Multiresponsive MXene Actuators with Asymmetric Quantum‐Confined Superfluidic Structures
MXene, which is known for its high electrical/thermal conductivity, surface hydrophilicity, excellent mechanical flexibility, and chemical stability, is a versatile and smart material for soft actuators. However, most MXene actuators are fabricated by combining MXene with other inert materials to fo...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MXene, which is known for its high electrical/thermal conductivity, surface hydrophilicity, excellent mechanical flexibility, and chemical stability, is a versatile and smart material for soft actuators. However, most MXene actuators are fabricated by combining MXene with other inert materials to form a bilayer or multilayer structure. Considering the strain mismatch at multimaterial interfaces under frequent deformation, MXene‐based actuators are generally associated with poor stability, which limits their practical applications. Herein, inspired by the natural quantum‐confined superfluidic (QSF) effect, a multiresponsive MXene actuator that can be driven by moisture, light, and electricity by engineering an asymmetric QSF structure on both sides of the MXene film is reported. The actuation mechanism of the MXene film can be attributed to nonuniform water adsorption, transport, and desorption within the asymmetric QSF channels under moisture, photothermal, and electrothermal stimuli. Interestingly, MXene actuators can be flexibly formed into various shapes under moisture‐assisted mechanical compression, which not only enhances their multiresponsive actuation, but also permits a more complex deformation. As proof‐of‐concept demonstrations, various intriguing applications including a dual‐role robot, a smart shielding curtain, and a dragonfly robot, are fabricated, revealing the potential of MXene actuators for soft robotics.
The multiresponsive MXene actuators with asymmetric quantum‐confined superfluidic (QSF) structures are reported for robotic applications. The actuation mechanism of the MXene film can be attributed to nonuniform water adsorption, transport, and desorption within asymmetric QSF channels. As a proof of concept, smart devices, such as a dual‐role robot, a smart shielding curtain, and a dragonfly robot, are fabricated and demonstrated. |
---|---|
AbstractList | MXene, which is known for its high electrical/thermal conductivity, surface hydrophilicity, excellent mechanical flexibility, and chemical stability, is a versatile and smart material for soft actuators. However, most MXene actuators are fabricated by combining MXene with other inert materials to form a bilayer or multilayer structure. Considering the strain mismatch at multimaterial interfaces under frequent deformation, MXene‐based actuators are generally associated with poor stability, which limits their practical applications. Herein, inspired by the natural quantum‐confined superfluidic (QSF) effect, a multiresponsive MXene actuator that can be driven by moisture, light, and electricity by engineering an asymmetric QSF structure on both sides of the MXene film is reported. The actuation mechanism of the MXene film can be attributed to nonuniform water adsorption, transport, and desorption within the asymmetric QSF channels under moisture, photothermal, and electrothermal stimuli. Interestingly, MXene actuators can be flexibly formed into various shapes under moisture‐assisted mechanical compression, which not only enhances their multiresponsive actuation, but also permits a more complex deformation. As proof‐of‐concept demonstrations, various intriguing applications including a dual‐role robot, a smart shielding curtain, and a dragonfly robot, are fabricated, revealing the potential of MXene actuators for soft robotics. MXene, which is known for its high electrical/thermal conductivity, surface hydrophilicity, excellent mechanical flexibility, and chemical stability, is a versatile and smart material for soft actuators. However, most MXene actuators are fabricated by combining MXene with other inert materials to form a bilayer or multilayer structure. Considering the strain mismatch at multimaterial interfaces under frequent deformation, MXene‐based actuators are generally associated with poor stability, which limits their practical applications. Herein, inspired by the natural quantum‐confined superfluidic (QSF) effect, a multiresponsive MXene actuator that can be driven by moisture, light, and electricity by engineering an asymmetric QSF structure on both sides of the MXene film is reported. The actuation mechanism of the MXene film can be attributed to nonuniform water adsorption, transport, and desorption within the asymmetric QSF channels under moisture, photothermal, and electrothermal stimuli. Interestingly, MXene actuators can be flexibly formed into various shapes under moisture‐assisted mechanical compression, which not only enhances their multiresponsive actuation, but also permits a more complex deformation. As proof‐of‐concept demonstrations, various intriguing applications including a dual‐role robot, a smart shielding curtain, and a dragonfly robot, are fabricated, revealing the potential of MXene actuators for soft robotics. The multiresponsive MXene actuators with asymmetric quantum‐confined superfluidic (QSF) structures are reported for robotic applications. The actuation mechanism of the MXene film can be attributed to nonuniform water adsorption, transport, and desorption within asymmetric QSF channels. As a proof of concept, smart devices, such as a dual‐role robot, a smart shielding curtain, and a dragonfly robot, are fabricated and demonstrated. |
Author | Zhang, Yong‐Lai Song, Pu Wang, Zheng‐Xiao Ma, Bo Han, Dong‐Dong Ma, Jia‐Nan |
Author_xml | – sequence: 1 givenname: Jia‐Nan surname: Ma fullname: Ma, Jia‐Nan organization: Taiyuan University of Technology – sequence: 2 givenname: Bo surname: Ma fullname: Ma, Bo organization: Taiyuan University of Technology – sequence: 3 givenname: Zheng‐Xiao surname: Wang fullname: Wang, Zheng‐Xiao organization: High School Attached to Northeast Normal University – sequence: 4 givenname: Pu surname: Song fullname: Song, Pu organization: Taiyuan University of Technology – sequence: 5 givenname: Dong‐Dong surname: Han fullname: Han, Dong‐Dong email: handongdong@jlu.edu.cn organization: Jilin University – sequence: 6 givenname: Yong‐Lai orcidid: 0000-0002-4282-250X surname: Zhang fullname: Zhang, Yong‐Lai email: yonglaizhang@jlu.edu.cn organization: Jilin University |
BookMark | eNqFkM1KAzEUhYNUsK1uXQ-4nppkfrMcqlWhRaQKxc2QSTKYMpOM-bF05yP4jD6JUyoVBHF1L9zznXs4IzBQWgkAzhGcIAjxJeV1O8EQRzCPUHYEhihFaRhBnA8OO1qdgJG1awhRlkXxEDwvfOOkEbbTyso3ESxWQomgYM5Tp40NNtK9BIXdtq1wRrLgwVPlfPv5_jHVqpZK8GDpO2Hqxkve35fO-B7uHU_BcU0bK86-5xg8za4fp7fh_P7mblrMQ9bHzMKE0oQTzFCSikrwqiJ5znnCci4ozyiKcgwJi0laxUmMk7SPXmER5ZBkVY2qJBqDi71vZ_SrF9aVa-2N6l-WmOAcpWlMdqp4r2JGW2tEXTLpqJNaOUNlUyJY7losdy2WhxZ7bPIL64xsqdn-DZA9sJGN2P6jLour2eKH_QLhjooE |
CitedBy_id | crossref_primary_10_1002_adma_202413648 crossref_primary_10_1021_acsanm_4c01111 crossref_primary_10_1021_acsami_4c00864 crossref_primary_10_1021_acsami_4c15581 crossref_primary_10_1021_acsanm_4c04425 crossref_primary_10_1002_adfm_202315162 crossref_primary_10_1016_j_carbon_2024_119878 crossref_primary_10_1002_aisy_202400609 crossref_primary_10_1016_j_pnsc_2024_07_018 crossref_primary_10_1016_j_est_2025_115341 crossref_primary_10_1016_j_molliq_2024_125973 crossref_primary_10_1039_D4TC00911H crossref_primary_10_1021_acsapm_3c02893 crossref_primary_10_3788_LOP240740 crossref_primary_10_1002_adfm_202412254 crossref_primary_10_1021_acsami_4c12202 crossref_primary_10_1016_j_sna_2024_115333 |
Cites_doi | 10.1039/D1NR04333A 10.1093/nsr/nwz219 10.1021/acs.chemrev.1c00330 10.1038/s41467-020-19180-3 10.1002/adma.202303805 10.1038/s41467-020-20168-2 10.1021/acsanm.3c01723 10.1016/j.matt.2022.01.014 10.1002/adfm.202211189 10.1126/scirobotics.aba0015 10.1109/LRA.2021.3070246 10.1002/advs.202002464 10.1002/admt.201800540 10.1016/j.scib.2021.11.015 10.1021/acs.nanolett.2c02212 10.1016/j.cej.2023.142392 10.1007/s40843-018-9289-2 10.1002/adfm.202110997 10.1021/acsnano.8b08200 10.1016/j.diamond.2022.109587 10.1126/sciadv.aaw7956 10.1016/j.pmatsci.2020.100757 10.1002/adfm.202203164 10.1038/s41467-020-18117-0 10.1109/JMEMS.2021.3079362 10.1016/j.xcrp.2023.101421 10.1002/adfm.201802235 10.1002/advs.202102077 10.1038/s41467-022-28021-4 10.1016/j.cej.2022.140263 10.1002/anie.202003737 10.1016/j.carbon.2020.10.090 10.1016/j.matt.2020.05.023 10.1021/acsnano.0c00381 10.1002/anie.202012618 10.1021/acsami.9b21713 10.1002/cplu.202000828 10.1002/adfm.201909504 10.1016/j.cej.2021.128883 10.1002/adma.202003558 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202308317 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202308317 ADFM202308317 |
Genre | article |
GrantInformation_xml | – fundername: Youth Science Fund Program of Shanxi Province funderid: 202203021212203 – fundername: National Natural Science Foundation of China funderid: 52205599; 62205174; 62275100 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3177-5aa5d92c156ebedbb988dd5c8dead7a138209c496b454256001b2e38097bf1b53 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 02:58:16 EDT 2025 Tue Jul 01 00:30:51 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Wed Jan 22 16:14:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3177-5aa5d92c156ebedbb988dd5c8dead7a138209c496b454256001b2e38097bf1b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4282-250X |
PQID | 2928166495 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2928166495 crossref_citationtrail_10_1002_adfm_202308317 crossref_primary_10_1002_adfm_202308317 wiley_primary_10_1002_adfm_202308317_ADFM202308317 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2018; 28 2021; 6 2023; 35 2019; 4 2021; 86 2019; 5 2023; 4 2023; 6 2019; 13 2023; 463 2022; 67 2020; 59 2020; 14 2021; 120 2020; 12 2020; 11 2018; 61 2022; 22 2021; 30 2022; 122 2020; 7 2021; 13 2020; 5 2020; 3 2021; 12 2021; 33 2023; 131 2020; 30 2022; 5 2023; 454 2021; 414 2022; 13 2021; 175 2022; 32 2022; 33 2021; 60 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 7 start-page: 775 year: 2020 publication-title: Natl. Sci. Rev. – volume: 5 year: 2020 publication-title: Sci. Robot. – volume: 33 year: 2022 publication-title: Adv. Funct. Mater. – volume: 463 year: 2023 publication-title: Chem. Eng. J. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 454 year: 2023 publication-title: Chem. Eng. J. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 175 start-page: 594 year: 2021 publication-title: Carbon – volume: 4 year: 2019 publication-title: Adv. Mater. Technol. – volume: 67 start-page: 501 year: 2022 publication-title: Sci. Bull. – volume: 13 start-page: 4041 year: 2019 publication-title: ACS Nano – volume: 11 start-page: 4536 year: 2020 publication-title: Nat. Commun. – volume: 3 start-page: 546 year: 2020 publication-title: Matter – volume: 120 year: 2021 publication-title: Prog. Mater. Sci. – volume: 22 start-page: 8093 year: 2022 publication-title: Nano Lett. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 30 start-page: 622 year: 2021 publication-title: J. Microelectromech. Syst. – volume: 60 start-page: 5536 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 5233 year: 2020 publication-title: ACS Nano – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 414 year: 2021 publication-title: Chem. Eng. J. – volume: 6 year: 2023 publication-title: ACS Appl. Nano Mater. – volume: 86 start-page: 406 year: 2021 publication-title: Chempluschem. – volume: 122 start-page: 4946 year: 2022 publication-title: Chem. Rev. – volume: 12 start-page: 12 year: 2021 publication-title: Nat. Commun. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 61 start-page: 1027 year: 2018 publication-title: Sci. China Mater. – volume: 5 start-page: 1042 year: 2022 publication-title: Matter – volume: 13 start-page: 363 year: 2022 publication-title: Nat. Commun. – volume: 6 start-page: 8173 year: 2021 publication-title: IEEE Robot. Autom. Lett. – volume: 131 year: 2023 publication-title: Diamond Relat. Mater. – volume: 13 year: 2021 publication-title: Nanoscale – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 11 start-page: 5358 year: 2020 publication-title: Nat. Commun. – volume: 4 year: 2023 publication-title: Cell Rep. Phys. Sci. – ident: e_1_2_8_15_1 doi: 10.1039/D1NR04333A – ident: e_1_2_8_5_1 doi: 10.1093/nsr/nwz219 – ident: e_1_2_8_9_1 doi: 10.1021/acs.chemrev.1c00330 – ident: e_1_2_8_16_1 doi: 10.1038/s41467-020-19180-3 – ident: e_1_2_8_6_1 doi: 10.1002/adma.202303805 – ident: e_1_2_8_17_1 doi: 10.1038/s41467-020-20168-2 – ident: e_1_2_8_36_1 doi: 10.1021/acsanm.3c01723 – ident: e_1_2_8_38_1 doi: 10.1016/j.matt.2022.01.014 – ident: e_1_2_8_1_1 doi: 10.1002/adfm.202211189 – ident: e_1_2_8_14_1 doi: 10.1126/scirobotics.aba0015 – ident: e_1_2_8_26_1 doi: 10.1109/LRA.2021.3070246 – ident: e_1_2_8_4_1 doi: 10.1002/advs.202002464 – ident: e_1_2_8_23_1 doi: 10.1002/admt.201800540 – ident: e_1_2_8_34_1 doi: 10.1016/j.scib.2021.11.015 – ident: e_1_2_8_7_1 doi: 10.1021/acs.nanolett.2c02212 – ident: e_1_2_8_10_1 doi: 10.1016/j.cej.2023.142392 – ident: e_1_2_8_33_1 doi: 10.1007/s40843-018-9289-2 – ident: e_1_2_8_11_1 doi: 10.1002/adfm.202110997 – ident: e_1_2_8_12_1 doi: 10.1021/acsnano.8b08200 – ident: e_1_2_8_40_1 doi: 10.1016/j.diamond.2022.109587 – ident: e_1_2_8_31_1 doi: 10.1126/sciadv.aaw7956 – ident: e_1_2_8_37_1 doi: 10.1016/j.pmatsci.2020.100757 – ident: e_1_2_8_21_1 doi: 10.1002/adfm.202203164 – ident: e_1_2_8_24_1 doi: 10.1038/s41467-020-18117-0 – ident: e_1_2_8_22_1 doi: 10.1109/JMEMS.2021.3079362 – ident: e_1_2_8_35_1 doi: 10.1016/j.xcrp.2023.101421 – ident: e_1_2_8_3_1 doi: 10.1002/adfm.201802235 – ident: e_1_2_8_20_1 doi: 10.1002/advs.202102077 – ident: e_1_2_8_25_1 doi: 10.1038/s41467-022-28021-4 – ident: e_1_2_8_19_1 doi: 10.1016/j.cej.2022.140263 – ident: e_1_2_8_29_1 doi: 10.1002/anie.202003737 – ident: e_1_2_8_32_1 doi: 10.1016/j.carbon.2020.10.090 – ident: e_1_2_8_39_1 doi: 10.1016/j.matt.2020.05.023 – ident: e_1_2_8_18_1 doi: 10.1021/acsnano.0c00381 – ident: e_1_2_8_2_1 doi: 10.1002/anie.202012618 – ident: e_1_2_8_8_1 doi: 10.1021/acsami.9b21713 – ident: e_1_2_8_28_1 doi: 10.1002/cplu.202000828 – ident: e_1_2_8_27_1 doi: 10.1002/adfm.201909504 – ident: e_1_2_8_30_1 doi: 10.1016/j.cej.2021.128883 – ident: e_1_2_8_13_1 doi: 10.1002/adma.202003558 |
SSID | ssj0017734 |
Score | 2.5672107 |
Snippet | MXene, which is known for its high electrical/thermal conductivity, surface hydrophilicity, excellent mechanical flexibility, and chemical stability, is a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Actuation Actuators Adsorbed water Asymmetry Automation Bilayers Deformation Electrical resistivity flexible shaping Manufacturing engineering Moisture Multilayers multiresponsive MXene MXenes Robots Smart materials soft robot Soft robotics Thermal conductivity |
Title | Multiresponsive MXene Actuators with Asymmetric Quantum‐Confined Superfluidic Structures |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202308317 https://www.proquest.com/docview/2928166495 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvTgW6zWkoPgKW3eyR6DtRQxgtZC8BL2kYDY1tI2gp78Cf5Gf4kzebUVRNBDICGbSbIzOzO7O_MNIWexy6gRm6D9bO6olu66KmNSU-3YSaSAQzcx3zm4cXoD6yq0w6Us_hwfolpww5GR6Wsc4IzP2gvQUCYTzCQHF9oDGwhKGAO20Cu6q_Cj4M35trKjY4CXHpaojZrRXn181SotXM1lhzWzON1twspvzQNNnlrpnLfE2zcYx__8zA7ZKtxRxc_lZ5esxeM9srkEUrhPHrIc3WkRS_sSK0EI-lHxMfMES_UouJSr-LPX0QircwnlNgVupaPP9w9MJwRCUumnk3iaDNNHCff7GWRtChQPyKB7eX_RU4uKDKowkY02Y7akhoBJHzBfck49T0pbeBIE0mWIZ6hRYVGHW7aVO1McJMHTqMsTndvmIamNn8fxEVFAFoR0wDZynJEaDlByEpMycFh0kB1aJ2rJkUgUcOVYNWMY5UDLRoR9FlV9VifnVftJDtTxY8tGyeCoGLCzyKAG7qDCdLFOjIxTv1CJ_E43qK6O__LQCdmAcyuPAW-QGvR-fAouzpw3ybrfCa77zUycvwDTE_ZO |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JThtBEC0hOBAOYUkQZu0DUU4DnvZsfeBgYSyDbaQEkKxcJtPLSCi2sWwGBCc-Ib-SX-ET-BKqZgMioUhIHHKYw2ylXqq6qrqrXgFsGz8S3NRw9XOlZzm271tRpKuWa7xYK7zsGuU7d4-91plz1HN7U_CnyIXJ8CHKDTeSjHS9JgGnDendJ9TQSMeUSo42dIBKMI-rbJuba_TaJnuHDZziL5w3D073W1ZeWMBSNWqNG0WuFlyh74J90FKKINDaVYHGcfUjguWrCuUITzquk9kEEjsUVIUvY1tSoQhc9WeojDjB9Te-l4hVSD07yPZsCimzewVOZJXvvmzvSz34ZNw-N5FTHdech_tidLLQll87yaXcUbd_AUf-V8O3AB9zi5vVMxFZhCkzXIK5ZziMn-BHmoY8zsOFrwzr9lAFsDol11A1Ika71aw-uRkMqACZYt8SZMhk8HD3mzImkZBmJ8nIjON-cq7x_UmKypsgxc9w9i6dW4bp4cXQrABDdlfaQ_UvyenmHlLy4pqI0CazUTxEBayCBUKVI7JTYZB-mGFJ85DmKCznqAJfy-9HGRbJq1-uFxwV5mvSJOSC0yExesQV4Clr_INKWG80u-Xd6lt-2oLZ1mm3E3YOj9tr8AGfO1nI-zpM40yYDbToLuVmKkMMfr431z0Cpa9Slg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTtxAEC0hIqFwIJCAGBigD4lyMtg9dtt94DBiMmLJoIRFGuXiuBdLUZhhxIwTwYlP4FP4lfxCviRV3likCCkShxx88FbqpaqrqrvqFcBbGyaS2xaufoESju-FoZMkxnUCK1Kj8fJalO_cOxS7p_5-P-hPwW2VC1PgQ9QbbiQZ-XpNAj4y6dYdaGhiUsokRxM6Qh1YhlUe2Muf6LSNt_c6OMPvOO9-ONnZdcq6Ao5uUWOCJAmM5BpdF-yCUUpGkTGBjgwOa5gQKp8rtS-F8gO_MAkU9idyZahST1GdCFz0X_jClVQsonNUA1Yh9eIcW3gUUeb1K5hIl289bO9DNXhn2963kHMV130Fv6rBKSJbvm9mE7Wprx7hRv5PozcPc6W9zdqFgCzAlB2-htl7KIxv4EuehHxRBgv_sKzXRwXA2pRaQ7WIGO1Vs_b4cjCg8mOafc6QHbPB7-sbypdEQoYdZyN7kZ5l3wy-P84xeTOkuAinz9K5JZgeng_tMjBkdm0EKn9FLjcXSEmkLZmgReahcMgGOBUHxLrEY6eyIGdxgSTNY5qjuJ6jBryvvx8VSCR__bJZMVRcrkjjmEtOR8ToDzeA55zxBJW43en26ruVf_lpA2Y-dbrxx73Dg1V4iY_9It69CdM4EXYNzbmJWs8liMHX52a6Pzw4UUU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiresponsive+MXene+Actuators+with+Asymmetric+Quantum%E2%80%90Confined+Superfluidic+Structures&rft.jtitle=Advanced+functional+materials&rft.au=Jia%E2%80%90Nan+Ma&rft.au=Ma%2C+Bo&rft.au=Zheng%E2%80%90Xiao+Wang&rft.au=Song%2C+Pu&rft.date=2024-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=8&rft_id=info:doi/10.1002%2Fadfm.202308317&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |