Post‐fire behavior of steel slag fine aggregate concrete
Using steel slag fine aggregate (SSFA) to replace river sand (RS) in making concrete offers a sustainable solution for mitigating the environmental issues owing to the large‐scale mining of RS and disposal of a large amount of steel slag. The mechanical behavior and chemical property of concrete mad...
Saved in:
Published in | Structural concrete : journal of the FIB Vol. 23; no. 6; pp. 3672 - 3695 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.12.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using steel slag fine aggregate (SSFA) to replace river sand (RS) in making concrete offers a sustainable solution for mitigating the environmental issues owing to the large‐scale mining of RS and disposal of a large amount of steel slag. The mechanical behavior and chemical property of concrete made with SSFA at ambient temperature were investigated extensively. However, relatively few studies have been conducted to investigate the behavior of concrete with SSFA after exposure to elevated temperatures. To fill up this research gap, this paper studied the post‐fire behavior of five concrete mixes with SSFA replacing RS. The effect of SSFA replacement ratio by volume (0%, 25%, 50%, 75%, and 100%) on the heating temperature—time curve, color and appearance changes, weight loss, failure mode, and residual compressive strength of concrete under curing period of 28‐ and 91‐day, after exposure to 25 (ambient temperature), 400, 600, 800, and 1000°C was investigated. Besides, chemical composition at ambient and after exposure to elevated temperatures was analyzed with the aid of X‐ray diffraction. Test results showed that with SSFA partially or totally replacing RS, the heat insulation capability of concrete could be enhanced, especially at the replacement ratio of 75%. Moreover, concrete with RS replaced with SSFA presented larger or comparable residual strength after exposure to elevated temperatures from 600–800°C. Lastly, the design model by EC2 was adopted to predict the residual strength of concrete with and without SSFA. Comparing the design and measured residual strengths, it was concluded that EC2 was conservative. |
---|---|
AbstractList | Using steel slag fine aggregate (SSFA) to replace river sand (RS) in making concrete offers a sustainable solution for mitigating the environmental issues owing to the large‐scale mining of RS and disposal of a large amount of steel slag. The mechanical behavior and chemical property of concrete made with SSFA at ambient temperature were investigated extensively. However, relatively few studies have been conducted to investigate the behavior of concrete with SSFA after exposure to elevated temperatures. To fill up this research gap, this paper studied the post‐fire behavior of five concrete mixes with SSFA replacing RS. The effect of SSFA replacement ratio by volume (0%, 25%, 50%, 75%, and 100%) on the heating temperature—time curve, color and appearance changes, weight loss, failure mode, and residual compressive strength of concrete under curing period of 28‐ and 91‐day, after exposure to 25 (ambient temperature), 400, 600, 800, and 1000°C was investigated. Besides, chemical composition at ambient and after exposure to elevated temperatures was analyzed with the aid of X‐ray diffraction. Test results showed that with SSFA partially or totally replacing RS, the heat insulation capability of concrete could be enhanced, especially at the replacement ratio of 75%. Moreover, concrete with RS replaced with SSFA presented larger or comparable residual strength after exposure to elevated temperatures from 600–800°C. Lastly, the design model by EC2 was adopted to predict the residual strength of concrete with and without SSFA. Comparing the design and measured residual strengths, it was concluded that EC2 was conservative. |
Author | Zhuang, Xin Ho, Johnny Ching Ming Xu, Yuning Li, Xuanyang Wang, Yu‐Hang Lai, Mianheng Xu, Zhenhai Liang, Yi |
Author_xml | – sequence: 1 givenname: Xin surname: Zhuang fullname: Zhuang, Xin email: joisn@foxmail.com organization: Luohu Investment Holdings Co., Ltd – sequence: 2 givenname: Yi surname: Liang fullname: Liang, Yi email: liangyi19@e.gzhu.edu.cn organization: Guangzhou University – sequence: 3 givenname: Johnny Ching Ming orcidid: 0000-0002-2755-907X surname: Ho fullname: Ho, Johnny Ching Ming email: johnny.ho@gzhu.edu.cn organization: Guangzhou University – sequence: 4 givenname: Yu‐Hang surname: Wang fullname: Wang, Yu‐Hang email: wangyuhang@cqu.edu.cn organization: Ministry of Education – sequence: 5 givenname: Mianheng orcidid: 0000-0003-3389-9991 surname: Lai fullname: Lai, Mianheng email: laimianheng@gzhu.edu.cn organization: Guangzhou University – sequence: 6 givenname: Xuanyang surname: Li fullname: Li, Xuanyang email: 2016160495@e.gzhu.edu.cn organization: Guangzhou University – sequence: 7 givenname: Zhenhai surname: Xu fullname: Xu, Zhenhai email: 2016160126@e.gzhu.edu.cn organization: Guangzhou University – sequence: 8 givenname: Yuning surname: Xu fullname: Xu, Yuning email: 2016160266@e.gzhu.edu.cn organization: Guangzhou University |
BookMark | eNqFkE1LAzEQhoMo2Favnhc8b012k82uNyl-QaGC9hym2dk1Zd3UJFV68yf4G_0lplQUBPE078DzzMA7JPu97ZGQE0bHjNLszK-1HWc0i0sh5R4ZMClYKgte7sfMC55yJuUhGXq_jHzMYkDO76wPH2_vjXGYLPARXox1iW0SHxC7xHfQJo3pMYG2ddhCwETbXjsMeEQOGug8Hn_NEZlfXT5MbtLp7Pp2cjFNdR5_pLzOKWgOFItKUwDK6oaiyAUAiJzKvOSIAlld6YI3C1HXiwahrPISolZAPiKnu7srZ5_X6INa2rXr40uVSVFWZSakjBTfUdpZ7x02SpsAwdg-ODCdYlRtW1LbltR3S1Eb_9JWzjyB2_wtVDvh1XS4-YdW9_PJ7Mf9BJ4NflI |
CitedBy_id | crossref_primary_10_1016_j_cscm_2024_e03488 crossref_primary_10_1016_j_istruc_2023_05_071 crossref_primary_10_1002_suco_202400232 crossref_primary_10_1016_j_jobe_2023_107169 crossref_primary_10_1016_j_cscm_2023_e02572 crossref_primary_10_1016_j_jobe_2023_106475 crossref_primary_10_1002_suco_202200616 crossref_primary_10_1016_j_conbuildmat_2023_132336 crossref_primary_10_1016_j_jobe_2023_107283 crossref_primary_10_1002_suco_202301036 crossref_primary_10_1016_j_cscm_2023_e02741 crossref_primary_10_1016_j_cscm_2024_e02946 crossref_primary_10_1016_j_jobe_2023_107639 crossref_primary_10_3390_ma17092066 crossref_primary_10_1016_j_jobe_2023_105833 crossref_primary_10_3390_buildings14072051 crossref_primary_10_1007_s41062_024_01416_6 crossref_primary_10_1016_j_conbuildmat_2022_127357 crossref_primary_10_1016_j_jobe_2024_109458 crossref_primary_10_1016_j_conbuildmat_2024_136728 crossref_primary_10_1016_j_conbuildmat_2022_127152 crossref_primary_10_1016_j_conbuildmat_2022_127495 crossref_primary_10_1002_suco_202200806 crossref_primary_10_1016_j_conbuildmat_2023_132627 crossref_primary_10_1016_j_istruc_2025_108725 crossref_primary_10_1016_j_jobe_2024_111437 crossref_primary_10_1016_j_mtcomm_2023_107894 crossref_primary_10_1177_13694332231205057 crossref_primary_10_1680_jmacr_24_00143 crossref_primary_10_3390_ma16124212 crossref_primary_10_1016_j_clema_2024_100240 crossref_primary_10_1016_j_istruc_2024_106352 crossref_primary_10_1061_JMCEE7_MTENG_18224 crossref_primary_10_1016_j_jobe_2024_108758 |
Cites_doi | 10.1016/j.cemconres.2007.02.005 10.1016/j.conbuildmat.2013.05.005 10.1016/j.powtec.2013.12.020 10.1061/(ASCE)ST.1943-541X.0002738 10.1617/s11527-007-9274-5 10.1016/j.conbuildmat.2017.08.130 10.1016/j.tws.2020.106796 10.1016/j.conbuildmat.2018.08.040 10.1016/j.wasman.2018.04.045 10.1016/j.tws.2021.107494 10.1680/macr.2000.52.6.399 10.1080/12269328.2002.10541186 10.1016/j.tws.2020.107376 10.1680/adcr.2002.14.4.169 10.1002/fam.791 10.1016/j.proeng.2014.12.229 10.1680/macr.1967.19.59.83 10.1016/j.conbuildmat.2021.125751 10.1016/j.conbuildmat.2021.122448 10.1016/j.engstruct.2020.110596 10.1061/(ASCE)ST.1943-541X.0002468 10.1103/PhysRevApplied.3.064009 10.1016/j.compstruct.2021.114033 10.1061/(ASCE)MT.1943-5533.0001647 10.1016/j.engstruct.2016.06.048 10.1016/S0008-8846(96)85002-2 10.1016/S1006-706X(15)60003-6 10.1680/adcr.2008.20.1.1 10.1002/suco.201800047 10.1016/j.conbuildmat.2019.01.178 10.1016/j.cemconcomp.2009.03.006 10.1016/j.conbuildmat.2019.117595 10.1016/S0008-8846(02)00763-9 10.1016/j.jobe.2022.104117 10.1016/S0950-0618(00)00065-9 10.1016/j.proenv.2012.10.108 10.1016/j.compstruct.2020.112139 10.1002/suco.201700084 10.1016/j.tws.2019.106185 10.1016/j.engstruct.2020.110367 10.1016/j.tws.2017.07.024 10.1016/j.firesaf.2007.01.003 10.1016/j.conbuildmat.2006.05.053 10.1016/j.cemconcomp.2004.02.022 10.1016/j.jobe.2021.102678 10.1061/(ASCE)MT.1943-5533.0001241 10.1016/j.conbuildmat.2021.122269 10.1061/(ASCE)MT.1943-5533.0000719 10.1002/suco.201900320 10.1016/j.tws.2019.04.047 10.1016/j.cemconcomp.2019.03.020 10.1016/j.istruc.2020.08.078 10.1016/j.matchar.2011.04.016 10.1002/suco.202100280 10.1016/S0008-8846(01)00516-6 10.1016/j.conbuildmat.2016.03.217 10.1016/j.engstruct.2021.113246 10.1016/j.engstruct.2019.05.096 10.1617/s11527-007-9281-6 10.1016/j.conbuildmat.2020.121440 10.1016/j.conbuildmat.2017.04.121 10.1016/j.engstruct.2019.109824 10.1002/suco.202000407 10.1016/j.conbuildmat.2008.06.003 10.1680/cc.25929 10.1016/j.engstruct.2021.112193 10.1680/jmacr.19.00435 10.1680/macr.2007.59.5.323 10.1016/j.conbuildmat.2006.11.002 10.1061/(ASCE)MT.1943-5533.0001515 10.1016/j.jcsr.2019.105865 10.1007/BF02479085 10.1680/jadcr.16.00100 10.1016/j.engstruct.2014.02.013 10.1016/j.conbuildmat.2017.06.077 10.1016/j.conbuildmat.2013.02.044 10.1016/j.engstruct.2020.110312 10.1016/S0379-7112(00)00050-3 10.1016/S0008-8846(00)00384-7 |
ContentType | Journal Article |
Copyright | 2022 International Federation for Structural Concrete. 2022 fib. International Federation for Structural Concrete |
Copyright_xml | – notice: 2022 International Federation for Structural Concrete. – notice: 2022 fib. International Federation for Structural Concrete |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD F28 FR3 JG9 KR7 |
DOI | 10.1002/suco.202100677 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-7648 |
EndPage | 3695 |
ExternalDocumentID | 10_1002_suco_202100677 SUCO202100677 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52008118; 52078147 |
GroupedDBID | ..I .GA .Y3 05W 0R~ 123 1OC 31~ 33P 3SF 4.4 50Z 52M 52U 8-0 8-1 8-3 8-4 8-5 930 A03 AABWP AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAUCF AAXRX AAYCA AAZKR ABCUV ABDBF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADXNT ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BRXPI CS3 D-E D-F DCZOG DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE G-S GODZA H.T H.X HF~ HGLYW HVGLF HZ~ ITG ITH LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ N04 N05 NF~ O66 O9- P2W P2X Q.N QB0 ROL RTT SUPJJ UB1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ XG2 ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7QQ 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c3177-4d30ac4a0e69c0aa01df0e535aaa5307384ee5e1d9c64fb5ddbfea8938aac46a3 |
ISSN | 1464-4177 |
IngestDate | Sat Jul 19 13:10:31 EDT 2025 Thu Apr 24 23:04:43 EDT 2025 Tue Jul 01 02:56:04 EDT 2025 Wed Jan 22 16:24:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3177-4d30ac4a0e69c0aa01df0e535aaa5307384ee5e1d9c64fb5ddbfea8938aac46a3 |
Notes | Funding information National Natural Science Foundation of China, Grant/Award Numbers: 52008118, 52078147 Discussion on this paper must be submitted within two months of the print publication. The discussion will then be published in print, along with the authors’ closure, if any, approximately nine months after the print publication. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2755-907X 0000-0003-3389-9991 |
PQID | 2758982577 |
PQPubID | 136230 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2758982577 crossref_citationtrail_10_1002_suco_202100677 crossref_primary_10_1002_suco_202100677 wiley_primary_10_1002_suco_202100677_SUCO202100677 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: London |
PublicationTitle | Structural concrete : journal of the FIB |
PublicationYear | 2022 |
Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
References | 2017; 119 2002; 14 2013; 25 2019; 99 2020; 241 2021; 249 2013; 61 2011; 62 2019; 204 2021; 280 2020; 203 2021; 162 2021; 161 2017; 151 2020; 166 2012; 16 2017; 155 2014; 253 2005; 27 2021; 73 2014; 67 2007; 37 2019; 20 2021; 277 1984; 17 2021; 237 2000; 52 2021; 270 2020; 214 1967; 19 2020; 211 1983 2001; 15 2008; 22 2020; 210 2016; 114 2008; 20 2019; 195 2018; 78 2007; 21 2021; 40 1996; 26 2014; 97 2009; 23 2018; 188 2013; 47 2015; 3 2013; 43 2021; 269 2010 2002; 5 2002; 32 1997 2007 2017; 29 2020; 146 2016; 125 2018; 65 2022; 316 2019; 142 2007; 59 2018; 19 2002; 26 2015; 27 2009; 31 2020; 151 2022 2020 2020; 154 2015; 22 2000; 30 2020; 28 2020; 236 2016 2008; 41 2014 2020; 21 2007; 42 2016; 28 2001; 36 2017; 148 2001; 31 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_85_1 GB175 (e_1_2_8_33_1) 2007 e_1_2_8_41_1 e_1_2_8_60_1 Hager I (e_1_2_8_76_1) 2013; 61 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Liang JF (e_1_2_8_31_1) 2018; 65 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_80_1 MOHURD (e_1_2_8_68_1) 2016 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 1992‐1‐2 E (e_1_2_8_87_1) 2014 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 12350‐8 BE (e_1_2_8_67_1) 2010 BSI (e_1_2_8_69_1) 1983 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 188 start-page: 1085 year: 2018 end-page: 91 article-title: Interface and anti‐corrosion properties of sea‐sand concrete with fumed silica publication-title: Constr Build Mater – volume: 203 year: 2020 article-title: A stress‐path dependent stress‐strain model for FRP‐confined concrete publication-title: Eng Struct – volume: 166 year: 2020 article-title: Experimental investigation on hollow‐steel‐tube columns with external confinements publication-title: J Constr Steel Res – volume: 62 start-page: 716 issue: 7 year: 2011 end-page: 23 article-title: The potential use of steel slag in refractory concrete publication-title: Mater Charact – volume: 99 start-page: 203 year: 2019 end-page: 13 article-title: The physical and chemical impact of manufactured sand as a partial replacement material in ultra‐high performance concrete (UHPC) publication-title: Cem and Concr Compos – volume: 16 start-page: 791 year: 2012 end-page: 801 article-title: An overview of utilization of steel slag publication-title: Procedia Environ Sci – volume: 42 start-page: 516 issue: 8 year: 2007 end-page: 22 article-title: Effects of elevated temperatures on properties of concrete publication-title: Fire Saf J – volume: 151 start-page: 138 year: 2017 end-page: 46 article-title: The soundness of steel slag with different free CaO and MgO contents publication-title: Constr Build Mater – volume: 41 start-page: 689 issue: 4 year: 2008 end-page: 701 article-title: Packing density of cementitious materials: part 1—measurement using a wet packing method publication-title: Mater Struct – volume: 14 start-page: 169 issue: 4 year: 2002 end-page: 77 article-title: Elastic modulus changes in cementitious materials submitted to thermal treatments up to 1000°C publication-title: Adv Cem Res – volume: 20 start-page: 1 issue: 1 year: 2008 end-page: 11 article-title: Effects of packing density, excess water and solid surface area on flowability of cement paste publication-title: Adv Cem Res – volume: 142 start-page: 19 year: 2019 end-page: 36 article-title: Uni‐axial behaviour of externally confined UHSCFST columns publication-title: Thin‐Walled Struct – volume: 19 start-page: 83 issue: 59 year: 1967 end-page: 94 article-title: Steel in concrete with blastfurnace slag aggregate publication-title: Mag Concr Res – volume: 41 start-page: 773 issue: 4 year: 2008 end-page: 84 article-title: Packing density of cementitious materials: part 2—packing and flow of OPC+ PFA+ CSF publication-title: Mater Struct – volume: 270 year: 2021 article-title: Interdependence of passing ability, dilatancy and wet packing density of concrete publication-title: Constr Build Mater – volume: 27 issue: 10 year: 2015 article-title: Mechanical properties of engineered Cementitious composites subjected to elevated temperatures publication-title: J Mater Civ Eng – year: 2014 – volume: 162 year: 2021 article-title: Beam‐column design of cold‐formed steel semi‐oval hollow non‐slender sections publication-title: Thin‐Walled Struct – volume: 114 start-page: 737 year: 2016 end-page: 46 article-title: Performance of concrete made with steel slag and waste glass publication-title: Constr Build Mater – volume: 211 year: 2020 article-title: A path dependent stress‐strain model for concrete‐filled‐steel‐tube column publication-title: Eng Struct – volume: 40 year: 2021 article-title: Axial compression tests on elliptical high strength steel tubes filled with self‐compacting concrete of different mix proportions publication-title: J Build Eng – volume: 32 start-page: 1247 issue: 8 year: 2002 end-page: 9 article-title: Study on steel furnace slags with high MgO as additive in Portland cement publication-title: Cem Concr Res – volume: 15 start-page: 9 issue: 1 year: 2001 end-page: 15 article-title: Assessment of fire damaged concrete using colour image analysis publication-title: Constr Build Mater – volume: 241 year: 2020 article-title: Behaviour of FRP tube‐concrete‐encased steel composite columns publication-title: Compos Struct – volume: 67 start-page: 123 year: 2014 end-page: 41 article-title: Confinement effect of ring‐confined concrete‐filled‐steel‐tube columns under uni‐axial load publication-title: Eng Struct – volume: 28 issue: 11 year: 2016 article-title: Microstructure and mechanical properties of high‐toughness fiber‐reinforced Cementitious composites after exposure to elevated temperatures publication-title: J Mater Civ Eng – volume: 59 start-page: 323 issue: 5 year: 2007 end-page: 8 article-title: Effect of aggregate on high‐strength concrete in fire publication-title: Mag Concr Res – volume: 36 start-page: 181 issue: 2 year: 2001 end-page: 99 article-title: Assessing fire damage to r.c. elements publication-title: Fire Saf J – volume: 204 start-page: 41 year: 2019 end-page: 9 article-title: Utilization of unprocessed steel slag as fine aggregate in normal‐ and high‐strength concrete publication-title: Constr Build Mater – volume: 61 start-page: 145 issue: 1 year: 2013 end-page: 54 article-title: Behaviour of cement concrete at high temperature publication-title: Bull Pol Acad Sci Tech Sci – volume: 19 start-page: 400 issue: 2 year: 2018 end-page: 10 article-title: Mechanical properties of concrete containing recycled coarse aggregate at and after exposure to elevated temperatures publication-title: Struct Concr – volume: 21 start-page: 1803 issue: 8 year: 2007 end-page: 8 article-title: The properties of concrete made with fine dune sand publication-title: Constr Build Mater – year: 1997 – volume: 210 year: 2020 article-title: A path dependent constitutive model for CFFT column publication-title: Eng Struct – volume: 280 year: 2021 article-title: Shrinkage design model of concrete incorporating wet packing density publication-title: Constr Build Mater – volume: 97 start-page: 95 year: 2014 end-page: 104 article-title: Properties of concrete manufactured using steel slag publication-title: Procedia Eng – volume: 17 start-page: 291 issue: 4 year: 1984 end-page: 6 article-title: Changes in the structure of hardened cement paste due to high temperature publication-title: Matér Constr – volume: 23 start-page: 1118 issue: 2 year: 2009 end-page: 25 article-title: Use of low CaO unprocessed steel slag in concrete as fine aggregate publication-title: Constr Build Mater – volume: 31 start-page: 1023 issue: 7 year: 2001 end-page: 6 article-title: Effect of temperature on porosity of concrete for nuclear‐safety structures publication-title: Cem Concr Res – year: 2022 article-title: Effect of concrete wet packing density on the uni‐axial strength of manufactured sand CFST columns publication-title: Struct Concr – volume: 269 year: 2021 article-title: Novel ultra‐high‐performance concrete composite plates reinforced with FRP grid: development and mechanical behaviour publication-title: Compos Struct – volume: 37 start-page: 988 issue: 6 year: 2007 end-page: 95 article-title: Effect of pumice and fly ash incorporation on high temperature resistance of cement based mortars publication-title: Cem Concr Res – volume: 148 start-page: 579 year: 2017 end-page: 89 article-title: Evaluation of compressive behavior of ultra‐lightweight cement composite after elevated temperature exposure publication-title: Constr Build Mater – volume: 146 issue: 4 year: 2020 article-title: Tests of cold‐formed steel semi‐oval hollow section members under eccentric axial load publication-title: J Struct Eng – year: 1983 – volume: 28 issue: 6 year: 2016 article-title: Impact of high temperature on residual properties of concrete with steel slag aggregate publication-title: J Mater Civ Eng – volume: 30 start-page: 1915 issue: 12 year: 2000 end-page: 27 article-title: Spalling and pore pressure in HPC at high temperatures publication-title: Cem Concr Res – volume: 28 start-page: 577 year: 2020 end-page: 88 article-title: Polyethylene terephthalate fibre‐reinforced polymer‐confined concrete encased high‐strength steel tube hybrid square columns: axial compression tests publication-title: Structure – volume: 195 start-page: 182 year: 2019 end-page: 99 article-title: Seismic behaviour of innovative composite walls with high‐strength manufactured sand concrete publication-title: Eng Struct – volume: 161 year: 2021 article-title: Experimental investigation on cold‐formed steel lipped channel beams affected by local‐distortional interaction under non‐uniform bending publication-title: Thin‐Walled Struct – volume: 29 start-page: 112 issue: 3 year: 2017 end-page: 24 article-title: Multi‐sized fillers in low‐carbon high‐performance concrete publication-title: Adv Cement Res – volume: 43 start-page: 469 year: 2013 end-page: 79 article-title: Characterization of high strength mortars with nano Titania at elevated temperatures publication-title: Constr Build Mater – volume: 237 year: 2021 article-title: Uni‐axial behaviour of expansive CFST and DSCFST columns publication-title: Eng Struct – year: 2007 – volume: 146 issue: 9 year: 2020 article-title: Tensile tests of cold‐formed stainless steel tubes publication-title: J Struct Eng – volume: 31 start-page: 349 issue: 6 year: 2009 end-page: 57 article-title: Packing density measurement and modelling of fine aggregate and mortar publication-title: Cem Concr Compos – year: 2022 article-title: Effect of fillers on the behaviour of low carbon footprint concrete at and after exposure to elevated temperatures publication-title: J Build Eng – volume: 154 year: 2020 article-title: Effective usage of high strength steel tubes: axial compressive behavior of hybrid FRP‐concrete‐steel solid columns publication-title: Thin‐Walled Struct – volume: 214 year: 2020 article-title: Fatigue behaviour of composite sandwich beams strengthened with GFRP stiffeners publication-title: Eng Struct – volume: 21 start-page: 1164 year: 2020 end-page: 80 article-title: Dilatancy mitigation of cement powder paste by pozzolanic and inert fillers publication-title: Struc Concr – volume: 155 start-page: 1101 year: 2017 end-page: 11 article-title: Use of sea‐sand and seawater in concrete construction: current status and future opportunities publication-title: Constr Build Mater – volume: 52 start-page: 399 issue: 6 year: 2000 end-page: 409 article-title: Behaviour of high‐strength concrete with dolomitic aggregate at high temperatures publication-title: Mag Concr Res – volume: 25 start-page: 1721 issue: 11 year: 2013 end-page: 30 article-title: Residual mechanical response of recycled aggregate concrete after exposure to elevated temperatures publication-title: J Mater Civ Eng – volume: 249 start-page: 113246 year: 2021 article-title: Compressive behavior of FRP‐confined ultra‐high performance concrete (UHPC) in circular columns publication-title: Eng Struct – volume: 316 year: 2022 article-title: Residual properties of steel slag coarse aggregate concrete after exposure to elevated temperatures publication-title: Construct Build Mater – year: 2016 – volume: 47 start-page: 131 year: 2013 end-page: 7 article-title: Effect of very fine particles on workability and strength of concrete made with dune sand publication-title: Constr Build Mater – volume: 78 start-page: 318 year: 2018 end-page: 30 article-title: Steel slag in China: treatment, recycling, and management publication-title: Waste Manag – volume: 125 start-page: 124 year: 2016 end-page: 43 article-title: A theoretical axial stress‐strain model for circular concrete‐filled‐steel‐tube columns publication-title: Eng Struct – volume: 119 start-page: 770 year: 2017 end-page: 81 article-title: An analysis‐based model for axially loaded circular CFST columns publication-title: Thin‐Walled Struct – year: 2010 – year: 2020 article-title: Shrinkage, cementitious paste volume and wet packing density of concrete publication-title: Struct Concr – volume: 26 start-page: 127 issue: 3 year: 2002 end-page: 30 article-title: Is high strength concrete more susceptible to explosive spalling than normal strength concrete in fire? publication-title: Fire Mater – volume: 27 start-page: 255 issue: 2 year: 2005 end-page: 9 article-title: Microstructure of fire‐damaged concrete. A case study publication-title: Cem Concr Compos – volume: 5 start-page: 38 issue: 2 year: 2002 end-page: 45 article-title: A fundamental study on the steel slag aggregate for concrete publication-title: Geosystem Eng – volume: 26 start-page: 669 issue: 5 year: 1996 end-page: 75 article-title: Effect of temperature on physical and mechanical properties of concrete containing silica fume publication-title: Cem Concr Res – volume: 73 start-page: 828 issue: 16 year: 2021 end-page: 42 article-title: Dilatancy reversal in superplasticized cementitious mortar publication-title: Mag Concr Res – volume: 20 start-page: 185 issue: 1 year: 2019 end-page: 97 article-title: Fillers to improve passing ability of concrete publication-title: Struct Concr – volume: 277 year: 2021 article-title: Improving mechanical behavior and microstructure of concrete by using BOF steel slag aggregate publication-title: Constr Build Mater – volume: 236 year: 2020 article-title: Cause and mitigation of dilatancy in cement powder paste publication-title: Constr Build Mater – volume: 65 start-page: 343 issue: 3 year: 2018 end-page: 8 article-title: Mechanical behavior of recycled fine aggregate concrete after high temperature publication-title: Struct Eng Mech – volume: 3 issue: 6 year: 2015 article-title: Hysteresis from multiscale porosity: modeling water sorption and shrinkage in cement paste publication-title: Phys Rev Appl – volume: 22 start-page: 593 issue: 4 year: 2008 end-page: 9 article-title: Change in microstructure of hardened cement paste subjected to elevated temperatures publication-title: Constr Build Mater – volume: 151 year: 2020 article-title: Experimental study of seismic performance of full‐scale basalt FRP‐recycled aggregate concrete‐steel tubular columns publication-title: Thin‐Walled Struct – volume: 22 start-page: 15 issue: 1 year: 2015 end-page: 20 article-title: Effects of quicklime and iron tailings as modifier on composition and properties of steel slag publication-title: J Iron Steel Res Int – volume: 253 start-page: 514 year: 2014 end-page: 21 article-title: Packing density of concrete mix under dry and wet conditions publication-title: Powder Technol – ident: e_1_2_8_70_1 doi: 10.1016/j.cemconres.2007.02.005 – ident: e_1_2_8_4_1 doi: 10.1016/j.conbuildmat.2013.05.005 – ident: e_1_2_8_61_1 doi: 10.1016/j.powtec.2013.12.020 – ident: e_1_2_8_41_1 doi: 10.1061/(ASCE)ST.1943-541X.0002738 – volume-title: GB/T 50080 standard for test method of performance on ordinary fresh concrete year: 2016 ident: e_1_2_8_68_1 – ident: e_1_2_8_62_1 doi: 10.1617/s11527-007-9274-5 – volume: 65 start-page: 343 issue: 3 year: 2018 ident: e_1_2_8_31_1 article-title: Mechanical behavior of recycled fine aggregate concrete after high temperature publication-title: Struct Eng Mech – ident: e_1_2_8_5_1 doi: 10.1016/j.conbuildmat.2017.08.130 – ident: e_1_2_8_53_1 doi: 10.1016/j.tws.2020.106796 – ident: e_1_2_8_6_1 doi: 10.1016/j.conbuildmat.2018.08.040 – ident: e_1_2_8_14_1 doi: 10.1016/j.wasman.2018.04.045 – ident: e_1_2_8_40_1 doi: 10.1016/j.tws.2021.107494 – ident: e_1_2_8_81_1 doi: 10.1680/macr.2000.52.6.399 – ident: e_1_2_8_36_1 doi: 10.1080/12269328.2002.10541186 – ident: e_1_2_8_39_1 doi: 10.1016/j.tws.2020.107376 – ident: e_1_2_8_82_1 doi: 10.1680/adcr.2002.14.4.169 – ident: e_1_2_8_86_1 doi: 10.1002/fam.791 – ident: e_1_2_8_11_1 doi: 10.1016/j.proeng.2014.12.229 – ident: e_1_2_8_17_1 doi: 10.1680/macr.1967.19.59.83 – ident: e_1_2_8_15_1 doi: 10.1016/j.conbuildmat.2021.125751 – ident: e_1_2_8_27_1 doi: 10.1016/j.conbuildmat.2021.122448 – ident: e_1_2_8_43_1 doi: 10.1016/j.engstruct.2020.110596 – ident: e_1_2_8_38_1 doi: 10.1061/(ASCE)ST.1943-541X.0002468 – ident: e_1_2_8_74_1 doi: 10.1103/PhysRevApplied.3.064009 – ident: e_1_2_8_56_1 doi: 10.1016/j.compstruct.2021.114033 – ident: e_1_2_8_71_1 doi: 10.1061/(ASCE)MT.1943-5533.0001647 – ident: e_1_2_8_48_1 doi: 10.1016/j.engstruct.2016.06.048 – ident: e_1_2_8_75_1 doi: 10.1016/S0008-8846(96)85002-2 – ident: e_1_2_8_37_1 doi: 10.1016/S1006-706X(15)60003-6 – ident: e_1_2_8_60_1 doi: 10.1680/adcr.2008.20.1.1 – ident: e_1_2_8_25_1 doi: 10.1002/suco.201800047 – ident: e_1_2_8_13_1 doi: 10.1016/j.conbuildmat.2019.01.178 – ident: e_1_2_8_58_1 doi: 10.1016/j.cemconcomp.2009.03.006 – ident: e_1_2_8_63_1 doi: 10.1016/j.conbuildmat.2019.117595 – ident: e_1_2_8_35_1 doi: 10.1016/S0008-8846(02)00763-9 – ident: e_1_2_8_24_1 doi: 10.1016/j.jobe.2022.104117 – ident: e_1_2_8_83_1 doi: 10.1016/S0950-0618(00)00065-9 – ident: e_1_2_8_16_1 doi: 10.1016/j.proenv.2012.10.108 – ident: e_1_2_8_51_1 doi: 10.1016/j.compstruct.2020.112139 – volume-title: Testing fresh concrete part 8: self‐compacting concrete – slump‐flow test year: 2010 ident: e_1_2_8_67_1 – volume-title: Common Portland cement year: 2007 ident: e_1_2_8_33_1 – ident: e_1_2_8_30_1 doi: 10.1002/suco.201700084 – ident: e_1_2_8_44_1 doi: 10.1016/j.tws.2019.106185 – ident: e_1_2_8_52_1 doi: 10.1016/j.engstruct.2020.110367 – ident: e_1_2_8_57_1 doi: 10.1016/j.tws.2017.07.024 – ident: e_1_2_8_29_1 doi: 10.1016/j.firesaf.2007.01.003 – ident: e_1_2_8_3_1 doi: 10.1016/j.conbuildmat.2006.05.053 – ident: e_1_2_8_20_1 doi: 10.1016/j.cemconcomp.2004.02.022 – ident: e_1_2_8_54_1 doi: 10.1016/j.jobe.2021.102678 – ident: e_1_2_8_72_1 doi: 10.1061/(ASCE)MT.1943-5533.0001241 – ident: e_1_2_8_12_1 doi: 10.1016/j.conbuildmat.2021.122269 – ident: e_1_2_8_32_1 doi: 10.1061/(ASCE)MT.1943-5533.0000719 – ident: e_1_2_8_64_1 doi: 10.1002/suco.201900320 – ident: e_1_2_8_46_1 doi: 10.1016/j.tws.2019.04.047 – ident: e_1_2_8_7_1 doi: 10.1016/j.cemconcomp.2019.03.020 – ident: e_1_2_8_45_1 doi: 10.1016/j.istruc.2020.08.078 – ident: e_1_2_8_80_1 doi: 10.1016/j.matchar.2011.04.016 – ident: e_1_2_8_9_1 doi: 10.1002/suco.202100280 – ident: e_1_2_8_78_1 doi: 10.1016/S0008-8846(01)00516-6 – ident: e_1_2_8_23_1 doi: 10.1016/j.conbuildmat.2016.03.217 – ident: e_1_2_8_55_1 doi: 10.1016/j.engstruct.2021.113246 – ident: e_1_2_8_8_1 doi: 10.1016/j.engstruct.2019.05.096 – ident: e_1_2_8_59_1 doi: 10.1617/s11527-007-9281-6 – ident: e_1_2_8_66_1 doi: 10.1016/j.conbuildmat.2020.121440 – volume-title: Eurocode 2—design of concrete structures, part 1–2: General rules ‐ structural fire design year: 2014 ident: e_1_2_8_87_1 – ident: e_1_2_8_22_1 doi: 10.1016/j.conbuildmat.2017.04.121 – ident: e_1_2_8_49_1 doi: 10.1016/j.engstruct.2019.109824 – ident: e_1_2_8_28_1 doi: 10.1002/suco.202000407 – ident: e_1_2_8_10_1 doi: 10.1016/j.conbuildmat.2008.06.003 – volume: 61 start-page: 145 issue: 1 year: 2013 ident: e_1_2_8_76_1 article-title: Behaviour of cement concrete at high temperature publication-title: Bull Pol Acad Sci Tech Sci – ident: e_1_2_8_77_1 doi: 10.1680/cc.25929 – ident: e_1_2_8_26_1 doi: 10.1016/j.engstruct.2021.112193 – ident: e_1_2_8_65_1 doi: 10.1680/jmacr.19.00435 – ident: e_1_2_8_84_1 doi: 10.1680/macr.2007.59.5.323 – ident: e_1_2_8_21_1 doi: 10.1016/j.conbuildmat.2006.11.002 – ident: e_1_2_8_79_1 doi: 10.1061/(ASCE)MT.1943-5533.0001515 – ident: e_1_2_8_42_1 doi: 10.1016/j.jcsr.2019.105865 – ident: e_1_2_8_18_1 doi: 10.1007/BF02479085 – ident: e_1_2_8_2_1 doi: 10.1680/jadcr.16.00100 – ident: e_1_2_8_47_1 doi: 10.1016/j.engstruct.2014.02.013 – ident: e_1_2_8_34_1 doi: 10.1016/j.conbuildmat.2017.06.077 – ident: e_1_2_8_73_1 doi: 10.1016/j.conbuildmat.2013.02.044 – volume-title: BS 1881–120:1983: testing concrete. Method for determination of the compressive strength of concrete cores year: 1983 ident: e_1_2_8_69_1 – ident: e_1_2_8_50_1 doi: 10.1016/j.engstruct.2020.110312 – ident: e_1_2_8_19_1 doi: 10.1016/S0379-7112(00)00050-3 – ident: e_1_2_8_85_1 doi: 10.1016/S0008-8846(00)00384-7 |
SSID | ssj0021775 ssib035781430 |
Score | 2.4939127 |
Snippet | Using steel slag fine aggregate (SSFA) to replace river sand (RS) in making concrete offers a sustainable solution for mitigating the environmental issues... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3672 |
SubjectTerms | Ambient temperature Chemical composition Compressive strength Concrete aggregates elevated temperatures Failure modes High temperature Mechanical properties replacement ratio residual properties Residual strength Slag Steel steel slag fine aggregate concrete Temperature Weight loss |
Title | Post‐fire behavior of steel slag fine aggregate concrete |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsuco.202100677 https://www.proquest.com/docview/2758982577 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiKdYWFAOSByiLIkdOym3qrAbHguHblHhEjm20620pEjbXjjxE_hV_BB-CeNnU97sJYr8SBTPZ3tmMv4GoYdpySUpVJYwVYKBwhuaNATDRWWKYgkWizTRFq9ZNc1fzOhsMPjai1par5oD8emX50ouIlUoA7nqU7L_IdnwUCiAe5AvXEHCcP0nGetMuyFaoYXFK5y61zogyE-dxSDyedxqXZLPwbbWXjMdag7K4morCmhiiGQNCYevNu6CHrWE1lEPn4d_NO9P187ZPFtsAnsWruzdIiBm6WN-O0Ol3M3jY79hGle-67AOn1JxV-3cERj_ENphmMBD87fjKrZ-yfjoQ1MZNI-XB_HLIz7qLbo5y5M8c-lclC0raJYUzLJw-pXankx2iOwvu4TZ_D9uCyfMJu78aXuwdLPna6GPfYKxq-nzNhuh__kfWtI_tzVawGQ6fhPqL6FdDOYKrLe7o6fHryZ-ZdOUQpnhuXeuAPhYas-92S_3dKIpfrz9xm11aWMD9S0powqdXENXnQ0TjSwgr6OB6m6gKz1my5voiYbmt89fNCgjD8po2UYGlJEGZaRBGQVQRh51t9D08NnJuEpcmo5EgPJZJLkkKRc5TxUbipTzNJNtqiihnHOqt5AyV4qqTA4Fy9uGStm0ioOeXHLoxji5jXa6ZafuoGgoWyGJYopykgudSU1mqYTbBiyLrFB7KPGjUQvHYa9TqZzVln0b13r06jB6e-hRaP_Rsrf8tuW-H9zaTazzGoMxPSxhU4NqbAb8L0-pt9Bw9yKd7qHLm2m1j3Zg8qv7oPeumgcOVN8BT--gjg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post%E2%80%90fire+behavior+of+steel+slag+fine+aggregate+concrete&rft.jtitle=Structural+concrete+%3A+journal+of+the+FIB&rft.au=Zhuang%2C+Xin&rft.au=Liang%2C+Yi&rft.au=Ho%2C+Johnny+Ching+Ming&rft.au=Wang%2C+Yu%E2%80%90Hang&rft.date=2022-12-01&rft.pub=WILEY%E2%80%90VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=1464-4177&rft.eissn=1751-7648&rft.volume=23&rft.issue=6&rft.spage=3672&rft.epage=3695&rft_id=info:doi/10.1002%2Fsuco.202100677&rft.externalDBID=10.1002%252Fsuco.202100677&rft.externalDocID=SUCO202100677 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-4177&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-4177&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-4177&client=summon |