chemical
Marangoni
propulsion enables dynamic and untethered motion by generating surface tension gradient through chemical release, thereby having great potential for the development of insect‐scale self‐propelled robots. However, as the release and diffusion of chemical “fuels” are commonly uncontrollable, the
Marangoni
propulsion is unstable, thereby restricting robotic applications. Herein, the laser fabrication of superhydrophobic swimming robots to develop controllable
Marangoni
propulsion based on a photothermal composite of graphene and polydimethylsiloxane is reported. By combining the microfluidic channels with photothermal air chambers, a light‐triggered switch that can control the release of chemical “fuels” is proposed. Furthermore, a superhydrophobic surface is fabricated on the swimming robot by laser treatment, which reduced water resistance and promoted propulsion. On‐demand actuation and swimming route planning are realized by programming the alcohol/air segments in the releasing channels, on‐demand actuation and swimming route planning have been realized. As a proof‐of‐concept, a
Marangoni
swimming robot equipped with a miniature digital camera is used in an actual environment. Therefore, this study is expected to advance the practical applications of the chemical
Marangoni
effect in swimming robots. Chemical Marangoni propulsion enables dynamic and untethered motion by generating surface tension gradient through chemical release, thereby having great potential for the development of insect‐scale self‐propelled robots. However, as the release and diffusion of chemical “fuels” are commonly uncontrollable, the Marangoni propulsion is unstable, thereby restricting robotic applications. Herein, the laser fabrication of superhydrophobic swimming robots to develop controllable Marangoni propulsion based on a photothermal composite of graphene and polydimethylsiloxane is reported. By combining the microfluidic channels with photothermal air chambers, a light‐triggered switch that can control the release of chemical “fuels” is proposed. Furthermore, a superhydrophobic surface is fabricated on the swimming robot by laser treatment, which reduced water resistance and promoted propulsion. On‐demand actuation and swimming route planning are realized by programming the alcohol/air segments in the releasing channels, on‐demand actuation and swimming route planning have been realized. As a proof‐of‐concept, a Marangoni swimming robot equipped with a miniature digital camera is used in an actual environment. Therefore, this study is expected to advance the practical applications of the chemical Marangoni effect in swimming robots. Chemical Marangoni propulsion enables dynamic and untethered motion by generating surface tension gradient through chemical release, thereby having great potential for the development of insect‐scale self‐propelled robots. However, as the release and diffusion of chemical “fuels” are commonly uncontrollable, the Marangoni propulsion is unstable, thereby restricting robotic applications. Herein, the laser fabrication of superhydrophobic swimming robots to develop controllable Marangoni propulsion based on a photothermal composite of graphene and polydimethylsiloxane is reported. By combining the microfluidic channels with photothermal air chambers, a light‐triggered switch that can control the release of chemical “fuels” is proposed. Furthermore, a superhydrophobic surface is fabricated on the swimming robot by laser treatment, which reduced water resistance and promoted propulsion. On‐demand actuation and swimming route planning are realized by programming the alcohol/air segments in the releasing channels, on‐demand actuation and swimming route planning have been realized. As a proof‐of‐concept, a Marangoni swimming robot equipped with a miniature digital camera is used in an actual environment. Therefore, this study is expected to advance the practical applications of the chemical Marangoni effect in swimming robots. Microfluidics‐enabled superhydrophobic swimming robots that enable controllable Marangoni propulsion are fabricated, in which photothermal air chambers are proposed as light‐responsive switches for controllable chemical release. By programming, the alcohol/air segments, on‐demand actuation, and swimming route planning are realized. Proof‐of‐concept Marangoni swimming robot equipped with a miniature digital camera are driven in the wild environment. |
Author | Sun, Hong‐Bo Zhou, Hao Zhang, Yong‐Lai Mao, Jiang‐Wei Han, Dong‐Dong |
Author_xml | – sequence: 1 givenname: Jiang‐Wei surname: Mao fullname: Mao, Jiang‐Wei organization: Jilin University – sequence: 2 givenname: Dong‐Dong surname: Han fullname: Han, Dong‐Dong email: handongdong@jlu.edu.cn organization: Jilin University – sequence: 3 givenname: Hao surname: Zhou fullname: Zhou, Hao organization: Jilin University – sequence: 4 givenname: Hong‐Bo surname: Sun fullname: Sun, Hong‐Bo organization: Tsinghua University – sequence: 5 givenname: Yong‐Lai orcidid: 0000-0002-4282-250X surname: Zhang fullname: Zhang, Yong‐Lai email: yonglaizhang@jlu.edu.cn organization: Jilin University |
BookMark | eNqFkE9P3DAQxS0EUvl37dlSz7u1ncTeHGGBFoltEVCpt8iOHWJwPMF2tNov0c-MV1uBVKniNKPR-82beUdo34M3CH2mZE4JYV-l7oY5I4yRBRdiDx1STvmsIGyx_9bT35_QUYxPhFAhivIQ_Tm3YH0cbTAa30-jCf1GBxh7ULbF92s7DNY_4jtQkCJe29Tjy0EZrbN8ZdsAnZusztIfJq0hPEcsvca3PSRIvQmDdNslqe1xBwEvwacAzknlDF7JIP0jeItvs-HkogV_gg466aI5_VuP0a-ry4fl99nNz2_Xy7ObWVvkw2dcKKoKWnBBRdVVqsrDVhaVpDXhiwVVZSnrViumy1JVpOMlEZ1kTAlOTd3S4hh92e0dA7xMJqbmCabgs2XDhKCc0aqos2q-U-U_Ywyma8ZgBxk2DSXNNvNmm3nzlnkGyn-A1iaZ7PZtad3_sXqHra0zmw9MmrOLq9U7-wrF25u- |
CitedBy_id | crossref_primary_10_1016_j_snb_2024_135586 crossref_primary_10_1021_acs_langmuir_4c05184 crossref_primary_10_1021_acsami_3c14091 crossref_primary_10_1109_LPT_2023_3307019 crossref_primary_10_1016_j_surfin_2023_103602 crossref_primary_10_1109_TRO_2025_3543273 crossref_primary_10_3390_s23177571 crossref_primary_10_1002_advs_202500669 crossref_primary_10_1016_j_ijbiomac_2025_140548 crossref_primary_10_1021_acsapm_3c02893 crossref_primary_10_1016_j_cej_2024_150094 crossref_primary_10_1002_advs_202408161 crossref_primary_10_1021_acsami_3c06041 crossref_primary_10_1021_acsami_4c12202 crossref_primary_10_1002_adma_202311446 crossref_primary_10_1002_asia_202300680 crossref_primary_10_1021_acsami_4c03059 crossref_primary_10_1016_j_cej_2024_157917 crossref_primary_10_35848_1347_4065_ada104 crossref_primary_10_1088_2631_7990_ad2cdf crossref_primary_10_1126_scirobotics_adr0721 crossref_primary_10_1021_acsami_4c15581 crossref_primary_10_1016_j_cej_2023_143555 crossref_primary_10_1109_TRO_2025_3532503 crossref_primary_10_1021_acsanm_4c05533 crossref_primary_10_1039_D4TA00544A crossref_primary_10_3390_biomimetics9110655 crossref_primary_10_1002_smtd_202401946 crossref_primary_10_1021_acsenergylett_4c01769 crossref_primary_10_1021_acsami_3c03640 crossref_primary_10_1016_j_cej_2024_155881 crossref_primary_10_1016_j_jobe_2025_112449 crossref_primary_10_1002_adom_202402250 crossref_primary_10_1039_D4MH00756E crossref_primary_10_1016_j_cej_2025_159503 crossref_primary_10_1002_smll_202400906 crossref_primary_10_34133_research_0449 |
Cites_doi | 10.1021/acsnano.0c04382 10.1038/s41377-020-00417-1 10.1002/adma.202107659 10.1038/s41928-021-00669-8 10.1038/s41467-022-28185-z 10.1021/acsami.0c15764 10.1126/scirobotics.abl6334 10.1038/s41467-021-25386-w 10.1007/s40843-022-2007-8 10.1016/j.nanoen.2019.104302 10.1038/s41467-019-11141-9 10.1038/s41563-021-01157-2 10.1038/s41467-021-24996-8 10.1038/am.2014.76 10.1038/s41467-020-18117-0 10.1126/scirobotics.aaz6451 10.1039/D0SM01347A 10.1021/ed081p824 10.1038/s41563-020-0736-2 10.1038/s41377-020-0309-9 10.1186/s43074-021-00033-1 10.1093/nsr/nwz219 10.1126/scirobotics.abb0839 10.1242/jeb.205.8.1097 10.1002/adfm.202006179 10.1126/sciadv.abm7834 10.1093/nsr/nwz083 10.1038/lsa.2014.30 10.1016/j.physleta.2018.02.026 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202208677 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202208677 ADFM202208677 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61935008; 62275100; 61905087 – fundername: Jilin Province Development and Reform Commission Project funderid: 2022C047‐4 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3177-67b1b31367175f5b5177ca35a1906881b44a9cdb2d44b50f6407fa22b761e9c13 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 06:06:29 EDT 2025 Tue Jul 01 00:30:37 EDT 2025 Thu Apr 24 22:57:21 EDT 2025 Wed Jan 22 16:17:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3177-67b1b31367175f5b5177ca35a1906881b44a9cdb2d44b50f6407fa22b761e9c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4282-250X |
PQID | 2771621539 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2771621539 crossref_primary_10_1002_adfm_202208677 crossref_citationtrail_10_1002_adfm_202208677 wiley_primary_10_1002_adfm_202208677_ADFM202208677 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 7 2019; 4 2021; 4 2021; 20 2019; 6 2004; 81 2018; 382 2021; 2 2017; 27 2019; 10 2020; 16 2020; 14 2020; 12 2022; 65 2020; 11 2020; 19 2020; 7 2020; 5 2021; 31 2021; 12 2014; 3 2022; 7 2022; 8 2020; 9 2022; 34 2002; 205 2022; 13 2020; 68 2014; 6 e_1_2_8_29_1 e_1_2_8_26_1 Pan D. (e_1_2_8_25_1) 2021; 31 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 Wang W. (e_1_2_8_28_1) 2017; 27 e_1_2_8_1_1 Xuan H. (e_1_2_8_24_1) 2021; 31 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 Hou K. (e_1_2_8_20_1) 2021; 7 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Yang X. (e_1_2_8_16_1) 2020; 5 e_1_2_8_30_1 |
References_xml | – volume: 7 start-page: 775 year: 2020 publication-title: Natl. Sci. Rev. – volume: 12 start-page: 4724 year: 2021 publication-title: Nat. Commun. – volume: 10 start-page: 3188 year: 2019 publication-title: Nat. Commun. – volume: 19 start-page: 1230 year: 2020 publication-title: Nat. Mater. – volume: 4 start-page: 37 year: 2019 publication-title: Sci. Robot. – volume: 65 start-page: 2309 year: 2022 publication-title: Sci. China Mater – volume: 7 start-page: 37 year: 2021 publication-title: Sci. Adv. – volume: 16 start-page: 8933 year: 2020 publication-title: Soft Matter – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 382 start-page: 1176 year: 2018 publication-title: Phys. Lett. A – volume: 9 start-page: 181 year: 2020 publication-title: Light: Sci. Appl. – volume: 7 year: 2022 publication-title: Sci. Robot. – volume: 11 start-page: 4536 year: 2020 publication-title: Nat. Commun. – volume: 9 start-page: 75 year: 2020 publication-title: Light: Sci. Appl. – volume: 8 start-page: 13 year: 2022 publication-title: Sci. Adv. – volume: 27 start-page: 44 year: 2017 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 44 year: 2020 publication-title: Sci. Robot. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 31 start-page: 14 year: 2021 publication-title: Adv. Funct. Mater. – volume: 3 year: 2014 publication-title: Light: Sci. Appl. – volume: 205 start-page: 1097 year: 2002 publication-title: J. Exp. Biol. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 6 start-page: 970 year: 2019 publication-title: Natl. Sci. Rev. – volume: 81 start-page: 824 year: 2004 publication-title: J. Chem. Educ. – volume: 68 year: 2020 publication-title: Nano Energy – volume: 6 year: 2014 publication-title: NPG Asia Mater – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 1590 year: 2021 publication-title: Nat. Mater. – volume: 13 start-page: 524 year: 2022 publication-title: Nat. Commun. – volume: 4 start-page: 845 year: 2021 publication-title: Nat. Electron. – volume: 2 start-page: 17 year: 2021 publication-title: PhotoniX – volume: 12 start-page: 5072 year: 2021 publication-title: Nat. Commun. – volume: 5 start-page: 45 year: 2020 publication-title: Sci. Robot. – ident: e_1_2_8_11_1 doi: 10.1021/acsnano.0c04382 – ident: e_1_2_8_22_1 doi: 10.1038/s41377-020-00417-1 – ident: e_1_2_8_15_1 doi: 10.1002/adma.202107659 – ident: e_1_2_8_1_1 doi: 10.1038/s41928-021-00669-8 – ident: e_1_2_8_5_1 doi: 10.1038/s41467-022-28185-z – volume: 31 start-page: 14 year: 2021 ident: e_1_2_8_25_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_26_1 doi: 10.1021/acsami.0c15764 – ident: e_1_2_8_3_1 doi: 10.1126/scirobotics.abl6334 – ident: e_1_2_8_4_1 doi: 10.1038/s41467-021-25386-w – ident: e_1_2_8_10_1 doi: 10.1007/s40843-022-2007-8 – ident: e_1_2_8_8_1 doi: 10.1016/j.nanoen.2019.104302 – ident: e_1_2_8_29_1 doi: 10.1038/s41467-019-11141-9 – ident: e_1_2_8_13_1 doi: 10.1038/s41563-021-01157-2 – ident: e_1_2_8_23_1 doi: 10.1038/s41467-021-24996-8 – volume: 5 start-page: 45 year: 2020 ident: e_1_2_8_16_1 publication-title: Sci. Robot. – ident: e_1_2_8_31_1 doi: 10.1038/am.2014.76 – ident: e_1_2_8_14_1 doi: 10.1038/s41467-020-18117-0 – ident: e_1_2_8_17_1 doi: 10.1126/scirobotics.aaz6451 – ident: e_1_2_8_32_1 doi: 10.1039/D0SM01347A – ident: e_1_2_8_21_1 doi: 10.1021/ed081p824 – ident: e_1_2_8_12_1 doi: 10.1038/s41563-020-0736-2 – volume: 27 start-page: 44 year: 2017 ident: e_1_2_8_28_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_6_1 doi: 10.1038/s41377-020-0309-9 – ident: e_1_2_8_33_1 doi: 10.1186/s43074-021-00033-1 – ident: e_1_2_8_9_1 doi: 10.1093/nsr/nwz219 – ident: e_1_2_8_2_1 doi: 10.1126/scirobotics.abb0839 – ident: e_1_2_8_18_1 doi: 10.1242/jeb.205.8.1097 – ident: e_1_2_8_27_1 doi: 10.1002/adfm.202006179 – volume: 7 start-page: 37 year: 2021 ident: e_1_2_8_20_1 publication-title: Sci. Adv. – volume: 31 start-page: 14 year: 2021 ident: e_1_2_8_24_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_7_1 doi: 10.1126/sciadv.abm7834 – ident: e_1_2_8_19_1 doi: 10.1093/nsr/nwz083 – ident: e_1_2_8_34_1 doi: 10.1038/lsa.2014.30 – ident: e_1_2_8_30_1 doi: 10.1016/j.physleta.2018.02.026 |
SSID | ssj0017734 |
Score | 2.6417463 |
Snippet | Chemical Marangoni propulsion enables dynamic and untethered motion by generating surface tension gradient through chemical release, thereby having great... Chemical Marangoni propulsion enables dynamic and untethered motion by generating surface tension gradient through chemical release, thereby having great... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Actuation Air chambers Channels Controllability Digital cameras Fuels Graphene Hydrophobic surfaces Hydrophobicity Insects laser irradiation Marangoni convection Marangoni propulsion Materials science Microfluidics photothermal switches Polydimethylsiloxane Propulsion Robotics Robots Route planning Surface tension Swimming swimming robots Water resistance |
Title | Bioinspired Superhydrophobic Swimming Robots with Embedded Microfluidic Networks and Photothermal Switch for Controllable Marangoni Propulsion |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202208677 https://www.proquest.com/docview/2771621539 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9owFLcmdlkP3Ver0rLKh0k7hSaOE8ORQlFVDYRglbhFduyMqJAgCJq6P2J_c9-LIYVJVaXtmMh2Evt9_GK_93uEfA1DwaXm8G_iJYHDEw12MBTMAe8n28KXMpBltMUwvL3nd9NgupfFb_khqg031IzSXqOCS7W-eiYNlTrBTHLGXKRkAyOMAVuIisYVf5QnhD1WDj0M8PKmO9ZGl10ddj_0Ss9Qcx-wlh6n_57I3bvaQJOH5qZQzfj3XzSO__MxH8jxFo7SjpWfj-SNyT6Roz2Sws_kz3WapxkeyBtNJ5ulWc0e9SpfznKVxnTyK10soB0d5yov1hT3denNQhkwaJoOMNwvmW9SDU2HNuJ8TWWm6WiWF2Xy1wIeD4OA8FDAz7RrQ-fnmNFFBxI86U-wOnRUFhrDnb0Tct-_-dG9dbZVHJwYsIlwQqE85SMzHCCVJFAB3IylH0iAImELUDMHqYi1YppzFbgJniwmkjElQs-0Y88_JbUsz8wZoa7hWsVaJsoH5-sq2VJtwXRLGw_mrsXrxNmtYhRvKc6x0sY8suTMLMJ5jqp5rpNvVfulJfd4sWVjJxTRVsnXERNIvwUuo10nrFzdV0aJOr3-oLo6_5dOF-QdFry3ceMNUitWG_MFYFGhLsnbTm_wfXJZqsATmL8ILQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V9gAcoLxESoE9gDi5tddrOzlwKE2jlDZR1YeUm9n1ronVxI4SR1X5Ef0v_Sv8Imb8aouEkJB64OjVem3t7Dx29ptvAT74fiCkFrg3cWLPErFGO-gH3ELvJzuBK6UnC7TF0O-fia8jb7QC13UtTMkP0STcSDMKe00KTgnp7RvWUKljKiXn3CZOtgpXeWAuL3DXtvi830URf-S8t3e627eqiwWsCN1lYPmBcpRLZGXoPGNPedgYSdeT6B39NgZyAn800oprIZRnx3TYFUvOFe75TSdyXBz3AazRNeJE1989bhircKDyINt3CFLmjGqeSJtv3_3fu37wJri9HSIXPq73FH7Ws1NCW863lrnain78Rhz5X03fOjypIm62U6rIM1gx6XN4fIuH8QVcfUmyJCXMgdHsZDkz8_GlnmezcaaSiJ1cJNMp9mPHmcryBaPUNdubKoM2W7MBIRrjyTLR2HVYguoXTKaaHY2zvKhvm-LncRDUD4ZbBLZbVgdMqGiNDSQGC9_RsLKj4i41Sl6-hLN7mZBXsJpmqXkNzDZCq0jLWLkYX9hKtlUn4LqtjYOyaosWWPWyCaOKxZ0uE5mEJf80D0muYSPXFnxq-s9K_pI_9tysV2FY2bFFyANiGEOv2GkBL5bTX0YJd7q9QfO08S8vvYeH_dPBYXi4Pzx4A4-w3S1h8puwms-X5i1Ggbl6V-gdg2_3vVJ_AbknYXU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFD4aQ0Lsgn-0wgBfgLjKljhO0lxwMdZVG6NVtTGpd8GObRrRJlWbahoPsWfZq_BGHMdJtiEhJKRdcBnLcSKfX9vf-QzwNgwjxiXDtYmnA4dpiX4wjKiD0Y_Hkc95wCu0xTA8OGWfxsF4DS6bWhjLD9FuuBnLqPy1MfC51DtXpKFcalNJTqlrKNlqWOWROj_DRdvyw2EPJfyO0v7-l70Dp75XwEkxWkZOGAlP-IarDGOnDkSAjSn3A47BMexiHsfwP1MpqGRMBK42Z12aUypwya_i1PNx3Dtwl4VubC6L6B23hFU4kD3HDj2DKPPGDU2kS3du_u_NMHiV217PkKsQ138IP5vJsciW79urUmynP37jjfyfZu8RPKjzbbJrDeQxrKn8CWxcY2F8ChcfsyLLDeJASXKymqvF5FwuivmkEFlKTs6y2Qz7keNCFOWSmI1rsj8TCj22JAODZ9TTVSax69BC6peE55KMJkVZVbfN8PM4CFoHwQUC2bO1AVNTskYGHFOFb-hWyai6Sc1sXT6D01uZkOewnhe52gTiKiZFKrkWPmYXruBdEUdUdqXyUFZd1gGn0ZokrTnczVUi08SyT9PEyDVp5dqB923_uWUv-WPPrUYJk9qLLRMaGX4xjIlxB2ilTX8ZJdnt9Qft04t_eekN3Bv1-snnw-HRS7iPzb7FyG_BerlYqVeYApbidWV1BL7etqL-AhDqYCQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+Superhydrophobic+Swimming+Robots+with+Embedded+Microfluidic+Networks+and+Photothermal+Switch+for+Controllable+Marangoni+Propulsion&rft.jtitle=Advanced+functional+materials&rft.au=Jiang%E2%80%90Wei+Mao&rft.au=Dong%E2%80%90Dong+Han&rft.au=Zhou%2C+Hao&rft.au=Hong%E2%80%90Bo+Sun&rft.date=2023-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=6&rft_id=info:doi/10.1002%2Fadfm.202208677&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |