Multiresponsive MXene Actuators with Asymmetric Quantum‐Confined Superfluidic Structures

MXene, which is known for its high electrical/thermal conductivity, surface hydrophilicity, excellent mechanical flexibility, and chemical stability, is a versatile and smart material for soft actuators. However, most MXene actuators are fabricated by combining MXene with other inert materials to fo...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 8
Main Authors Ma, Jia‐Nan, Ma, Bo, Wang, Zheng‐Xiao, Song, Pu, Han, Dong‐Dong, Zhang, Yong‐Lai
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MXene, which is known for its high electrical/thermal conductivity, surface hydrophilicity, excellent mechanical flexibility, and chemical stability, is a versatile and smart material for soft actuators. However, most MXene actuators are fabricated by combining MXene with other inert materials to form a bilayer or multilayer structure. Considering the strain mismatch at multimaterial interfaces under frequent deformation, MXene‐based actuators are generally associated with poor stability, which limits their practical applications. Herein, inspired by the natural quantum‐confined superfluidic (QSF) effect, a multiresponsive MXene actuator that can be driven by moisture, light, and electricity by engineering an asymmetric QSF structure on both sides of the MXene film is reported. The actuation mechanism of the MXene film can be attributed to nonuniform water adsorption, transport, and desorption within the asymmetric QSF channels under moisture, photothermal, and electrothermal stimuli. Interestingly, MXene actuators can be flexibly formed into various shapes under moisture‐assisted mechanical compression, which not only enhances their multiresponsive actuation, but also permits a more complex deformation. As proof‐of‐concept demonstrations, various intriguing applications including a dual‐role robot, a smart shielding curtain, and a dragonfly robot, are fabricated, revealing the potential of MXene actuators for soft robotics. The multiresponsive MXene actuators with asymmetric quantum‐confined superfluidic (QSF) structures are reported for robotic applications. The actuation mechanism of the MXene film can be attributed to nonuniform water adsorption, transport, and desorption within asymmetric QSF channels. As a proof of concept, smart devices, such as a dual‐role robot, a smart shielding curtain, and a dragonfly robot, are fabricated and demonstrated.
AbstractList MXene, which is known for its high electrical/thermal conductivity, surface hydrophilicity, excellent mechanical flexibility, and chemical stability, is a versatile and smart material for soft actuators. However, most MXene actuators are fabricated by combining MXene with other inert materials to form a bilayer or multilayer structure. Considering the strain mismatch at multimaterial interfaces under frequent deformation, MXene‐based actuators are generally associated with poor stability, which limits their practical applications. Herein, inspired by the natural quantum‐confined superfluidic (QSF) effect, a multiresponsive MXene actuator that can be driven by moisture, light, and electricity by engineering an asymmetric QSF structure on both sides of the MXene film is reported. The actuation mechanism of the MXene film can be attributed to nonuniform water adsorption, transport, and desorption within the asymmetric QSF channels under moisture, photothermal, and electrothermal stimuli. Interestingly, MXene actuators can be flexibly formed into various shapes under moisture‐assisted mechanical compression, which not only enhances their multiresponsive actuation, but also permits a more complex deformation. As proof‐of‐concept demonstrations, various intriguing applications including a dual‐role robot, a smart shielding curtain, and a dragonfly robot, are fabricated, revealing the potential of MXene actuators for soft robotics.
MXene, which is known for its high electrical/thermal conductivity, surface hydrophilicity, excellent mechanical flexibility, and chemical stability, is a versatile and smart material for soft actuators. However, most MXene actuators are fabricated by combining MXene with other inert materials to form a bilayer or multilayer structure. Considering the strain mismatch at multimaterial interfaces under frequent deformation, MXene‐based actuators are generally associated with poor stability, which limits their practical applications. Herein, inspired by the natural quantum‐confined superfluidic (QSF) effect, a multiresponsive MXene actuator that can be driven by moisture, light, and electricity by engineering an asymmetric QSF structure on both sides of the MXene film is reported. The actuation mechanism of the MXene film can be attributed to nonuniform water adsorption, transport, and desorption within the asymmetric QSF channels under moisture, photothermal, and electrothermal stimuli. Interestingly, MXene actuators can be flexibly formed into various shapes under moisture‐assisted mechanical compression, which not only enhances their multiresponsive actuation, but also permits a more complex deformation. As proof‐of‐concept demonstrations, various intriguing applications including a dual‐role robot, a smart shielding curtain, and a dragonfly robot, are fabricated, revealing the potential of MXene actuators for soft robotics. The multiresponsive MXene actuators with asymmetric quantum‐confined superfluidic (QSF) structures are reported for robotic applications. The actuation mechanism of the MXene film can be attributed to nonuniform water adsorption, transport, and desorption within asymmetric QSF channels. As a proof of concept, smart devices, such as a dual‐role robot, a smart shielding curtain, and a dragonfly robot, are fabricated and demonstrated.
Author Zhang, Yong‐Lai
Song, Pu
Wang, Zheng‐Xiao
Ma, Bo
Han, Dong‐Dong
Ma, Jia‐Nan
Author_xml – sequence: 1
  givenname: Jia‐Nan
  surname: Ma
  fullname: Ma, Jia‐Nan
  organization: Taiyuan University of Technology
– sequence: 2
  givenname: Bo
  surname: Ma
  fullname: Ma, Bo
  organization: Taiyuan University of Technology
– sequence: 3
  givenname: Zheng‐Xiao
  surname: Wang
  fullname: Wang, Zheng‐Xiao
  organization: High School Attached to Northeast Normal University
– sequence: 4
  givenname: Pu
  surname: Song
  fullname: Song, Pu
  organization: Taiyuan University of Technology
– sequence: 5
  givenname: Dong‐Dong
  surname: Han
  fullname: Han, Dong‐Dong
  email: handongdong@jlu.edu.cn
  organization: Jilin University
– sequence: 6
  givenname: Yong‐Lai
  orcidid: 0000-0002-4282-250X
  surname: Zhang
  fullname: Zhang, Yong‐Lai
  email: yonglaizhang@jlu.edu.cn
  organization: Jilin University
BookMark eNqFkM1KAzEUhYNUsK1uXQ-4nppkfrMcqlWhRaQKxc2QSTKYMpOM-bF05yP4jD6JUyoVBHF1L9zznXs4IzBQWgkAzhGcIAjxJeV1O8EQRzCPUHYEhihFaRhBnA8OO1qdgJG1awhRlkXxEDwvfOOkEbbTyso3ESxWQomgYM5Tp40NNtK9BIXdtq1wRrLgwVPlfPv5_jHVqpZK8GDpO2Hqxkve35fO-B7uHU_BcU0bK86-5xg8za4fp7fh_P7mblrMQ9bHzMKE0oQTzFCSikrwqiJ5znnCci4ozyiKcgwJi0laxUmMk7SPXmER5ZBkVY2qJBqDi71vZ_SrF9aVa-2N6l-WmOAcpWlMdqp4r2JGW2tEXTLpqJNaOUNlUyJY7losdy2WhxZ7bPIL64xsqdn-DZA9sJGN2P6jLour2eKH_QLhjooE
CitedBy_id crossref_primary_10_1002_adma_202413648
crossref_primary_10_1021_acsanm_4c01111
crossref_primary_10_1021_acsami_4c00864
crossref_primary_10_1021_acsami_4c15581
crossref_primary_10_1021_acsanm_4c04425
crossref_primary_10_1002_adfm_202315162
crossref_primary_10_1016_j_carbon_2024_119878
crossref_primary_10_1002_aisy_202400609
crossref_primary_10_1016_j_pnsc_2024_07_018
crossref_primary_10_1016_j_est_2025_115341
crossref_primary_10_1016_j_molliq_2024_125973
crossref_primary_10_1039_D4TC00911H
crossref_primary_10_1021_acsapm_3c02893
crossref_primary_10_3788_LOP240740
crossref_primary_10_1002_adfm_202412254
crossref_primary_10_1021_acsami_4c12202
crossref_primary_10_1016_j_sna_2024_115333
Cites_doi 10.1039/D1NR04333A
10.1093/nsr/nwz219
10.1021/acs.chemrev.1c00330
10.1038/s41467-020-19180-3
10.1002/adma.202303805
10.1038/s41467-020-20168-2
10.1021/acsanm.3c01723
10.1016/j.matt.2022.01.014
10.1002/adfm.202211189
10.1126/scirobotics.aba0015
10.1109/LRA.2021.3070246
10.1002/advs.202002464
10.1002/admt.201800540
10.1016/j.scib.2021.11.015
10.1021/acs.nanolett.2c02212
10.1016/j.cej.2023.142392
10.1007/s40843-018-9289-2
10.1002/adfm.202110997
10.1021/acsnano.8b08200
10.1016/j.diamond.2022.109587
10.1126/sciadv.aaw7956
10.1016/j.pmatsci.2020.100757
10.1002/adfm.202203164
10.1038/s41467-020-18117-0
10.1109/JMEMS.2021.3079362
10.1016/j.xcrp.2023.101421
10.1002/adfm.201802235
10.1002/advs.202102077
10.1038/s41467-022-28021-4
10.1016/j.cej.2022.140263
10.1002/anie.202003737
10.1016/j.carbon.2020.10.090
10.1016/j.matt.2020.05.023
10.1021/acsnano.0c00381
10.1002/anie.202012618
10.1021/acsami.9b21713
10.1002/cplu.202000828
10.1002/adfm.201909504
10.1016/j.cej.2021.128883
10.1002/adma.202003558
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202308317
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202308317
ADFM202308317
Genre article
GrantInformation_xml – fundername: Youth Science Fund Program of Shanxi Province
  funderid: 202203021212203
– fundername: National Natural Science Foundation of China
  funderid: 52205599; 62205174; 62275100
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3177-5aa5d92c156ebedbb988dd5c8dead7a138209c496b454256001b2e38097bf1b53
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 02:58:16 EDT 2025
Tue Jul 01 00:30:51 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Wed Jan 22 16:14:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-5aa5d92c156ebedbb988dd5c8dead7a138209c496b454256001b2e38097bf1b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4282-250X
PQID 2928166495
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2928166495
crossref_citationtrail_10_1002_adfm_202308317
crossref_primary_10_1002_adfm_202308317
wiley_primary_10_1002_adfm_202308317_ADFM202308317
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2018; 28
2021; 6
2023; 35
2019; 4
2021; 86
2019; 5
2023; 4
2023; 6
2019; 13
2023; 463
2022; 67
2020; 59
2020; 14
2021; 120
2020; 12
2020; 11
2018; 61
2022; 22
2021; 30
2022; 122
2020; 7
2021; 13
2020; 5
2020; 3
2021; 12
2021; 33
2023; 131
2020; 30
2022; 5
2023; 454
2021; 414
2022; 13
2021; 175
2022; 32
2022; 33
2021; 60
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 7
  start-page: 775
  year: 2020
  publication-title: Natl. Sci. Rev.
– volume: 5
  year: 2020
  publication-title: Sci. Robot.
– volume: 33
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 463
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 454
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 175
  start-page: 594
  year: 2021
  publication-title: Carbon
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 67
  start-page: 501
  year: 2022
  publication-title: Sci. Bull.
– volume: 13
  start-page: 4041
  year: 2019
  publication-title: ACS Nano
– volume: 11
  start-page: 4536
  year: 2020
  publication-title: Nat. Commun.
– volume: 3
  start-page: 546
  year: 2020
  publication-title: Matter
– volume: 120
  year: 2021
  publication-title: Prog. Mater. Sci.
– volume: 22
  start-page: 8093
  year: 2022
  publication-title: Nano Lett.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  start-page: 622
  year: 2021
  publication-title: J. Microelectromech. Syst.
– volume: 60
  start-page: 5536
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 5233
  year: 2020
  publication-title: ACS Nano
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 414
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 6
  year: 2023
  publication-title: ACS Appl. Nano Mater.
– volume: 86
  start-page: 406
  year: 2021
  publication-title: Chempluschem.
– volume: 122
  start-page: 4946
  year: 2022
  publication-title: Chem. Rev.
– volume: 12
  start-page: 12
  year: 2021
  publication-title: Nat. Commun.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 61
  start-page: 1027
  year: 2018
  publication-title: Sci. China Mater.
– volume: 5
  start-page: 1042
  year: 2022
  publication-title: Matter
– volume: 13
  start-page: 363
  year: 2022
  publication-title: Nat. Commun.
– volume: 6
  start-page: 8173
  year: 2021
  publication-title: IEEE Robot. Autom. Lett.
– volume: 131
  year: 2023
  publication-title: Diamond Relat. Mater.
– volume: 13
  year: 2021
  publication-title: Nanoscale
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 11
  start-page: 5358
  year: 2020
  publication-title: Nat. Commun.
– volume: 4
  year: 2023
  publication-title: Cell Rep. Phys. Sci.
– ident: e_1_2_8_15_1
  doi: 10.1039/D1NR04333A
– ident: e_1_2_8_5_1
  doi: 10.1093/nsr/nwz219
– ident: e_1_2_8_9_1
  doi: 10.1021/acs.chemrev.1c00330
– ident: e_1_2_8_16_1
  doi: 10.1038/s41467-020-19180-3
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.202303805
– ident: e_1_2_8_17_1
  doi: 10.1038/s41467-020-20168-2
– ident: e_1_2_8_36_1
  doi: 10.1021/acsanm.3c01723
– ident: e_1_2_8_38_1
  doi: 10.1016/j.matt.2022.01.014
– ident: e_1_2_8_1_1
  doi: 10.1002/adfm.202211189
– ident: e_1_2_8_14_1
  doi: 10.1126/scirobotics.aba0015
– ident: e_1_2_8_26_1
  doi: 10.1109/LRA.2021.3070246
– ident: e_1_2_8_4_1
  doi: 10.1002/advs.202002464
– ident: e_1_2_8_23_1
  doi: 10.1002/admt.201800540
– ident: e_1_2_8_34_1
  doi: 10.1016/j.scib.2021.11.015
– ident: e_1_2_8_7_1
  doi: 10.1021/acs.nanolett.2c02212
– ident: e_1_2_8_10_1
  doi: 10.1016/j.cej.2023.142392
– ident: e_1_2_8_33_1
  doi: 10.1007/s40843-018-9289-2
– ident: e_1_2_8_11_1
  doi: 10.1002/adfm.202110997
– ident: e_1_2_8_12_1
  doi: 10.1021/acsnano.8b08200
– ident: e_1_2_8_40_1
  doi: 10.1016/j.diamond.2022.109587
– ident: e_1_2_8_31_1
  doi: 10.1126/sciadv.aaw7956
– ident: e_1_2_8_37_1
  doi: 10.1016/j.pmatsci.2020.100757
– ident: e_1_2_8_21_1
  doi: 10.1002/adfm.202203164
– ident: e_1_2_8_24_1
  doi: 10.1038/s41467-020-18117-0
– ident: e_1_2_8_22_1
  doi: 10.1109/JMEMS.2021.3079362
– ident: e_1_2_8_35_1
  doi: 10.1016/j.xcrp.2023.101421
– ident: e_1_2_8_3_1
  doi: 10.1002/adfm.201802235
– ident: e_1_2_8_20_1
  doi: 10.1002/advs.202102077
– ident: e_1_2_8_25_1
  doi: 10.1038/s41467-022-28021-4
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cej.2022.140263
– ident: e_1_2_8_29_1
  doi: 10.1002/anie.202003737
– ident: e_1_2_8_32_1
  doi: 10.1016/j.carbon.2020.10.090
– ident: e_1_2_8_39_1
  doi: 10.1016/j.matt.2020.05.023
– ident: e_1_2_8_18_1
  doi: 10.1021/acsnano.0c00381
– ident: e_1_2_8_2_1
  doi: 10.1002/anie.202012618
– ident: e_1_2_8_8_1
  doi: 10.1021/acsami.9b21713
– ident: e_1_2_8_28_1
  doi: 10.1002/cplu.202000828
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.201909504
– ident: e_1_2_8_30_1
  doi: 10.1016/j.cej.2021.128883
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202003558
SSID ssj0017734
Score 2.5672107
Snippet MXene, which is known for its high electrical/thermal conductivity, surface hydrophilicity, excellent mechanical flexibility, and chemical stability, is a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Actuation
Actuators
Adsorbed water
Asymmetry
Automation
Bilayers
Deformation
Electrical resistivity
flexible shaping
Manufacturing engineering
Moisture
Multilayers
multiresponsive
MXene
MXenes
Robots
Smart materials
soft robot
Soft robotics
Thermal conductivity
Title Multiresponsive MXene Actuators with Asymmetric Quantum‐Confined Superfluidic Structures
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202308317
https://www.proquest.com/docview/2928166495
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWkoPgKW3eyR6DtRQxgtZC8BL2kYDY1tI2gp78Cf5Gf4kzebUVRNBDICGbSbIzOzO7O_MNIWexy6gRm6D9bO6olu66KmNSU-3YSaSAQzcx3zm4cXoD6yq0w6Us_hwfolpww5GR6Wsc4IzP2gvQUCYTzCQHF9oDGwhKGAO20Cu6q_Cj4M35trKjY4CXHpaojZrRXn181SotXM1lhzWzON1twspvzQNNnlrpnLfE2zcYx__8zA7ZKtxRxc_lZ5esxeM9srkEUrhPHrIc3WkRS_sSK0EI-lHxMfMES_UouJSr-LPX0QircwnlNgVupaPP9w9MJwRCUumnk3iaDNNHCff7GWRtChQPyKB7eX_RU4uKDKowkY02Y7akhoBJHzBfck49T0pbeBIE0mWIZ6hRYVGHW7aVO1McJMHTqMsTndvmIamNn8fxEVFAFoR0wDZynJEaDlByEpMycFh0kB1aJ2rJkUgUcOVYNWMY5UDLRoR9FlV9VifnVftJDtTxY8tGyeCoGLCzyKAG7qDCdLFOjIxTv1CJ_E43qK6O__LQCdmAcyuPAW-QGvR-fAouzpw3ybrfCa77zUycvwDTE_ZO
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JThtBEC0hOBAOYUkQZu0DUU4DnvZsfeBgYSyDbaQEkKxcJtPLSCi2sWwGBCc-Ib-SX-ET-BKqZgMioUhIHHKYw2ylXqq6qrqrXgFsGz8S3NRw9XOlZzm271tRpKuWa7xYK7zsGuU7d4-91plz1HN7U_CnyIXJ8CHKDTeSjHS9JgGnDendJ9TQSMeUSo42dIBKMI-rbJuba_TaJnuHDZziL5w3D073W1ZeWMBSNWqNG0WuFlyh74J90FKKINDaVYHGcfUjguWrCuUITzquk9kEEjsUVIUvY1tSoQhc9WeojDjB9Te-l4hVSD07yPZsCimzewVOZJXvvmzvSz34ZNw-N5FTHdech_tidLLQll87yaXcUbd_AUf-V8O3AB9zi5vVMxFZhCkzXIK5ZziMn-BHmoY8zsOFrwzr9lAFsDol11A1Ika71aw-uRkMqACZYt8SZMhk8HD3mzImkZBmJ8nIjON-cq7x_UmKypsgxc9w9i6dW4bp4cXQrABDdlfaQ_UvyenmHlLy4pqI0CazUTxEBayCBUKVI7JTYZB-mGFJ85DmKCznqAJfy-9HGRbJq1-uFxwV5mvSJOSC0yExesQV4Clr_INKWG80u-Xd6lt-2oLZ1mm3E3YOj9tr8AGfO1nI-zpM40yYDbToLuVmKkMMfr431z0Cpa9Slg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTtxAEC0hIqFwIJCAGBigD4lyMtg9dtt94DBiMmLJoIRFGuXiuBdLUZhhxIwTwYlP4FP4lfxCviRV3likCCkShxx88FbqpaqrqrvqFcBbGyaS2xaufoESju-FoZMkxnUCK1Kj8fJalO_cOxS7p_5-P-hPwW2VC1PgQ9QbbiQZ-XpNAj4y6dYdaGhiUsokRxM6Qh1YhlUe2Muf6LSNt_c6OMPvOO9-ONnZdcq6Ao5uUWOCJAmM5BpdF-yCUUpGkTGBjgwOa5gQKp8rtS-F8gO_MAkU9idyZahST1GdCFz0X_jClVQsonNUA1Yh9eIcW3gUUeb1K5hIl289bO9DNXhn2963kHMV130Fv6rBKSJbvm9mE7Wprx7hRv5PozcPc6W9zdqFgCzAlB2-htl7KIxv4EuehHxRBgv_sKzXRwXA2pRaQ7WIGO1Vs_b4cjCg8mOafc6QHbPB7-sbypdEQoYdZyN7kZ5l3wy-P84xeTOkuAinz9K5JZgeng_tMjBkdm0EKn9FLjcXSEmkLZmgReahcMgGOBUHxLrEY6eyIGdxgSTNY5qjuJ6jBryvvx8VSCR__bJZMVRcrkjjmEtOR8ToDzeA55zxBJW43en26ruVf_lpA2Y-dbrxx73Dg1V4iY_9It69CdM4EXYNzbmJWs8liMHX52a6Pzw4UUU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiresponsive+MXene+Actuators+with+Asymmetric+Quantum%E2%80%90Confined+Superfluidic+Structures&rft.jtitle=Advanced+functional+materials&rft.au=Jia%E2%80%90Nan+Ma&rft.au=Ma%2C+Bo&rft.au=Zheng%E2%80%90Xiao+Wang&rft.au=Song%2C+Pu&rft.date=2024-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=8&rft_id=info:doi/10.1002%2Fadfm.202308317&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon