Active Reconfigurable Tristable Square‐Twist Origami
Origami structures offer valuable applications in many fields, ranging from metamaterials to robotics. The multistable characteristics of origami structures have been pursued for acquiring unique reconfigurable features. For achieving this goal, an unusual polymeric tristable origami structure is de...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 13 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Origami structures offer valuable applications in many fields, ranging from metamaterials to robotics. The multistable characteristics of origami structures have been pursued for acquiring unique reconfigurable features. For achieving this goal, an unusual polymeric tristable origami structure is demonstrated using a classic square‐twist origami configuration. By manipulating both material properties and geometric parameters of the heteropolymer structures, a design principle for tailoring the multistable configuration in the square‐twist origami is established based on variation of the structural potential energy. Under thermal triggering, the stiffness of the deformable structure is dramatically reduced, which causes an increase in the structural degree of freedom, allowing for self‐deployment via release of the prestored energy in the elastic twisted hinges. Utilizing such unique features and design principles, a prototype of frequency reconfigurable origami antenna of five diverse operating modes and a programmable multiple‐input multiple‐output communication system is subsequently designed and assembled, aiming to substantially promote the channel capacity and communication reliability. The findings and results firmly provide a remarkable design principle and strategy for advancing active origami structures and devices in shape‐morphing systems.
Active reconfigurable tristable square‐twist origami structures are fabricated via a multimaterial 3D print method via a self‐deployment phenomenon under thermal stimuli. Designing different geometries allows for square‐twist origami structures with different stable states. These structures can be used as a deformable dielectric substrate to compose a frequency reconfigurable origami antenna, and the function of one origami antenna instead of five conventional antennas can be realized. |
---|---|
AbstractList | Origami structures offer valuable applications in many fields, ranging from metamaterials to robotics. The multistable characteristics of origami structures have been pursued for acquiring unique reconfigurable features. For achieving this goal, an unusual polymeric tristable origami structure is demonstrated using a classic square‐twist origami configuration. By manipulating both material properties and geometric parameters of the heteropolymer structures, a design principle for tailoring the multistable configuration in the square‐twist origami is established based on variation of the structural potential energy. Under thermal triggering, the stiffness of the deformable structure is dramatically reduced, which causes an increase in the structural degree of freedom, allowing for self‐deployment via release of the prestored energy in the elastic twisted hinges. Utilizing such unique features and design principles, a prototype of frequency reconfigurable origami antenna of five diverse operating modes and a programmable multiple‐input multiple‐output communication system is subsequently designed and assembled, aiming to substantially promote the channel capacity and communication reliability. The findings and results firmly provide a remarkable design principle and strategy for advancing active origami structures and devices in shape‐morphing systems. Origami structures offer valuable applications in many fields, ranging from metamaterials to robotics. The multistable characteristics of origami structures have been pursued for acquiring unique reconfigurable features. For achieving this goal, an unusual polymeric tristable origami structure is demonstrated using a classic square‐twist origami configuration. By manipulating both material properties and geometric parameters of the heteropolymer structures, a design principle for tailoring the multistable configuration in the square‐twist origami is established based on variation of the structural potential energy. Under thermal triggering, the stiffness of the deformable structure is dramatically reduced, which causes an increase in the structural degree of freedom, allowing for self‐deployment via release of the prestored energy in the elastic twisted hinges. Utilizing such unique features and design principles, a prototype of frequency reconfigurable origami antenna of five diverse operating modes and a programmable multiple‐input multiple‐output communication system is subsequently designed and assembled, aiming to substantially promote the channel capacity and communication reliability. The findings and results firmly provide a remarkable design principle and strategy for advancing active origami structures and devices in shape‐morphing systems. Active reconfigurable tristable square‐twist origami structures are fabricated via a multimaterial 3D print method via a self‐deployment phenomenon under thermal stimuli. Designing different geometries allows for square‐twist origami structures with different stable states. These structures can be used as a deformable dielectric substrate to compose a frequency reconfigurable origami antenna, and the function of one origami antenna instead of five conventional antennas can be realized. |
Author | Zhao, Zeang Wang, Li‐Chen Zhang, Ya‐Jing Chen, Haosen Chen, Mingji Qu, Mei‐Jun Song, Wei‐Li Yang, Yazheng Fang, Daining |
Author_xml | – sequence: 1 givenname: Li‐Chen surname: Wang fullname: Wang, Li‐Chen organization: Beijing Institute of Technology – sequence: 2 givenname: Wei‐Li orcidid: 0000-0002-4328-8919 surname: Song fullname: Song, Wei‐Li email: weilis@bit.edu.cn organization: Beijing Institute of Technology – sequence: 3 givenname: Ya‐Jing surname: Zhang fullname: Zhang, Ya‐Jing organization: Beijing Institute of Technology – sequence: 4 givenname: Mei‐Jun surname: Qu fullname: Qu, Mei‐Jun organization: Beijing University of Posts and Telecommunications – sequence: 5 givenname: Zeang surname: Zhao fullname: Zhao, Zeang organization: Beijing Institute of Technology – sequence: 6 givenname: Mingji surname: Chen fullname: Chen, Mingji organization: Beijing Institute of Technology – sequence: 7 givenname: Yazheng surname: Yang fullname: Yang, Yazheng organization: Beijing Institute of Technology – sequence: 8 givenname: Haosen surname: Chen fullname: Chen, Haosen email: chenhs@bit.edu.cn organization: Beijing Institute of Technology – sequence: 9 givenname: Daining surname: Fang fullname: Fang, Daining email: fangdn@bit.edu.cn organization: Peking University |
BookMark | eNqFkEFLAzEQhYNUsK1ePRc8b50k201yLNWqUCloBW8hiUlJ2e62ya6lN3-Cv9Ff4tZKBUE8zWN437zhdVCrKAuL0DmGPgYgl-rFLfsEsAABnB2hNs5wllAgvHXQ-PkEdWJcAGDGaNpG2dBU_tX2HqwpC-fndVA6t71Z8LH6Uo_rWgX78fY-2zSr3jT4uVr6U3TsVB7t2ffsoqfx9Wx0m0ymN3ej4SQxtAlI0gFzQhPmHNMZpI4YDsaAEI42TxJnUqszQTJqwGnKqIYBw0Zr6oAJroB20cX-7iqU69rGSi7KOhRNpCSUU8wF47Rx9fcuE8oYg3VyFfxSha3EIHfdyF038tBNA6S_AOMrVfmyqILy-d-Y2GMbn9vtPyFyeDW-_2E_AQCWe00 |
CitedBy_id | crossref_primary_10_1115_1_4067623 crossref_primary_10_1016_j_compositesb_2023_110585 crossref_primary_10_1002_adts_202400594 crossref_primary_10_1002_admt_202201135 crossref_primary_10_1016_j_matdes_2021_109819 crossref_primary_10_1002_pssb_202400528 crossref_primary_10_1126_sciadv_abf1966 crossref_primary_10_1002_aisy_202400038 crossref_primary_10_16984_saufenbilder_845515 crossref_primary_10_1002_adem_202101202 crossref_primary_10_1002_adma_202302066 crossref_primary_10_1115_1_4055357 crossref_primary_10_1145_3592409 crossref_primary_10_1155_2024_3046393 crossref_primary_10_3390_mi13101673 crossref_primary_10_3389_fmats_2020_600863 crossref_primary_10_1088_1361_665X_ad4d36 crossref_primary_10_1088_2631_7990_acf96a crossref_primary_10_1088_2631_8695_ad46ea crossref_primary_10_3390_mi14040822 crossref_primary_10_1126_sciadv_adk8662 crossref_primary_10_20517_ss_2021_22 crossref_primary_10_1142_S2737549822300012 crossref_primary_10_1016_j_xcrp_2021_100407 crossref_primary_10_1098_rspa_2020_0236 crossref_primary_10_1115_1_4056637 crossref_primary_10_1002_advs_202501749 crossref_primary_10_1016_j_eng_2022_02_015 crossref_primary_10_1016_j_ijsolstr_2022_111471 crossref_primary_10_1115_1_4056870 crossref_primary_10_1038_s43586_024_00313_7 crossref_primary_10_1115_1_4056475 crossref_primary_10_1016_j_apmt_2022_101529 crossref_primary_10_1016_j_mechmat_2022_104269 crossref_primary_10_1109_LRA_2022_3191417 crossref_primary_10_1063_5_0051088 crossref_primary_10_1002_advs_202105016 crossref_primary_10_1002_advs_202102662 crossref_primary_10_1021_acsami_3c02761 crossref_primary_10_1089_soro_2020_0175 crossref_primary_10_1038_s41586_021_03623_y crossref_primary_10_1021_acsami_2c19679 crossref_primary_10_1016_j_engstruct_2022_115497 crossref_primary_10_1016_j_actaastro_2023_04_039 crossref_primary_10_1002_advs_202303454 crossref_primary_10_1016_j_nanoen_2023_108697 crossref_primary_10_1088_1361_665X_abff17 crossref_primary_10_1115_1_4066568 crossref_primary_10_3390_jcs8020064 crossref_primary_10_1016_j_compstruct_2025_118872 crossref_primary_10_3390_polym14194235 crossref_primary_10_1016_j_matdes_2021_109481 crossref_primary_10_1088_1361_665X_ababe4 crossref_primary_10_1016_j_mser_2023_100745 crossref_primary_10_1002_smsc_202100077 crossref_primary_10_1002_adem_202001428 crossref_primary_10_1002_aisy_202200374 crossref_primary_10_1109_TMTT_2024_3463484 crossref_primary_10_1002_adts_202200135 crossref_primary_10_1088_1361_665X_ad6724 crossref_primary_10_1021_acsanm_0c00182 crossref_primary_10_1016_j_compositesb_2024_112089 crossref_primary_10_1073_pnas_2117649119 crossref_primary_10_1002_aisy_202400246 crossref_primary_10_1016_j_mattod_2021_03_014 crossref_primary_10_1002_advs_202001384 |
Cites_doi | 10.1109/SURV.2009.090207 10.1260/0266-3511.30.2.55 10.1109/COMST.2017.2766698 10.1016/j.eml.2017.09.008 10.1038/nmat4232 10.5194/ms-2-217-2011 10.1038/ncomms1336 10.1073/pnas.1713450114 10.1021/acsami.6b05156 10.1115/1.4031955 10.1126/sciadv.1602326 10.1177/0954406215597713 10.1002/marc.201600625 10.1109/TMECH.2012.2210239 10.1002/adma.201805282 10.1126/sciadv.1601019 10.1002/adma.200904232 10.1038/nature25443 10.1126/sciadv.1602890 10.1073/pnas.1720171115 10.1002/adma.201706311 10.1115/1.4029228 10.1126/science.1252610 10.1002/adma.201605390 10.1103/PhysRevLett.98.156103 10.1088/0964-1726/23/9/094001 10.1098/rspa.2009.0625 10.1021/la404955s 10.1038/s41586-018-0185-0 10.1073/pnas.1805122115 10.1038/s41467-017-00685-3 10.1016/j.pmatsci.2017.12.003 10.1126/science.1252876 10.1038/ncomms10929 10.1088/0964-1726/23/9/094009 10.1103/PhysRevE.95.052211 10.1038/nmat4540 10.1002/adma.201202549 10.1038/srep24224 10.1115/1.4025380 10.1088/0964-1726/23/2/023001 10.1073/pnas.1504745112 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201909087 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201909087 ADFM201909087 |
Genre | article |
GrantInformation_xml | – fundername: Key Laboratory of Space Utilization – fundername: Chinese Academy of Sciences funderid: LSU‐KFJJ‐2018‐04 – fundername: National Natural Science Foundation of China funderid: 11872113 – fundername: Beijing Natural Science Foundation funderid: 2182065 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3177-457f9b27ff7b604f2c80cc099f30902fc4eb69263c0fb373b0571cbb3f0798a03 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 07:48:41 EDT 2025 Tue Jul 01 04:12:09 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Wed Jan 22 16:36:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3177-457f9b27ff7b604f2c80cc099f30902fc4eb69263c0fb373b0571cbb3f0798a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4328-8919 |
PQID | 2383189783 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2383189783 crossref_primary_10_1002_adfm_201909087 crossref_citationtrail_10_1002_adfm_201909087 wiley_primary_10_1002_adfm_201909087_ADFM201909087 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2015; 14 2013; 25 2017; 3 2011; 2 2019; 31 2010; 466 2015; 30 2017; 29 2007; 98 2017; 114 2018; 20 2016; 15 2014; 23 2017; 95 2010; 22 2013; 18 2009; 11 2016; 6 2016; 7 2016; 2 2015; 115 2015; 137 2017; 17 2017; 38 2018; 558 2015; 112 2018; 115 2018; 554 2015; 230 2013; 135 2018; 30 2018; 94 2014; 30 2010; 2 2014; 345 2016; 8 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 8 start-page: 596 year: 2017 publication-title: Nat. Commun. – volume: 23 year: 2014 publication-title: Smart Mater. Struct. – volume: 22 start-page: 2251 year: 2010 publication-title: Adv. Mater. – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. – volume: 112 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 30 start-page: 55 year: 2015 publication-title: Int. J. Space Struct. – volume: 2 start-page: 337 year: 2010 publication-title: Nat. Commun. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 14 start-page: 389 year: 2015 publication-title: Nat. Mater. – volume: 230 start-page: 2345 year: 2015 publication-title: Proc. Inst. Mech. Eng., Part C – volume: 115 start-page: 2032 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 137 year: 2015 publication-title: J. Mech. Des. – volume: 558 start-page: 274 year: 2018 publication-title: Nature – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 135 year: 2013 publication-title: J. Mech. Des. – volume: 345 start-page: 644 year: 2014 publication-title: Science – volume: 466 start-page: 2155 year: 2010 publication-title: Proc. R. Soc. A – volume: 30 start-page: 5378 year: 2014 publication-title: Langmuir – volume: 8 year: 2016 publication-title: J. Mech. Rob. – volume: 115 start-page: 6916 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 38 year: 2017 publication-title: Macromol. Rapid Commun. – volume: 20 start-page: 629 year: 2018 publication-title: IEEE Commun. Surv. Tutorials – volume: 554 start-page: 81 year: 2018 publication-title: Nature – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 11 start-page: 87 year: 2009 publication-title: IEEE Commun. Surv. Tutorials – volume: 114 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 94 start-page: 114 year: 2018 publication-title: Prog. Mater. Sci. – volume: 95 year: 2017 publication-title: Phys. Rev. E – volume: 2 start-page: 217 year: 2011 publication-title: Mech. Sci. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 25 start-page: 91 year: 2013 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 18 start-page: 430 year: 2013 publication-title: IEEE/ASME Trans. Mechatronics – volume: 15 start-page: 583 year: 2016 publication-title: Nat. Mater. – volume: 17 start-page: 7 year: 2017 publication-title: Extreme Mech. Lett. – volume: 345 start-page: 647 year: 2014 publication-title: Science – ident: e_1_2_7_39_1 doi: 10.1109/SURV.2009.090207 – ident: e_1_2_7_31_1 doi: 10.1260/0266-3511.30.2.55 – ident: e_1_2_7_40_1 doi: 10.1109/COMST.2017.2766698 – ident: e_1_2_7_32_1 doi: 10.1016/j.eml.2017.09.008 – ident: e_1_2_7_18_1 doi: 10.1038/nmat4232 – ident: e_1_2_7_38_1 doi: 10.5194/ms-2-217-2011 – ident: e_1_2_7_13_1 doi: 10.1038/ncomms1336 – ident: e_1_2_7_12_1 doi: 10.1073/pnas.1713450114 – ident: e_1_2_7_24_1 doi: 10.1021/acsami.6b05156 – ident: e_1_2_7_27_1 doi: 10.1115/1.4031955 – ident: e_1_2_7_8_1 doi: 10.1126/sciadv.1602326 – ident: e_1_2_7_29_1 doi: 10.1177/0954406215597713 – ident: e_1_2_7_6_1 doi: 10.1002/marc.201600625 – ident: e_1_2_7_15_1 doi: 10.1109/TMECH.2012.2210239 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201805282 – ident: e_1_2_7_42_1 doi: 10.1126/sciadv.1601019 – ident: e_1_2_7_7_1 doi: 10.1002/adma.200904232 – ident: e_1_2_7_14_1 doi: 10.1038/nature25443 – ident: e_1_2_7_2_1 doi: 10.1126/sciadv.1602890 – ident: e_1_2_7_19_1 doi: 10.1073/pnas.1720171115 – ident: e_1_2_7_23_1 doi: 10.1002/adma.201706311 – ident: e_1_2_7_35_1 doi: 10.1115/1.4029228 – ident: e_1_2_7_16_1 doi: 10.1126/science.1252610 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201605390 – ident: e_1_2_7_10_1 doi: 10.1103/PhysRevLett.98.156103 – ident: e_1_2_7_28_1 doi: 10.1088/0964-1726/23/9/094001 – ident: e_1_2_7_37_1 doi: 10.1098/rspa.2009.0625 – ident: e_1_2_7_9_1 doi: 10.1021/la404955s – ident: e_1_2_7_26_1 doi: 10.1038/s41586-018-0185-0 – ident: e_1_2_7_25_1 doi: 10.1073/pnas.1805122115 – ident: e_1_2_7_11_1 doi: 10.1038/s41467-017-00685-3 – ident: e_1_2_7_30_1 doi: 10.1016/j.pmatsci.2017.12.003 – ident: e_1_2_7_20_1 doi: 10.1126/science.1252876 – ident: e_1_2_7_21_1 doi: 10.1038/ncomms10929 – ident: e_1_2_7_34_1 doi: 10.1088/0964-1726/23/9/094009 – ident: e_1_2_7_33_1 doi: 10.1103/PhysRevE.95.052211 – ident: e_1_2_7_41_1 doi: 10.1038/nmat4540 – ident: e_1_2_7_4_1 doi: 10.1002/adma.201202549 – ident: e_1_2_7_5_1 doi: 10.1038/srep24224 – ident: e_1_2_7_36_1 doi: 10.1115/1.4025380 – ident: e_1_2_7_22_1 doi: 10.1088/0964-1726/23/2/023001 – ident: e_1_2_7_17_1 doi: 10.1073/pnas.1504745112 |
SSID | ssj0017734 |
Score | 2.5970738 |
Snippet | Origami structures offer valuable applications in many fields, ranging from metamaterials to robotics. The multistable characteristics of origami structures... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Automation Channel capacity Communications systems Configurations Formability frequency reconfigurable antennas Manufacturing engineering Material properties materials origami Materials science Metamaterials Morphing multistable structures Potential energy Reconfiguration Robotics Stiffness |
Title | Active Reconfigurable Tristable Square‐Twist Origami |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201909087 https://www.proquest.com/docview/2383189783 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iL_rgXZzO0QfBp25tmibpY3GOIU7BbbC3kqSNDHXqLgg--RP8jf4Sc3rbJoigb21JSnOSc8530nO-IHSqtJAxjYUNiTY2CZRv81hom1DucUViShjUO3euabtPLgf-YKGKP-OHKDfcQDNSew0KLuSkMScNFbGGSnLj0AKHQzk5JGwBKrot-aNcxrLfytSFBC93ULA2Orix3H3ZK82h5iJgTT1OawuJ4luzRJP7-mwq6-rtG43jfwazjTZzOGqF2frZQSvJaBdtLJAU7iEapibRgkB1pId3szFUW1k9sA7pVffFLLPk8_2j92oeWTcm3hePw33Ub130ztt2ftqCrQyGAPJzpgOJmdZMUodorLijlAGQ2oPcTa1IImmAqaccLT3mSYP0XCWlpx0WcOF4B2h19DRKDpFlUEOCOWVC4pgEjs9xLGQAJLjGZPiSVZBdSDtSORU5nIjxEGUkyjgCeUSlPCrorGz_nJFw_NiyWkxelCvjJDKoxFgu2OOqIJzOwi9vicJmq1PeHf2l0zFaxxCZp9lqVbQ6Hc-SEwNfprKG1sJm56pbS5fqFydi6GA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3ofFAf_BanU_sg-NTZpm3SPg7nmLpN0A32Vpq0kaFWnRuCT_4Ef6O_xNx-bRNE0Le2JKW5SW5Obs89ATgSMuAhDQMdiTa67QlHd8NA6jZ1LVfYIbUZ5ju3O7TZsy_6Ts4mxFyYVB-iCLjhzEj8NU5wDEifTFRDg1BiKrla0TzDZfOwgMd6o3x-_bpQkDIZS38sUxMpXmY_1200yMls_dl1aQI2pyFrsuY0VoHnX5tSTe6q4xGvirdvQo7_as4arGSIVKulQ2gd5qJ4A5andAo3gdYSr6jhXjWWg9vxEBOutC46iOTq5lmNtOjz_aP7qh5pV2rLHzwMtqDXOOueNvXswAVdKBiB-udMepwwKRmnhi2JcA0hFIaUFtI3pbAjTj1CLWFIbjGLK7BnCs4taTDPDQxrG0rxYxztgKaAQ0RcygJOQtszHJeEAfdQB1d5DYezMui5uX2RqZHjoRj3fqqjTHy0h1_YowzHRfmnVIfjx5KVvPf8bD6--AqYKOeFYa4ykKQbfnmLX6s32sXd7l8qHcJis9tu-a3zzuUeLBHcqCfktQqURsNxtK_QzIgfJOP1C2ut6ug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT8IwEL8oJkYf_G9EUfdg4tNgdKXdHolI8A9oFBLelrZbDVEREWLikx_Bz-gnsbfBABNjom_d0i7b9e76u-7uV4AjpYUMWShsTLSxqa9KthcKbVPmuZ6iIaMc653rDVZr0fN2qT1VxZ_wQ6QbbmgZsb9GA--FujAhDRWhxkpys6D5jsfnYYEy00JYdJMSSBU5T_4rsyJmeBXbY9pGhxRmx88uSxOsOY1Y4yWnugpi_LJJpsl9fjiQefX2jcfxP1-zBisjPGqVEwVah7mouwHLUyyFm8DKsU-0MFLt6s7dsI_lVlYT3UPcun02ehZ9vn80X80t68oE_OKxswWt6mnzpGaPjluwlQERyH7OtS8J15pL5lBNlOcoZRCkdjF5UysaSeYT5ipHS5e70kC9opLS1Q73PeG425DpPnWjHbAMbIiIx7iQJKS-U_JIKKSPLLjGZ5Qkz4I9lnagRlzkeCTGQ5CwKJMA5RGk8sjCcdq_l7Bw_NgzN568YGSNL4GBJcZ14SZXFkg8C788JShXqvX0avcvgw5h8bpSDS7PGhd7sEQwSo8z13KQGfSH0b6BMgN5EGvrF7S86Zc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Reconfigurable+Tristable+Square%E2%80%90Twist+Origami&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Li%E2%80%90Chen&rft.au=Song%2C+Wei%E2%80%90Li&rft.au=Zhang%2C+Ya%E2%80%90Jing&rft.au=Qu%2C+Mei%E2%80%90Jun&rft.date=2020-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=13&rft_id=info:doi/10.1002%2Fadfm.201909087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201909087 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |