Active Reconfigurable Tristable Square‐Twist Origami

Origami structures offer valuable applications in many fields, ranging from metamaterials to robotics. The multistable characteristics of origami structures have been pursued for acquiring unique reconfigurable features. For achieving this goal, an unusual polymeric tristable origami structure is de...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 13
Main Authors Wang, Li‐Chen, Song, Wei‐Li, Zhang, Ya‐Jing, Qu, Mei‐Jun, Zhao, Zeang, Chen, Mingji, Yang, Yazheng, Chen, Haosen, Fang, Daining
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Origami structures offer valuable applications in many fields, ranging from metamaterials to robotics. The multistable characteristics of origami structures have been pursued for acquiring unique reconfigurable features. For achieving this goal, an unusual polymeric tristable origami structure is demonstrated using a classic square‐twist origami configuration. By manipulating both material properties and geometric parameters of the heteropolymer structures, a design principle for tailoring the multistable configuration in the square‐twist origami is established based on variation of the structural potential energy. Under thermal triggering, the stiffness of the deformable structure is dramatically reduced, which causes an increase in the structural degree of freedom, allowing for self‐deployment via release of the prestored energy in the elastic twisted hinges. Utilizing such unique features and design principles, a prototype of frequency reconfigurable origami antenna of five diverse operating modes and a programmable multiple‐input multiple‐output communication system is subsequently designed and assembled, aiming to substantially promote the channel capacity and communication reliability. The findings and results firmly provide a remarkable design principle and strategy for advancing active origami structures and devices in shape‐morphing systems. Active reconfigurable tristable square‐twist origami structures are fabricated via a multimaterial 3D print method via a self‐deployment phenomenon under thermal stimuli. Designing different geometries allows for square‐twist origami structures with different stable states. These structures can be used as a deformable dielectric substrate to compose a frequency reconfigurable origami antenna, and the function of one origami antenna instead of five conventional antennas can be realized.
AbstractList Origami structures offer valuable applications in many fields, ranging from metamaterials to robotics. The multistable characteristics of origami structures have been pursued for acquiring unique reconfigurable features. For achieving this goal, an unusual polymeric tristable origami structure is demonstrated using a classic square‐twist origami configuration. By manipulating both material properties and geometric parameters of the heteropolymer structures, a design principle for tailoring the multistable configuration in the square‐twist origami is established based on variation of the structural potential energy. Under thermal triggering, the stiffness of the deformable structure is dramatically reduced, which causes an increase in the structural degree of freedom, allowing for self‐deployment via release of the prestored energy in the elastic twisted hinges. Utilizing such unique features and design principles, a prototype of frequency reconfigurable origami antenna of five diverse operating modes and a programmable multiple‐input multiple‐output communication system is subsequently designed and assembled, aiming to substantially promote the channel capacity and communication reliability. The findings and results firmly provide a remarkable design principle and strategy for advancing active origami structures and devices in shape‐morphing systems.
Origami structures offer valuable applications in many fields, ranging from metamaterials to robotics. The multistable characteristics of origami structures have been pursued for acquiring unique reconfigurable features. For achieving this goal, an unusual polymeric tristable origami structure is demonstrated using a classic square‐twist origami configuration. By manipulating both material properties and geometric parameters of the heteropolymer structures, a design principle for tailoring the multistable configuration in the square‐twist origami is established based on variation of the structural potential energy. Under thermal triggering, the stiffness of the deformable structure is dramatically reduced, which causes an increase in the structural degree of freedom, allowing for self‐deployment via release of the prestored energy in the elastic twisted hinges. Utilizing such unique features and design principles, a prototype of frequency reconfigurable origami antenna of five diverse operating modes and a programmable multiple‐input multiple‐output communication system is subsequently designed and assembled, aiming to substantially promote the channel capacity and communication reliability. The findings and results firmly provide a remarkable design principle and strategy for advancing active origami structures and devices in shape‐morphing systems. Active reconfigurable tristable square‐twist origami structures are fabricated via a multimaterial 3D print method via a self‐deployment phenomenon under thermal stimuli. Designing different geometries allows for square‐twist origami structures with different stable states. These structures can be used as a deformable dielectric substrate to compose a frequency reconfigurable origami antenna, and the function of one origami antenna instead of five conventional antennas can be realized.
Author Zhao, Zeang
Wang, Li‐Chen
Zhang, Ya‐Jing
Chen, Haosen
Chen, Mingji
Qu, Mei‐Jun
Song, Wei‐Li
Yang, Yazheng
Fang, Daining
Author_xml – sequence: 1
  givenname: Li‐Chen
  surname: Wang
  fullname: Wang, Li‐Chen
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Wei‐Li
  orcidid: 0000-0002-4328-8919
  surname: Song
  fullname: Song, Wei‐Li
  email: weilis@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Ya‐Jing
  surname: Zhang
  fullname: Zhang, Ya‐Jing
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Mei‐Jun
  surname: Qu
  fullname: Qu, Mei‐Jun
  organization: Beijing University of Posts and Telecommunications
– sequence: 5
  givenname: Zeang
  surname: Zhao
  fullname: Zhao, Zeang
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Mingji
  surname: Chen
  fullname: Chen, Mingji
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Yazheng
  surname: Yang
  fullname: Yang, Yazheng
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Haosen
  surname: Chen
  fullname: Chen, Haosen
  email: chenhs@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Daining
  surname: Fang
  fullname: Fang, Daining
  email: fangdn@bit.edu.cn
  organization: Peking University
BookMark eNqFkEFLAzEQhYNUsK1ePRc8b50k201yLNWqUCloBW8hiUlJ2e62ya6lN3-Cv9Ff4tZKBUE8zWN437zhdVCrKAuL0DmGPgYgl-rFLfsEsAABnB2hNs5wllAgvHXQ-PkEdWJcAGDGaNpG2dBU_tX2HqwpC-fndVA6t71Z8LH6Uo_rWgX78fY-2zSr3jT4uVr6U3TsVB7t2ffsoqfx9Wx0m0ymN3ej4SQxtAlI0gFzQhPmHNMZpI4YDsaAEI42TxJnUqszQTJqwGnKqIYBw0Zr6oAJroB20cX-7iqU69rGSi7KOhRNpCSUU8wF47Rx9fcuE8oYg3VyFfxSha3EIHfdyF038tBNA6S_AOMrVfmyqILy-d-Y2GMbn9vtPyFyeDW-_2E_AQCWe00
CitedBy_id crossref_primary_10_1115_1_4067623
crossref_primary_10_1016_j_compositesb_2023_110585
crossref_primary_10_1002_adts_202400594
crossref_primary_10_1002_admt_202201135
crossref_primary_10_1016_j_matdes_2021_109819
crossref_primary_10_1002_pssb_202400528
crossref_primary_10_1126_sciadv_abf1966
crossref_primary_10_1002_aisy_202400038
crossref_primary_10_16984_saufenbilder_845515
crossref_primary_10_1002_adem_202101202
crossref_primary_10_1002_adma_202302066
crossref_primary_10_1115_1_4055357
crossref_primary_10_1145_3592409
crossref_primary_10_1155_2024_3046393
crossref_primary_10_3390_mi13101673
crossref_primary_10_3389_fmats_2020_600863
crossref_primary_10_1088_1361_665X_ad4d36
crossref_primary_10_1088_2631_7990_acf96a
crossref_primary_10_1088_2631_8695_ad46ea
crossref_primary_10_3390_mi14040822
crossref_primary_10_1126_sciadv_adk8662
crossref_primary_10_20517_ss_2021_22
crossref_primary_10_1142_S2737549822300012
crossref_primary_10_1016_j_xcrp_2021_100407
crossref_primary_10_1098_rspa_2020_0236
crossref_primary_10_1115_1_4056637
crossref_primary_10_1002_advs_202501749
crossref_primary_10_1016_j_eng_2022_02_015
crossref_primary_10_1016_j_ijsolstr_2022_111471
crossref_primary_10_1115_1_4056870
crossref_primary_10_1038_s43586_024_00313_7
crossref_primary_10_1115_1_4056475
crossref_primary_10_1016_j_apmt_2022_101529
crossref_primary_10_1016_j_mechmat_2022_104269
crossref_primary_10_1109_LRA_2022_3191417
crossref_primary_10_1063_5_0051088
crossref_primary_10_1002_advs_202105016
crossref_primary_10_1002_advs_202102662
crossref_primary_10_1021_acsami_3c02761
crossref_primary_10_1089_soro_2020_0175
crossref_primary_10_1038_s41586_021_03623_y
crossref_primary_10_1021_acsami_2c19679
crossref_primary_10_1016_j_engstruct_2022_115497
crossref_primary_10_1016_j_actaastro_2023_04_039
crossref_primary_10_1002_advs_202303454
crossref_primary_10_1016_j_nanoen_2023_108697
crossref_primary_10_1088_1361_665X_abff17
crossref_primary_10_1115_1_4066568
crossref_primary_10_3390_jcs8020064
crossref_primary_10_1016_j_compstruct_2025_118872
crossref_primary_10_3390_polym14194235
crossref_primary_10_1016_j_matdes_2021_109481
crossref_primary_10_1088_1361_665X_ababe4
crossref_primary_10_1016_j_mser_2023_100745
crossref_primary_10_1002_smsc_202100077
crossref_primary_10_1002_adem_202001428
crossref_primary_10_1002_aisy_202200374
crossref_primary_10_1109_TMTT_2024_3463484
crossref_primary_10_1002_adts_202200135
crossref_primary_10_1088_1361_665X_ad6724
crossref_primary_10_1021_acsanm_0c00182
crossref_primary_10_1016_j_compositesb_2024_112089
crossref_primary_10_1073_pnas_2117649119
crossref_primary_10_1002_aisy_202400246
crossref_primary_10_1016_j_mattod_2021_03_014
crossref_primary_10_1002_advs_202001384
Cites_doi 10.1109/SURV.2009.090207
10.1260/0266-3511.30.2.55
10.1109/COMST.2017.2766698
10.1016/j.eml.2017.09.008
10.1038/nmat4232
10.5194/ms-2-217-2011
10.1038/ncomms1336
10.1073/pnas.1713450114
10.1021/acsami.6b05156
10.1115/1.4031955
10.1126/sciadv.1602326
10.1177/0954406215597713
10.1002/marc.201600625
10.1109/TMECH.2012.2210239
10.1002/adma.201805282
10.1126/sciadv.1601019
10.1002/adma.200904232
10.1038/nature25443
10.1126/sciadv.1602890
10.1073/pnas.1720171115
10.1002/adma.201706311
10.1115/1.4029228
10.1126/science.1252610
10.1002/adma.201605390
10.1103/PhysRevLett.98.156103
10.1088/0964-1726/23/9/094001
10.1098/rspa.2009.0625
10.1021/la404955s
10.1038/s41586-018-0185-0
10.1073/pnas.1805122115
10.1038/s41467-017-00685-3
10.1016/j.pmatsci.2017.12.003
10.1126/science.1252876
10.1038/ncomms10929
10.1088/0964-1726/23/9/094009
10.1103/PhysRevE.95.052211
10.1038/nmat4540
10.1002/adma.201202549
10.1038/srep24224
10.1115/1.4025380
10.1088/0964-1726/23/2/023001
10.1073/pnas.1504745112
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201909087
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201909087
ADFM201909087
Genre article
GrantInformation_xml – fundername: Key Laboratory of Space Utilization
– fundername: Chinese Academy of Sciences
  funderid: LSU‐KFJJ‐2018‐04
– fundername: National Natural Science Foundation of China
  funderid: 11872113
– fundername: Beijing Natural Science Foundation
  funderid: 2182065
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3177-457f9b27ff7b604f2c80cc099f30902fc4eb69263c0fb373b0571cbb3f0798a03
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 07:48:41 EDT 2025
Tue Jul 01 04:12:09 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Wed Jan 22 16:36:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3177-457f9b27ff7b604f2c80cc099f30902fc4eb69263c0fb373b0571cbb3f0798a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4328-8919
PQID 2383189783
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2383189783
crossref_primary_10_1002_adfm_201909087
crossref_citationtrail_10_1002_adfm_201909087
wiley_primary_10_1002_adfm_201909087_ADFM201909087
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2015; 14
2013; 25
2017; 3
2011; 2
2019; 31
2010; 466
2015; 30
2017; 29
2007; 98
2017; 114
2018; 20
2016; 15
2014; 23
2017; 95
2010; 22
2013; 18
2009; 11
2016; 6
2016; 7
2016; 2
2015; 115
2015; 137
2017; 17
2017; 38
2018; 558
2015; 112
2018; 115
2018; 554
2015; 230
2013; 135
2018; 30
2018; 94
2014; 30
2010; 2
2014; 345
2016; 8
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 8
  start-page: 596
  year: 2017
  publication-title: Nat. Commun.
– volume: 23
  year: 2014
  publication-title: Smart Mater. Struct.
– volume: 22
  start-page: 2251
  year: 2010
  publication-title: Adv. Mater.
– volume: 98
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 112
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 30
  start-page: 55
  year: 2015
  publication-title: Int. J. Space Struct.
– volume: 2
  start-page: 337
  year: 2010
  publication-title: Nat. Commun.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 14
  start-page: 389
  year: 2015
  publication-title: Nat. Mater.
– volume: 230
  start-page: 2345
  year: 2015
  publication-title: Proc. Inst. Mech. Eng., Part C
– volume: 115
  start-page: 2032
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 137
  year: 2015
  publication-title: J. Mech. Des.
– volume: 558
  start-page: 274
  year: 2018
  publication-title: Nature
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 135
  year: 2013
  publication-title: J. Mech. Des.
– volume: 345
  start-page: 644
  year: 2014
  publication-title: Science
– volume: 466
  start-page: 2155
  year: 2010
  publication-title: Proc. R. Soc. A
– volume: 30
  start-page: 5378
  year: 2014
  publication-title: Langmuir
– volume: 8
  year: 2016
  publication-title: J. Mech. Rob.
– volume: 115
  start-page: 6916
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 38
  year: 2017
  publication-title: Macromol. Rapid Commun.
– volume: 20
  start-page: 629
  year: 2018
  publication-title: IEEE Commun. Surv. Tutorials
– volume: 554
  start-page: 81
  year: 2018
  publication-title: Nature
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  start-page: 87
  year: 2009
  publication-title: IEEE Commun. Surv. Tutorials
– volume: 114
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 94
  start-page: 114
  year: 2018
  publication-title: Prog. Mater. Sci.
– volume: 95
  year: 2017
  publication-title: Phys. Rev. E
– volume: 2
  start-page: 217
  year: 2011
  publication-title: Mech. Sci.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 25
  start-page: 91
  year: 2013
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 18
  start-page: 430
  year: 2013
  publication-title: IEEE/ASME Trans. Mechatronics
– volume: 15
  start-page: 583
  year: 2016
  publication-title: Nat. Mater.
– volume: 17
  start-page: 7
  year: 2017
  publication-title: Extreme Mech. Lett.
– volume: 345
  start-page: 647
  year: 2014
  publication-title: Science
– ident: e_1_2_7_39_1
  doi: 10.1109/SURV.2009.090207
– ident: e_1_2_7_31_1
  doi: 10.1260/0266-3511.30.2.55
– ident: e_1_2_7_40_1
  doi: 10.1109/COMST.2017.2766698
– ident: e_1_2_7_32_1
  doi: 10.1016/j.eml.2017.09.008
– ident: e_1_2_7_18_1
  doi: 10.1038/nmat4232
– ident: e_1_2_7_38_1
  doi: 10.5194/ms-2-217-2011
– ident: e_1_2_7_13_1
  doi: 10.1038/ncomms1336
– ident: e_1_2_7_12_1
  doi: 10.1073/pnas.1713450114
– ident: e_1_2_7_24_1
  doi: 10.1021/acsami.6b05156
– ident: e_1_2_7_27_1
  doi: 10.1115/1.4031955
– ident: e_1_2_7_8_1
  doi: 10.1126/sciadv.1602326
– ident: e_1_2_7_29_1
  doi: 10.1177/0954406215597713
– ident: e_1_2_7_6_1
  doi: 10.1002/marc.201600625
– ident: e_1_2_7_15_1
  doi: 10.1109/TMECH.2012.2210239
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201805282
– ident: e_1_2_7_42_1
  doi: 10.1126/sciadv.1601019
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.200904232
– ident: e_1_2_7_14_1
  doi: 10.1038/nature25443
– ident: e_1_2_7_2_1
  doi: 10.1126/sciadv.1602890
– ident: e_1_2_7_19_1
  doi: 10.1073/pnas.1720171115
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201706311
– ident: e_1_2_7_35_1
  doi: 10.1115/1.4029228
– ident: e_1_2_7_16_1
  doi: 10.1126/science.1252610
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201605390
– ident: e_1_2_7_10_1
  doi: 10.1103/PhysRevLett.98.156103
– ident: e_1_2_7_28_1
  doi: 10.1088/0964-1726/23/9/094001
– ident: e_1_2_7_37_1
  doi: 10.1098/rspa.2009.0625
– ident: e_1_2_7_9_1
  doi: 10.1021/la404955s
– ident: e_1_2_7_26_1
  doi: 10.1038/s41586-018-0185-0
– ident: e_1_2_7_25_1
  doi: 10.1073/pnas.1805122115
– ident: e_1_2_7_11_1
  doi: 10.1038/s41467-017-00685-3
– ident: e_1_2_7_30_1
  doi: 10.1016/j.pmatsci.2017.12.003
– ident: e_1_2_7_20_1
  doi: 10.1126/science.1252876
– ident: e_1_2_7_21_1
  doi: 10.1038/ncomms10929
– ident: e_1_2_7_34_1
  doi: 10.1088/0964-1726/23/9/094009
– ident: e_1_2_7_33_1
  doi: 10.1103/PhysRevE.95.052211
– ident: e_1_2_7_41_1
  doi: 10.1038/nmat4540
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201202549
– ident: e_1_2_7_5_1
  doi: 10.1038/srep24224
– ident: e_1_2_7_36_1
  doi: 10.1115/1.4025380
– ident: e_1_2_7_22_1
  doi: 10.1088/0964-1726/23/2/023001
– ident: e_1_2_7_17_1
  doi: 10.1073/pnas.1504745112
SSID ssj0017734
Score 2.5970738
Snippet Origami structures offer valuable applications in many fields, ranging from metamaterials to robotics. The multistable characteristics of origami structures...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Automation
Channel capacity
Communications systems
Configurations
Formability
frequency reconfigurable antennas
Manufacturing engineering
Material properties
materials origami
Materials science
Metamaterials
Morphing
multistable structures
Potential energy
Reconfiguration
Robotics
Stiffness
Title Active Reconfigurable Tristable Square‐Twist Origami
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201909087
https://www.proquest.com/docview/2383189783
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iL_rgXZzO0QfBp25tmibpY3GOIU7BbbC3kqSNDHXqLgg--RP8jf4Sc3rbJoigb21JSnOSc8530nO-IHSqtJAxjYUNiTY2CZRv81hom1DucUViShjUO3euabtPLgf-YKGKP-OHKDfcQDNSew0KLuSkMScNFbGGSnLj0AKHQzk5JGwBKrot-aNcxrLfytSFBC93ULA2Orix3H3ZK82h5iJgTT1OawuJ4luzRJP7-mwq6-rtG43jfwazjTZzOGqF2frZQSvJaBdtLJAU7iEapibRgkB1pId3szFUW1k9sA7pVffFLLPk8_2j92oeWTcm3hePw33Ub130ztt2ftqCrQyGAPJzpgOJmdZMUodorLijlAGQ2oPcTa1IImmAqaccLT3mSYP0XCWlpx0WcOF4B2h19DRKDpFlUEOCOWVC4pgEjs9xLGQAJLjGZPiSVZBdSDtSORU5nIjxEGUkyjgCeUSlPCrorGz_nJFw_NiyWkxelCvjJDKoxFgu2OOqIJzOwi9vicJmq1PeHf2l0zFaxxCZp9lqVbQ6Hc-SEwNfprKG1sJm56pbS5fqFydi6GA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3ofFAf_BanU_sg-NTZpm3SPg7nmLpN0A32Vpq0kaFWnRuCT_4Ef6O_xNx-bRNE0Le2JKW5SW5Obs89ATgSMuAhDQMdiTa67QlHd8NA6jZ1LVfYIbUZ5ju3O7TZsy_6Ts4mxFyYVB-iCLjhzEj8NU5wDEifTFRDg1BiKrla0TzDZfOwgMd6o3x-_bpQkDIZS38sUxMpXmY_1200yMls_dl1aQI2pyFrsuY0VoHnX5tSTe6q4xGvirdvQo7_as4arGSIVKulQ2gd5qJ4A5andAo3gdYSr6jhXjWWg9vxEBOutC46iOTq5lmNtOjz_aP7qh5pV2rLHzwMtqDXOOueNvXswAVdKBiB-udMepwwKRmnhi2JcA0hFIaUFtI3pbAjTj1CLWFIbjGLK7BnCs4taTDPDQxrG0rxYxztgKaAQ0RcygJOQtszHJeEAfdQB1d5DYezMui5uX2RqZHjoRj3fqqjTHy0h1_YowzHRfmnVIfjx5KVvPf8bD6--AqYKOeFYa4ykKQbfnmLX6s32sXd7l8qHcJis9tu-a3zzuUeLBHcqCfktQqURsNxtK_QzIgfJOP1C2ut6ug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT8IwEL8oJkYf_G9EUfdg4tNgdKXdHolI8A9oFBLelrZbDVEREWLikx_Bz-gnsbfBABNjom_d0i7b9e76u-7uV4AjpYUMWShsTLSxqa9KthcKbVPmuZ6iIaMc653rDVZr0fN2qT1VxZ_wQ6QbbmgZsb9GA--FujAhDRWhxkpys6D5jsfnYYEy00JYdJMSSBU5T_4rsyJmeBXbY9pGhxRmx88uSxOsOY1Y4yWnugpi_LJJpsl9fjiQefX2jcfxP1-zBisjPGqVEwVah7mouwHLUyyFm8DKsU-0MFLt6s7dsI_lVlYT3UPcun02ehZ9vn80X80t68oE_OKxswWt6mnzpGaPjluwlQERyH7OtS8J15pL5lBNlOcoZRCkdjF5UysaSeYT5ipHS5e70kC9opLS1Q73PeG425DpPnWjHbAMbIiIx7iQJKS-U_JIKKSPLLjGZ5Qkz4I9lnagRlzkeCTGQ5CwKJMA5RGk8sjCcdq_l7Bw_NgzN568YGSNL4GBJcZ14SZXFkg8C788JShXqvX0avcvgw5h8bpSDS7PGhd7sEQwSo8z13KQGfSH0b6BMgN5EGvrF7S86Zc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Reconfigurable+Tristable+Square%E2%80%90Twist+Origami&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Li%E2%80%90Chen&rft.au=Song%2C+Wei%E2%80%90Li&rft.au=Zhang%2C+Ya%E2%80%90Jing&rft.au=Qu%2C+Mei%E2%80%90Jun&rft.date=2020-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=13&rft_id=info:doi/10.1002%2Fadfm.201909087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201909087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon