2D Nanomaterial Supported Single‐Metal Atoms for Heterogeneous Photo/Electrocatalysis
Single‐atom catalysts (SACs) attract intensive attention owing to their unmatched catalytic activities and high atom utilization. Besides metal species themselves, the substrates play a key role for the improvement of their catalytic performance by optimizing metal–support interactions and coordinat...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 5 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single‐atom catalysts (SACs) attract intensive attention owing to their unmatched catalytic activities and high atom utilization. Besides metal species themselves, the substrates play a key role for the improvement of their catalytic performance by optimizing metal–support interactions and coordination structures. In the past years, various 2D nanomaterials have been employed to anchor single metal atoms for renewable energy technologies and other important industrial processes. Tremendous progress has been achieved in the development of 2D supported SACs for advanced energy conversion reactions. This article provides a comprehensive and critical review of up‐to‐date advances in the field of 2D supported SACs. The state‐of‐the‐art characterizations including ex/in situ microscopic and spectroscopic techniques are summarized with the emphasis on their specific superiorities in identifying the reactive sites and reaction mechanisms, combined with theoretical calculations and experimental results. A brief overview of various reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), two‐electron oxygen reduction reaction (2e‐ORR), carbon dioxide reduction (CO2RR), and nitrogen reduction reaction (NRR) under the framework of electrocatalysis and photocatalysis, is presented on basis of versatile 2D nanomaterial supports. Last, the key challenges and opportunities in this rising field are highlighted.
This review article presents advances in 2D nanomaterial supported single metal atom catalysts (SACs) toward photo/electrocatalysis, with the special emphasis on the superiorities of 2D nanosheets as host materials. Advanced ex/in situ microscopic and spectroscopic approaches as well as rational design strategies of 2D‐SACs, are comprehensively summarized. The future challenges and opportunities on the 2D nanosheets‐supported SACs for photo/electrocatalysis are highlighted. |
---|---|
AbstractList | Single‐atom catalysts (SACs) attract intensive attention owing to their unmatched catalytic activities and high atom utilization. Besides metal species themselves, the substrates play a key role for the improvement of their catalytic performance by optimizing metal–support interactions and coordination structures. In the past years, various 2D nanomaterials have been employed to anchor single metal atoms for renewable energy technologies and other important industrial processes. Tremendous progress has been achieved in the development of 2D supported SACs for advanced energy conversion reactions. This article provides a comprehensive and critical review of up‐to‐date advances in the field of 2D supported SACs. The state‐of‐the‐art characterizations including ex/in situ microscopic and spectroscopic techniques are summarized with the emphasis on their specific superiorities in identifying the reactive sites and reaction mechanisms, combined with theoretical calculations and experimental results. A brief overview of various reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), two‐electron oxygen reduction reaction (2e‐ORR), carbon dioxide reduction (CO2RR), and nitrogen reduction reaction (NRR) under the framework of electrocatalysis and photocatalysis, is presented on basis of versatile 2D nanomaterial supports. Last, the key challenges and opportunities in this rising field are highlighted. Single‐atom catalysts (SACs) attract intensive attention owing to their unmatched catalytic activities and high atom utilization. Besides metal species themselves, the substrates play a key role for the improvement of their catalytic performance by optimizing metal–support interactions and coordination structures. In the past years, various 2D nanomaterials have been employed to anchor single metal atoms for renewable energy technologies and other important industrial processes. Tremendous progress has been achieved in the development of 2D supported SACs for advanced energy conversion reactions. This article provides a comprehensive and critical review of up‐to‐date advances in the field of 2D supported SACs. The state‐of‐the‐art characterizations including ex/in situ microscopic and spectroscopic techniques are summarized with the emphasis on their specific superiorities in identifying the reactive sites and reaction mechanisms, combined with theoretical calculations and experimental results. A brief overview of various reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), two‐electron oxygen reduction reaction (2e‐ORR), carbon dioxide reduction (CO2RR), and nitrogen reduction reaction (NRR) under the framework of electrocatalysis and photocatalysis, is presented on basis of versatile 2D nanomaterial supports. Last, the key challenges and opportunities in this rising field are highlighted. This review article presents advances in 2D nanomaterial supported single metal atom catalysts (SACs) toward photo/electrocatalysis, with the special emphasis on the superiorities of 2D nanosheets as host materials. Advanced ex/in situ microscopic and spectroscopic approaches as well as rational design strategies of 2D‐SACs, are comprehensively summarized. The future challenges and opportunities on the 2D nanosheets‐supported SACs for photo/electrocatalysis are highlighted. Single‐atom catalysts (SACs) attract intensive attention owing to their unmatched catalytic activities and high atom utilization. Besides metal species themselves, the substrates play a key role for the improvement of their catalytic performance by optimizing metal–support interactions and coordination structures. In the past years, various 2D nanomaterials have been employed to anchor single metal atoms for renewable energy technologies and other important industrial processes. Tremendous progress has been achieved in the development of 2D supported SACs for advanced energy conversion reactions. This article provides a comprehensive and critical review of up‐to‐date advances in the field of 2D supported SACs. The state‐of‐the‐art characterizations including ex/in situ microscopic and spectroscopic techniques are summarized with the emphasis on their specific superiorities in identifying the reactive sites and reaction mechanisms, combined with theoretical calculations and experimental results. A brief overview of various reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), two‐electron oxygen reduction reaction (2e‐ORR), carbon dioxide reduction (CO 2 RR), and nitrogen reduction reaction (NRR) under the framework of electrocatalysis and photocatalysis, is presented on basis of versatile 2D nanomaterial supports. Last, the key challenges and opportunities in this rising field are highlighted. |
Author | Yan, Cheng Wang, Gui‐Gen Han, Jie‐Cai Liu, Yi‐Lin Zeng, Qingyi |
Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0002-7875-4318 surname: Yan fullname: Yan, Cheng email: cyan003@e.ntu.edu.sg organization: The University of Sydney – sequence: 2 givenname: Yi‐Lin surname: Liu fullname: Liu, Yi‐Lin email: liuyilin@usc.edu.cn organization: University of South China – sequence: 3 givenname: Qingyi surname: Zeng fullname: Zeng, Qingyi organization: University of South China – sequence: 4 givenname: Gui‐Gen surname: Wang fullname: Wang, Gui‐Gen email: wangguigen@hit.edu.cn organization: Harbin Institute of Technology (Shenzhen) – sequence: 5 givenname: Jie‐Cai surname: Han fullname: Han, Jie‐Cai organization: Harbin Institute of Technology |
BookMark | eNqFkE1Lw0AQhhepYFu9eg54brsf2WRzLP2wQqtCC3pbNslu3ZJk4-4G6c2f4G_0l5hSqSCIpxmY55kZ3h7oVKaSAFwjOEQQ4pHIVTnEEGMEGYnPQBdFKBoQiFnn1KPnC9BzbgchimMSdsETngb3ojKl8NJqUQTrpq6N9TIP1rraFvLz_WMlfTsYe1O6QBkbLGTLmq2spGlc8PhivBnNCpl5azLRonun3SU4V6Jw8uq79sFmPttMFoPlw-3dZLwcZKT9YEBTlgpCZCRpghFTOUVEpUypNIsopCmVCYJYJDgnjEUizGiMUpHEgtAQEkT64Oa4trbmtZHO851pbNVe5DiOEsYwSWhLhUcqs8Y5KxXPtBdem8pboQuOID8kyA8J8lOCrTb8pdVWl8Lu_xaSo_CmC7n_h-bj6Xz1434BjMCHHA |
CitedBy_id | crossref_primary_10_1002_adfm_202311370 crossref_primary_10_1016_j_jece_2024_111991 crossref_primary_10_1088_1361_6528_ad6162 crossref_primary_10_3390_nano15060417 crossref_primary_10_1002_adma_202306910 crossref_primary_10_1016_j_apcatb_2023_122926 crossref_primary_10_1016_j_ccr_2024_216164 crossref_primary_10_1021_acsami_4c16119 crossref_primary_10_1016_j_cej_2024_158565 crossref_primary_10_1039_D3CS00557G crossref_primary_10_1002_chem_202400548 crossref_primary_10_3390_cryst13050804 crossref_primary_10_1016_j_nanoen_2024_109869 crossref_primary_10_1021_acssuschemeng_4c06241 crossref_primary_10_1016_j_cej_2023_145181 crossref_primary_10_26599_NRE_2024_9120132 crossref_primary_10_1002_advs_202306132 crossref_primary_10_1002_sstr_202300177 crossref_primary_10_1016_j_jallcom_2024_175346 crossref_primary_10_1039_D3TA07606G crossref_primary_10_1039_D4DT02573C crossref_primary_10_1039_D4RA00340C crossref_primary_10_1039_D4TA02079K |
Cites_doi | 10.1002/adfm.202103558 10.1126/science.aaf5251 10.1016/j.chempr.2017.12.005 10.1007/s11426-018-9273-1 10.1039/C5EE00751H 10.1038/s41467-020-20336-4 10.1038/nature11475 10.1002/aenm.202003294 10.1002/adma.202004287 10.1039/C9TA06653E 10.1016/j.mtener.2018.10.014 10.1002/adma.201908505 10.1038/s41929-021-00644-8 10.1007/s12274-017-1933-4 10.1021/jacs.9b12642 10.1021/jacs.8b10380 10.1021/acs.chemrev.8b00501 10.1002/anie.201704358 10.1038/s41929-017-0008-y 10.1002/anie.202011495 10.1021/ja00464a015 10.1002/adma.202003075 10.1038/ncomms13638 10.1002/cphc.202000579 10.1016/j.apcatb.2021.120389 10.1002/smll.202007113 10.1093/nsr/nwaa213 10.1002/smll.202002411 10.1002/smsc.202100015 10.1126/sciadv.1500462 10.1038/s41467-020-17904-z 10.1021/jacs.0c05050 10.1039/D0EE03567J 10.1002/anie.201507381 10.1002/smtd.201800419 10.1038/nchem.1095 10.1002/sstr.202000058 10.1002/adma.201903841 10.1021/jacs.8b00752 10.1016/j.jcis.2019.06.012 10.1002/smtd.201900337 10.1002/anie.201904058 10.1002/adfm.202100233 10.1038/s41929-018-0195-1 10.1038/nenergy.2016.184 10.1038/nmat4660 10.1126/sciadv.abb6833 10.1016/j.isci.2018.12.006 10.1002/smll.202002888 10.1021/jacs.1c03135 10.1002/aenm.201801909 10.1038/s41467-019-12997-7 10.1021/acs.chemrev.9b00840 10.1016/j.apcatb.2019.118036 10.1038/s41467-019-09666-0 10.1002/anie.201906079 10.1038/s41467-018-04501-4 10.1016/j.mattod.2020.07.002 10.1002/adma.201705369 10.1039/C7TA03624H 10.1039/C9CS00422J 10.1038/s41467-021-25426-5 10.1039/D1TA08319H 10.1021/acsnano.1c00251 10.1002/anie.202109373 10.1002/smsc.202100017 10.1038/ncomms14430 10.1038/s41560-020-00709-1 10.1021/jacs.1c01097 10.1021/acs.jpclett.9b01892 10.1021/jacs.7b00452 10.1002/anie.202009217 10.1039/D1SC01375K 10.1002/adma.202003082 10.1021/acscatal.0c05514 10.1073/pnas.1913403117 10.1002/adma.201704624 10.1016/j.catcom.2021.106294 10.1021/acs.chemrev.9b00201 10.1021/acs.chemrev.8b00705 10.1038/s41565-021-01022-y 10.1038/s41467-021-21595-5 10.1039/D1EE01244D 10.1039/D0CS00332H 10.1016/j.scib.2018.07.005 10.1038/s41467-020-18143-y 10.1038/s41565-020-00799-8 10.1039/D0EE02651D 10.1016/j.chempr.2020.01.013 10.1002/anie.201706467 10.1038/s41467-020-18430-8 10.1002/anie.201710599 10.1002/anie.202101522 10.1016/j.matt.2020.07.032 10.1021/jacs.9b03004 10.1016/j.nanoen.2019.104304 10.1002/advs.201901787 10.1039/D1EE00248A 10.1039/D1TA00154J 10.1126/sciadv.aba6586 10.1016/j.apcatb.2020.119138 10.1016/j.chempr.2019.12.008 10.1016/j.nanoen.2019.104409 10.1038/s41467-020-14984-9 10.1021/acs.jpclett.0c01415 10.1039/C7EE03245E 10.1038/s41467-021-21956-0 10.1021/jacs.1c00504 10.1021/acscatal.7b03512 10.1021/ja509970z 10.1002/admi.202001904 10.1002/anie.201809492 10.1038/s41467-018-03896-4 10.1002/aenm.201600464 10.1039/C9TA12838G 10.1038/natrevmats.2016.9 10.1016/j.nanoen.2018.09.003 10.1021/acs.chemmater.7b03832 10.1016/j.apcatb.2018.06.066 10.1021/acs.jpcc.8b03383 10.1038/ncomms9668 10.1021/jacs.9b12111 10.1002/aenm.201903949 10.1002/adma.201601960 10.1021/acsmaterialslett.0c00189 10.1038/s41467-019-10392-w 10.1016/j.scib.2019.12.025 10.1016/j.xcrp.2021.100371 10.1126/science.aad4998 10.1002/aenm.202001364 10.1002/cplu.202000631 10.1021/acsnano.9b08835 10.1039/D0EE01706J 10.1038/s41467-021-25811-0 10.1016/j.mattod.2018.01.034 10.1039/C9TA09776G 10.1002/anie.201914565 10.1002/adfm.202009770 10.1021/acsnano.0c09755 10.1039/D0TA09538A 10.1021/acscatal.0c00936 10.1002/cmtd.202100020 10.1038/s41467-020-18182-5 10.1016/j.cej.2020.127135 10.1021/acscatal.8b04937 10.1021/acscatal.9b04925 10.1007/s12274-020-2949-8 10.1016/j.joule.2018.06.019 10.1038/s41467-021-20951-9 10.1021/acsnano.9b10048 10.1002/adfm.201802169 10.1039/D0EE01347A 10.1021/acssuschemeng.8b06134 10.1038/s41467-021-24828-9 10.1002/anie.202003842 10.1016/j.nanoen.2020.104667 10.1038/s41467-021-24079-8 10.1016/j.nanoen.2018.11.033 10.1021/acscatal.0c01950 10.1021/jacs.6b02692 10.1002/adma.201505281 10.1038/s41467-020-19599-8 10.1002/smll.202002356 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202210837 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202210837 ADFM202210837 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: University of South China funderid: 220XQD016 – fundername: Natural Science Foundation of Hunan Province funderid: 2021JJ20007 – fundername: National Natural Science Foundation of China funderid: 52170164 – fundername: National Key Laboratory of Science, Technology on Advanced Composites in Special Environments, HIT funderid: 6142905192507 – fundername: Shenzhen Constantly‐supported Project for Colleges and Universities funderid: GXWD20201230155427003‐20200821232246001 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3177-5b8ba33e6e59218fd513fb8ffbc6505b5e9102a92d3886a4c571ba97a3540313 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 04:17:06 EDT 2025 Tue Jul 01 00:30:36 EDT 2025 Thu Apr 24 22:57:21 EDT 2025 Wed Jan 22 16:24:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3177-5b8ba33e6e59218fd513fb8ffbc6505b5e9102a92d3886a4c571ba97a3540313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7875-4318 |
PQID | 2769882395 |
PQPubID | 2045204 |
PageCount | 40 |
ParticipantIDs | proquest_journals_2769882395 crossref_citationtrail_10_1002_adfm_202210837 crossref_primary_10_1002_adfm_202210837 wiley_primary_10_1002_adfm_202210837_ADFM202210837 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 11 2019; 10 2020; 16 2020; 14 2020; 13 2020; 11 2020; 10 2012; 488 2018; 9 2018; 8 2018; 2 2018; 4 2015; 137 2018; 1 1 2019; 553 2018; 30 2021; 153 6 2019; 7 2019; 9 2018; 28 2019; 3 2019; 6 2019; 31 2020; 40 2020; 142 2015; 54 2021; 143 2020; 32 2011; 3 2018; 21 2016; 15 2017; 139 2016; 6 2016; 7 2016; 1 2018; 238 2019; 48 2017; 56 1977; 99 2020; 276 2022; 10 2020; 21 2021; 60 2018; 11 2016; 28 2022; 17 2017; 5 2021; 406 2018; 122 2017; 8 2020; 120 2019; 56 2019; 58 2020; 59 2017; 355 2020; 8 2020; 6 2020; 5 2020; 3 2021; 31 2020; 2 2021; 33 2020; 49 2016; 352 2019; 119 2021; 9 2021; 8 2015; 6 2021; 4 2018; 140 2021; 2 2020; 85 2018; 63 2017; 29 2018; 61 2021; 1 2019; 141 2015; 8 2021; 14 2021; 16 2021; 15 2021; 12 2021; 11 2022; 61 2020; 72 2021; 17 2019; 259 2020; 117 2020; 69 2020; 68 2016; 138 2021; 297 2020; 65 2018; 53 2018; 57 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_18_1 e_1_2_9_160_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 Zhao S. (e_1_2_9_25_1) 2022; 61 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_161_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 137 start-page: 239 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 99 start-page: 7189 year: 1977 publication-title: J. Am. Chem. Soc. – volume: 488 start-page: 294 year: 2012 publication-title: Nature – volume: 12 start-page: 709 year: 2021 publication-title: Nat. Commun. – volume: 53 start-page: 458 year: 2018 publication-title: Nano Energy – volume: 139 start-page: 4486 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 6463 year: 2022 publication-title: J. Mater. Chem. A – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 4341 year: 2020 publication-title: Nat. Commun. – volume: 15 start-page: 7105 year: 2021 publication-title: ACS Nano – volume: 2 year: 2021 publication-title: Cell Rep. Phys. Sci. – volume: 10 start-page: 5231 year: 2019 publication-title: Nat. Commun. – volume: 9 start-page: 9979 year: 2021 publication-title: J. Mater. Chem. A – volume: 17 start-page: 174 year: 2022 publication-title: Nat. Nanotechnol. – volume: 276 year: 2020 publication-title: Appl. Catal., B – volume: 1 publication-title: Sci. Adv. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 6 start-page: 8668 year: 2015 publication-title: Nat. Commun. – volume: 143 start-page: 7979 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 6376 year: 2020 publication-title: Proc. Natl. Acad. Sci. USA – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 11 start-page: 5212 year: 2021 publication-title: ACS Catal. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 40 start-page: 173 year: 2020 publication-title: Mater. Today – volume: 355 year: 2017 publication-title: Science – volume: 119 start-page: 1806 year: 2019 publication-title: Chem. Rev. – volume: 11 start-page: 31 year: 2019 publication-title: iScience – volume: 12 start-page: 5589 year: 2021 publication-title: Nat. Commun. – volume: 8 start-page: 3071 year: 2020 publication-title: J. Mater. Chem. A – volume: 21 start-page: 2145 year: 2020 publication-title: ChemPhysChem – volume: 1 start-page: 63 year: 2018 publication-title: Nat. Catal. – volume: 352 start-page: 797 year: 2016 publication-title: Science – volume: 12 start-page: 5128 year: 2021 publication-title: Nat. Commun. – volume: 4 start-page: 285 year: 2018 publication-title: Chem – volume: 15 start-page: 1003 year: 2016 publication-title: Nat. Mater. – volume: 2 start-page: 1242 year: 2018 publication-title: Joule – volume: 59 start-page: 9171 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 6 start-page: 658 year: 2020 publication-title: Chem – volume: 72 year: 2020 publication-title: Nano Energy – volume: 9 start-page: 2521 year: 2019 publication-title: ACS Catal. – volume: 69 year: 2020 publication-title: Nano Energy – volume: 56 start-page: 9312 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 3082 year: 2020 publication-title: Energy Environ. Sci. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 8 start-page: 1594 year: 2015 publication-title: Energy Environ. Sci. – volume: 7 start-page: 6813 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 4 start-page: 533 year: 2021 publication-title: Nat. Catal. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 406 year: 2021 publication-title: Chem. Eng. J. – volume: 17 year: 2021 publication-title: Small – volume: 10 start-page: 6081 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 1369 year: 2021 publication-title: Nat. Commun. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 28 start-page: 6959 year: 2016 publication-title: Adv. Mater. – volume: 15 start-page: 4927 year: 2021 publication-title: ACS Nano – volume: 11 start-page: 4114 year: 2020 publication-title: Nat. Commun. – volume: 63 start-page: 1246 year: 2018 publication-title: Sci. Bull. – volume: 6 publication-title: Sci. Adv. – volume: 56 start-page: 127 year: 2019 publication-title: Nano Energy – volume: 12 start-page: 238 year: 2021 publication-title: Nat. Commun. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 278 year: 2021 publication-title: Chem.—Methods – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 14 start-page: 3110 year: 2021 publication-title: Energy Environ. Sci. – volume: 120 year: 2020 publication-title: Chem. Rev. – volume: 16 start-page: 129 year: 2021 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 2925 year: 2020 publication-title: Nano Res. – volume: 3 start-page: 1442 year: 2020 publication-title: Matter – volume: 61 start-page: 1187 year: 2018 publication-title: Sci. China: Chem. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 1093 year: 2020 publication-title: ACS Nano – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 553 start-page: 530 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 11 start-page: 893 year: 2018 publication-title: Energy Environ. Sci. – volume: 11 start-page: 4558 year: 2020 publication-title: Nat. Commun. – volume: 11 start-page: 5892 year: 2020 publication-title: Nat. Commun. – volume: 142 start-page: 7425 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 2809 year: 2021 publication-title: Energy Environ. Sci. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 7819 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 3362 year: 2018 publication-title: Nano Res. – volume: 48 start-page: 5207 year: 2019 publication-title: Chem. Soc. Rev. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 4302 year: 2020 publication-title: Nat. Commun. – volume: 138 start-page: 6292 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2021 publication-title: Natl. Sci. Rev. – volume: 10 start-page: 2840 year: 2019 publication-title: Nat. Commun. – volume: 9 start-page: 1460 year: 2018 publication-title: Nat. Commun. – volume: 11 start-page: 1 year: 2019 publication-title: Mater. Today Energy – volume: 49 start-page: 6592 year: 2020 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 6800 year: 2021 publication-title: Chem. Sci. – volume: 14 start-page: 1794 year: 2021 publication-title: Energy Environ. Sci. – volume: 13 start-page: 3748 year: 2020 publication-title: Energy Environ. Sci. – volume: 59 start-page: 6827 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 881 year: 2020 publication-title: Nat. Energy – volume: 143 start-page: 5771 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 3876 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 238 start-page: 119 year: 2018 publication-title: Appl. Catal., B – volume: 16 year: 2020 publication-title: Small – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 119 start-page: 7610 year: 2019 publication-title: Chem. Rev. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 28 start-page: 2427 year: 2016 publication-title: Adv. Mater. – volume: 2 start-page: 1008 year: 2020 publication-title: ACS Mater. Lett. – volume: 259 year: 2019 publication-title: Appl. Catal., B – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 29 start-page: 8892 year: 2017 publication-title: Chem. Mater. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 12 start-page: 1687 year: 2021 publication-title: Nat. Commun. – volume: 1 start-page: 985 year: 2018 publication-title: Nat. Catal. – volume: 21 start-page: 749 year: 2018 publication-title: Mater. Today – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 1263 year: 2020 publication-title: Nat. Commun. – volume: 9 start-page: 2120 year: 2018 publication-title: Nat. Commun. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 1 year: 2021 publication-title: Small Sci. – volume: 65 start-page: 720 year: 2020 publication-title: Sci. Bull. – volume: 2 year: 2021 publication-title: Small Struct. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 7584 year: 2020 publication-title: ACS Catal. – volume: 120 start-page: 919 year: 2020 publication-title: Chem. Rev. – volume: 12 start-page: 3783 year: 2021 publication-title: Nat. Commun. – volume: 6 start-page: 885 year: 2020 publication-title: Chem – volume: 10 start-page: 2431 year: 2020 publication-title: ACS Catal. – volume: 12 start-page: 4587 year: 2021 publication-title: Nat. Commun. – volume: 297 year: 2021 publication-title: Appl. Catal., B – volume: 85 start-page: 2570 year: 2020 publication-title: ChemPlusChem – volume: 11 start-page: 5051 year: 2020 publication-title: J. Phys. Chem. Lett. – volume: 8 year: 2021 publication-title: Adv. Mater. Interfaces – volume: 8 start-page: 4241 year: 2018 publication-title: ACS Catal. – volume: 3 year: 2019 publication-title: Small Methods – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 14 start-page: 5600 year: 2020 publication-title: ACS Nano – volume: 14 start-page: 4926 year: 2021 publication-title: Energy Environ. Sci. – volume: 10 start-page: 5862 year: 2020 publication-title: ACS Catal. – volume: 68 year: 2020 publication-title: Nano Energy – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1711 year: 2019 publication-title: Nat. Commun. – volume: 3 start-page: 634 year: 2011 publication-title: Nat. Chem. – volume: 153 year: 2021 publication-title: Catal. Commun. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_9_19_1 doi: 10.1002/adfm.202103558 – ident: e_1_2_9_29_1 doi: 10.1126/science.aaf5251 – ident: e_1_2_9_55_1 doi: 10.1016/j.chempr.2017.12.005 – ident: e_1_2_9_67_1 doi: 10.1007/s11426-018-9273-1 – ident: e_1_2_9_44_1 doi: 10.1039/C5EE00751H – ident: e_1_2_9_116_1 doi: 10.1038/s41467-020-20336-4 – ident: e_1_2_9_2_1 doi: 10.1038/nature11475 – ident: e_1_2_9_6_1 doi: 10.1002/aenm.202003294 – ident: e_1_2_9_95_1 doi: 10.1002/adma.202004287 – ident: e_1_2_9_162_1 doi: 10.1039/C9TA06653E – ident: e_1_2_9_18_1 doi: 10.1016/j.mtener.2018.10.014 – ident: e_1_2_9_146_1 doi: 10.1002/adma.201908505 – ident: e_1_2_9_152_1 doi: 10.1038/s41929-021-00644-8 – ident: e_1_2_9_156_1 doi: 10.1007/s12274-017-1933-4 – ident: e_1_2_9_102_1 doi: 10.1021/jacs.9b12642 – ident: e_1_2_9_155_1 doi: 10.1021/jacs.8b10380 – ident: e_1_2_9_10_1 doi: 10.1021/acs.chemrev.8b00501 – ident: e_1_2_9_149_1 doi: 10.1002/anie.201704358 – ident: e_1_2_9_103_1 doi: 10.1038/s41929-017-0008-y – ident: e_1_2_9_138_1 doi: 10.1002/anie.202011495 – ident: e_1_2_9_161_1 doi: 10.1021/ja00464a015 – ident: e_1_2_9_100_1 doi: 10.1002/adma.202003075 – ident: e_1_2_9_27_1 doi: 10.1038/ncomms13638 – ident: e_1_2_9_78_1 doi: 10.1002/cphc.202000579 – ident: e_1_2_9_13_1 doi: 10.1016/j.apcatb.2021.120389 – ident: e_1_2_9_39_1 doi: 10.1002/smll.202007113 – ident: e_1_2_9_120_1 doi: 10.1093/nsr/nwaa213 – ident: e_1_2_9_66_1 doi: 10.1002/smll.202002411 – ident: e_1_2_9_38_1 doi: 10.1002/smsc.202100015 – ident: e_1_2_9_56_1 doi: 10.1126/sciadv.1500462 – ident: e_1_2_9_60_1 doi: 10.1038/s41467-020-17904-z – ident: e_1_2_9_101_1 doi: 10.1021/jacs.0c05050 – ident: e_1_2_9_150_1 doi: 10.1039/D0EE03567J – ident: e_1_2_9_69_1 doi: 10.1002/anie.201507381 – ident: e_1_2_9_74_1 doi: 10.1002/smtd.201800419 – ident: e_1_2_9_24_1 doi: 10.1038/nchem.1095 – ident: e_1_2_9_57_1 doi: 10.1002/sstr.202000058 – ident: e_1_2_9_91_1 doi: 10.1002/adma.201903841 – ident: e_1_2_9_68_1 doi: 10.1021/jacs.8b00752 – ident: e_1_2_9_132_1 doi: 10.1016/j.jcis.2019.06.012 – ident: e_1_2_9_125_1 doi: 10.1002/smtd.201900337 – ident: e_1_2_9_147_1 doi: 10.1002/anie.201904058 – ident: e_1_2_9_85_1 doi: 10.1002/adfm.202100233 – ident: e_1_2_9_88_1 doi: 10.1038/s41929-018-0195-1 – ident: e_1_2_9_34_1 doi: 10.1038/nenergy.2016.184 – ident: e_1_2_9_46_1 doi: 10.1038/nmat4660 – ident: e_1_2_9_22_1 doi: 10.1126/sciadv.abb6833 – ident: e_1_2_9_76_1 doi: 10.1016/j.isci.2018.12.006 – ident: e_1_2_9_89_1 doi: 10.1002/smll.202002888 – ident: e_1_2_9_43_1 doi: 10.1021/jacs.1c03135 – ident: e_1_2_9_107_1 doi: 10.1002/aenm.201801909 – ident: e_1_2_9_58_1 doi: 10.1038/s41467-019-12997-7 – ident: e_1_2_9_11_1 doi: 10.1021/acs.chemrev.9b00840 – ident: e_1_2_9_144_1 doi: 10.1016/j.apcatb.2019.118036 – ident: e_1_2_9_61_1 doi: 10.1038/s41467-019-09666-0 – ident: e_1_2_9_97_1 doi: 10.1002/anie.201906079 – ident: e_1_2_9_82_1 doi: 10.1038/s41467-018-04501-4 – ident: e_1_2_9_21_1 doi: 10.1016/j.mattod.2020.07.002 – ident: e_1_2_9_30_1 doi: 10.1002/adma.201705369 – ident: e_1_2_9_131_1 doi: 10.1039/C7TA03624H – ident: e_1_2_9_9_1 doi: 10.1039/C9CS00422J – ident: e_1_2_9_117_1 doi: 10.1038/s41467-021-25426-5 – ident: e_1_2_9_37_1 doi: 10.1039/D1TA08319H – ident: e_1_2_9_98_1 doi: 10.1021/acsnano.1c00251 – volume: 61 year: 2022 ident: e_1_2_9_25_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_9_113_1 doi: 10.1002/anie.202109373 – ident: e_1_2_9_17_1 doi: 10.1002/smsc.202100017 – ident: e_1_2_9_80_1 doi: 10.1038/ncomms14430 – ident: e_1_2_9_26_1 doi: 10.1038/s41560-020-00709-1 – ident: e_1_2_9_47_1 doi: 10.1021/jacs.1c01097 – ident: e_1_2_9_86_1 doi: 10.1021/acs.jpclett.9b01892 – ident: e_1_2_9_65_1 doi: 10.1021/jacs.7b00452 – ident: e_1_2_9_121_1 doi: 10.1002/anie.202009217 – ident: e_1_2_9_42_1 doi: 10.1039/D1SC01375K – ident: e_1_2_9_143_1 doi: 10.1002/adma.202003082 – ident: e_1_2_9_114_1 doi: 10.1021/acscatal.0c05514 – ident: e_1_2_9_151_1 doi: 10.1073/pnas.1913403117 – ident: e_1_2_9_159_1 doi: 10.1002/adma.201704624 – ident: e_1_2_9_163_1 doi: 10.1016/j.catcom.2021.106294 – ident: e_1_2_9_4_1 doi: 10.1021/acs.chemrev.9b00201 – ident: e_1_2_9_5_1 doi: 10.1021/acs.chemrev.8b00705 – ident: e_1_2_9_96_1 doi: 10.1038/s41565-021-01022-y – ident: e_1_2_9_93_1 doi: 10.1038/s41467-021-21595-5 – ident: e_1_2_9_33_1 doi: 10.1039/D1EE01244D – ident: e_1_2_9_35_1 doi: 10.1039/D0CS00332H – ident: e_1_2_9_119_1 doi: 10.1016/j.scib.2018.07.005 – ident: e_1_2_9_63_1 doi: 10.1038/s41467-020-18143-y – ident: e_1_2_9_1_1 doi: 10.1038/s41565-020-00799-8 – ident: e_1_2_9_16_1 doi: 10.1039/D0EE02651D – ident: e_1_2_9_123_1 doi: 10.1016/j.chempr.2020.01.013 – ident: e_1_2_9_140_1 doi: 10.1002/anie.201706467 – ident: e_1_2_9_28_1 doi: 10.1038/s41467-020-18430-8 – ident: e_1_2_9_70_1 doi: 10.1002/anie.201710599 – ident: e_1_2_9_8_1 doi: 10.1002/anie.202101522 – ident: e_1_2_9_12_1 doi: 10.1016/j.matt.2020.07.032 – ident: e_1_2_9_77_1 doi: 10.1021/jacs.9b03004 – ident: e_1_2_9_122_1 doi: 10.1016/j.nanoen.2019.104304 – ident: e_1_2_9_15_1 doi: 10.1002/advs.201901787 – ident: e_1_2_9_23_1 doi: 10.1039/D1EE00248A – ident: e_1_2_9_40_1 doi: 10.1039/D1TA00154J – ident: e_1_2_9_72_1 doi: 10.1126/sciadv.aba6586 – ident: e_1_2_9_128_1 doi: 10.1016/j.apcatb.2020.119138 – ident: e_1_2_9_62_1 doi: 10.1016/j.chempr.2019.12.008 – ident: e_1_2_9_136_1 doi: 10.1016/j.nanoen.2019.104409 – ident: e_1_2_9_31_1 doi: 10.1038/s41467-020-14984-9 – ident: e_1_2_9_126_1 doi: 10.1021/acs.jpclett.0c01415 – ident: e_1_2_9_110_1 doi: 10.1039/C7EE03245E – ident: e_1_2_9_83_1 doi: 10.1038/s41467-021-21956-0 – ident: e_1_2_9_109_1 doi: 10.1021/jacs.1c00504 – ident: e_1_2_9_142_1 doi: 10.1021/acscatal.7b03512 – ident: e_1_2_9_145_1 doi: 10.1021/ja509970z – ident: e_1_2_9_41_1 doi: 10.1002/admi.202001904 – ident: e_1_2_9_129_1 doi: 10.1002/anie.201809492 – ident: e_1_2_9_75_1 doi: 10.1038/s41467-018-03896-4 – ident: e_1_2_9_130_1 doi: 10.1002/aenm.201600464 – ident: e_1_2_9_105_1 doi: 10.1039/C9TA12838G – ident: e_1_2_9_7_1 doi: 10.1038/natrevmats.2016.9 – ident: e_1_2_9_54_1 doi: 10.1016/j.nanoen.2018.09.003 – ident: e_1_2_9_87_1 doi: 10.1021/acs.chemmater.7b03832 – ident: e_1_2_9_127_1 doi: 10.1016/j.apcatb.2018.06.066 – ident: e_1_2_9_148_1 doi: 10.1021/acs.jpcc.8b03383 – ident: e_1_2_9_71_1 doi: 10.1038/ncomms9668 – ident: e_1_2_9_112_1 doi: 10.1021/jacs.9b12111 – ident: e_1_2_9_73_1 doi: 10.1002/aenm.201903949 – ident: e_1_2_9_137_1 doi: 10.1002/adma.201601960 – ident: e_1_2_9_108_1 doi: 10.1021/acsmaterialslett.0c00189 – ident: e_1_2_9_157_1 doi: 10.1038/s41467-019-10392-w – ident: e_1_2_9_153_1 doi: 10.1016/j.scib.2019.12.025 – ident: e_1_2_9_160_1 doi: 10.1016/j.xcrp.2021.100371 – ident: e_1_2_9_3_1 doi: 10.1126/science.aad4998 – ident: e_1_2_9_64_1 doi: 10.1002/aenm.202001364 – ident: e_1_2_9_32_1 doi: 10.1002/cplu.202000631 – ident: e_1_2_9_111_1 doi: 10.1021/acsnano.9b08835 – ident: e_1_2_9_49_1 doi: 10.1039/D0EE01706J – ident: e_1_2_9_104_1 doi: 10.1038/s41467-021-25811-0 – ident: e_1_2_9_133_1 doi: 10.1016/j.mattod.2018.01.034 – ident: e_1_2_9_124_1 doi: 10.1039/C9TA09776G – ident: e_1_2_9_141_1 doi: 10.1002/anie.201914565 – ident: e_1_2_9_53_1 doi: 10.1002/adfm.202009770 – ident: e_1_2_9_115_1 doi: 10.1021/acsnano.0c09755 – ident: e_1_2_9_90_1 doi: 10.1039/D0TA09538A – ident: e_1_2_9_99_1 doi: 10.1021/acscatal.0c00936 – ident: e_1_2_9_48_1 doi: 10.1002/cmtd.202100020 – ident: e_1_2_9_14_1 doi: 10.1038/s41467-020-18182-5 – ident: e_1_2_9_36_1 doi: 10.1016/j.cej.2020.127135 – ident: e_1_2_9_50_1 doi: 10.1021/acscatal.8b04937 – ident: e_1_2_9_51_1 doi: 10.1021/acscatal.9b04925 – ident: e_1_2_9_118_1 doi: 10.1007/s12274-020-2949-8 – ident: e_1_2_9_94_1 doi: 10.1016/j.joule.2018.06.019 – ident: e_1_2_9_84_1 doi: 10.1038/s41467-021-20951-9 – ident: e_1_2_9_81_1 doi: 10.1021/acsnano.9b10048 – ident: e_1_2_9_139_1 doi: 10.1002/adfm.201802169 – ident: e_1_2_9_92_1 doi: 10.1039/D0EE01347A – ident: e_1_2_9_164_1 doi: 10.1021/acssuschemeng.8b06134 – ident: e_1_2_9_106_1 doi: 10.1038/s41467-021-24828-9 – ident: e_1_2_9_52_1 doi: 10.1002/anie.202003842 – ident: e_1_2_9_79_1 doi: 10.1016/j.nanoen.2020.104667 – ident: e_1_2_9_59_1 doi: 10.1038/s41467-021-24079-8 – ident: e_1_2_9_135_1 doi: 10.1016/j.nanoen.2018.11.033 – ident: e_1_2_9_20_1 doi: 10.1021/acscatal.0c01950 – ident: e_1_2_9_154_1 doi: 10.1021/jacs.6b02692 – ident: e_1_2_9_134_1 doi: 10.1002/adma.201505281 – ident: e_1_2_9_45_1 doi: 10.1038/s41467-020-19599-8 – ident: e_1_2_9_158_1 doi: 10.1002/smll.202002356 |
SSID | ssj0017734 |
Score | 2.6041853 |
SecondaryResourceType | review_article |
Snippet | Single‐atom catalysts (SACs) attract intensive attention owing to their unmatched catalytic activities and high atom utilization. Besides metal species... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 2D nanomaterials Carbon dioxide Chemical reduction electrocatalyses Electrocatalysis Energy conversion Energy technology Hydrogen evolution reactions Materials science Nanomaterials operando characterizations Oxygen evolution reactions Oxygen reduction reactions photocatalyses Reaction mechanisms single‐atom catalysts Substrates |
Title | 2D Nanomaterial Supported Single‐Metal Atoms for Heterogeneous Photo/Electrocatalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202210837 https://www.proquest.com/docview/2769882395 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFA-iFz34X5zO0YPgqduaNE17HG5jiBNxE3crSZogOFex3cWTH8HP6Cfxpf-2CSLosfAS2uTlvd97ffk9hM49riOfM21zLCMIUASzA0WU7ftgkF2X67Y0ecjhjTe4d68mdLJ0iz_nh6gSbuZkZPbaHHAuktaCNJRH2twkxxCzQJAFRtgUbBlUdFfxRzmM5b-VPccUeDmTkrWxjVurw1e90gJqLgPWzOP0dxAv3zUvNHlqzlPRlG_faBz_8zG7aLuAo1Yn1589tKZm-2hriaTwAD3grgU2OAZom2mrZRqBmhLdyBqBwFR9vn8MVWpmSePnxAIUbA1MkU0MuqnieWLdPsZp3OrlDXeyfJGhQTlE435vfDmwi3YMtgSQwWwqfMEJUZ6iAQADHVGHaOFrLSTAPCqoAuiBeYAj4vsedyVljuAB4ya1RBxyhNZn8UwdI8tlWEqHcQUu1KWB5IyqSLuuIoKwwNc1ZJe7EcqCqtx0zJiGOckyDs16hdV61dBFJf-Sk3T8KFkvNzcsDmsSYuYFEGiQgNYQznbpl1nCTrc_rJ5O_jLoFG2axvV5MqeO1tPXuToDeJOKBtrodIfXo0amyl-Tq_Sa |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5RegAOpVAqtt3SHJA4hSV2HCfHFbAKlCAEi-AW2Y6tSqWbqpu99NRH6DP2STqTbLJLpQqJHiPZVuL58TeT8TcA-5FyRayk8xUzBQYoWvqJ5daPY3TIYajckaE8ZHYZpbfh-b1oqwnpLkzDD9El3Mgyan9NBk4J6cGCNVQVjq6SMwxaMMp6AS-prXcdVV13DFKBlM2P5SigEq_gvuVtPGKDx_Mfn0sLsLkMWeszZ7QJun3bptTky-Gs0ofmx19Ejv_1Oa_h1RyResNGhbZgxU62YWOJp_AN3LETD91wiei2VliPeoFSlW7h3eCAB_v756_MVrRKVX6degiEvZTqbEpUT1vOpt7V57IqB6dNz506ZURMKDswHp2Oj1N_3pHBN4gzpC90rBXnNrIiQWzgCtxwp2PntEGkJ7SwiD6YSljB4zhSoREy0CqRirJLPOBvYXVSTuwueKFkxgRSWTxFQ5EYJYUtXBharrlMYtcDvxVHbuZs5dQ04yFveJZZTvuVd_vVg4Nu_LeGp-OfI_utdPO5vU5zJqMEYw2eiB6wWkxPrJIPT0ZZ9_TuOZM-wlo6zi7yi7PLT-9hnfrYN7mdPqxW32f2A6KdSu_V-vwHK5D3IQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7IhCgRyQOIU2XmLnWFGqshQhFtFbZDu2kCgNoumFE5_AN_Il2EkbChJCgmMk20o8i99Mxm8A9kNhEi6Y8QVSiQ1QJPMjjbXPuXXIhAhTVy4P2bkI27fktEu7E7f4C36IMuHmLCP3187AnxJT-yQNFYlxN8mRjVlskDUNsySsc6fXzauSQCpgrPivHAauwivojmkb66j2df7XY-kTa04i1vzIaS2BGL9sUWnycDjM5KF6-cbj-J-vWYbFER71GoUCrcCU7q_CwgRL4RrcoaZnnXBqsW2urp7rBOpqdBPv2g7o6ffXt47O3CpZ-jjwLAz22q7KJrXKqdPhwLu8T7O0dlx03MkTRo4HZR1uWsc3R21_1I_BVxZlMJ9KLgXGOtQ0ssjAJDTARnJjpLI4j0qqLfZAIkIJ5jwURFEWSBEx4XJLOMAbMNNP-3oTPMKQUgET2p6hhEZKMKoTQ4jGErOImwr4Y2nEasRV7lpm9OKCZRnFbr_icr8qcFCOfypYOn4cWR0LNx5Z6yBGLIxspIEjWgGUS-mXVeJGs9Upn7b-MmkP5i6brfj85OJsG-ZdE_sisVOFmex5qHcs1Mnkbq7NH2PA9dk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+Nanomaterial+Supported+Single%E2%80%90Metal+Atoms+for+Heterogeneous+Photo%2FElectrocatalysis&rft.jtitle=Advanced+functional+materials&rft.au=Yan%2C+Cheng&rft.au=Liu%2C+Yi%E2%80%90Lin&rft.au=Zeng%2C+Qingyi&rft.au=Wang%2C+Gui%E2%80%90Gen&rft.date=2023-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=5&rft_id=info:doi/10.1002%2Fadfm.202210837&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202210837 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |