2D Nanomaterial Supported Single‐Metal Atoms for Heterogeneous Photo/Electrocatalysis

Single‐atom catalysts (SACs) attract intensive attention owing to their unmatched catalytic activities and high atom utilization. Besides metal species themselves, the substrates play a key role for the improvement of their catalytic performance by optimizing metal–support interactions and coordinat...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 5
Main Authors Yan, Cheng, Liu, Yi‐Lin, Zeng, Qingyi, Wang, Gui‐Gen, Han, Jie‐Cai
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single‐atom catalysts (SACs) attract intensive attention owing to their unmatched catalytic activities and high atom utilization. Besides metal species themselves, the substrates play a key role for the improvement of their catalytic performance by optimizing metal–support interactions and coordination structures. In the past years, various 2D nanomaterials have been employed to anchor single metal atoms for renewable energy technologies and other important industrial processes. Tremendous progress has been achieved in the development of 2D supported SACs for advanced energy conversion reactions. This article provides a comprehensive and critical review of up‐to‐date advances in the field of 2D supported SACs. The state‐of‐the‐art characterizations including ex/in situ microscopic and spectroscopic techniques are summarized with the emphasis on their specific superiorities in identifying the reactive sites and reaction mechanisms, combined with theoretical calculations and experimental results. A brief overview of various reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), two‐electron oxygen reduction reaction (2e‐ORR), carbon dioxide reduction (CO2RR), and nitrogen reduction reaction (NRR) under the framework of electrocatalysis and photocatalysis, is presented on basis of versatile 2D nanomaterial supports. Last, the key challenges and opportunities in this rising field are highlighted. This review article presents advances in 2D nanomaterial supported single metal atom catalysts (SACs) toward photo/electrocatalysis, with the special emphasis on the superiorities of 2D nanosheets as host materials. Advanced ex/in situ microscopic and spectroscopic approaches as well as rational design strategies of 2D‐SACs, are comprehensively summarized. The future challenges and opportunities on the 2D nanosheets‐supported SACs for photo/electrocatalysis are highlighted.
AbstractList Single‐atom catalysts (SACs) attract intensive attention owing to their unmatched catalytic activities and high atom utilization. Besides metal species themselves, the substrates play a key role for the improvement of their catalytic performance by optimizing metal–support interactions and coordination structures. In the past years, various 2D nanomaterials have been employed to anchor single metal atoms for renewable energy technologies and other important industrial processes. Tremendous progress has been achieved in the development of 2D supported SACs for advanced energy conversion reactions. This article provides a comprehensive and critical review of up‐to‐date advances in the field of 2D supported SACs. The state‐of‐the‐art characterizations including ex/in situ microscopic and spectroscopic techniques are summarized with the emphasis on their specific superiorities in identifying the reactive sites and reaction mechanisms, combined with theoretical calculations and experimental results. A brief overview of various reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), two‐electron oxygen reduction reaction (2e‐ORR), carbon dioxide reduction (CO2RR), and nitrogen reduction reaction (NRR) under the framework of electrocatalysis and photocatalysis, is presented on basis of versatile 2D nanomaterial supports. Last, the key challenges and opportunities in this rising field are highlighted.
Single‐atom catalysts (SACs) attract intensive attention owing to their unmatched catalytic activities and high atom utilization. Besides metal species themselves, the substrates play a key role for the improvement of their catalytic performance by optimizing metal–support interactions and coordination structures. In the past years, various 2D nanomaterials have been employed to anchor single metal atoms for renewable energy technologies and other important industrial processes. Tremendous progress has been achieved in the development of 2D supported SACs for advanced energy conversion reactions. This article provides a comprehensive and critical review of up‐to‐date advances in the field of 2D supported SACs. The state‐of‐the‐art characterizations including ex/in situ microscopic and spectroscopic techniques are summarized with the emphasis on their specific superiorities in identifying the reactive sites and reaction mechanisms, combined with theoretical calculations and experimental results. A brief overview of various reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), two‐electron oxygen reduction reaction (2e‐ORR), carbon dioxide reduction (CO2RR), and nitrogen reduction reaction (NRR) under the framework of electrocatalysis and photocatalysis, is presented on basis of versatile 2D nanomaterial supports. Last, the key challenges and opportunities in this rising field are highlighted. This review article presents advances in 2D nanomaterial supported single metal atom catalysts (SACs) toward photo/electrocatalysis, with the special emphasis on the superiorities of 2D nanosheets as host materials. Advanced ex/in situ microscopic and spectroscopic approaches as well as rational design strategies of 2D‐SACs, are comprehensively summarized. The future challenges and opportunities on the 2D nanosheets‐supported SACs for photo/electrocatalysis are highlighted.
Single‐atom catalysts (SACs) attract intensive attention owing to their unmatched catalytic activities and high atom utilization. Besides metal species themselves, the substrates play a key role for the improvement of their catalytic performance by optimizing metal–support interactions and coordination structures. In the past years, various 2D nanomaterials have been employed to anchor single metal atoms for renewable energy technologies and other important industrial processes. Tremendous progress has been achieved in the development of 2D supported SACs for advanced energy conversion reactions. This article provides a comprehensive and critical review of up‐to‐date advances in the field of 2D supported SACs. The state‐of‐the‐art characterizations including ex/in situ microscopic and spectroscopic techniques are summarized with the emphasis on their specific superiorities in identifying the reactive sites and reaction mechanisms, combined with theoretical calculations and experimental results. A brief overview of various reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), two‐electron oxygen reduction reaction (2e‐ORR), carbon dioxide reduction (CO 2 RR), and nitrogen reduction reaction (NRR) under the framework of electrocatalysis and photocatalysis, is presented on basis of versatile 2D nanomaterial supports. Last, the key challenges and opportunities in this rising field are highlighted.
Author Yan, Cheng
Wang, Gui‐Gen
Han, Jie‐Cai
Liu, Yi‐Lin
Zeng, Qingyi
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0002-7875-4318
  surname: Yan
  fullname: Yan, Cheng
  email: cyan003@e.ntu.edu.sg
  organization: The University of Sydney
– sequence: 2
  givenname: Yi‐Lin
  surname: Liu
  fullname: Liu, Yi‐Lin
  email: liuyilin@usc.edu.cn
  organization: University of South China
– sequence: 3
  givenname: Qingyi
  surname: Zeng
  fullname: Zeng, Qingyi
  organization: University of South China
– sequence: 4
  givenname: Gui‐Gen
  surname: Wang
  fullname: Wang, Gui‐Gen
  email: wangguigen@hit.edu.cn
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 5
  givenname: Jie‐Cai
  surname: Han
  fullname: Han, Jie‐Cai
  organization: Harbin Institute of Technology
BookMark eNqFkE1Lw0AQhhepYFu9eg54brsf2WRzLP2wQqtCC3pbNslu3ZJk4-4G6c2f4G_0l5hSqSCIpxmY55kZ3h7oVKaSAFwjOEQQ4pHIVTnEEGMEGYnPQBdFKBoQiFnn1KPnC9BzbgchimMSdsETngb3ojKl8NJqUQTrpq6N9TIP1rraFvLz_WMlfTsYe1O6QBkbLGTLmq2spGlc8PhivBnNCpl5azLRonun3SU4V6Jw8uq79sFmPttMFoPlw-3dZLwcZKT9YEBTlgpCZCRpghFTOUVEpUypNIsopCmVCYJYJDgnjEUizGiMUpHEgtAQEkT64Oa4trbmtZHO851pbNVe5DiOEsYwSWhLhUcqs8Y5KxXPtBdem8pboQuOID8kyA8J8lOCrTb8pdVWl8Lu_xaSo_CmC7n_h-bj6Xz1434BjMCHHA
CitedBy_id crossref_primary_10_1002_adfm_202311370
crossref_primary_10_1016_j_jece_2024_111991
crossref_primary_10_1088_1361_6528_ad6162
crossref_primary_10_3390_nano15060417
crossref_primary_10_1002_adma_202306910
crossref_primary_10_1016_j_apcatb_2023_122926
crossref_primary_10_1016_j_ccr_2024_216164
crossref_primary_10_1021_acsami_4c16119
crossref_primary_10_1016_j_cej_2024_158565
crossref_primary_10_1039_D3CS00557G
crossref_primary_10_1002_chem_202400548
crossref_primary_10_3390_cryst13050804
crossref_primary_10_1016_j_nanoen_2024_109869
crossref_primary_10_1021_acssuschemeng_4c06241
crossref_primary_10_1016_j_cej_2023_145181
crossref_primary_10_26599_NRE_2024_9120132
crossref_primary_10_1002_advs_202306132
crossref_primary_10_1002_sstr_202300177
crossref_primary_10_1016_j_jallcom_2024_175346
crossref_primary_10_1039_D3TA07606G
crossref_primary_10_1039_D4DT02573C
crossref_primary_10_1039_D4RA00340C
crossref_primary_10_1039_D4TA02079K
Cites_doi 10.1002/adfm.202103558
10.1126/science.aaf5251
10.1016/j.chempr.2017.12.005
10.1007/s11426-018-9273-1
10.1039/C5EE00751H
10.1038/s41467-020-20336-4
10.1038/nature11475
10.1002/aenm.202003294
10.1002/adma.202004287
10.1039/C9TA06653E
10.1016/j.mtener.2018.10.014
10.1002/adma.201908505
10.1038/s41929-021-00644-8
10.1007/s12274-017-1933-4
10.1021/jacs.9b12642
10.1021/jacs.8b10380
10.1021/acs.chemrev.8b00501
10.1002/anie.201704358
10.1038/s41929-017-0008-y
10.1002/anie.202011495
10.1021/ja00464a015
10.1002/adma.202003075
10.1038/ncomms13638
10.1002/cphc.202000579
10.1016/j.apcatb.2021.120389
10.1002/smll.202007113
10.1093/nsr/nwaa213
10.1002/smll.202002411
10.1002/smsc.202100015
10.1126/sciadv.1500462
10.1038/s41467-020-17904-z
10.1021/jacs.0c05050
10.1039/D0EE03567J
10.1002/anie.201507381
10.1002/smtd.201800419
10.1038/nchem.1095
10.1002/sstr.202000058
10.1002/adma.201903841
10.1021/jacs.8b00752
10.1016/j.jcis.2019.06.012
10.1002/smtd.201900337
10.1002/anie.201904058
10.1002/adfm.202100233
10.1038/s41929-018-0195-1
10.1038/nenergy.2016.184
10.1038/nmat4660
10.1126/sciadv.abb6833
10.1016/j.isci.2018.12.006
10.1002/smll.202002888
10.1021/jacs.1c03135
10.1002/aenm.201801909
10.1038/s41467-019-12997-7
10.1021/acs.chemrev.9b00840
10.1016/j.apcatb.2019.118036
10.1038/s41467-019-09666-0
10.1002/anie.201906079
10.1038/s41467-018-04501-4
10.1016/j.mattod.2020.07.002
10.1002/adma.201705369
10.1039/C7TA03624H
10.1039/C9CS00422J
10.1038/s41467-021-25426-5
10.1039/D1TA08319H
10.1021/acsnano.1c00251
10.1002/anie.202109373
10.1002/smsc.202100017
10.1038/ncomms14430
10.1038/s41560-020-00709-1
10.1021/jacs.1c01097
10.1021/acs.jpclett.9b01892
10.1021/jacs.7b00452
10.1002/anie.202009217
10.1039/D1SC01375K
10.1002/adma.202003082
10.1021/acscatal.0c05514
10.1073/pnas.1913403117
10.1002/adma.201704624
10.1016/j.catcom.2021.106294
10.1021/acs.chemrev.9b00201
10.1021/acs.chemrev.8b00705
10.1038/s41565-021-01022-y
10.1038/s41467-021-21595-5
10.1039/D1EE01244D
10.1039/D0CS00332H
10.1016/j.scib.2018.07.005
10.1038/s41467-020-18143-y
10.1038/s41565-020-00799-8
10.1039/D0EE02651D
10.1016/j.chempr.2020.01.013
10.1002/anie.201706467
10.1038/s41467-020-18430-8
10.1002/anie.201710599
10.1002/anie.202101522
10.1016/j.matt.2020.07.032
10.1021/jacs.9b03004
10.1016/j.nanoen.2019.104304
10.1002/advs.201901787
10.1039/D1EE00248A
10.1039/D1TA00154J
10.1126/sciadv.aba6586
10.1016/j.apcatb.2020.119138
10.1016/j.chempr.2019.12.008
10.1016/j.nanoen.2019.104409
10.1038/s41467-020-14984-9
10.1021/acs.jpclett.0c01415
10.1039/C7EE03245E
10.1038/s41467-021-21956-0
10.1021/jacs.1c00504
10.1021/acscatal.7b03512
10.1021/ja509970z
10.1002/admi.202001904
10.1002/anie.201809492
10.1038/s41467-018-03896-4
10.1002/aenm.201600464
10.1039/C9TA12838G
10.1038/natrevmats.2016.9
10.1016/j.nanoen.2018.09.003
10.1021/acs.chemmater.7b03832
10.1016/j.apcatb.2018.06.066
10.1021/acs.jpcc.8b03383
10.1038/ncomms9668
10.1021/jacs.9b12111
10.1002/aenm.201903949
10.1002/adma.201601960
10.1021/acsmaterialslett.0c00189
10.1038/s41467-019-10392-w
10.1016/j.scib.2019.12.025
10.1016/j.xcrp.2021.100371
10.1126/science.aad4998
10.1002/aenm.202001364
10.1002/cplu.202000631
10.1021/acsnano.9b08835
10.1039/D0EE01706J
10.1038/s41467-021-25811-0
10.1016/j.mattod.2018.01.034
10.1039/C9TA09776G
10.1002/anie.201914565
10.1002/adfm.202009770
10.1021/acsnano.0c09755
10.1039/D0TA09538A
10.1021/acscatal.0c00936
10.1002/cmtd.202100020
10.1038/s41467-020-18182-5
10.1016/j.cej.2020.127135
10.1021/acscatal.8b04937
10.1021/acscatal.9b04925
10.1007/s12274-020-2949-8
10.1016/j.joule.2018.06.019
10.1038/s41467-021-20951-9
10.1021/acsnano.9b10048
10.1002/adfm.201802169
10.1039/D0EE01347A
10.1021/acssuschemeng.8b06134
10.1038/s41467-021-24828-9
10.1002/anie.202003842
10.1016/j.nanoen.2020.104667
10.1038/s41467-021-24079-8
10.1016/j.nanoen.2018.11.033
10.1021/acscatal.0c01950
10.1021/jacs.6b02692
10.1002/adma.201505281
10.1038/s41467-020-19599-8
10.1002/smll.202002356
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202210837
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202210837
ADFM202210837
Genre reviewArticle
GrantInformation_xml – fundername: University of South China
  funderid: 220XQD016
– fundername: Natural Science Foundation of Hunan Province
  funderid: 2021JJ20007
– fundername: National Natural Science Foundation of China
  funderid: 52170164
– fundername: National Key Laboratory of Science, Technology on Advanced Composites in Special Environments, HIT
  funderid: 6142905192507
– fundername: Shenzhen Constantly‐supported Project for Colleges and Universities
  funderid: GXWD20201230155427003‐20200821232246001
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3177-5b8ba33e6e59218fd513fb8ffbc6505b5e9102a92d3886a4c571ba97a3540313
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 04:17:06 EDT 2025
Tue Jul 01 00:30:36 EDT 2025
Thu Apr 24 22:57:21 EDT 2025
Wed Jan 22 16:24:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-5b8ba33e6e59218fd513fb8ffbc6505b5e9102a92d3886a4c571ba97a3540313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7875-4318
PQID 2769882395
PQPubID 2045204
PageCount 40
ParticipantIDs proquest_journals_2769882395
crossref_citationtrail_10_1002_adfm_202210837
crossref_primary_10_1002_adfm_202210837
wiley_primary_10_1002_adfm_202210837_ADFM202210837
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 11
2019; 10
2020; 16
2020; 14
2020; 13
2020; 11
2020; 10
2012; 488
2018; 9
2018; 8
2018; 2
2018; 4
2015; 137
2018; 1
1
2019; 553
2018; 30
2021; 153
6
2019; 7
2019; 9
2018; 28
2019; 3
2019; 6
2019; 31
2020; 40
2020; 142
2015; 54
2021; 143
2020; 32
2011; 3
2018; 21
2016; 15
2017; 139
2016; 6
2016; 7
2016; 1
2018; 238
2019; 48
2017; 56
1977; 99
2020; 276
2022; 10
2020; 21
2021; 60
2018; 11
2016; 28
2022; 17
2017; 5
2021; 406
2018; 122
2017; 8
2020; 120
2019; 56
2019; 58
2020; 59
2017; 355
2020; 8
2020; 6
2020; 5
2020; 3
2021; 31
2020; 2
2021; 33
2020; 49
2016; 352
2019; 119
2021; 9
2021; 8
2015; 6
2021; 4
2018; 140
2021; 2
2020; 85
2018; 63
2017; 29
2018; 61
2021; 1
2019; 141
2015; 8
2021; 14
2021; 16
2021; 15
2021; 12
2021; 11
2022; 61
2020; 72
2021; 17
2019; 259
2020; 117
2020; 69
2020; 68
2016; 138
2021; 297
2020; 65
2018; 53
2018; 57
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_18_1
e_1_2_9_160_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_153_1
e_1_2_9_30_1
e_1_2_9_53_1
Zhao S. (e_1_2_9_25_1) 2022; 61
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_161_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_29_1
e_1_2_9_150_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 239
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 99
  start-page: 7189
  year: 1977
  publication-title: J. Am. Chem. Soc.
– volume: 488
  start-page: 294
  year: 2012
  publication-title: Nature
– volume: 12
  start-page: 709
  year: 2021
  publication-title: Nat. Commun.
– volume: 53
  start-page: 458
  year: 2018
  publication-title: Nano Energy
– volume: 139
  start-page: 4486
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 6463
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 4341
  year: 2020
  publication-title: Nat. Commun.
– volume: 15
  start-page: 7105
  year: 2021
  publication-title: ACS Nano
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 10
  start-page: 5231
  year: 2019
  publication-title: Nat. Commun.
– volume: 9
  start-page: 9979
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 174
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 276
  year: 2020
  publication-title: Appl. Catal., B
– volume: 1
  publication-title: Sci. Adv.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 6
  start-page: 8668
  year: 2015
  publication-title: Nat. Commun.
– volume: 143
  start-page: 7979
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 6376
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 5212
  year: 2021
  publication-title: ACS Catal.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 40
  start-page: 173
  year: 2020
  publication-title: Mater. Today
– volume: 355
  year: 2017
  publication-title: Science
– volume: 119
  start-page: 1806
  year: 2019
  publication-title: Chem. Rev.
– volume: 11
  start-page: 31
  year: 2019
  publication-title: iScience
– volume: 12
  start-page: 5589
  year: 2021
  publication-title: Nat. Commun.
– volume: 8
  start-page: 3071
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 21
  start-page: 2145
  year: 2020
  publication-title: ChemPhysChem
– volume: 1
  start-page: 63
  year: 2018
  publication-title: Nat. Catal.
– volume: 352
  start-page: 797
  year: 2016
  publication-title: Science
– volume: 12
  start-page: 5128
  year: 2021
  publication-title: Nat. Commun.
– volume: 4
  start-page: 285
  year: 2018
  publication-title: Chem
– volume: 15
  start-page: 1003
  year: 2016
  publication-title: Nat. Mater.
– volume: 2
  start-page: 1242
  year: 2018
  publication-title: Joule
– volume: 59
  start-page: 9171
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 658
  year: 2020
  publication-title: Chem
– volume: 72
  year: 2020
  publication-title: Nano Energy
– volume: 9
  start-page: 2521
  year: 2019
  publication-title: ACS Catal.
– volume: 69
  year: 2020
  publication-title: Nano Energy
– volume: 56
  start-page: 9312
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 3082
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 8
  start-page: 1594
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 6813
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 4
  start-page: 533
  year: 2021
  publication-title: Nat. Catal.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 406
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 10
  start-page: 6081
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 1369
  year: 2021
  publication-title: Nat. Commun.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 28
  start-page: 6959
  year: 2016
  publication-title: Adv. Mater.
– volume: 15
  start-page: 4927
  year: 2021
  publication-title: ACS Nano
– volume: 11
  start-page: 4114
  year: 2020
  publication-title: Nat. Commun.
– volume: 63
  start-page: 1246
  year: 2018
  publication-title: Sci. Bull.
– volume: 6
  publication-title: Sci. Adv.
– volume: 56
  start-page: 127
  year: 2019
  publication-title: Nano Energy
– volume: 12
  start-page: 238
  year: 2021
  publication-title: Nat. Commun.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 278
  year: 2021
  publication-title: Chem.—Methods
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 14
  start-page: 3110
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 120
  year: 2020
  publication-title: Chem. Rev.
– volume: 16
  start-page: 129
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 2925
  year: 2020
  publication-title: Nano Res.
– volume: 3
  start-page: 1442
  year: 2020
  publication-title: Matter
– volume: 61
  start-page: 1187
  year: 2018
  publication-title: Sci. China: Chem.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1093
  year: 2020
  publication-title: ACS Nano
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 553
  start-page: 530
  year: 2019
  publication-title: J. Colloid Interface Sci.
– volume: 11
  start-page: 893
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 4558
  year: 2020
  publication-title: Nat. Commun.
– volume: 11
  start-page: 5892
  year: 2020
  publication-title: Nat. Commun.
– volume: 142
  start-page: 7425
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 2809
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 7819
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 3362
  year: 2018
  publication-title: Nano Res.
– volume: 48
  start-page: 5207
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 4302
  year: 2020
  publication-title: Nat. Commun.
– volume: 138
  start-page: 6292
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2021
  publication-title: Natl. Sci. Rev.
– volume: 10
  start-page: 2840
  year: 2019
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1460
  year: 2018
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1
  year: 2019
  publication-title: Mater. Today Energy
– volume: 49
  start-page: 6592
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 6800
  year: 2021
  publication-title: Chem. Sci.
– volume: 14
  start-page: 1794
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 3748
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 59
  start-page: 6827
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 881
  year: 2020
  publication-title: Nat. Energy
– volume: 143
  start-page: 5771
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 3876
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 238
  start-page: 119
  year: 2018
  publication-title: Appl. Catal., B
– volume: 16
  year: 2020
  publication-title: Small
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 119
  start-page: 7610
  year: 2019
  publication-title: Chem. Rev.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 2427
  year: 2016
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1008
  year: 2020
  publication-title: ACS Mater. Lett.
– volume: 259
  year: 2019
  publication-title: Appl. Catal., B
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 8892
  year: 2017
  publication-title: Chem. Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 12
  start-page: 1687
  year: 2021
  publication-title: Nat. Commun.
– volume: 1
  start-page: 985
  year: 2018
  publication-title: Nat. Catal.
– volume: 21
  start-page: 749
  year: 2018
  publication-title: Mater. Today
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 1263
  year: 2020
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2120
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 1
  year: 2021
  publication-title: Small Sci.
– volume: 65
  start-page: 720
  year: 2020
  publication-title: Sci. Bull.
– volume: 2
  year: 2021
  publication-title: Small Struct.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 7584
  year: 2020
  publication-title: ACS Catal.
– volume: 120
  start-page: 919
  year: 2020
  publication-title: Chem. Rev.
– volume: 12
  start-page: 3783
  year: 2021
  publication-title: Nat. Commun.
– volume: 6
  start-page: 885
  year: 2020
  publication-title: Chem
– volume: 10
  start-page: 2431
  year: 2020
  publication-title: ACS Catal.
– volume: 12
  start-page: 4587
  year: 2021
  publication-title: Nat. Commun.
– volume: 297
  year: 2021
  publication-title: Appl. Catal., B
– volume: 85
  start-page: 2570
  year: 2020
  publication-title: ChemPlusChem
– volume: 11
  start-page: 5051
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  year: 2021
  publication-title: Adv. Mater. Interfaces
– volume: 8
  start-page: 4241
  year: 2018
  publication-title: ACS Catal.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 14
  start-page: 5600
  year: 2020
  publication-title: ACS Nano
– volume: 14
  start-page: 4926
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 5862
  year: 2020
  publication-title: ACS Catal.
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1711
  year: 2019
  publication-title: Nat. Commun.
– volume: 3
  start-page: 634
  year: 2011
  publication-title: Nat. Chem.
– volume: 153
  year: 2021
  publication-title: Catal. Commun.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_9_19_1
  doi: 10.1002/adfm.202103558
– ident: e_1_2_9_29_1
  doi: 10.1126/science.aaf5251
– ident: e_1_2_9_55_1
  doi: 10.1016/j.chempr.2017.12.005
– ident: e_1_2_9_67_1
  doi: 10.1007/s11426-018-9273-1
– ident: e_1_2_9_44_1
  doi: 10.1039/C5EE00751H
– ident: e_1_2_9_116_1
  doi: 10.1038/s41467-020-20336-4
– ident: e_1_2_9_2_1
  doi: 10.1038/nature11475
– ident: e_1_2_9_6_1
  doi: 10.1002/aenm.202003294
– ident: e_1_2_9_95_1
  doi: 10.1002/adma.202004287
– ident: e_1_2_9_162_1
  doi: 10.1039/C9TA06653E
– ident: e_1_2_9_18_1
  doi: 10.1016/j.mtener.2018.10.014
– ident: e_1_2_9_146_1
  doi: 10.1002/adma.201908505
– ident: e_1_2_9_152_1
  doi: 10.1038/s41929-021-00644-8
– ident: e_1_2_9_156_1
  doi: 10.1007/s12274-017-1933-4
– ident: e_1_2_9_102_1
  doi: 10.1021/jacs.9b12642
– ident: e_1_2_9_155_1
  doi: 10.1021/jacs.8b10380
– ident: e_1_2_9_10_1
  doi: 10.1021/acs.chemrev.8b00501
– ident: e_1_2_9_149_1
  doi: 10.1002/anie.201704358
– ident: e_1_2_9_103_1
  doi: 10.1038/s41929-017-0008-y
– ident: e_1_2_9_138_1
  doi: 10.1002/anie.202011495
– ident: e_1_2_9_161_1
  doi: 10.1021/ja00464a015
– ident: e_1_2_9_100_1
  doi: 10.1002/adma.202003075
– ident: e_1_2_9_27_1
  doi: 10.1038/ncomms13638
– ident: e_1_2_9_78_1
  doi: 10.1002/cphc.202000579
– ident: e_1_2_9_13_1
  doi: 10.1016/j.apcatb.2021.120389
– ident: e_1_2_9_39_1
  doi: 10.1002/smll.202007113
– ident: e_1_2_9_120_1
  doi: 10.1093/nsr/nwaa213
– ident: e_1_2_9_66_1
  doi: 10.1002/smll.202002411
– ident: e_1_2_9_38_1
  doi: 10.1002/smsc.202100015
– ident: e_1_2_9_56_1
  doi: 10.1126/sciadv.1500462
– ident: e_1_2_9_60_1
  doi: 10.1038/s41467-020-17904-z
– ident: e_1_2_9_101_1
  doi: 10.1021/jacs.0c05050
– ident: e_1_2_9_150_1
  doi: 10.1039/D0EE03567J
– ident: e_1_2_9_69_1
  doi: 10.1002/anie.201507381
– ident: e_1_2_9_74_1
  doi: 10.1002/smtd.201800419
– ident: e_1_2_9_24_1
  doi: 10.1038/nchem.1095
– ident: e_1_2_9_57_1
  doi: 10.1002/sstr.202000058
– ident: e_1_2_9_91_1
  doi: 10.1002/adma.201903841
– ident: e_1_2_9_68_1
  doi: 10.1021/jacs.8b00752
– ident: e_1_2_9_132_1
  doi: 10.1016/j.jcis.2019.06.012
– ident: e_1_2_9_125_1
  doi: 10.1002/smtd.201900337
– ident: e_1_2_9_147_1
  doi: 10.1002/anie.201904058
– ident: e_1_2_9_85_1
  doi: 10.1002/adfm.202100233
– ident: e_1_2_9_88_1
  doi: 10.1038/s41929-018-0195-1
– ident: e_1_2_9_34_1
  doi: 10.1038/nenergy.2016.184
– ident: e_1_2_9_46_1
  doi: 10.1038/nmat4660
– ident: e_1_2_9_22_1
  doi: 10.1126/sciadv.abb6833
– ident: e_1_2_9_76_1
  doi: 10.1016/j.isci.2018.12.006
– ident: e_1_2_9_89_1
  doi: 10.1002/smll.202002888
– ident: e_1_2_9_43_1
  doi: 10.1021/jacs.1c03135
– ident: e_1_2_9_107_1
  doi: 10.1002/aenm.201801909
– ident: e_1_2_9_58_1
  doi: 10.1038/s41467-019-12997-7
– ident: e_1_2_9_11_1
  doi: 10.1021/acs.chemrev.9b00840
– ident: e_1_2_9_144_1
  doi: 10.1016/j.apcatb.2019.118036
– ident: e_1_2_9_61_1
  doi: 10.1038/s41467-019-09666-0
– ident: e_1_2_9_97_1
  doi: 10.1002/anie.201906079
– ident: e_1_2_9_82_1
  doi: 10.1038/s41467-018-04501-4
– ident: e_1_2_9_21_1
  doi: 10.1016/j.mattod.2020.07.002
– ident: e_1_2_9_30_1
  doi: 10.1002/adma.201705369
– ident: e_1_2_9_131_1
  doi: 10.1039/C7TA03624H
– ident: e_1_2_9_9_1
  doi: 10.1039/C9CS00422J
– ident: e_1_2_9_117_1
  doi: 10.1038/s41467-021-25426-5
– ident: e_1_2_9_37_1
  doi: 10.1039/D1TA08319H
– ident: e_1_2_9_98_1
  doi: 10.1021/acsnano.1c00251
– volume: 61
  year: 2022
  ident: e_1_2_9_25_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_9_113_1
  doi: 10.1002/anie.202109373
– ident: e_1_2_9_17_1
  doi: 10.1002/smsc.202100017
– ident: e_1_2_9_80_1
  doi: 10.1038/ncomms14430
– ident: e_1_2_9_26_1
  doi: 10.1038/s41560-020-00709-1
– ident: e_1_2_9_47_1
  doi: 10.1021/jacs.1c01097
– ident: e_1_2_9_86_1
  doi: 10.1021/acs.jpclett.9b01892
– ident: e_1_2_9_65_1
  doi: 10.1021/jacs.7b00452
– ident: e_1_2_9_121_1
  doi: 10.1002/anie.202009217
– ident: e_1_2_9_42_1
  doi: 10.1039/D1SC01375K
– ident: e_1_2_9_143_1
  doi: 10.1002/adma.202003082
– ident: e_1_2_9_114_1
  doi: 10.1021/acscatal.0c05514
– ident: e_1_2_9_151_1
  doi: 10.1073/pnas.1913403117
– ident: e_1_2_9_159_1
  doi: 10.1002/adma.201704624
– ident: e_1_2_9_163_1
  doi: 10.1016/j.catcom.2021.106294
– ident: e_1_2_9_4_1
  doi: 10.1021/acs.chemrev.9b00201
– ident: e_1_2_9_5_1
  doi: 10.1021/acs.chemrev.8b00705
– ident: e_1_2_9_96_1
  doi: 10.1038/s41565-021-01022-y
– ident: e_1_2_9_93_1
  doi: 10.1038/s41467-021-21595-5
– ident: e_1_2_9_33_1
  doi: 10.1039/D1EE01244D
– ident: e_1_2_9_35_1
  doi: 10.1039/D0CS00332H
– ident: e_1_2_9_119_1
  doi: 10.1016/j.scib.2018.07.005
– ident: e_1_2_9_63_1
  doi: 10.1038/s41467-020-18143-y
– ident: e_1_2_9_1_1
  doi: 10.1038/s41565-020-00799-8
– ident: e_1_2_9_16_1
  doi: 10.1039/D0EE02651D
– ident: e_1_2_9_123_1
  doi: 10.1016/j.chempr.2020.01.013
– ident: e_1_2_9_140_1
  doi: 10.1002/anie.201706467
– ident: e_1_2_9_28_1
  doi: 10.1038/s41467-020-18430-8
– ident: e_1_2_9_70_1
  doi: 10.1002/anie.201710599
– ident: e_1_2_9_8_1
  doi: 10.1002/anie.202101522
– ident: e_1_2_9_12_1
  doi: 10.1016/j.matt.2020.07.032
– ident: e_1_2_9_77_1
  doi: 10.1021/jacs.9b03004
– ident: e_1_2_9_122_1
  doi: 10.1016/j.nanoen.2019.104304
– ident: e_1_2_9_15_1
  doi: 10.1002/advs.201901787
– ident: e_1_2_9_23_1
  doi: 10.1039/D1EE00248A
– ident: e_1_2_9_40_1
  doi: 10.1039/D1TA00154J
– ident: e_1_2_9_72_1
  doi: 10.1126/sciadv.aba6586
– ident: e_1_2_9_128_1
  doi: 10.1016/j.apcatb.2020.119138
– ident: e_1_2_9_62_1
  doi: 10.1016/j.chempr.2019.12.008
– ident: e_1_2_9_136_1
  doi: 10.1016/j.nanoen.2019.104409
– ident: e_1_2_9_31_1
  doi: 10.1038/s41467-020-14984-9
– ident: e_1_2_9_126_1
  doi: 10.1021/acs.jpclett.0c01415
– ident: e_1_2_9_110_1
  doi: 10.1039/C7EE03245E
– ident: e_1_2_9_83_1
  doi: 10.1038/s41467-021-21956-0
– ident: e_1_2_9_109_1
  doi: 10.1021/jacs.1c00504
– ident: e_1_2_9_142_1
  doi: 10.1021/acscatal.7b03512
– ident: e_1_2_9_145_1
  doi: 10.1021/ja509970z
– ident: e_1_2_9_41_1
  doi: 10.1002/admi.202001904
– ident: e_1_2_9_129_1
  doi: 10.1002/anie.201809492
– ident: e_1_2_9_75_1
  doi: 10.1038/s41467-018-03896-4
– ident: e_1_2_9_130_1
  doi: 10.1002/aenm.201600464
– ident: e_1_2_9_105_1
  doi: 10.1039/C9TA12838G
– ident: e_1_2_9_7_1
  doi: 10.1038/natrevmats.2016.9
– ident: e_1_2_9_54_1
  doi: 10.1016/j.nanoen.2018.09.003
– ident: e_1_2_9_87_1
  doi: 10.1021/acs.chemmater.7b03832
– ident: e_1_2_9_127_1
  doi: 10.1016/j.apcatb.2018.06.066
– ident: e_1_2_9_148_1
  doi: 10.1021/acs.jpcc.8b03383
– ident: e_1_2_9_71_1
  doi: 10.1038/ncomms9668
– ident: e_1_2_9_112_1
  doi: 10.1021/jacs.9b12111
– ident: e_1_2_9_73_1
  doi: 10.1002/aenm.201903949
– ident: e_1_2_9_137_1
  doi: 10.1002/adma.201601960
– ident: e_1_2_9_108_1
  doi: 10.1021/acsmaterialslett.0c00189
– ident: e_1_2_9_157_1
  doi: 10.1038/s41467-019-10392-w
– ident: e_1_2_9_153_1
  doi: 10.1016/j.scib.2019.12.025
– ident: e_1_2_9_160_1
  doi: 10.1016/j.xcrp.2021.100371
– ident: e_1_2_9_3_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_9_64_1
  doi: 10.1002/aenm.202001364
– ident: e_1_2_9_32_1
  doi: 10.1002/cplu.202000631
– ident: e_1_2_9_111_1
  doi: 10.1021/acsnano.9b08835
– ident: e_1_2_9_49_1
  doi: 10.1039/D0EE01706J
– ident: e_1_2_9_104_1
  doi: 10.1038/s41467-021-25811-0
– ident: e_1_2_9_133_1
  doi: 10.1016/j.mattod.2018.01.034
– ident: e_1_2_9_124_1
  doi: 10.1039/C9TA09776G
– ident: e_1_2_9_141_1
  doi: 10.1002/anie.201914565
– ident: e_1_2_9_53_1
  doi: 10.1002/adfm.202009770
– ident: e_1_2_9_115_1
  doi: 10.1021/acsnano.0c09755
– ident: e_1_2_9_90_1
  doi: 10.1039/D0TA09538A
– ident: e_1_2_9_99_1
  doi: 10.1021/acscatal.0c00936
– ident: e_1_2_9_48_1
  doi: 10.1002/cmtd.202100020
– ident: e_1_2_9_14_1
  doi: 10.1038/s41467-020-18182-5
– ident: e_1_2_9_36_1
  doi: 10.1016/j.cej.2020.127135
– ident: e_1_2_9_50_1
  doi: 10.1021/acscatal.8b04937
– ident: e_1_2_9_51_1
  doi: 10.1021/acscatal.9b04925
– ident: e_1_2_9_118_1
  doi: 10.1007/s12274-020-2949-8
– ident: e_1_2_9_94_1
  doi: 10.1016/j.joule.2018.06.019
– ident: e_1_2_9_84_1
  doi: 10.1038/s41467-021-20951-9
– ident: e_1_2_9_81_1
  doi: 10.1021/acsnano.9b10048
– ident: e_1_2_9_139_1
  doi: 10.1002/adfm.201802169
– ident: e_1_2_9_92_1
  doi: 10.1039/D0EE01347A
– ident: e_1_2_9_164_1
  doi: 10.1021/acssuschemeng.8b06134
– ident: e_1_2_9_106_1
  doi: 10.1038/s41467-021-24828-9
– ident: e_1_2_9_52_1
  doi: 10.1002/anie.202003842
– ident: e_1_2_9_79_1
  doi: 10.1016/j.nanoen.2020.104667
– ident: e_1_2_9_59_1
  doi: 10.1038/s41467-021-24079-8
– ident: e_1_2_9_135_1
  doi: 10.1016/j.nanoen.2018.11.033
– ident: e_1_2_9_20_1
  doi: 10.1021/acscatal.0c01950
– ident: e_1_2_9_154_1
  doi: 10.1021/jacs.6b02692
– ident: e_1_2_9_134_1
  doi: 10.1002/adma.201505281
– ident: e_1_2_9_45_1
  doi: 10.1038/s41467-020-19599-8
– ident: e_1_2_9_158_1
  doi: 10.1002/smll.202002356
SSID ssj0017734
Score 2.6041853
SecondaryResourceType review_article
Snippet Single‐atom catalysts (SACs) attract intensive attention owing to their unmatched catalytic activities and high atom utilization. Besides metal species...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 2D nanomaterials
Carbon dioxide
Chemical reduction
electrocatalyses
Electrocatalysis
Energy conversion
Energy technology
Hydrogen evolution reactions
Materials science
Nanomaterials
operando characterizations
Oxygen evolution reactions
Oxygen reduction reactions
photocatalyses
Reaction mechanisms
single‐atom catalysts
Substrates
Title 2D Nanomaterial Supported Single‐Metal Atoms for Heterogeneous Photo/Electrocatalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202210837
https://www.proquest.com/docview/2769882395
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFA-iFz34X5zO0YPgqduaNE17HG5jiBNxE3crSZogOFex3cWTH8HP6Cfxpf-2CSLosfAS2uTlvd97ffk9hM49riOfM21zLCMIUASzA0WU7ftgkF2X67Y0ecjhjTe4d68mdLJ0iz_nh6gSbuZkZPbaHHAuktaCNJRH2twkxxCzQJAFRtgUbBlUdFfxRzmM5b-VPccUeDmTkrWxjVurw1e90gJqLgPWzOP0dxAv3zUvNHlqzlPRlG_faBz_8zG7aLuAo1Yn1589tKZm-2hriaTwAD3grgU2OAZom2mrZRqBmhLdyBqBwFR9vn8MVWpmSePnxAIUbA1MkU0MuqnieWLdPsZp3OrlDXeyfJGhQTlE435vfDmwi3YMtgSQwWwqfMEJUZ6iAQADHVGHaOFrLSTAPCqoAuiBeYAj4vsedyVljuAB4ya1RBxyhNZn8UwdI8tlWEqHcQUu1KWB5IyqSLuuIoKwwNc1ZJe7EcqCqtx0zJiGOckyDs16hdV61dBFJf-Sk3T8KFkvNzcsDmsSYuYFEGiQgNYQznbpl1nCTrc_rJ5O_jLoFG2axvV5MqeO1tPXuToDeJOKBtrodIfXo0amyl-Tq_Sa
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5RegAOpVAqtt3SHJA4hSV2HCfHFbAKlCAEi-AW2Y6tSqWbqpu99NRH6DP2STqTbLJLpQqJHiPZVuL58TeT8TcA-5FyRayk8xUzBQYoWvqJ5daPY3TIYajckaE8ZHYZpbfh-b1oqwnpLkzDD9El3Mgyan9NBk4J6cGCNVQVjq6SMwxaMMp6AS-prXcdVV13DFKBlM2P5SigEq_gvuVtPGKDx_Mfn0sLsLkMWeszZ7QJun3bptTky-Gs0ofmx19Ejv_1Oa_h1RyResNGhbZgxU62YWOJp_AN3LETD91wiei2VliPeoFSlW7h3eCAB_v756_MVrRKVX6degiEvZTqbEpUT1vOpt7V57IqB6dNz506ZURMKDswHp2Oj1N_3pHBN4gzpC90rBXnNrIiQWzgCtxwp2PntEGkJ7SwiD6YSljB4zhSoREy0CqRirJLPOBvYXVSTuwueKFkxgRSWTxFQ5EYJYUtXBharrlMYtcDvxVHbuZs5dQ04yFveJZZTvuVd_vVg4Nu_LeGp-OfI_utdPO5vU5zJqMEYw2eiB6wWkxPrJIPT0ZZ9_TuOZM-wlo6zi7yi7PLT-9hnfrYN7mdPqxW32f2A6KdSu_V-vwHK5D3IQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7IhCgRyQOIU2XmLnWFGqshQhFtFbZDu2kCgNoumFE5_AN_Il2EkbChJCgmMk20o8i99Mxm8A9kNhEi6Y8QVSiQ1QJPMjjbXPuXXIhAhTVy4P2bkI27fktEu7E7f4C36IMuHmLCP3187AnxJT-yQNFYlxN8mRjVlskDUNsySsc6fXzauSQCpgrPivHAauwivojmkb66j2df7XY-kTa04i1vzIaS2BGL9sUWnycDjM5KF6-cbj-J-vWYbFER71GoUCrcCU7q_CwgRL4RrcoaZnnXBqsW2urp7rBOpqdBPv2g7o6ffXt47O3CpZ-jjwLAz22q7KJrXKqdPhwLu8T7O0dlx03MkTRo4HZR1uWsc3R21_1I_BVxZlMJ9KLgXGOtQ0ssjAJDTARnJjpLI4j0qqLfZAIkIJ5jwURFEWSBEx4XJLOMAbMNNP-3oTPMKQUgET2p6hhEZKMKoTQ4jGErOImwr4Y2nEasRV7lpm9OKCZRnFbr_icr8qcFCOfypYOn4cWR0LNx5Z6yBGLIxspIEjWgGUS-mXVeJGs9Upn7b-MmkP5i6brfj85OJsG-ZdE_sisVOFmex5qHcs1Mnkbq7NH2PA9dk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+Nanomaterial+Supported+Single%E2%80%90Metal+Atoms+for+Heterogeneous+Photo%2FElectrocatalysis&rft.jtitle=Advanced+functional+materials&rft.au=Yan%2C+Cheng&rft.au=Liu%2C+Yi%E2%80%90Lin&rft.au=Zeng%2C+Qingyi&rft.au=Wang%2C+Gui%E2%80%90Gen&rft.date=2023-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=5&rft_id=info:doi/10.1002%2Fadfm.202210837&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202210837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon